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Comparison Between Modal Analysis and
Impedance-based Methods for Analysing
Stability of Unbalanced Microgrids with
Grid-forming Electronic Power Converters
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Abstract—Stability in unbalanced power systems has de-
served little attention in the literature. Given the importance of
this scenario in distribution systems with distributed genera-
tion, this paper revisits modal analysis techniques for stability
studies in power systems, and explains how to tackle unbal-
anced power systems with voltage-dependent loads. The proce-
dure is described in detail and applied to a low-voltage (LV)
simple case study with two grid-forming electronic power con-
verters and unbalanced loads. Results are then compared with
those obtained with the popular impedance-based method.
While the latter is easier to implement using simulation or field
data, the former requires complete information of the system,
but gives a better insight into the problem. Since both methods
are based on a small-signal approximation of the system, they
provide similar results, but they discern different information.
A larger second case study based on an LV CIGRE distribution
system is also analysed. Results are obtained using a detailed
Simulink model of the microgrids with electronic power convert-
ers.

Index Terms—Stability, microgrid, modal analysis, impedance-
based method, unbalanced distribution system.

1. INTRODUCTION

N response to the global climate change caused by the ex-

cessive atmospheric concentration of carbon dioxide and
other greenhouse gases, the penetration of renewable energy
sources (RESs) into power systems has been soaring world-
wide. When RESs (mainly wind and solar) are used, elec-
tronic power converters are required to interface energy gen-
eration with the power system, providing fast control of ac-
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tive and reactive power. Nowadays, electronic power convert-
ers for grid applications are mainly voltage source convert-
ers (VSCs), which can be of two types: grid-forming (GFo)
VSCs that control output voltage and frequency at their filter
output, and grid-following (GFI) VSCs that control the mag-
nitude and orientation of their filter output current with re-
spect to the voltage at the point of coupling (PoC). In GFo-
VSCs, an inner current loop is often used to deal better with
possible resonances of the output filter and to provide means
of limiting the output current of the converter. GFI-VSCs re-
quire a phase-lock-loop (PLL) to synchronize with the pow-
er system by tracking the voltage angle at the converter con-
nection bus. Current limiting can be provided naturally. A
comprehensive review of the control of VSCs and their main
characteristics is presented in [1].

Modal analysis is considered the standard tool to charac-
terise small-signal stability of traditional power systems de-
scribed in a synchronously-rotating {dg} reference frame, af-
ter Park’s transformation [2]. Three-phase sinusoidal vari-
ables are transformed into two constant components {dg} in
steady state, plus the nearly-always forgotten zero compo-
nent (sometimes called “homopolar”). Under these circum-
stances, the non-linear model of the power system can be lin-
earised at a steady-state operation point. The eigenvalues of
the linearised power system equations give information of
the system dynamics; participation factors of eigenvalues in
state variables give information of which state variables are
affected by relevant and less-relevant dynamics [3]; and sen-
sitivities of those eigenvalues can be used to design, for ex-
ample, power system stabilisers to tackle dangerous power
oscillations for conventional synchronous generators [4], [5]
or for VSCs [6].

In conventional power systems, power line dynamics are
generally neglected, because the dynamics of high-inertia ro-
tating machines and their controls are considerably slower
than those of the lines. However, in microgrids, fast control
of inertia-less VSCs or VSCs with virtual inertia may render
line dynamics to be relevant. This will tend to increase the
size and complexity of case-study models. Nevertheless, the
application of modal analysis to balanced microgrids has
been the subject of previous research efforts. For example,
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[7] investigates the interactions among VSCs and the net-
work dynamics, and it analyses the stability of a microgrid
case study for different droop gains in the VSCs. Reference
[8] studies the stability of an islanded hybrid alternating cur-
rent (AC)/direct current (DC) microgrid with a bidirectional
interlink converter with a droop-based control algorithm.
Network frequency and bus voltage in the AC section, and
bus voltage at the DC section, are maintained within permis-
sible limits. Reference [9] proposes a generalised framework
for small-signal stability analysis for microgrids with prima-
ry and secondary distributed controls based on multi-agents,
considering communication latency and uncertainty. In [10],
a sensitivity analysis is carried out to check whether it is
possible to prevent the instability of a microgrid when oper-
ated with constant power loads (induction motors), by tuning
the internal voltage and current controller gain values of
GFo-VSCs. In all microgrid-related cases in the literature,
system and loads are considered balanced, like in conven-
tional power systems.

So far, the application of modal analysis in traditional
power systems and in microgrids relies on finding the steady-
state operation point by making the derivatives of the state
variables equal zero and solving the resulting system of non-
linear equations. However, unlike in the analysis of conven-
tional power systems, loads in microgrids are often unbal-
anced, and straight application of Park’s transformation does
not give constant state variables in steady state. Therefore,
the usual linearisation of non-linear power system models is
not possible. However, experts suggest that “unbalance”
should not be neglected when studying stability in mi-
crogrids [11], [12], which rules out the use of a traditional
{dq} model.

A modified Park’s transformation for unbalanced power
systems has been proposed in [13]. In a general case, this
transformation applied to a three-phase system renders d, ¢,
and 0 components for a positive (+) and a negative (—) se-
quence, i.e., a total of six state variables d°, ¢*, 0%, d°, ¢,
07, but only four of them are constant in steady state (d* and
g%), while the zero components (0%) have oscillations of the
fundamental frequency. Therefore, this method cannot al-
ways be used for a traditional modal analysis. In the cases
in [13], zero current components (0%) are all zero and are ig-
nored.

This paper brings three contributions to this scenario.

1) It presents a modification applied to [13] in order to al-
ways have constant {dg0"} components in steady state,
which is the necessary step to have constant state variables
at an operation point in steady state, and obtain small-signal
linear approximations of non-linear unbalanced power sys-
tems.

2) It provides a comparison between modal stability analy-
sis and the impedance-based method, since the latter is popu-
lar in converters connected to grids or microgrids [14], but
has not been applied to unbalanced power systems. Imped-
ance-based analysis also relies on a linear model derived at
a constant operation point and it is ideal for the analysis and
design of a single converter to be connected to a grid using
a reduced model of the latter. Modal techniques can address
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a system-based analysis, providing richer information.

3) Finally, the paper computes active and reactive power
in unbalanced power systems based on constant {dg0"} com-
ponents in steady state.

The analysis tools including details of the modified
Park’s transformation and the principles of modal analysis
and of impedance-based stability analysis are presented in
Section II. The calculation of active and reactive power us-
ing the proposed transformation is presented in Section II-F.
The dynamic model of a microgrid with GFo-VSCs using
{dg0*} components will be discussed in Section III. Two
case studies [15] will be analysed in Section IV. Finally, con-
clusions will be summarized in Section V.

II. ANALYSIS TOOLS

A. Modified Park’s Transformation for Unbalanced Mi-
crogrids

The analysis that follows is based on [13], but it goes a
step further. Let us consider the following matrices:

T

afy

1 1
S S b2 2
cosf sinf O
2
T,=|-sinf cosf O]- 3 0 g—g )
0 0 1 1 1 1
V2 V2 V2 |

where O=wt, w is the frequency of the power system; ¢ is
the time; and 7, is the traditional power-invariant Park’s
transformation used in three-phase systems.

Under unbalanced conditions, a phase k£ of any three-
phase (abc) electrical variable x,,. (f) (x,. will be either a
voltage v or a current i column vector with components a, b,
and ¢) can be written as:

x, ()= \/EXO cos(wt+¢,)+ \/§X+ cos(wt+¢,+0)+

V2 x cos(wt+¢_—o)

2n  2n
30773
tively; {X,,X,,X_} are the root-mean-square (RMS) values;
and {p,,¢,,¢_} are the arbitrary initial phase displacements
of the so-called homopolar (0), positive, and negative se-
quence components of x,_(¢), respectively.

If (1) is applied to x,,. () with components as in (2), one
obtains (3) and (4), proving that, in general, the so-called
{dq0} components of variable x,. do not remain constant in
steady state.

2

where =0, o=— for phases a, b, and ¢, respec-

abc

[x,0.x, 0.5, O =T;[x,0.x,0x.0F O
x, () V3 X, cosp.+ V3 X cosQut+g )
X, 0= V3 X, sing,— V3 X sinQot+p )| (4)
%o () \/EXO cos(wt+¢,)

Reference [13] modifies Park’s transformation as follows:
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+ T( ) X abe (t) (5)
X4, (1): t
“ X o (1= TI)
qu()w = [x;w’x;w’xgm’x;w’x;m’ ‘xa(/) ]T (6)
TO)=T 4y OT, 4T, ) ()
where T=2n/w. The following 6 x 6 matrices are given:
~ T;, 0,
Tu0=| g 3]
! ®)

. T, 0,
Ta/}y(t): [0 afy ]% 3}
3x3 afy

where 0, is a 3x3 zero matrix; T,,(0)=T,,(-0); and

T._, is given as:
[1 0 0 0 -1 O]
010 1 0 O
1f0 01 0 0 O
=211 00 0 1 0 ©)
01 0 -1 0 0
L0 0O 0O 0 0 1]

In the 6x1 column vector x,, in (5), the first, second,
forth, and fifth elements are constant in steady state, while
the third and sixth ones are not. A constant column vector
X, can be obtained as xj ,=[x}.x). x5, x5, x . x5 1", if:

+ vt v 1T [t + — - 1T
[xd’xq7xd?xq] _[xdw’xqw’xdcu’xqw] (10)
+ _ .
'ixo} _[xgw cos O+xj, smﬁ} (1
= + . —
Xy —Xg,, Sin @+x,,, cos 0

For a one-step transformation, 7'(¢) in (5) changes to T ()

1 0 0 0 0 0 ]
0 1 0 0 0 0
- 0 0 cos@ O O sinf
T®= T(t
© 0 0 0 1 0 0 © (12)
0 0 0 0 1 0
L0 0 —sind 0 0 cosd]
Applying (12) to (2) (k=a,b, c) gives:
x+ x+,x+,x+ T
x;,o{ "‘”’}[[i’ ’ f]T] (13)
X 400 [x4, %X ]
which is a 6 x 1 constant vector with:
T
X 0= V3| X, cosgp,, X, sing,, icos ?, (14)
V2
T
X 40= \E{X cos¢p_, —X_sin gof,ﬁsin %1 (15)
V2

B. {dq0* } Model of a Series Unbalanced RL Circuit

The differential equations for a star-connected unbalanced
RL load, with neutral point connected to ground through an
impedance L, and R, (see Fig. 1), can be written as (16). In
Fig. 1, i,(t) (k=a,b,c) is the load current; v, (¢) is the phase
voltage to ground; R, is the per-phase load resistance; L, is
the per-phase load inductance; and V,(¢) and i,(f) are the
neutral voltage and neutral current to ground, respectively.

1271
R;,ib(t)+Lhdi'i’£t) V.0 . (’;;(’2
i(t
iy(t Ryt L—5
w2 o %Rni,,mmd’gﬁ’)
i)
V() == N
Fig. 1. Unbalanced RL circuit.
0 0 i
=R L
y =L a j fpm TY| e g T
abe 4 abe 4 — f— —
de \" 4
(16)
ﬁabc: I:Rabc 03><3:|
03><3 Rabc
a7

r Lac 0 x
Lubc: |:0 g L3 3]
3x3

abc
where R, and L
respectively, in (18):

can be built substituting § by R and L,

abc

P S
RabcorLahc: §n §b+§n §n (18)
Su Su S.tS,
Applying (5) (with T(?)) to (16) yields:
+ ot d ot
v&qO :[BB]lc;q0+[AA] E’z;qo (19)
(BBI= | TR T+ L 1 | @0
[AA=[TL,, T @21

Both [BB] and [AA] are 6 x 6 matrices of real numbers and
are not angle 6 dependent.

Often, loads are either connected between two phases or
from a phase to ground. These two cases deserve special at-
tention. In a load connected between two phases (a and b,
for example), we have:

{z@=—um

i.(n=0 22)

The application of the transformation in (5) (with T (1))
gives i;=0, i;=0, and (23) is obtained.

1 V3
iad=y| |0

. + [.+ oy

where [iy, ]=[i,.i,1" and [i}, ]=[i},i,]"; which means that, out
of the six state variables in (13), only two are left.
If (5) (with T (t)) is applied to a two-phase unbalanced
load connected to ground (phases a and b, for example):
i,)+1i,(O)=1i,()
{ic =0

s (23)

24
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VI Ve VI Ve

. 4 4 4 4 i

ol= . 25

W s vr s valel @
4 4 4

which results in a fourth-order dynamic system.
Finally, one phase connected to ground with an impedance
gives:

{ia =1,

i, (0)=1.()=0 (26)
20 1o
[ i } - [is,] @7)
dq 0 Q 0

> -1

which results in a second-order system, again.
Similarly, a {dg0"} model of a parallel unbalanced RC cir-
cuit should be derived to include the bus voltage dynamics.

C. {dq0"} Impedance Analysis

The {dg0*} impedance matrix for the circuit in Fig. 1 can
be computed by transforming (19) into the frequency do-
main using Laplace transform, resulting in a 6 x 6 impedance
matrix of the form:

(28)

quo (S):[BB]+[AA]S: |: dq0 (S) Zz qO( )}

Zi0 () Zy(5)
where Z,,,(s) has been divided into four 3 x3 transfer-func-
tion matrices. Z,,(s) has been calculated for s=j2rx50 in
the balanced and unbalanced cases (cases 0 and 1, respec-
tively), as shown in Table I, and the results are given in Ta-
bles II and III, respectively.

TABLE I
SERIES RL CIRCUIT CASES

Case Parameters
0 R,=R,=R.=10Q, L, =L,=L =100 mH
1 R,=10Q,R,=20Q,R.=30Q, L, =400 mH, L, =500 mH,
L =600 mH
0and 1 R,=19Q,L =10 mH

As expected, in the balanced case (Table II), the positive-,
negative-, and homopolar-sequences are decoupled, while in
the unbalanced case (Table III), the three sequences are cou-
pled, which, if neglected, may result in an incorrect stability
assessment.

D. Modal Analysis and Participation Factors

For a linear time-invariant system described by a state-
variable model, with 4 € R"*":

x(1)=Ax(t)+ Bu (29)

The eigen-analysis of matrix 4 will produce n eigenvalues

4; (1<i<n). Assuming that 4,#4, if i}, each 1, will have a

column left eigenvector w, associated (w4 =Aw), with ele-

ments W) (1<j<n) and a column right eigenvector v, (4v,=
Av;) with elements v/ (1 <j<n).
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TABLE II
CASE 0: IMPEDANCE MATRIX

Matrix Value
10.00+j31.41 -31.41 0
z;qg 31.41 10.00+j31.41 0
0 0 13.00 +j40.84
0 0 0
Z;q;) 0 0 0
0 0 -40.84
0 0 0
z;qg 00 0
0 0 40.84
10.00+j31.41 31.41 0
Z,0 -31.41 10.00+j31.41 0
0 0 13.00 +j40.84
TABLE III
CASE 1: IMPEDANCE MATRIX
Matrix Value
20.00+j157.08 -157.08 5.75-j22.21
Zdt;, 157.08 20.00+j157.08 —-26.30—-j12.83
-9.95-j11.11 9.07-j6.41 23.00+j166.50
-14.07-j15.71 -12.82+j9.07 26.30+j12.83
Z;q;) -12.82+j9.07 14.07+j15.71  5.75-j22.21
2.88—jl1.11  —-13.15-j6.41 -166.50
4.07—-j15.71  18.59+j9.07 —-19.90—j22.21
Z;,B 18.59+j9.07 -4.07+j15.71 18.13—-j12.83
-9.07+j6.41 -9.95-j11.11 166.50
20.00+;157.08 157.08 18.13-j12.83
m —157.08 20.00+j157.08 19.90+j22.21
-13.15-j6.41 —-2.88+j11.11 23.00+j166.50

The free response of a linear system as (29), given a col-
umn vector of initial conditions x(0) is:

x(t)= iw? x(0)e"", (30)

which, for a given state variable x’ (the /" element in state
vector x(f)) and initial conditions x*=0 if k#m and x"=1
(the m"™ element in state vector x(t)), gives:
¥ ()=wieh'y 31
Based on (31), [16] defines the product w”'v/ as the partici-
pation of A, in variable X’ with the initial conditions de-
scribed above, although participation factors are given more
attention for m=j. This definition renders complex numbers
for the participation factors in a general case, and [17] sug-
gests the following definition for the participation factor of
eigenvalue /4, in state ¥/ (¢), to have “real” participations:

w’ v’
T

TS

If the power system equations are linearised, the eigenval-

mlt

Vi +wye v+ . et

AWl

(32)
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ues of the approximate linear system can be used to study
the small-signal stability of the system, while the participa-
tion factors can be used to study which states are associated
with a given mode (eigenvalue). The system will be stable if
all eigenvalues have negative real parts.

This method of analysis can address one VSC connected
to the reduced model of the grid, if the parameters of both
systems are known, or a more complex system with several
VSCs connected through power lines and/or cables.

E. Impedance-based Method for Stability Analysis

The impedance-based method for stability analysis reduc-
es a GFo-VSC and its connected system into an equivalent
source and load impedance (as depicted in Fig. 2). Formulat-
ed initially by [18] for DC converters, the stability issue is
resolved applying Nyquist stability criterion to the resulting
impedance ratio. Later on, [19] has extended the stability
study for balanced three-phase AC systems applying the gen-
eralized Nyquist stability criterion [20] on the product of the
converter output impedance (Z,) and the grid input admit-
tance (Y,) (with voltages and currents having two compo-
nents: d and ¢). Since this method is meant to analyse one
converter against the rest of the grid, which might contain
more VSCs, possible interactions among converters will re-
main hidden. However, unlike the one based on modal analy-
sis, this method does not require a detailed model of the sys-
tem, and the necessary impedances can be calculated either
by simulation or by direct experimental measurements. In
both cases, a disturbance has to be used, as illustrated by A/,
in Fig. 2, where V, and Z, are the elements of Thévenin
equivalent of the converter under study (voltage and output
impedance, respectively); Y, and [, are the Norton equiva-
lents which model the admittance and current source of the
grid, respectively; and A/, is a test disturbance.

Z, Al AL
Vr AV,| Al Y, Iy

Fig. 2. Perturbation circuit at PoC.

The method is applied to a balanced three-phase AC sys-
tem with a GFo-VSC and a constant power load in [21].
When primary frequency and/or voltage droop are used for
active- and/or reactive-power sharing, the voltage and cur-
rent variations of AV, and A/, in Fig. 2 are partially due to
the action of those droops, and [22] suggests a representa-
tion similar to the one in Fig. 3 to highlight the influence of
the frequency variation on the output of droop-controlled
converters. Here, unlike in [22], Z, (s) is defined as the usual
output impedance of the device on the left-hand side of Fig.
2. In Fig. 2, one can write:

-1
AR YA
Z,(9)= N Alp[A[p} (33)
-1
A, AL[AV
= = — 0 4
Y
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Al, Al L il AV,
f\ Z,(5)
Al
’ G/(s) v
++ < Y (s)
Gy(s)
Fig. 3. Block diagram at PoC where blocks contain transfer-functions.
aw  awlan]
w w 1
=2 _SWIan 35
G/)="y Np[%] (33)
-1
AL, AL Aw
=22 _ S| oW 36
Go)= g = AT [ A ] (36)

Reference [22] demonstrates that the stability of the whole
system can be studied applying the generalized Nyquist crite-
rion to the matrix of open-loop transfer functions L(s) shown
in (37), i.e., the system will be stable if the loci of the eigen-
values of L(jw) (—wo<w <) do not encircle the point (—1,0)
in the complex plane.

L($)=Y,(5)Z,(5)= G, ()G, (5) (37

FE. Power in Unbalanced Systems

The apparent power (steady state) drawn from an unbal-
anced three-phase voltage source v, by an unbalanced cur-
rent i, can be calculated using voltage phasors V,,, and cur-
rent phasors /,,, for phases a, b, and ¢ [23]:

S=V,(1,) +V,(I,) +V.(I.) =P+jQ (38)
where P and Q are the active and reactive power, respective-
ly, and

P=3V_1 cosy,+3V_I cosy_+3V,I,cosy, 39)

O=3V_1 siny,+3V_I siny_+3V,I,siny, (40)

In (39) and (40), V and [ are the voltage and current RMS
values; subscripts +, —, and 0 stand for positive, negative,
and zero sequences, respectively; and p is the angle that the
current is lagging behind the voltage (a different one for
each sequence).

Using the voltage and current components obtained, when
applying (12) to phase voltages and currents, P and O can
be written as:

P=vyiy+ Vi, +2viis+v i +v i, +2v,i,

(41)
(42)

A e A ek e i g
O=V =V, i +2v, i +vi, —vyi —2vii,

III. MICROGRID MODEL AND DYNAMIC EQUATIONS

A. Detailed GFo-VSC Model

VSCs consist of both active switching devices such as in-
sulated-gate bipolar transistors (IGBTs) with pulse width
modulation (PWM), and passive components such as LCL
filters, to assist switching-harmonic filtering. In distributed
generation (DG) systems, VSCs are generally used with ef-
fective switching frequencies above 10 kHz for low- and me-
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dium-power applications. Therefore, converter switching can
be averaged for small-signal stability analysis. In addition, if
those converters are assumed to be fed from a sufficiently
large DC power source, they can be modelled by ideal con-
trollable three-phase voltage sources.

In this paper, GFo-VSCs have been controlled using an in-
ner current control loop and an outer voltage control loop
(see Fig. 4) to ensure that the converter output voltage close-
ly tracks the desired set point (voltage modulus and frequen-
cy V/f) with both good transient and steady-state performanc-
es. Two-degree-of-freedom (2-DOF) proportional-integral (PI)
controllers with independent reference weighting [24] have
been used to control voltage and current components after
the appropriate transformation from the three-phase descrip-
tion. The controller used for converter i is shown in (43)
with controller parameters K, b, , and 7T ,.

LC filter

o]
v(,‘,abc abc V(_‘_dq() "
Ve,abe/a .
abeT/4 | dq 0% PO 4P, Droop P-f f
Vi.abe i Hl calculation 0 p
- .WWW »abe/| loutago* —> Droop O-V
Lout,abeT/4 q0* J—§I
If, abe Gi . Vc,ref,d+=E
; > abe,/| L.dg0™ Verefiatdg-0+0-=0
LabcT/4
v abc qui
1abeTl4 Veuns
abc _+\ +m, [P ot
dq0* +; "\ outter Ve ref
HT l‘om,dq()i
—

Avgi==Liwiy 3 Av,="Liwi;
Avq+:+L /wi L dt Avo\:*L Ol Lo
Avy=tLiwi; 5 Avy-=tLwi; o

Aiy=Crov, 4v; Aip=Crov, 4
Al =tCov, 415 ANig==Cv,
Aiy=tCrov, 5 Aip=+Crv, o

Decoupling Av,,* Decoupling Aiy,q*

Fig. 4. V/f control of GFo-VSC.

M,.[(s)=1</-{(bf,,-+ e )R,-,- (5)- (1 + ijS)Y"(S)} (“3)
where M, (s) is the controller output; R (s) is the set-point in-
put; and Y (s) is the process measured output for converter i
(voltage when j=2 or current when j=1). Control details for
the GFo-VSC, with the {dq0"} decoupling terms added to
the controller outputs, are shown in Fig. 4. The decoupling
terms shown extend the ones used in balanced cases such as
those described in [7], among many others. In Fig. 4,
abc/dg0* block is the modified Park’s transformation in Sec-
tion II-A. The PQ calculation block refers to (41) and (42).
The droop P-f and droop QO-V blocks refer to the droop equa-
tions with first-order low-pass filter defined in Section III-B.
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L, R, and C, model the VSC output LC filter. out, ref, i,
and v stand for output, reference or set point, current, and
voltage, respectively.

For the unbalanced-load case of interest in this paper,
when only the positive sequence (dg”) is considered in the
internal controls of each GFo-VSC, the modal analysis
shows a set of under-damped modes related with the inner
current and outer voltage dynamics of their LC filters. This
problem has been tackled by applying PI controllers such as
in (43) to negative and zero (dg 0%) sequence currents and
voltages, to keep the voltage balanced at their LC filter out-
puts, with v, =v,_ =v;,.=v,,,~=0. Notice that this paper
focuses on the stability analysis of unbalanced microgrids;
however, if the interest were to compensate unbalanced cur-
rents and/or voltages using a GFo-VSC, the filter output volt-
age references need to be updated accordingly in the v
block of Fig. 4, as in [25], for example.

B. Droop in GFo-VSCs

Primary control shapes the initial response of each genera-
tor when a disturbance takes place. At least one GFo-VSC
converter will be required in any microgrid in island mode,
and the following primary frequency and voltage control
laws (i.e., droops) are usually proposed for each GFo-VSC;:

A=K, AP,
AV,=—K ,AQ,

cref

(44)

where f; is the output frequency; V, is the output voltage; P,
and Q, are the active and reactive power, respectively; AP,
and AQ, are the differences between the set-point values and
actual values measured at the GFo-VSC output; and K, and
K, are the frequency- and voltage-droop gains, respectively.

Droop equations imitate, artificially, the behaviour of a tra-
ditional synchronous generator: when a generator’s P load
increases/decreases, the output frequency (generator’s speed)
decreases/increases; and, similarly, when the generator’s Q
load increases/decreases, the generator terminal voltage de-
creases/increases. In addition, droops in (44) rely on the fact
that typical electrical grids and loads show a positive sensi-
tivity in P and Q consumed with respect to frequency and
voltage, respectively (AP/Af>0, AQ/AV>0); and therefore,
(44) close control loops with negative feedback.

When GFo-VSCs are connected in parallel, droop gains
K, and K are usually selected by balancing VSC apparent
power S ratings [26], in such a way that the VSC with the
highest rating will be the one providing more power initially,
towards a new equilibrium situation. Therefore,

KpiSi:Kpi+lSi+l (45)
Kq[Si:in+lSi+l

The noise in P and Q measurements can be filtered by ap-
plying first-order low-pass filters to the right-hand side
of (44):

dAf,

Tri d{ :_KpiAPi_Afi (46)
dAV,

Ty; dtl =-K,AQ,— AV, 47)
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where 7., and 7, are the time constants. A AP filter can al-
so be seen as the addition of a virtual inertia to VSC,. In
fact, [27] shows that if (46) is written in p.u., K,=1/D,, and
t,=2H,/D,, where D, is the so-call damping coefficient of a
converter 7; and H, is its virtual inertia in seconds. The actu-
al damping of the resulting “swing equation” of a converter

i connected to a reference bus is proportional to D/\/ H,,
and its natural frequency is proportional to l/ VH,;.

C. Converter Angle Reference

One of the GFo-VSCs in the microgrid must be chosen to
be the common reference for the “rotor angles” of all simu-
lated generators. If the microgrid is stable, the system fre-
quency will eventually reach a steady state value, and all
state variables will be constant values in the new equilibri-
um point. If @, is the output frequency of the reference con-
verter, and o, is the output frequency of converter i, the rela-
tive “speed” of the latter with respect to the former can be
written as follows:

(iiétl =0,- o, (48)

After a transient, the final frequency value will often not
be equal to the base frequency till the secondary control lev-
el corrects the issue.

IV. CASE STUDIES

A. Case Study 1: The Simplest System

First of all, the system in Fig. 5 has been analysed under
balanced load and unbalanced load conditions using the
transformation in (5) (with f'(t)). It consists of: two GFo con-
verters, i.e., VSC 1 and VSC 2, connected to Buses 1 and 2,
respectively, through two transformers (L, 5, Ry, 5 ); @ pow-
er line represented by (L. R;;,.) between Buses 1 and 2;
and two linear loads (R, ,,L,,) connected to Buses 1 and 2
(differences will be explained for balanced and unbalanced
cases). In addition, two very small capacitors (C,) have
been connected to Buses 1 and 2, to include the bus voltag-
es as state variables. These capacitors should have no influ-
ence on the system dynamics, unless the line becomes very
long. System parameters, base magnitudes, and controller (in-
cluding droops) parameters are in Table IV. Note that S, =

base

35 kVA’ Vbase=400 V’ Zbaxeszzase/Sbase’ .fbasezso HZ’ Vbasez
Z e s and pf is the load power factor. Controllers and

droops have been described in Section III-A and III-B, re-
spectively.

PoC VSC2

LC filter

VSC 1

Bus 1

Bus 2

Lo
line. Nine Lng Rng

Fig. 5. Case study 1: single-line diagram where each VSC includes its LC
filter.
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GFo-VSC-1 has been assigned as the angle reference;
therefore, its equivalent “rotor angle” is always zero. Under
these circumstances, for simplicity, one can assume that the
power delivered by GFo-VSC-2 is proportional to its rotor
angle, i.e., P,~K,d,, and the second-order differential equa-
tion that relates the power reference and the “rotor angle”
has a natural frequency and a damping coefficient, as men-
tioned in Section III-B. Changing only the value of inertia
H; will alter both the bandwidth of the droop filter and the
expected damping of the equivalent swing equation. A con-
stant damping coefficient can be obtained if H, and D, are
changed simultaneously, but the steady state frequency devia-
tion will be affected.

TABLE IV
PARAMETERS IN CASE STUDY 1

p((j)?lr;lr;t Variable Value ;E)?g];t Variable Value
S, 1 p.u. S, 0.7143 p.u.
Vi 1 pu V,, 1 pu
K, 11.79 p.u. K, 5.8844 p.u.
Ty, 2.817x107 p.u. Ty 5.604x107 p.u.
b, 0.8905 p.u. b, 0.8922 p.u.
K 0.7314 p.u. K,, 0.3657 p.u.
DG 1 T,  7.88125x107 p.u. | DG 2 Ty 1.6x107° p.u.
b,, 0.80 p.u. b,, 0.80 p.u.
R, 0.0219 p.u. R, 0.0219 p.u.
L, 0.1031 p.u. L, 0.1031 p.u.
Cy 0.0287 p.u. C, 0.0287 p.u.
T 31.8 ms 7% 31.8 ms
Ty 31.8 ms Ty, 31.8 ms
S, 0.5714 p.u. S, 0.5714 p.u.
oy Lpu. pra Lpau.
(PT) 1 Z 1 0.07 p.u. Zp 0.07 p.u.
XIR 0.5 p.u. XIR 0.5 p.u.
Bus1 C,.C, 1.436x10° pu. || Bus2 C,.C,  1.436x107° pou.
t];ie 140 m Lgy S 0.5143 p.u.
Line R 0.0252 p.u. o/ 0.85 p.u.
L 0.0026 p.u. Sy 0.3429 p.u.
Pine= Load 2
YR 0.103 p.u. ph 0.85 p.u.

Modal analysis considering all state variables in the sys-
tem has been carried out with varying K, or 7, in two ways:
(D independently; and @ by trying to maintain a constant
damping coefficient of the equivalent swing equation. Re-
sults of the modal analysis will be compared with those us-
ing the impedance-based approach to study stability. Only
the case of single-phase loads (connecting phase a to
ground) in Buses 1 and 2 will be reported for the unbal-
anced case.

1) Under Balanced Load

The system in Fig. 5 has balanced three-phase star-con-
nected loads with the neutral connected to ground, although
in this case the neutral current is always zero. It corresponds
to a 35"-order system using conventional Park’s transforma-
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tion (3) under balanced conditions. Variable names are asso-
ciated to numbers in Table V. Once linearised, the system
has 35 distinct eigenvalues (modes).

TABLE V
ELEMENTS, AND VARIABLE NAMES AND NUMBERS

Type Element Variable Number
Load 1 ig 1,2
Load 2 ig 3,4
Line Ly 5,6
Bus capacitor Vag 7, 10
f-droop VSC 1: 11, VSC 2: 23
With bal- V-droop VSC 1: 12, VSC 2: 24
anced load Angle VSC 2: 25
PT ig VSC 1: 13, 14, VSC 2: 26, 27
LC Vag VSC 1: 15, 16, VSC 2: 28, 29
LC igg VSC 1: 17, 18, VSC 2: 30, 31
PI igg VSC 1: 19, 20, VSC 2: 32, 33
PI Vg VSC 1: 21, 22, VSC 2: 34, 35
1-phase load 1 ig 1-2
1-phase load 2 ig 3-4
Line T4 17-22
Bus capacitor Vg 5-16
f-droop VSC 1: 23, VSC 2: 55
V-droop VSC 1: 24, VSC 2: 56
Angle VSC 2: 57
With unbal- PT Fa0 VSC 1: 25-30, VSC 2: 58-63
anced load LC vjw VSC 1: 31-36, VSC 2: 64-69
LC Tya0 VSC 1: 49-54, VSC 2: 82-87
PI i VSC 1: 37, 38, VSC 2: 70, 71
PI ig VSC 1: 41, 42, VSC 2: 74,75
PI ig VSC 1: 45, 46, VSC 2: 78, 79
PI v VSC 1: 39, 40, VSC 2: 72,73
PI Vi VSC 1: 43, 44, VSC 2: 76, 77
PI Vag VSC 1: 47, 48, VSC 2: 80, 81

The participation factors of those eigenvalues in the sys-
tem state variables is described in Fig. 6. The state variable
indices on the y-axis correspond to the variable numbers in
Table V (balanced load). The eigenvalue (mode) index corre-
sponds to a list ordered from the slowest one to the fastest
one, considering the eigenvalue real parts. A coloured point
has been added when one of the 35 eigenvalues in the x-axis
has a relevant participation in one of the 35 state variables
in the y-axis. The coloured column in the figure quantifies
the participation factor from O (no participation) in dark
blue, to 1 (maximum) in red. For example, modes {1,2} par-
ticipate in state variables {11,23,25}, which correspond to
the frequency-droop filters of VSC 1 and VSC 2, and the an-
gle dynamics of VSC 2, respectively (see Table V).

The modal analysis in Fig. 6 can be further validated by
comparing the free responses of the linearised system from
its initial conditions applying (30) and (31), with the corre-
sponding perturbation responses of the original non-linear
system. For example, the angle and the d-axis component of
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the LC capacitor voltage for VSC 2, have been compared
for the linearised and non-linear systems, with a small pertur-
bation in the angle of VSC 2 at r=2 s, as shown in Figs. 7
and 8. Notice that the initial time and the equilibrium-point
value of the non-linear responses have been subtracted in or-
der to be better compared with the linear free responses.

Participation factor

I Lo
o0 o0
(1] (1] 0.9
30f
s3333 ™
w 25 0.7
§ o o0
E 20l oo 0.6
S 0.5
S 1<l o0
> 15 ee 0.4
=
7 qof®® 0.3
0.2
5 b
0.1
- - - - - g 0
0 5 10 20 25 30 35
Eigenvalue “slowest to fastest” index
Fig. 6. Participation factors for D, =54.94 and H,=0.87 s (droop constants

in Table IV).

0.10

----Non-linear model

0.08¢ —— Linearized model

0.06 -
0.04

0.02

Angle of VSC 2 (°)

-0.02 . . . . . |
0 0.1 02 03 04 05 06 07

Time (s)

Fig. 7. Validation test: angle of VSC 2 in non-linear system response, and
in linear system free response when a small perturbation in angle of VSC 2
is applied (Ad,=x,5(0)=0.1°).

S
=3
W
-

----Non-linear model
—— Linearized model

LC capacitor voltage in VSC 2 (p.u.)

o
S
W

0.10 0.15 0.20

Time (s)

0.05

(=)

Fig. 8. Validation test: LC capacitor voltage (d-axis) in VSC 2 in non-lin-
ear system response, and in linear system free response when a small pertur-
bation in angle of VSC 2 is applied (Ad,=x,5(0)=0.1°).

When the converter frequency-droop gains K, increase,
the eigenvalues of the linearised system move as shown in
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Fig. 9 (see colour bar for gain variations). Moduli of eigen-
values w= Hi‘ are in the x-axis with a logarithmic scale, so
that large and small eigenvalues can be represented together.
Damping coefficients of eigenvalues ({= —Re(/ll.)/ |/ll. |) are
in the y-axis with a linear scale. The numbers within the

graph refer to the position of the eigenvalue in the x-axis of
Fig. 6.

K,
1.0r o o ocom 000 o 0.17745
o g‘ 8
i 0.14770
o
0.5} s e
6,7 0.11795
)
Voltage buses 8-11, 20-23
0.08820
0 Vo2
0.05845

0.5 , , , , , , , F—
103 102 107 10° 10" 10 10° 10* 105 10¢ 002870

w

Fig. 9. System modes’ loci when frequency-droop gains increase.

For example, A4-4,, and 4,,-4,; have very large moduli and
participate in the state variables related to the bus capacitors
(variables 7-10), transformer 1 (variables 13, 14), transform-
er 2 (variables 26, 27), and the line (variables 5, 6). Figure 9
also shows that if parameters K, increase, the moduli of
complex conjugated A, and 4, grow, while their damping co-
efficients deteriorate, reaching instability when droop gains
are K, =0.2037 and K ,=0.2855. Those eigenvalues partici-
pate in the state variables of the frequency-droop filters and
the angle dynamics of GFo-VSC-2 (variables 11, 23, and
25). No other eigenvalue moves significantly.

Figure 10 shows how eigenvalues move when the time
constants of the frequency-droop filters 7, are increased. All
eigenvalues which participate in droop filter variables reduce
their moduli, and damping coefficients of numbers 1 and 2
deteriorate. In order to maintain a constant damping coeffi-
cient in the equivalent swing equation, parameters H, and D,
of the frequency droops will have to be changed simultane-
ously, as shown in Fig. 11.

The stability of the system in Fig. 5 has also been exam-
ined by applying the impedance-based procedure using the
open-loop transfer function L(s) in (37). In balanced systems,
the loci of the two eigenvalues of the transfer function L(s)
must be considered. However, a clearer picture is obtained
by a single graph with the locus of the determinant of [/+
L(s)] and its encirclements of the origin (0,0) as s goes clock-
wise around the right-hand side of the complex plane. Since
there is no unstable poles of L(s), the locus of the determi-
nant will produce clockwise encirclements of the origin (0, 0)
when the system becomes unstable [28]. This situation is
reached for droop gains K, >0.2037 and K ,>0.2855, and
the limit case (already unstable) is shown in Fig. 12, where
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the locus steps on (0,0). The locus goes through 1, 2, ..., 8,
as s goes clockwise around the righ-hand side complex
plane.

T
1.0¢= DD ® 000 0 5 0.206
. s 8
o 0.171
o
osl | o
6,7 0.136
o '1,2
Voltage buses 8-11, 20-23 0.101
of
0.066
-0.5 . . . . . . . ) 0.031
102 10" 10° 10" 10> 10° 10* 10° 10°
w

Fig. 10. System modes’ loci when time constants of frequency-droop fil-
ters are increased.
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DK,=0.0024, 7,=125 ms
ol @K,=0.0060, 7,=50 ms @
®)K,,=0.0490, 7,=6 ms
. D, .
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Fig. 11. Systems modes’ loci changing frequency-droop filter parameters

and maintaining a constant equivalent damping factor.
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Re
Fig. 12. Locus of det[/+ L(s)] with “almost” two clockwise encirclements

of origin for droop gains K,,=0.2037 and K ,,=0.2855 (unstable system).

2) Under Unbalanced Load

The system in Fig. 5 has also been analysed with single-
phase loads connecting phase a to ground (as defined in Ta-
ble IV) in Buses 1 and 2. Now, the system using the pro-
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posed transformation described in Section II has 87 state
variables and 87 distinct modes (once linearised). The partici-
pation of those eigenvalues in the system state variables is
described in Fig. 13 following the strategy of Fig. 6. The
variable indices on the y-axis are related with the system ele-
ments as indicated in Table V. In Fig. 13, the indices on the
y-axis correspond to the variable number in Table V (unbal-
anced load). The eigenvalue (mode) index corresponds to a
list ordered from the slowest one to the fastest one, consider-
ing the eigenvalue real parts.

Participation factor

90 10
N TR WY
= s’ S 0.9
70b - * % 5 0.8
(] ]
P
fol RAW,
2 ol L oo M AP [l
2 e sd'n 05
= 40/ - el
Q ‘ e 0.4
2 30¢
2 e e, 03
20+ 0.2
]0' E 0.1
@m0
0 10 20 30 40 50 60 70 80 90
Eigenvalue “slowest to fastest” index
Fig. 13. Participation factors for D,=54.94 and H,=0.87s (droop con-

stants in Table IV).

First of all, the frequency-droop gains have been increased
and the system modes’ loci are shown in Fig. 14. Clearly,
the damping factors of modes 1-2 deteriorate (they partici-
pate in the state variables of the frequency-droop filters and
the angle of GFo-VSC-2), becoming unstable for K, =0.228
and K ,,=0.321.

K
1.0 o o o® ooooo 702151
o (] °
o a 0.1818
° -]
0.5+ 0.1486
> Voltage buses 6-17, 34-45 0.1154

0.0821
) '

0.0489
oS By
10° 102 10" 10° 10' 10> 10° 10* 10° 10°

w
Fig. 14. System modes’ loci when frequency-droop gains are increased.

Secondly, the time constants of the frequency-droop filters
7, are increased, while droop gains are maintained constant.
All eigenvalues which participate in droop filter variables re-
duce their moduli, and the damping coefficients of eigenval-
ues | and 2 deteriorate. The loci of the system modes in this
case have been drawn in Fig. 15. A constant damping coeffi-
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cient in the equivalent swing equation can be maintained if
parameters H and D of the frequency droops are changed si-
multaneously.

1.0 @@ mmomO 00 O 00 T
o o 0.223
o =] o
o
5 (-} 0.188
05F 0.153
" § Voltage buses 6, 7, ..., 0118
1,2 17,34,35, ..., 45 '
ot 0.084
0.049
oS e, oo
102 10" 109 10' 102 103 10* 105 10°
w
Fig. 15. System modes’ loci when time constants of frequency-droop fil-

ters are increased.

In the unbalanced case, the impedance-based approach to
study stability must handle 6 x 6 impedance matrices like the
one in (28). As in the balanced case, the system will be un-
stable when det[/+ L(s)] produces clockwise encirclements of
the origin as s goes clockwise around the right-hand side
complex plane [28] (i.e., K, >0.228 and K ,,>0.321) and the
limit case (already unstable) is shown in Fig. 16. The locus
goes through 1,2, ...,8 as s goes clockwise around the right-
hand side complex plane.

257
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1.0+
0.5}
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-2.5

-1 0 1 2 3 4
Re
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Fig. 16. Locus of det[/+L(s)] for droop gains K, =0.228 and K ,=0.321.

Finally, if the internal PI controllers for the negative se-
quence of GFo-VSC-2 defined in (43) are gradually re-
moved, the system modes change as shown in Fig. 17. As
gains K, (inner current control) and K,, (outer voltage con-
trol) are reduced, the damping coefficients of the following
set of modes deteriorate:

1) Modes {2,3,8,9} participate in state variables {76,77},
{74,75} and {85,86}, which are related with the negative se-
quence for: the PI voltage control, the PI current control,
and the currents of the LC filter in GFo-VSC-2, respectively.

2) Modes {54,55,...,57} participate in state variables
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{67, 68}, {85,86}, {61,62}, and {28,29}, which are related with
the negative sequence for the output voltage of the LC filter
in GFo-VSC-2, the currents of the LC filter in GFo-VSC-2,
and the currents of transformers 2 and 1, respectively.

1.0p o ° ag® Ky, (Ky)
of 0.07135 (0.013)
f , 0.10276 (0.019)
0.5F Voltage buses 10-21,[70-21308 (0.039)
' 38-49
o 0.44183 (0.082)
54-57
g 0.91618 (0.170)
: =
8,9 1.89980 (0.353)
3.93942 (0.733)
05 C e B567280(1.055)
107 102 10" 10° 10" 10* 10° 10* 10° 10°
w
Fig. 17. System modes’ loci when negative-sequence internal controls are

removed at GFo-VSC-2.

Similar results have been obtained when removing the in-
ternal PI controllers corresponding to the zero sequence in
GFo-VSC-2, showing an insignificant coupling between con-
trollers of the positive, negative, and zero sequences.

B. Case Study 2: Complete LV CIGRE Microgrid

The complete low-voltage (LV) CIGRE unbalanced AC
microgrid [15] in Fig. 18 has also been analysed. It consists
of five GFo-VSCs connected to their buses through trans-
formers (with impedances Z,, as those in Section IV-A), ten
balanced LV power lines (basic line impedances Z,,, as the
one in Section IV-A), and five linear unbalanced loads con-
nected to their corresponding buses. In addition, eleven very
small three-phase balanced capacitors C, have been connect-
ed to the grid buses to include the bus voltages as state vari-
ables. These capacitors should have no influence on the sys-
tem dynamics. All parameters are presented in Table IV.

GFo-VSC-1 is chosen to be the angle reference for all oth-
er converters and has the configuration of VSC 1 in Table
IV while all other VSCs have identical configuration as VSC
2 in that table. The unbalanced loads are described in Table
VI. They are three-phase star-connected loads with the neu-
tral point connected to ground.

The complete CIGRE unbalanced microgrid is a 316"™-or-
der system, which, once linearized, has 316 distinct eigenval-
ues (modes) that participate in the system state variables.
Two scenarios have been analysed: (D the case of removing
the transformer at VSC 2; and ) the case when frequency-
droop gains K, are increased.

1) Removing Transformer at VSC 2

The system modes’ loci is shown in Fig. 19 when the im-
pedance Z,, of transformer at VSC 2 is reduced gradually
(maintaining the ratio X/R). The damping coefficients of a
set of modes deteriorate:

1) Modes {l,2} participate in state variables {187}, {185},
{284}, and {286}, which are related with the angle of VSC 2,
the frequency-droop filter of VSC 2, the frequency-droop fil-
ter of VSC 5, and the angle of VSC 5, respectively.
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Fig. 18. Single-line diagram of LV CIGRE unbalanced AC microgrid
where VSCs include LC filters.

TABLE VI
LOAD PARAMETERS IN CASE STUDY 2 (BASE VALUES AS IN TABLE 1V)

Load (p.u.) S, S, S, of
1 0.0286 0.0571 0.0771 0.85
2 0.1371 0.1829 0.2286 0.85
3 0.1371 0.1829 0.2286 0.85
4 0.0771 0 0 0.85
5 0.0457 0.0914 0.1143 0.85
1.0r o 00 00 Zd;,z
S og ‘ 0
g \ 0.00725667
299-310
0.5+ ° 0.01451334
1° 5 15-20
‘o 0.02177001
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Fig. 19. Loci of eigenvalues in CIGRE microgrid when tranformer 2 is re-
moved gradually.

2) Modes {15,16,...,20} participate in state variables
{200,201, ...,211}, which are related with the PI controllers
of positive, negative, and zero sequences of voltages and cur-
rents in VSC2; in state variables {287,288, ...,292}, which
are related to the current at the transformer of VSC 5; and
in state variables {307,308, ...,310}, which are related with
positive current and voltage PI control of VSC 5.

3) Modes {299,300, ...,310} participate in state variables
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{212,212,...,217} and {194,195, ...,199}, which are related
with the current and voltage of the LCL filter in VSC 2, re-
spectively.

Last findings indicate that transformers help to maintain a
better damping in the modes, and special care should be tak-
en for possible interactions between nearby VSCs in the mi-
crogrid.

2) Increasing Frequency-droop Gains

The loci of eigenvalues of CIGRE microgrid when fre-
quency-droop gains are increased are shown in Fig. 20. This
time, when those gains are increased, the damping coeffi-
cients of modes {1,2,...,8} deteriorate and nearby VSCs ex-
hibit interactions:

1.07 o 0 0 00 K,
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] (-}
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)
ok [ } 0.070
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0.042
0.014
0.5 . . . . . . . 5
102 10" 10° 10" 10> 10° 10* 10° 10°
W
Fig. 20. Loci of eigenvalues of CIGRE microgrid when frequency-droop

gains are increased.

1) Modes {1,2} participate in state variables {185}, {187},
{284}, and {286}, which are related with the frequency-droop
filter of VSC 2, the angle of VSC 2, the frequency-droop fil-
ter of VSC 5, and the angle of VSC 5, respectively.

2) Modes {3,4} participate in state variables {153}, {251},
and {253}, which are related with the frequency-droop filter
of VSC 1, the frequency-droop filter of VSC 4, and the an-
gle of VSC 4, respectively.

3) Modes {5,6} participate in state variables {153}, {185},
{187}, {284}, and {286}, which are related with the frequency-
droop filter of VSC 1, the frequency-droop filter of VSC 2,
the angle of VSC 2, the frequency-droop filter of VSC 5,
and the angle of VSC 5, respectively.

4) Modes {7,8} participate in state variables {218} and
{220}, which are related with the frequency-droop filter of
VSC 3 and the angle of VSC 3, respectively.

The slow dynamics caused by the frequency droops, show
interaction among all five VSCs. However, a stronger inter-
action is revealed between VSC 2 and VSC 5, and between
VSC 1 and VSC 4, due to the low line impedance between
them, as shown in Fig. 18.

V. CONCLUSION

The proposed transformation from a three-phase system to
a {dq0*} model provides a reliable tool for stability analysis
in LVAC microgrids under unbalanced conditions. Naturally,
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modal analysis and the impedance-based method reveal the
same final conclusions when analysing the stability of a sim-
ple case, because they are both based on a small-signal lin-
ear approximation of the system. The former requires a de-
tailed model of every single element of the system, while
the latter could be applied with a simpler equivalent model
which can be derived experimentally at the PoC. However,
the former gives a richer insight into the system behaviour
than the latter.

The paper has shown how the parameters of the filter
used to measure active power in a typical frequency droop
would affect the stability of a simple microgrid based on
GFo-VSCs and how these parameters are clearly related to
the damping D and the inertia H of the so-called “virtual in-
ertia” provided by GFo-VSCs. The paper has also illustrated
how these two parameters must be changed together in order
to maintain an approximately constant damping coefficient
in the equivalent “swing equation” of the system. Although
this equation is only an approximation, the detailed modal
analysis of the system reveals that, with the proposed strate-
gy, the damping coefficients of those modes remain almost
constant with a strong participation in the frequency-droop
state variables and in the VSC angle. The modal analysis ap-
plied to an unbalanced system has unveiled the importance
of the dynamics in the {dq~} and {0"} components, which
have to be closed-loop controlled in order to improve the
system stability.

Finally, the analysis conducted in the complete CIGRE mi-
crogrid indicates that the transformers used to connect GFo
converters provide galvanic isolation and a better damping
response in the overall dynamics of the system. Due to the
high number of modes in the complete microgrid, an ade-
quate model reduction technique should be considered to fo-
cus on the most relevant modes.

REFERENCES

[17 J. Rocabert, A. Luna, F. Blaabjerg et al., “Control of power converters
in AC microgrids,” IEEE Transactions on Power Electronics, vol. 27,
no. 11, pp. 4734-4749, May 2012.

[2] P. Kundur and L. Wang, “Small signal stability analysis: experiences,
achievements, and challenges,” in Proceedings of International Confer-
ence on Power System Technology, Kunming, China, Oct. 2002, pp.
6-12.

[3] F. Pagola, I. Perez-Arriaga, and G. Verghese, “On sensitivities, resi-
dues and participations: applications to oscillatory stability analysis
and control,” IEEE Transactions on Power Systems, vol. 4, no. 1, pp.
278-285, Feb. 1989.

[4] J. Paseba, “Control of power system oscillations,” in Proceedings of
IFAC Symposium on Control of Power Systems and Power Plants, Bei-
jing, China, Aug. 1997, pp. 75-83.

[5] L. Rouco, “Coordinated design of multiple controllers for damping
power system oscillations,” International Journal of Electrical Power
& Energy Systems, vol. 23, pp. 517-530, Oct. 2001.

[6] J. Renedo, A. Garcia-Cerrada, L. Rouco et al., “Coordinated design of
suplementary controllers in VSC-HVDC multi-terminal systems to
damp electromecanical oscillations,” [EEE Transactions on Power Sys-
tems, vol. 36, no. 1, pp. 712-721, Jan. 2021.

[7]1 N. Pogaku, M. Prodanovi¢, and T. C. Green, “Modeling, analysis and
testing of autonomous operation of an inverter-based microgrid,” /IEEE
Transactions on Power Electronics, vol. 22, no. 2, pp. 613-625, Mar.
2007.

[8] Z. Li and M. Shahidehpour, “Small-signal modeling and stability anal-
ysis of hybrid AC/DC microgrids,” IEEE Transactions on Smart Grid,
vol. 10, no. 2, pp. 2080-2095, Mar. 2019.

[9] Y. Yan, D. Shi, D. Bian et al., “Small-signal stability analysis and per-



YAGUE et al.: COMPARISON BETWEEN MODAL ANALYSIS AND IMPEDANCE-BASED METHODS FOR ANALYSING STABILITY OF...

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18

[}

[19

[}

[20]

[21]

[22

—

[23]

formance evaluation of microgrids under distributed control,” [EEE
Transactions on Smart Grid, vol. 10, no. 5, pp. 4848-4858, Sept. 2018.
D. P. Ariyasinghe, D. M. Vilathgamuwa, and S. Member, “Stability
analysis of microgrids with constant power loads,” in Proceedings of
International Conference on Sustainable Energy Technologies, Singa-
pore, Nov. 2008, pp. 279-284.

IEEE PES Task Force on Microgrid Stability Analysis and Modeling,
“Microgrid stability definitions, analysis, and modeling,” Tech. Rep.
no. PES-TR 66, Jun. 2018.

M. Farrokhabadi, D. Lagos, R. W. Wies et al., “Microgrid stability def-
initions, analysis, and examples,” IEEE Transactions on Power Sys-
tems, vol. 35, no. 1, pp. 13-29, Jan. 2020.

Y. Ojo and J. Schiffer, “Towards a time-domain modeling framework
for small-signal analysis of unbalanced microgrids,” in Proceedings of
IEEE PowerTech Conference, Manchester, UK, Jun. 2017, pp. 1-6.

B. S. Shah, P. Koralewicz, V. Gevorgian et al., “Impedance methods
for analyzing the stability impacts of inverter-based resources,” [EEE
Electrification Magazine, vol. 9, no. 1, pp. 53-65, Mar. 2021.

CIGRE Task Force C6.04.02, “Benchmark systems for network inte-
gration of renewable and distributed energy resources,” CIGRE Tech.
Rep. No. 575, Apr. 2014.

G. Verghese, 1. Perez-Arriaga, and F. Schweppe, “Selective modal
analysis with applications to electric power systems, Part I: heuristic
introduction and Part II : the dynamic stability problem,” /EEE Trans-
ations on Power Apparatus and Systems, vol. PAS-101, no. 9, pp.
3117-3134, Sept. 1982.

F. Milano, Power System Modelling and Scripting, 1st ed., Berlin:
Springer Publishing Company, Aug. 2010.

R. Middlebrook, “Input filter considerations in design and application
of switching regulators,” in Proceedings of IEEE Industry Applicat-
tions Society Annual Meeting, Chicago, USA, Oct. 1976, pp. 366-382.
M. Belkhayat, “Stability criteria for AC power systems with regulated
loads,” Ph.D. dissertation, Purdue University, West Lafayette, USA,
1997.

A. G. J. Macfarlane and 1. Postlethwaite, “The generalized nyquist sta-
bility criterion and multivariable root loci,” International Journal of
Control, vol. 25, no. 1, pp. 81-127, Jun. 1977.

B. Wen, D. Boroyevich, R. Burgos et al., “Small-signal stability analy-
sis of three-phase AC systems in the presence of constant power loads
based on measured d-g frame impedances,” IEEE Transactions on
Power Electronics, vol. 30, no. 10, pp. 5952-5963, Oct. 2015.

Z. Liu, J. Liu, D. Boroyevich et al., “Stability criterion of droop-con-
trolled parallel inverters based on terminal-characteristics of individual
inverters,” in Proceedings of 2016 IEEE 8th International Power Elec-
tronics and Motion Control Conference, Hefei, China, May 2016, pp.
2958-2963.

J. D. Glover, M. S. Sarma, and T. H. Overbye, Power System Analy-
sis and Design, 4th ed., Ontario: Thomson Learning, 2012.

1281

[24] K. J. Astrom and T. Hagglund, PID Controllers: Theory, Design, and
Tuning, 2nd ed., Research Triangle Park: Instrument Society of Ameri-
ca, 1995.

M. Savaghebi, A. Jalilian, J. C. Vasquez et al., “Autonomous voltage
unbalance compensation in an islanded droop-controlled microgrid,”
IEEE Transactions on Industrial Electronics, vol. 60, no. 4, pp. 1390-
1402, Apr. 2013.

M. C. Chandorkar, D. M. Divan, and R. Adapa, “Control of parallel
connected inverters in standalone AC supply systems,” IEEE Transac-
tions on Industry Applications, vol. 29, no. 1, pp. 136-143, Jan.-Feb.
1993.

R. Ofir, U. Markovic, P. Aristidou et al., “Droop vs. virtual inertia:
comparison from the perspective of converter operation mode,” in Pro-
ceedings of 2018 IEEE International Energy Conference, Limassol,
Cyprus, Jun. 2018, pp. 1-6.

C. A. Desoer and Y. Wang, “On the generalized Nyquist stability crite-
rion,” [EEE Transactions on Automatic Control, vol. 25, no. 2, pp.
187-196, Apr. 1980.

(23]

[26]

[27]

(28]

Sauro J. Yague received the M.Sc. degree from ICAI School of Engineer-
ing, Comillas Pontifical University, Madrid, Spain, and another M. Sc. de-
gree in electrical engineering from Wichita State University, Kansas, USA,
in 1996 and 1998, respectively. Currently, he is a Professor at 1QS School
of Engineering, Ramoén Llull University, Barcelona, Spain. His research in-
terests include power electronics and its applications to electric energy sys-
tems.

Aurelio Garcia-Cerrada received the M. Sc. degree from the Universidad
Politécnica de Madrid, Madrid, Spain, and the Ph.D. degree from the Uni-
versity of Birmingham, Birmingham, U.K., in 1986 and 1991, repectively.
He is a Professor in the Electronics, Control Engineering and Communica-
tions Department and a Member of the Institute for Research in Technology
at the Universidad Pontificia Comillas de Madrid, Madrid, Spain. His re-
search interests include power electronics and its applications to electric en-
ergy systems.

Pere Palacin Farré received the M. Sc. degree from the Universidad
Politécnica de Catalufia, Barcelona, Spain, in 1992, and the Ph.D. degree
from the Universidad Ramoén Llull, Barcelona, Spain, in 2005. He has been
General Director of Energy, Mines, and Industrial Security at the Generali-
dad de Catalufia (2013-2020), Vice-president of the Instituto de Energia-
ICAEN (2013-2018), and Dean of the Colegio Oficial de Ingenieros Indus-
triales de Catalufia-COEIC (2017). Currently, he is a Professor at 1QS
School of Engineering, Ramén Llull University, Barcelona, Spain. His re-
search interests include power systems, microgrids, smart grids, and renew-
able energies.



