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Abstract——With the extensive penetration of distributed re‐
newable energy and self-interested prosumers, the emerging 
power market tends to enable user autonomy by bottom-up con‐
trol and distributed coordination. This paper is devoted to solv‐
ing the specific problems of distributed energy management 
and autonomous bidding and peer-to-peer (P2P) energy sharing 
among prosumers. A novel cloud-edge-based We-Market is pre‐
sented, where the prosumers, as edge nodes with independent 
control, balance the electricity cost and thermal comfort by for‐
mulating a dynamic household energy management system 
(HEMS). Meanwhile, the autonomous bidding is initiated by 
prosumers via the modified Stone-Geary utility function. In the 
cloud center, a distributed convergence bidding (CB) algorithm 
based on consistency criterion is developed, which promotes 
faster and fairer bidding through the interactive iteration with 
the edge nodes. Besides, the proposed scheme is built on top of 
the commercial cloud platform with sufficiently secure and scal‐
able computing capacity. Numerical results show the effectiveness 
and practicability of the proposed We-Market, which achieves 
15% cost reduction with shorter running time. Comparative anal‐
ysis indicates better scalability, which is more suitable for larger-
scale We-Market implementation.

Index Terms——We-Market, bidding, energy sharing, prosum‐
er, peer-to-peer, cloud-edge.

NOMENCLATURE

A. Sets and Indices

Dseller
N ´ T Set of seller users

Dbuyer
N ´ T Set of buyer users

i, j Indices of prosumers

k Index of iterations

lwpv Indices of load, wind power, and photovoltaic (PV)

N Total number of prosumers

t Time slot

T Total scheduling time

B. Parameters

αi Willingness to purchase/sell electricity

β i Penalty coefficient for energy imbalance

θk Iterative parameters

ε Iteration step

ηi Battery leakage rate

τ i Factor of building thermal inertia

γi Performance coefficient of air conditioner

ai Ambient temperature

eil Prediction error of loads

eiw Prediction error of wind power

eipv Prediction error of PV power

K i Building insulation coefficient

Pil Day-ahead prediction of loads

Piw Day-ahead prediction of wind power

Pipv Day-ahead prediction of PV power

C. Variables

λi Generated dual variables of prosumer

ρ Coefficient of quadratic penalty term

δuij Power gaps between transaction parties

bi Quotations of prosumers

bi* Optimal quotations of prosumers

ui
1 Power discharged from battery for home usage

ui
2 Unit power consumption of air conditioner (ui

2 > 0 
when air conditioner is in use, and ui

2 < 0 otherwise)

ui
3 Actual tradable electricity (ui

3 > 0 indicates the pur‐
chased electricity from the main grid or other pro‐
sumers, and ui

3 < 0 indicates the sold electricity)

uitrade Actual trading electricity

uitrade* Optimal trading electricity
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xi
1 Battery state of charge

xi
2 Indoor temperature of prosumers

xi
3 State of electricity balance

I. INTRODUCTION 

RENEWABLE energy and smart grid technology are ef‐
fective ways to deal with the energy trilemma [1]. With 

the extensive penetration of renewable energy generation 
and controllable loads into power systems, more and more 
traditional power users are gradually transformed into self-in‐
terested prosumers with autonomous capability, participating 
in the electricity market through renewable energy genera‐
tion, e.g., small wind turbines and rooftop photovoltaic (PV) 
panels, coordination control of energy storage, and flexible 
load. The traditional centralized electricity market is further 
transformed to decentralized retail markets [2], [3]. In this 
context, a reasonable energy management strategy and a re‐
tail electricity market operation mode are of great signifi‐
cance to deeply tap user flexibility, improve energy efficien‐
cy, and ensure the interests of the prosumers.

To coordinate transactive prosumers in emerging electrici‐
ty markets, many recent studies contribute to the peer-to-
peer (P2P) models [4]. In general, the P2P models consist of 
energy management and bidding strategy. Taking into ac‐
count some influence factors such as the uncertainty of re‐
newable energy [5], supply and demand balance [6], and 
power flow security [7], the P2P energy management focus‐
es on the optimal energy sharing among prosumers. In [8], a 
non-cooperative energy sharing game is presented for the 
selfish buildings, which further analyzes the relationship be‐
tween generalized Nash equilibrium and energy sharing pay‐
ments. In [9], a two-level energy sharing strategy is further 
introduced to find the optimal distributed energy sharing 
way. Furthermore, the P2P energy management can be ex‐
tended to the optimal scheduling problem of transactive 
multi-energy systems to support multi-energy complementari‐
ty and integrated demand response [10], [11]. These efforts 
are devoted to optimizing energy management. However, it 
is difficult to capture conflicting interests and fairness of the 
trading without considering the autonomy of prosumers and 
diversified control objectives.

To balance the optimality of energy management and the 
fairness of the trading, the local energy market (LEM), as 
one possible implementation of a citizen energy community, 
comes into being to coordinate the increasing number of pro‐
sumers [12]. It ideally considers the prosumers’  preferences, 
ensures trading fairness and efficient operation, reduces trans‐
mission costs, and enhances local communities by enabling 
prosumers to actively negotiate and trade residual energy 
[13]. To this end, the P2P-based bidding mechanism be‐
comes an important part of energy sharing in the LEM, 
which can be roughly divided into three categories: auction-
based bidding, game-based bidding, and convergence bid‐
ding (CB). For example, an iterative double auction mecha‐
nism is designed to maximize the social welfare in the P2P 
energy trading among electric vehicles [14]. In [15], a surro‐
gate LEM prediction model is developed to learn prosumer 

bidding actions, which facilitates prosumers actively partici‐
pating in the continuous double auction-based LEM. In [16], 
the continuous double auction problem moves towards a Pa‐
reto efficient allocation. However, it proves that the genera‐
tion or load curtailment may occur under the auction-based 
bidding mechanism. The game-theoretic approach is used in 
[17] to capture the conflicting interests in the decision-mak‐
ing process of the LEM. In [18], a stochastic leader-follower 
game approach is presented considering the social attributes 
of prosumers, which provides a trade-off solution between 
dynamic prices and load distributions. To increase the pro‐
sumer participation, a motivation psychology framework and 
a game-theoretic P2P energy trading scheme are presented in 
[19]. Though the game-based bidding strategy shows its po‐
tential to attract prosumers to participate in the LEM, Nash 
equilibrium solutions may not always exist, especially for 
large-scale nonlinear P2P energy management and bidding 
problems in some real scenarios. To this end, a CB strategy 
is proposed in [20] to reduce the price gap between the day-
ahead and the real-time LEM prices. In [21], a bi-level opti‐
mization CB strategy is formulated to maximize the profits 
from the point of view of the bidders. It also analyzes how 
such a strategy affects the price gap. Based on the previous 
studies, the common ground of the three methods [19]-[21] 
is based on a virtual center responsible for integrating partici‐
pants. The most essential difference is whether the optimiza‐
tion and decision-making processes are separated, which is 
determined by different structures of the markets. For the 
auction-based methods in [14]-[16], the optimization and de‐
cision-making processes are separated, which are implement‐
ed by different subjects. Specifically, the optimization pro‐
cess is performed by a virtual center, and the specific model 
parameters of agents need to be known. The decision-mak‐
ing process is executed by agents according to the optimiza‐
tion results fed back by the virtual center. On the contrary, 
the optimization and decision-making processes can be inte‐
grated into agents and executed in parallel by the CB meth‐
od. Here, the virtual center is mainly responsible for coordi‐
nating and matching participants and rarely participates in 
optimization and decision-making. In other words, the CB 
method uses the local solving and extensive communication 
abilities of prosumers to share the computation burden of the 
virtual center. Therefore, it is expected to give full play to 
the autonomy of prosumers and improve optimization effi‐
ciency.

From the perspectives of systemic energy management 
and bidding mechanism, the related research shows potential 
in solving the previous P2P trading problems. Although it is 
more popular and easier for the system operator to imple‐
ment top-down control, such a framework may lead to the 
following problems: ① the access of large-scale self-interest‐
ed prosumers leads to the increase of computation complexi‐
ty of centralized optimizer, which is difficult to guarantee ef‐
ficiency, real-time property, and scalability of the retail elec‐
tricity market; ② the centralized optimizer has full control 
of the LEM, which makes it difficult to further stimulate pro‐
sumers’  autonomy to participate in the market; ③ and priva‐
cy security is a concern. Once the centralized database stor‐
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age is attacked, all information will be leaked. Motivated by 
the emerging edge empowerment techniques, the cloud-edge 
collaboration and its extended application have become alter‐
native solutions [22], [23]. There have been some attempts 
in the electricity market. In [24], a cloud-edge collaborative 
decision-making approach is presented for demand response 
enabled fast frequency response service provision. Results 
show that the cloud-edge computing is a comprehensive ap‐
proach to deploying new distributed energy market architec‐
tures. In [25], a two-stage community energy trading model 
under end-edge-cloud orchestration is proposed to solve the 
trading problems between the retailer and energy communi‐
ties and increase the transaction efficiency. Therefore, the 
cloud-edge collaboration has the potential to improve the 
scalability of the LEM and the autonomy of users by trans‐
ferring computing power and privacy information to edge 
nodes.

In terms of previous studies, the research gaps are mainly 
reflected in the following aspects. ① From the perspective 
of prosumers’  interests, there is little research on the design 
of bottom-up market mechanism. ② For prosumers with 
computing power, their dynamic energy management and 
participation in market bidding are still lack of interaction. 
③ For an LEM, the optimization and decision-making pro‐
cesses need to be further integrated into prosumers to im‐
prove optimization efficiency and avoid the failure of the 
whole market mechanism caused by the unavailability of 
edge nodes. Therefore, the distributed solution method for 
quickly coordinating large-scale prosumers to access the mar‐
ket needs to be redesigned. Accordingly, the key contribu‐
tions of this paper to these problems can be summarized as 
follows.

1) A cloud-edge-based We-Market mechanism is designed 
to improve the fairness and efficiency of P2P trading. Com‐
pared with the traditional centralized optimization method of 
the LEM, it enables prosumers to carry out autonomous ener‐
gy management and bidding by using the local solving abili‐
ties of edge nodes and their extensive information interac‐
tion in the cloud center.

2) A dynamic household energy management system 
(HEMS) model is developed to integrate dynamic energy 
management and autonomous bidding into prosumers. It ful‐
ly considers the dynamic characteristics of energy manage‐
ment and the preference for participating in the market, and 
balances local electricity cost and thermal comfort in the pro‐
cess of participating in the We-Market.

3) A CB method is proposed based on the consistency cri‐
terion for the cloud-edge-based We-Market. The optimization 
and decision-making processes are integrated into prosumers 
so that the computing services are transferred from the cen‐
ter to the edge of the network for parallel computing. There‐
fore, it reduces the computation burden of the center and im‐
proves the optimization efficiency. It is also proven to have 
better scalability.

The remainder of this paper is organized as follows. Sec‐
tion II describes the basic need and formally defines the 
cloud-edge-based We-Market including the dynamic HEMS 
and quotation models of prosumers. Section III presents the 

P2P energy trading in the We-Market. Numerical experi‐
ments, as well as performance analysis and necessary discus‐
sion, are conducted in Section IV. Finally, Section V summa‐
rizes the main findings and future works.

II. CLOUD-EDGE-BASED WE-MARKET 

Prosumers, as energy suppliers, consumers, and managers, 
may have great enthusiasm and initiative to participate in 
and benefit from energy trading. Since the traditional central‐
ized optimization method of the LEM suffers from the prob‐
lems of limited computing power, autonomy, and privacy se‐
curity, it is bound to promote two aspects of reform: ① edge 
intelligence; and ② autonomous trading. At the same time, 
difficulties and challenges may arise: ① how to transfer the 
autonomous control to prosumers to meet the personalized 
needs of users participating in the market? ② how does the 
market coordinate large-scale self-interested prosumers to im‐
prove efficiency and scalability? Inspired by the bottom-up 
energy management structure [26] and the concept of We-
Media on the Internet [27], [28], the novel concept of the 
We-Market is put forward for the first time. It is defined as 
a self-organizing LEM with the important characteristics of 
distributed, full-duplex, local intelligent control, P2P energy 
sharing, and autonomous bidding. The main players of the 
We-Market are a large number of prosumers with distributed 
generation, energy storage, and controllable loads. They 
have complete autonomy over local energy management by 
integrating optimization and decision-making [29]. There‐
fore, the citizen energy community can realize energy shar‐
ing and self-sufficiency in a bottom-up flat energy interac‐
tion way. Compared with the decentralized P2P models, the 
advantages of the cloud-edge-based We-Market are mainly 
reflected in the following two aspects. 

1) The optimization program is executed in parallel 
among prosumers rather than overall coordination through 
the center, which can meet the autonomy needs of prosum‐
ers and reduce the computation burden of the center, so as 
to improve the market efficiency. 

2) Dynamic energy management of prosumers is closely 
related to autonomous bidding behavior, which provides pro‐
sumers with a basis for the optimal coordination of local 
flexible resources and a fair guarantee for the participation 
in the market.

A. System Description

As illustrated in Fig. 1, the We-Market is a bottom-up con‐
trol framework, which is based on cloud-edge collaboration 
and frequent interaction. The operation of the system in‐
cludes the following links. Firstly, prosumers use local com‐
puting power to solve the dynamic HEMS models to coordi‐
nate the internal energy storage, controllable loads, and re‐
newable energy outputs. At the same time, prosumers formu‐
late the quotation strategies according to the local energy co‐
ordination results and the quotation models. Here, the solu‐
tion program is executed in parallel by decentralized prosum‐
ers, and the tradable power and quotation information of 
each prosumer are output and uploaded to the cloud center. 
Then, according to the uploaded information, the cloud cen‐
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ter uses the CB method to match the transaction parties and 
feeds back tradable power and quotation gaps to prosumers. 
Next, both transaction parties adjust energy management and 
quotation strategies and update the upload information. Final‐
ly, a win-win deal consensus is reached after several interac‐

tions and iterations among the cloud and prosumers. As a re‐
sult, it has the potential to improve the autonomy of prosum‐
ers and market efficiency. Given these features, technical de‐
tails of the dynamic HEMS, quotation models, and the CB 
algorithm are presented in the following sections.

Particularly, [16] investigates the impact of the technical 
constraints of the low-voltage distribution network for P2P 
energy trading. It constructs and introduces power flow con‐
straints into the optimization problem to ensure that the ener‐
gy exchange of each node in the distribution network does 
not violate network constraints. However, since the proposed 
We-Market focuses on energy sharing within the local com‐
munity (which can be regarded as a node in the distribution 
network), the power transmission distance is short and the 
power loss can be ignored, and thus the system modeling 
does not consider the power flow constraints. From a wide-
area perspective, i.e., cross-community energy trading, a de‐
tailed distribution network power flow model needs to be in‐
troduced based on the We-Market to solve the problems of 
network congestion and voltage stability, such as the Dist‐
flow-based modeling method for distribution networks.

B. Dynamic HEMS Model

Consider a total of N prosumers that participate in the We-
Market. According to Fig. 1, it is assumed that a household 
wind turbine and a rooftop PV are available as renewable en‐
ergy generators for each prosumer iÎ{12...N}. It should 
be noted that as distributed power sources, household wind 
turbines and rooftop PVs have become new and promising 
ways of comprehensive energy utilization with their small 
modular, decentralized, and efficient generation mode ar‐
ranged near users [30], [31]. Besides, as an indoor thermo‐
stat, the air conditioner is a controllable load. The battery is 
connected to renewable energy generators and air condition‐
ers to provide power reserves. Besides, some other uncontrol‐
lable and known appliances are considered as base loads, 
such as lighting and refrigerators. Theoretically, the base 
loads and the output power of the household wind turbine 
and rooftop PV are random and fluctuating. Therefore, they 
can be modeled as Pil + eil, Piw + eiw, and Pipv + eipv, respec‐
tively. Here, the prediction error e obeys the Gaussian distri‐

bution with zero mean and variance σ2. As for the ambient 
temperature, it is assumed that the meteorological data are 
accurate and known.

Based on the dynamic state of charge (SOC) and building 
thermal models in [32], the whole HEMS can be formulated 
by introducing the differential equation of electricity balance 
[33] as:
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ẋi
2

ẋi
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where the outputs of the renewable generators, i.e., Piw + eiw 
and Pipv + eipv, act as the input power to the battery; and the 
third row describes the dynamics of the supply-demand bal‐
ance. Therefore, the dynamic states are xi

1, x
i
2, and xi

3 and the 
decision variables include ui

1, u
i
2, and ui

3.
Equations (2) - (5) provide the detailed parameter matrices 

and vectors in (1).
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d = [0 (1 - τ i )ai 0 ]T
(5)

where τ i is dependent on the function of thermal conductivi‐
ty and time constant; -γi (1 - τ i )K i indicates the combined 
factor considering the building thermal inertia and the air 
conditioner performance [34], [35]; γi is used to adjust the in‐
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Fig. 1.　Diagram of cloud-edge-based We-Market.
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door temperature comfortably; and K i is used to represent 
the ratio between the total thermal output of the air condi‐
tioner and the consumed electricity.

The above HEMS model provides a basis for realizing 
multiple flexible resource decoupling, dynamic household en‐
ergy management, and decision-making of tradable electrici‐
ty. However, it is important that the energy trading in the 
We-Market should be rational according to the principle of 
maximizing the interests of the prosumers. Therefore, a fair 
quotation model is developed in the following sections.

C. Quotation Model

According to the above HEMS model, the trading price 
needs to be reasonably quantified during the transaction. 
Here, the classic Stone-Gear utility function in economics is 
introduced. It organically integrates three key elements in 
the transaction process, i. e., tradable quantity, preference, 
and utility [36]. Compared with linear/quadratic utility func‐
tions that are widely used in the power system area, the 
Stone-Gear utility function not only combines the energy 
management and quotation of prosumers but also quantifies 
their preferences to participate in the market, which presents 
a good practical application prospect. Its first-order deriva‐
tive is clear though it is nonlinear. Relevant studies have 
proven the effectiveness of the Stone-Geary utility function 
in characterizing the trading willingness of users [14].

Here, suppose ui
3 and uibase are the actual and basic trad‐

able electricity, respectively. In the case of ui
3 > 0, let the ac‐

tual trading electricity uitrade = ui
3 - uibase. Then, the corre‐

sponding Stone-Geary utility function U for all prosumers 
can be formulated as:

U =∏
i = 1

N

(uitrade )α
i

(6)

By the monotonic transformation of (6), the same prefer‐
ence function can be obtained for any prosumer as:

U(ui
3 )= αi ln uitrade (7)

To avoid the case of ui
3 = uibase, (7) can be rewritten as:

U ′ (ui
3 )= αi ln(uitrade + 1) (8)

To reduce the computation complexity, the nonlinear U ′ (ui
3 ) 

can be approximated by the first-order Taylor series as:

U ′ (ui
3 )= αi∑

n = 0

¥ (-1)n

n + 1
(uitrade )n + 1 » αiuitrade (9)

Besides, the state of electricity balance xi
3 is a critical con‐

dition for prosumers during their P2P trading in the We-Mar‐
ket. In other words, each prosumer should comprehensively 
consider the willingness to purchase/sell electricity and its re‐
sidual power status. For each round of bidding, its quotation 
strategy is a weighted form as:

bi = αiuitrade + β i xi
3 (10)

The quotation model for the case of ui
3 < 0 is similar and 

can be obtained by changing the sign from positive to negative.

D. Trade-off Analysis

Each prosumer can formulate a dynamic optimization 
problem via the proposed HEMS and the quotation models 
to coordinate the operation of the renewable generator out‐

put, battery, and air conditioner, to balance the cost of power 
consumption and indoor temperature comfort. At any time t, 
the trade-off framework is to balance the controllable load 
ui

2 (t) and the trading electricity uitrade (t). Accordingly, the to‐
tal utility for the prosumer can be modeled as a quadratic 
function as:

f i (ui
1 (t)ui

2 (t)ui
3 (t))= ϵ(Pil (t)+ eil (t)+ ui

2 (t))- bi (t)uitrade (t)+
λ(xi

2 (t)- xi
d (t))2 (11)

where at the right side, the first term denotes the cost of 
electricity consumption; the second term denotes the revenue 
from electricity sales for the case of ui

3 > 0 (if ui
3 < 0, it 

changes to the purchase cost); and the third term denotes the 
penalty of the deviation between the current temperature and 
the desired temperature xi

d (t). Given the current state follows 
the dynamic characteristics in (1) and the quotation strategy 
in (10), an equilibrium strategy concerning the cost of power 
consumption and indoor temperature comfort can be ob‐
tained using the dynamic programming [32]. Besides, it also 
provides the optimal trading electricity uitrade* (t) and the ini‐
tial quotation bi* (t) for each prosumer.

III. P2P ENERGY TRADING IN WE-MARKET 

Based on the proposed HEMS and quotation models, the 
whole system operation turns out to be a distributed optimi‐
zation problem with frequent information interaction and 
P2P bidding. Since the computation complexity may in‐
crease exponentially or polynomially with the number of pro‐
sumers, the centralized optimization across all prosumers is 
not practical. To this end, the distributed CB algorithm is de‐
veloped for the cloud-edge-based We-Market to support au‐
tonomous bidding and P2P energy sharing.

A. Distributed CB Algorithm

Algorithm 1 describes the control and update of the pro‐
sumers. It updates the status of prosumers by actively adjust‐
ing decision variables ujk

3  and quotation coefficients αi
k and 

β i
k according to the HEMS and quotation models, i. e., (1) -

(11). Algorithm 2 provides the distributed CB algorithm for 
the cloud of the We-Market. It matches the transaction par‐
ties following the principle of minimum deviation, which 
guides the prosumers to actively adjust the states by updat‐
ing the iterative parameters θk until the optimal trading elec‐
tricity and price are consistent.

The overall bidding procedure for the cloud-edge-based 
We-Market and the distributed CB algorithm is shown in 
Fig. 2, and is performed through the following processes.

1) According to Algorithm 1, the local energy manage‐
ment problem is tackled via the dynamic HEMS and quota‐
tion models of each prosumer in parallel. And the trading 
electricity uitrade

k (t)= uitrade* (t) and the initial quotation bi
k (t)=

bi* (t) are uploaded to the cloud center.
2) According to Algorithm 2, the cloud center matches the 

transaction parties and provides power and quotation gaps, 
i.e., Duij and Dbij (j ¹ i), respectively, by minimizing deviations.

3) Next, both transaction parties use these gaps to update 
residual power status uitrade

k + 1 (t) and quotation bi
k + 1 (t), and in‐

teract with the cloud center again until a deal consensus is 
reached.
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4) Finally, the prosumers determine whether another round 
of the We-Market is required based on the decision variables 
ui*

3  and uj*
3 . If ui*

3 > 0 is not satisfied, output the trading re‐
sults. Otherwise, another round of the We-Market needs to 
be organized to maximize the utilization of renewable ener‐
gy and the benefits of prosumers.

Note that, the distributed CB algorithm matches the two 
sides of the transaction following the principle of minimiz‐
ing the deviation. It is a kind of priority, which avoids the 
situation where a prosumer matches several prosumers at the 
same timeslot. Therefore, it also ensures the uniqueness and 
traceability of transactions. Besides, it can also be observed 
that the center of the distributed CB algorithm is mainly re‐
sponsible for coordinating and matching participants, and 
computation tasks are transferred to prosumers for parallel 

execution, which meets the autonomy needs of prosumers 
and reduces the computation burden of the center, so as to 
improve the market efficiency.

B. Convergence Analysis

According to (11) and the distributed CB algorithm, the lo‐
cal augmented Lagrangian function of the prosumer i can be 
formulated as:

min
uitradeujtradeλi

Li
CB = f i +∑

j

λi (uitrade + ujtrade )+
ρ
2
 (uitrade + ujtrade )

2

2

(12)

Given the prosumers are connected with the cloud in a pe‐
riod T, the convergence performance of the algorithm is 
closely related to the step size ε, and we have:

0 < ε < 1/ϖ (13)

where ϖ = sup max
k £ 0

π ij
k , and π ij

k  is an element in a time-vary‐

ing Laplace matrix Lk, which can be expressed as:

π ij
k =

ì
í
î

ïï

ïïïï

∑
j

λi
k i = j

-λi
k i ¹ j

(14)

Algorithm 2: distributed CB algorithm

1: Obtain uitrade* (t) and bi* (t) from prosumers
2: if uitrade* (t)> 0
3:  Build seller set Dseller

N ´ T (it)= uitrade* (t)
4: else
5:  Build buyer set Dbuyer

N ´ T (it)= uitrade* (t)
6:  for t = 1:T
7:    for i = 1:N
8:     while uitrade

k (t)= uitrade* (t)> 0
9:         Find j = arg min{|uitrade

k (t)+Dbuyer
N ´ T (:t)|}

10:        if Duij
k (t)= uitrade

k (t)+ ujtrade
k (t)¹ 0

11:                Download Duij
k (t) and θk + 1 = θk + ε to prosumers for up‐

dates, in which θ0 = 0
12:        else if Duij

k (t)= 0 and Dbij
k (t)= bi

k (t)- bj
k (t)¹ 0

13:           Download Dbij
k (t) to prosumers for updates

14:        end if
14:     until Duij

k (t)= 0 and Dbij
k (t)= 0

15:     end while
16:         Record the optimal trading electricity uitrade*

k (t)=-ujtrade*
k (t) and 

the trading price bi*
k (t)= bj*

k (t)
17:    end for
18:  end for
19: end if

End

θ k+1 = θ k + ε to

Send ∆u ij(t) and

Solve dynamic HEMS

model in (1)-(11)

Set parameters of

devices, let k = 0

Build seller and buyer

sets D
seller

 and D
buyer

N×T N×T

N

Y

Y

k kui,trade,*(t) = −u j,trade,*(t)

k kbi,*(t) = b j,*(t)

N

edge prosumerN

edge prosumer

Edge prosumers

Cloud center

3 3ui,k+1 = ui,k − θ k+1

3 3 k
u j,k+1 = u j,k + ∆u ij(t) + θ k+1

Y Control

resultskui,trade(t) 
=

 0?

Send ui,trade and b
t
k(t) tok

cloud center

j = arg min{|ui,trade(t) + D
seller

(:,t)|}N×Tk

∆u ij(t) = ui,trade(t) + u j,trade(t)k k k

∆u ij(t) = 0?k

∆b
ij
(t) = 0?k

∆bij(t) = b i (t) − b
j
(t)k k k

Send ∆b
ij
(t) tok

αi
k+1

 = αi
k
 − ∆b

ij
(t)k

β i
k+1

 = β i
k
 − ∆b

ij
(t)k

α
k+1

 = α j  + ∆b
ij
(t)
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j

j j
βk+1

 = βk
 + ∆b

ij
(t)k

Predict renewable energy

Start

generation and base load

Fig. 2.　Overall procedure for cloud-edge-based We-Market and distributed 
CB algorithm.

Algorithm 1: control and update of prosumers

1: for t = 1:T
2:  for i = 1:N
3:    Solve HEMS model in (1)-(11) using dynamic programming
4:    Obtain uitrade* (t) and bi* (t) of all prosumers
5:    while uitrade* (t)¹ 0
6:    Upload uitrade* (t) and k to cloud center
7:    Download Duij

k (t) and θk + 1 from cloud center
8:    if Duij

k (t)¹ 0
9:            Resolve HEMS model with uik + 1

3 = uik
3 - θk + 1 for sellers and 

ujk + 1
3 = ujk

3 +Duij
k (t)+ θk + 1 for buyers, and upload uitrade

k + 1 (t) 
and ujtrade

k + 1 (t) to cloud center
10:    else
11:      Download Dbij

k (t) from cloud center
12:     if Dbij

k (t)¹ 0
13:      Update the quotation coefficients with αi

k + 1 = α
i
k -Dbij

k (t), 
β i

k + 1 = β
i
k -Dbij

k (t), αj
k + 1 = α

j
k +Dbij

k (t), and β j
k + 1 = β

j
k +

Dbij
k (t), resolve the HEMS, and upload bi

k + 1 and bj
k + 1 to 

cloud center
14:     else
15:       Output the optimal results of trading electricity uitrade*

k (t) 
and ujtrade*

k (t), and the trading price bi*
k (t) and bj*

k (t)
16:     end if
17:    end if
18:    end while
19:  end for
20: end for
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For the sake of proof, define H k
T = ∑

t = k

t + T - 1

hk as a positive 

definite invertible matrix, and let:

hk £(2/ϖ)Λ-1
Γ = I/ϖ (15)

where ΛΓ = diag(Γ1Γ2...Γn ) is a diagonal matrix composed 
of Lipschitz constants of the gradients [37]; and I is the unit 
matrix.

Lemma 1: λi
k is the generated dual variable of the prosum‐

er i and the step size ε follows (13)-(15). Then, the augment‐
ed Lagrangian function L(λi

k ) is decreasing periodically, i.e.,

 L(λi
(k + 1)T )-L(λi

kT ) £ ϱ HkTÑL(λi
kT )

2
(16)

Proof: see Appendix A Section A.
On this basis, the convergence of the augmented Lagrang‐

ian function L(λi
k ) is proven below.

Theorem 1: supposing L* is the optimal solution, the aug‐
mented Lagrangian function is convergent, i.e., lim

k®¥
L(λi

k )=L*.

Proof: see Appendix A Section B.

IV. RESULTS AND DISCUSSIONS 

A. System Parameters

The proposed cloud-edge-based We-Market and the distrib‐
uted CB algorithm are applied to a feeder section consisting 
of 100 prosumers. Each prosumer is equipped with a rooftop 
PV, a small wind turbine, a battery, and an air conditioner, 
as illustrated in Fig. 1. The statistical box chart of the actual 
renewable energy generation, basic loads, and ambient tem‐
perature of all the prosumers on a typical day is provided in 
Fig. 3. Relevant data are taken from a power utility in 
Tongliao, Inner Mongolia, China. Figure 3(a) shows the sta‐
tistics of the renewable energy generation of the prosumers. 
It can be observed that the outputs of the rooftop PV and 
wind turbines are intermittent and fluctuating. Figure 3(b) 
shows the statistics of the basic loads and ambient tempera‐
ture of the prosumers. It can be observed that there are also 
strong uncertainties in basic loads and ambient temperature. 
In this case, the mismatch between supply and demand leads 
to the inevitable energy surplus or shortage of the prosumers.

Besides, the trading period is from 00:00 to 24:00 and a 
10-min time slot is set. Considering the diverse power con‐
sumption behaviors and thermal comfort requirements of pro‐
sumers, five kinds of setting temperatures are adopted, i. e., 
18 ℃, 20 ℃, 22 ℃, 24 ℃, and 26 ℃ during the period. In 
particular, the capacity of the battery is 6 kWh for each pro‐
sumer, and the maximum discharging power per time slot t 
is 0.4 kW, i.e., ui

1 £ 0.4 kW. The usage of the air conditioner 
is a binary variable, so ui

2 = 0 kW or ui
2 = 0.3 kW per time 

slot t according to its conventional power consumption. Oth‐
er related parameters of the HEMS are listed in Table I in 
detail. According to [18], surplus electricity can be sold to 
the main grid at a lower price, while insufficient electricity 
can also be purchased from the main grid. The prices are 
0.35 CNY/kW and 1.0 CNY/kW for selling the surplus elec‐
tricity and purchasing electricity, respectively.

The simulations are carried out on top of the commercial 
cloud platform using an optimization server with Docker 
Swarm as distributed HEMS and Amazon EC2 as the back‐
end public cloud [38], which can provide sufficient secure 
and scalable computation capacity by deploying the above 
We-Market in the optimization server.
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Fig. 3.　Box chart of actual data on a typical day. (a) Renewable energy generation. (b) Basic loads and ambient temperature.

TABLE I
RELATED PARAMETER OF HEMS

Parameter

ηi

τ i

γi

K i

ϵ

Value

10-3

0.1

0.9

3

1

Parameter

λ

αi
0

β i
0

ε

Value

1

2.7

10

10-3
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B. Results Analysis

This subsection aims at illustrating the effectiveness of the 
proposed cloud-edge-based We-Market and the distributed 
CB algorithm on a synthetic example. Figure 4 shows the 
P2P trading results using the proposed approach. 

In Fig. 4, a total of 159.99 kW of residual electricity has 
been successfully traded in P2P mode, which brings about 
15% cost reduction compared with the situation without a 
P2P transaction (the starting point of the total cost curve), as 
shown in Fig. 4(a). Note that, since the proposed We-Market 
focuses on energy sharing within the local community, the 
power transmission distance is short and the power loss can 
be ignored, so the network usage costs are not included in fi‐
nancial accounting. Besides, without P2P transactions, pro‐
sumers have to trade with the main grid at selling and pur‐
chasing prices of 0.35 CNY/kW and 1.0 CNY/kW, respec‐
tively, which is a choice to the detriment of interests. In the 
We-Market, more reasonable transaction prices can be ob‐
tained because the prosumers would make a bidding strategy 
according to the modified Stone-Geary utility function. Just 
taking a transaction between two prosumers as an example, 
0.23 kW power is traded with 0.58 CNY/kW between pro‐
sumer 20 and prosumer 64. For the buyer, it saves the cost 
by 0.23 ´(1 - 0.58)= 0.097 CNY compared with purchasing 
electricity from the main grid; for the seller, it increases the 
revenue by 0.23 ´(0.58 - 0.3)= 0.064 CNY compared with 

selling electricity to the main grid. As a result, more trading 
electricity will lead to more total cost reduction. It is also an 
incentive for more prosumers to participate in the We-Mar‐
ket. Figure 4(b) presents the optimal control of the battery 
storage, where about 50 batteries tend to be empty dur‐
ing 04: 00-12: 00. The most likely reason is that these pro‐
sumers are potential buyers due to insufficient renewable en‐
ergy outputs and the high consumption of air conditioners. 
Figure 4(c) shows the average indoor temperature, where the 
indoor temperature fluctuates in a small range near the set 
temperature at most of the time. It indicates that the pro‐
posed approach simultaneously reduces the total cost and en‐
sures the thermal comfort of end-users.

Based on the distributed CB algorithm and the HEMS of 
the prosumers, the complete cloud-edge-based We-Market 
procedure can be performed. As an example, the continuous 
P2P transaction process during 10:00-11:40 is presented to 
illustrate the convergence performance of the proposed ap‐
proach, as shown in Fig. 5, where 20-8 means prosumer 20 
is trading with prosumer 8 and others are the same. 

Here, the scheme turns out to be multiple-stage edge-
cloud-edge information exchanges and optimization process‐
es with a 30 ms communication delay per interaction. After 
trading with prosumer 24, prosumer 20 performs HEMS 
again and uploads the surplus power of 0.08 kW and the ini‐
tial quotation of 0.8 CNY/kW at 10:20:01. At the same time, 
it is matched with prosumer 8 (0.09 kW demand and 0.7 
CNY/kW quotation) in the cloud center. Then, the two par‐
ties resolve the HEMS using the power gaps and upload the 
results to the cloud center, until the consistent trading elec‐
tricity of 0.079 kW is reached at around 10: 20: 03. At this 
point, the quotations of the two parties are 0.79 CNY/kW 
and 0.59 CNY/kW, respectively. Next, the two parties re-bid 
in respective HEMS for minimizing the quotation gap. Even‐
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tually, a power transaction of 0.079 kW at 0.75 CNY/kW is 
a success at around 10:20:05. Besides, since the surplus pow‐
er of each prosumer is not constant at different time slots, 
the matched transaction parties are changing. Despite this, 
reasonable transactions can still be completed in a short peri‐
od, as shown in Fig. 5. Note that, the transaction prices are 
all within the range of [0.35, 1]CNY/kW so that the prosum‐
ers could make profits. In addition, the convergence rate is 

closely related to the speed of deviation reduction as well as 
the computation and communication complexities of the CB 
algorithm, so the algorithm is not fixed-time convergent.

C. Comparative Analysis

From the perspective of architecture, communication, ba‐
sic theory, complexity, and cost reduction, a more detailed 
comparison of the cloud-edge-based We-Market and other 
similar schemes is listed in Table II. 

The first four features describe the general attributes of 
the schemes and the last three features highlight the com‐
plexities and the cost reduction of the related algorithms. 
Note that, the distributed edge empowering and the edge-
cloud-edge communication extent transfer the computation 
task to each prosumer, and the cloud is only responsible for 
the coordination and does not participate in decision-making. 
Since the proposed scheme allows local energy management 
in parallel, its computation complexity for a synchronization 
process is O(kmax ), where kmax is the maximum iteration of 
each prosumer. Note that, its value is closely related to the 
speed of deviation reduction as well as the computation and 
communication complexities of the CB algorithm, so the al‐
gorithm is not fixed-time convergent, and the average con‐
vergence time of each bidding is about 6 s. According to the 
CB algorithm, each prosumer only needs to interact with the 
cloud center with local information such as surplus power, 
quotations, and deviations, rather than all the information, so 
its communication complexity is O(1). By comparison, the 
centralized schemes [5], [6], [9], [10] rely on mixed-integer 
programming (MIP) with the global information of the entire 
system. Therefore, the computation and communication com‐
plexities are O(N 2 ) and O(Nlog(N)), respectively. The mid‐
dle two rows list the decentralized schemes based on the 
double auction [14]-[16] and the alternating direction meth‐
od of multipliers (ADMM) methods [3], [11], [40], respec‐
tively. The local information here refers to all the informa‐
tion of the two agents participating in the P2P transaction. 
Consequently, the computation and communication complexi‐
ties are O(N) and O(log(N)), respectively, which are influ‐
enced by the number of prosumers N. The difference is that 
the game theory based schemes [17] - [19] adopt leader-fol‐
lowing communication extent, and the information interac‐
tion is only a deviation. However, it still needs decision-mak‐
ing on both sides of the leader and the followers. Therefore, 
its computation complexity is O(N), but its communication 

complexity is lower than other decentralized schemes, which 
is O(1). Although there are significant differences in architec‐
ture, communication, basic theory, and complexity among 
various schemes, the same operating cost reduction, i. e., 
15%, is obtained because the objective functions of these 
models are to minimize the total cost of the system with the 
same constraints of the internal equipment operation of pro‐
sumers. In particular, since the computing power is trans‐
ferred to prosumers or agents, the consensus-based scheme 
in [40] achieves the same performance as the proposed 
scheme. Nevertheless, the consensus-based scheme adopts 
the way of direct communication among agents, which may 
lead to the following problems: ① whether the communica‐
tion parties can be trusted; and ② the malicious party can 
collect and infer the opponent’s sensitive decision informa‐
tion for profit. Instead, the proposed edge-cloud-based We-
Market takes advantage of a trusted cloud to coordinate 
multi-party information interaction, which is convenient for 
market supervision, so as to effectively deal with the above 
problems. As a result, the proposed distributed CB algorithm 
and the edge-cloud-based We-Market have obvious advantag‐
es over other centralized and decentralized schemes, thereby 
demonstrating the earlier theoretic analysis.

From the perspective of running time with various scales, 
Fig. 6 presents the performance comparison between the pro‐
posed scheme and the recent P2P ADMM approach in [39], 
which is taken as the reference scheme. It can be observed 
that the running time of both approaches is not exponentially 
increased with the increase in system size, i. e., the maxi‐
mum number of trading prosumers. However, for larger-
scale systems, the proposed scheme has shorter running time 
than the reference scheme. For example, for the larger sys‐
tems with different maximum numbers (90 and 180) of trad‐
ing prosumers, the running time of the reference scheme is 
117.6 s and 1022.9 s, while that of the proposed scheme is 
67.75 s and 431.38 s, respectively. The most likely reason is 
that the reference scheme needs a centralized optimizer for 

TABLE II
COMPARISON TABLE FOR PROPOSED AND EXISTING SCHEMES

Scheme

Proposed scheme

[5], [6], [9], [10]

[14]-[16]

[3], [11], [39]

[17]-[19]

[40]

Coordination 
structure

Distributed

Centralized

Decentralized

Decentralized

Decentralized

Distributed

Communication 
extent

Edge-cloud-edge

Centralized optimizer

Neighboring agents

Neighboring agents

Leader-following agents

Agents

Information 
requirement

Local

Global

Local

Local

Local

Local

Theoretical 
basis

CB algorithm

MIP

Double auction

ADMM

Game theory

Consensus

Computation 
complexity

O(kmax )

O(N 2 )

O(N)

O(N)

O(N)

O(kmax )

Communication 
complexity

O(1)

O(N·log(N))

O(log(N))

O(log(N))

O(1)

O(1)

Cost 
reduction (%)

15

15

15

15

15

15

1290



SI et al.: CLOUD-EDGE-BASED WE-MARKET: AUTONOMOUS BIDDING AND PEER-TO-PEER ENERGY SHARING AMONG PROSUMERS

the ADMM algorithm, while the proposed scheme reduces 
the computation complexity by transferring the computation 
tasks to prosumers for parallel computing. Consequently, the 
proposed scheme is higher scalable due to the distributed 
edge-cloud-edge communication extent and the edge empow‐
ering manner.

D. Discussions

In summary, aiming at the specific problems of autono‐
mous bidding and P2P energy sharing, this paper proposes 
the cloud-edge-based We-Market architecture and model. 
Compared with the existing studies, its cloud services are 
available in the proximity of the prosumers, i. e., prosumers 
have more autonomy to participate in the We-Market. Fur‐
thermore, the conventional dense computation is performed 
in parallel, so that the proposed scheme is more efficient 
with less computation and communication complexities. Be‐
sides, the proposed CB algorithm is an iterative negotiation 
mechanism, which makes it easier to obtain a stable solution 
while ensuring trading fairness. Namely, it has faster conver‐
gence than other game-theoretic algorithms.

Note that the P2P trading result does not take into account 
the internal energy consumption for calculation and commu‐
nication, which may influence the P2P energy sharing. In 
practical implementation, the energy consumption of the 
edge devices and the communication links is an issue that 
needs to be carefully handled for the cloud-edge collabora‐
tion schemes, due to the trade-off between ability and load. 
In general, centralized and decentralized approaches have the 
advantages of stronger computation capability at the central 
optimizer and less energy consumption on the edge devices 
and the communication links over the distributed approach‐
es. Besides, the energy consumption is borne by the central 
optimizer in the centralized and decentralized approaches, 
but these loads will be borne by the end-users independently 
in the distributed approach, of which computation and com‐
munication resource allocation could become a critical issue. 
Besides, for the distribution networks, how to meet the oper‐
ational constraints in P2P transactions such as power flow 
and voltage limitations should also be further discussed. 
However, it is out of the scope of the current research and 
will be addressed in future work.

V. CONCLUSION 

The wide penetration of renewable energy and self-inter‐
ested prosumers creates a strong demand for the bottom-up 
retail electricity market. This paper presents a novel concept 
and architecture of cloud-edge-based We-Market. For each 
prosumer, the proposed dynamic HEMS ensures the optimal 
trade-off between the electricity cost and thermal comfort. 
Based on the modified Stone-Geary utility function, a more 
reasonable bidding strategy is developed, so that the prosum‐
ers make profits. The results show that a total of 159.99 kW 
residual electricity has been successfully traded, which 
brings about 15% cost reduction under the proposed We-Mar‐
ket. Besides, the proposed CB algorithm shows well fairness 
and convergence performance through frequent interaction 
between the cloud and the prosumers. The comparative anal‐
ysis indicates that the proposed cloud-edge-based We-Market 
scheme has lower complexity and better scalability com‐
pared with existing centralized and decentralized approaches. 
As a result, all these aspects demonstrate the effectiveness 
and practicability of the proposed approach in terms of com‐
putation efficiency and user utility.

APPENDIX A 

A. Proof of Lemma 1

According to the norm properties, we have:

∑
t = k

k + T - 1

 H tÑL(λi
k ) ³







 





∑

t = k

k + T - 1

H tÑL(λi
k ) =  H t

TÑL(λi
k )    (A1)

Then, according to the triangle inequality, we have:

 H tÑL(λi
k ) £  H tÑL(λi

k )-H tÑL(λi
t ) +  H tÑL(λi

t )   (A2)

Further using Lipschitz continuity of ÑL, we have:

 H tÑL(λi
k )-H tÑL(λi

t ) =  H t (ÑL(λi
k )-ÑL(λi

t )) £

2
ϖ

 λi
k - λ

i
t =

2
ϖ







 





∑

z = k

t - 1

(λi
z + 1 - λ

i
z ) £

2
ϖ∑z = k

t - 1

 λi
z + 1 - λ

i
z =

2
ϖ∑z = k

t - 1

 H zÑL(λi
z ) (A3)

It is easy to obtain (A4) from the above derivation.

 H t
TÑL(λi

k ) £
2
ϖ ∑t = k

k + T - 1∑
z = k

t - 1

 H zÑL(λi
z ) +

∑
t = k

k + T - 1

 H tÑL(λi
t ) £ é

ë
êêêê ù

û
úúúú1 +

2(T - 2)
ϖ ∑

t = k

k + T - 1

 H tÑL(λi
t ) (A4)

Therefore, (A5) can be obtained from the norm properties, 
which follows the differentiability of the L(λi

k ). Consequent‐
ly, it completes the proof.

 L(λ(k + 1)T )-L(λkT ) £






 





∑

t = kT

(k + 1)T - 1

(L(λi
t + 1 )-L(λi

t )) £

(ϖ - 1) ∑
t = kT

(k + 1)T - 1

 H tÑL(λi
t )

2
(A5)

B. Proof of Theorem 1

According to Lemma 1, there exists a limit of the aug‐
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Fig. 6.　Comparison of running time.
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mented Lagrange function, i.e., if  λi
k - λ

* £ ζ, we have:

 (L(λi
(k + 1)T )-L* )- (L(λi

kT )-L* ) =  L(λi
(k + 1)T )-L(λi

kT ) £

ϱ L(λi
kT )-L* 2

(A6)

where ζ > 0 is any small positive number; and the coefficient 
ϱ > 0. Then, we can obtain:

lim
k®¥

 (L(λi
(k + 1)T )-L* )- (L(λi

kT )-L* )

 L(λi
kT )-L* 2

= ϱ > 0 (A7)

Accordingly, the augmented Lagrange function is square 
convergent, in which the second inequality in (A6) is mainly 
based on the following derivation:

 L(λi
kT )-L* £  ÑL(λi

kT )T (λi
kT - λ

* ) =

 ÑL(λi
kT )T (H kT

T )T ((H kT
T )T )-1 (λi

kT - λ
* ) £

 (H kT
T )-1  λi

kT - λ
*  H kT

T ÑL(λi
kT ) £

ζ
T
 H kT

T ÑL(λi
kT )

(A8)

Given rank(H k
T )= n - 1,  H k

T £ 1/B, and we have:

 H kT
T ÑL(λi

kT )
2
³

T 2 L(λi
kT )-L* 2

ζ 2
(A9)

After iteration and conversion, the periodic error of the 
augmented Lagrange function can be obtained as:

 L(λi
kT )-L* £

 L(λi
0 )-L*

1 + ϱk  L(λi
0 )-L*

(A10)

Therefore, lim
k®¥

 L(λi
k )-L* = 0, which completes the 

proof.
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