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Phase Identification of Low-voltage Distribution 
Network Based on Stepwise Regression Method

Yingqi Yi, Siliang Liu, Yongjun Zhang, Ying Xue, Wenyang Deng, and Qinghao Li

Abstract——Accurate information for consumer phase connec‐
tivity in a low-voltage distribution network (LVDN) is critical 
for the management of line losses and the quality of customer 
service. The wide application of smart meters provides the data 
basis for the phase identification of LVDN. However, the mea‐
surement errors, poor communication, and data distortion have 
significant impacts on the accuracy of phase identification. In 
order to solve this problem, this paper proposes a phase identifi‐
cation method of LVDN based on stepwise regression (SR) 
method. First, a multiple linear regression model based on the 
principle of energy conservation is established for phase identifi‐
cation of LVDN. Second, the SR algorithm is used to identify 
the consumer phase connectivity. Third, by defining a signifi‐
cance correction factor, the results from the SR algorithm are 
updated to improve the accuracy of phase identification. Final‐
ly, an LVDN test system with 63 consumers is constructed 
based on the real load. The simulation results prove that the 
identification accuracy achieved by the proposed method is 
higher than other phase identification methods under the influ‐
ence of various errors.

Index Terms——Phase identification, low-voltage distribution 
network (LVDN), stepwise regression, smart meter, data-driven 
method.
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D. Parameters
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Accuracy level of meter

Deviation of meter clock relative to reference 
clock

Measurement error ratio
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Significance remove threshold

Regularization parameter of Lasso regression

Lower limit of allowable recall rate

Total number of elements for subset XinΦ

P-value for the F-test that regression coefficient 
is equal to 0

P-value for the F-test that regression coefficient 
is equal to 1

I. INTRODUCTION 

IN recent years, with the application of information and 
communication technology (ICT) in power systems, “digi‐

tization” has become an important feature of the modern 
power system. Among them, advanced metering infrastruc‐
ture (AMI) provides the foundation to transform the planning, 
operation, and management of distribution networks [1], [2].

The low-voltage distribution network (LVDN) is located 
at the edge of the power system and directly connects con‐
sumers. It is critical to ensuring the quality of the power sup‐
ply and improving the consumer experience. However, the 
consumer phase connectivity information in LVDN is gener‐
ally missing or inaccurate, which has become a bottleneck 
that restricts the planning and operation management of 
LVDN [3]. With the rapid application of smart meters in 
LVDN, a large number of researchers have studied the phase 
identification of LVDN by analyzing the data from smart me‐
ters. These studies can be divided into two categories: one is 
based on the principle of voltage correlation and the other is 
based on the principle of energy conservation [4].

The principle of voltage correlation means that the correla‐
tion factors between the voltage profiles of consumers re‐
flect the electrical distance between them, and consumers 
with a close electrical distance will have a greater probabili‐
ty of being in the same phase connectivity or the same 
branch [5]. References [6] and [7] analyzed the correlation 
factors between the voltage profiles of consumers and the 
voltage profiles of each phase and identified the consumer 
phase connectivity by the correlation factors. Reference [8] 
identified the consumer phase connectivity by analyzing the 
correlation between the consumer and the voltage profiles of 
each phase of the three-phase feeder meter. The above meth‐
od has poor identification performance when the load is 
light or the level of three-phase unbalance is low in LVDN. 
References [9] and [10] used the linear regression method to 
identify the parallel connections of branches, consumer 
phase, and line impedance based on the line voltage drop 
model. Reference [11] extended the application of this meth‐
od to three-phase four-wire LVDN, making it applicable to 
the LVDNs in Europe and South America. However, it is dif‐
ficult to guarantee its performance for LVDNs with more 

complex structures or with a large number of consumers, 
which are connected to a medium-voltage/low-voltage (MV/
LV) transformer, such as the LVDNs in China. Reference 
[12] analyzed the applications of various supervised learning 
algorithms on the phase identification problem. Reference 
[13] proposed the selection principle of labelled samples in 
supervised learning based on information loss theory, which 
improved the efficiency of sample collection and processing. 
Reference [14] used the K-means clustering algorithm to 
identify the consumer phase based on the voltage data. In ad‐
dition, the unsupervised learning algorithms such as spectral 
clustering [15] and fuzzy C-means clustering [16] are also 
widely used in the topology identification of LVDN. Al‐
though the above-mentioned artificial intelligence recogni‐
tion methods are easy to apply, their performances in practi‐
cal applications are not ideal due to the poor interpretability 
of the models [17].

The principle of energy conservation means that the cur‐
rent injected from the upstream nodes (busbars of each 
phase) of the LVDN at any point in time is equal to the sum 
of the currents flowing to the downstream nodes (consum‐
ers). Reference [18] proposed an integer programming model 
and its relaxation method for solving the phase identification 
of LVDN. Reference [19] proposed that the similarity of 
load curves of different consumers can be reduced by adjust‐
ing the output of distributed generation from the consumer 
side, thereby improving the accuracy of phase identification 
based on the integer programming model. Reference [20] 
considered the nonlinear power flow equation constraints 
and converted the topology identification problem of LVDN 
into mixed-integer linear program (MILP), which improved 
the efficiency of the solution. As this method needs to col‐
lect the phase angle information, it requires the installation 
of phaser measurement units (PMUs), where the investment 
cost can be high [21].

Compared with integer programming methods, regression 
analysis and machine learning methods have higher accuracy 
in phase recognition, which has recently attracted research‐
ers’ attention. Reference [22] proposed a phase identifica‐
tion method of LVDN based on Lasso regression. Reference 
[23] and [24] proposed to extract the high-frequency compo‐
nents in the time series of load based on the Fourier trans‐
form, and then used the improved clustering method for 
phase identification. This method can to some extent solve 
the problem of incomplete data caused by the limited cover‐
age of smart meters. Reference [25] proposed to use the prin‐
cipal component analysis (PCA) method to identify the con‐
sumer phase. A synthesis of the advantages and disadvantag‐
es of different methods is shown in Table I.

In general, the identification methods of LVDN topology 
based on energy conservation usually require high-quality 
measurement data. However, in fact, due to the impacts of 
meter measurement errors, clock synchronization errors, com‐
munication interruptions, and other negative factors, the mea‐
surements may be seriously distorted, and the identification 
accuracy cannot be guaranteed [26].

Therefore, this paper proposes to apply a stepwise regres‐
sion (SR) algorithm to effectively identify phase connection 
for consumers in LVDN. SR is a systematic algorithm for 
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adding and removing terms from a multiple linear model 
based on their statistical significance in a regression [27]. SR 

algorithm has been applied in many problems in which the in‐
fluence of measurement noise cannot be ignored [28], [29].

The main contributions of this paper are as follows.
1) This paper applies the SR algorithm to identify phase 

connection for consumers in LVDN for the first time. The al‐
gorithm identifies the phase connectivity according to the 
significance test.

2) The significance correction factors are defined in this 
paper to correct the results of the SR algorithm, which can 
improve the identification accuracy with a variety of errors.

3) The size of errors when selecting current and active 
power as regression variables is analyzed, and the effects of 
selecting different regression variables on the accuracy of 
the phase identification are compared.

4) The influence of different algorithm parameters on the 
identification accuracy of the proposed method is analyzed, 
and on the premise of considering various errors, it is com‐

pared with the least square (LS) method [30], integer qua‐
dratic programming (IQP) [17], Lasso regression method 
[22], and voltage correlation comparison [8].

II. PROBLEM DESCRIPTION 

Different from the LVDN in North America, LVDN in 
China generally has a three-phase four-wire structure [31], 
as shown in Fig. 1. It can be observed from Fig. 1 that each 
single-phase consumer (e. g., C21, C11) is connected to the 
A/B/C phase feeder and neutral (N) through the service 
wire. The sensors installed at the LV side of the distribution 
transformer can obtain the current or active power data [32] 
with a 15-min resolution. The proposed data-driven method 
only needs to use the current or active power data measured 
by smart meters or sensors.

The phase topology of LVDN can be considered to be the 
connectivity relationship between consumers and each phase 

feeder. As shown in Fig. 2, the principle of energy conserva‐
tion implies that the energy of the incoming phase feeders 

TABLE I
AVAILABLE LITERATURE ON IDENTIFICATION METHODS OF LVDN TOPOLOGY

Category

Voltage 
correlation

Energy 
conservation

Reference

[6]-[8]

[9]-[11]

[12], [13]

[14]-[16]

[18], [19]

[20]

[22]

[23], [24]

[25]

Method

Correlation 
analysis

Linear 
regression

Supervised 
learning

Clustering

Integer 
programming

MILP

Lasso regression

Clustering

PCA

Advantages and disadvantages

(+) Only require voltage data, with high computational efficiency
(-) Have poor identification performance on account of short electrical distances, light load, or bal‐

ance three-phase load

(+) Identify the connections of branches, consumer phase, and line impedance simultaneously
(-) Be unavailable for LVDNs with more complex structures or with a large number of consumers

(+) Achieve high accuracies based on sufficient training data samples
(-) Be difficult to obtain training data labels in practice

(+) Be easy to implement and tune
(-) Be sensitive to algorithm parameter

(+) Only require current data
(-) Be sensitive to bad and incomplete data

(+) Have high computational efficiency
(-) Need to collect phase angle information

(+) Achieve higher accuracies based on strict parameter
(-) Be sensitive to bad and incomplete data

(+) Adapt to incomplete data
(-) Require high data synchronization

(+) Only require load data and have high computational efficiency
(-) Be sensitive to bad and incomplete data

Note: the symbols (+) and (-) represent advantages and disadvantages, respectively.

Information flow; Single-phase consumer; Three-phase consumer

Phase A; Phase B; Phase C; Phase N; Current sensor; Smart meter

…

…

C21 C22 C23 C24 C2n

C11 C12 C13 C14 C1n10 kV/0.4 kV

C25

Electricity

theft

Concentrator

Distribution transformer

Fig. 1.　Illustration of a simple LVDN.

1226



YI et al.: PHASE IDENTIFICATION OF LOW-VOLTAGE DISTRIBUTION NETWORK BASED ON STEPWISE REGRESSION METHOD

are equal to the sum of energy of outgoing consumers con‐
nected to that phase [25]. This principle leads a set of linear 
equations. For the mathematical description of the problem, 
define J ={ABC}, H ={12T}, L ={12N}, where T 
is the number of measurements, and N is the number of con‐
sumers connected to the MV/LV distribution transformer.

Then, the vector of phase current phasor I͂Φ ∈RT, the ma‐
trix of consumer current phasor I͂M ∈RT × N, and the vector of 
regression coefficient βΦ ∈RN can be expressed as:

I͂Φ =[I͂Φ1    I͂Φ2        I͂Φi        I͂ΦT ]    "iÎH"ΦÎ J (1)

I͂M =[I͂Mij ]T ´N    "iÎH"jÎ L (2)

βΦ =[βΦ1    βΦ2        βΦj        βΦN ]T    "jÎ L"ΦÎ J (3)

where βΦj ={01} represents the phase connectivity informa‐
tion for the jth consumer: 1 means that this consumer is con‐
nected to phase Φ, and 0 means that it is not connected to 
phase Φ. Three-phase consumers can be equivalent to three 
single-phase consumers. According to Kirchhoff’s current 
law (KCL), these linear equations can be expressed as:

I͂Φ = I͂M βΦ (4)

The phase identification essentially solves (4) to obtain 
the regression coefficient vector, which reflects the corre‐
sponding phase connection. Considering that the phase angle 
data cannot be measured by sensors or smart meters in 
LVDN [21], the current magnitude measurements or active 
power measurements are used to replace the current phasor 
measurements in practice. This approximation inevitably in‐
troduces the model errors. Thus, (4) can be rewritten by tak‐
ing into account both the measurement errors and the influ‐
ence of hidden errors:

Y =Xβ + e (5)

The phase current or active power is taken as the depen‐
dent variable Y, and the current or active power obtained by 
the consumer meter is taken as the independent variable X.

In (5), the errors eÎRT include the measurement errors 
es ∈RT, model errors em ∈RT, and hidden errors eh ∈RT, i.e.,

e = es + em + eh (6)

The measurement errors es are from the meter reading and 
the clock synchronization. es can also be modelled to be 
Gaussian distribution with an expected value of 0 [25]. Its 
variance σsi is mainly related to the load profile, the meter‐
ing error ratio ε1, and the clock synchronization error ratio 
ε2. The distribution of the random error esi at the ith time in‐

stant is given by:

esi~N(0σ 2
si ) (7)

σsi = εs∑
jÎN

XMij (8)

εs = ε1 + ε2 (9)

ε1 = α/3 (10)

ε2 = η/45 (11)

where α is the accuracy level of the meter, which is general‐
ly 0.2, 1, 2, or 5 [33], and the corresponding value of ε1 
then varies from 0.1% to 1.7%; η is the deviation of the me‐
ter clock relative to the reference clock, which is generally 0-
5 min; the range of ε2 is 0-6.7% if the sampling time inter‐
val of 15 min is used as the reference; εs is the measurement 
error ratio ranging from 0.1% to 8.4% considering metering 
errors and clock synchronization errors simultaneously; and 
XMij is the current magnitude or active power measurement 
of the j th consumer at the ith time instant.

The model errors em refer to the errors caused by ignoring 
the phase angle and technical losses. These errors are mainly 
related to the grid structure and the network load level.

The hidden errors eh refer to the missing or serious distor‐
tion of measurement data due to the problems such as elec‐
tricity theft [34], PLC crosstalk [35], and interruption of 
communication [36]. This error is generally difficult to de‐
tect so we name it a hidden error. The values of hidden er‐
rors vary widely and are determined by the grid communica‐
tion status and the network operating conditions.

With the access to distributed energy resources (DERs), 
there are also integrated prosumers. Since the DERs are gen‐
erally installed behind consumer meters, the meter outputs 
are the net imbalance of local demand and supply. Thus, (5) 
inherently considers the integrated prosumers in LVDN [25]. 
Hence, the law of energy conservation for the access of inte‐
grated prosumers also holds.

III. PHASE IDENTIFICATION METHOD OF LVDN 

To solve (5), the traditional methods used to convert it in‐
to an optimization problem [17] and various optimization 
techniques could be applied to get the optimal mathematical 
solution of β based on the observations over a period of 
time [24]. Then, the consumer phase can be identified based 
on the regression coefficient value [30]. However, owing to 
the influence of errors, especially hidden errors, the measure‐
ments could be severely distorted, which could lead to the 
significant deterioration of identification results. These opti‐
mization methods are simple and straightforward, but they 
cannot accommodate the influence of errors.

This paper proposes to apply an SR algorithm to identify 
the consumer phase of LVDN according to their significanc‐
es, which can be checked through F-test. Instead of focusing 
on the specific value of the regression coefficient obtained 
through optimization, the SR method is used to solve (5) 
based on the P-value, which can reflect the significant contri‐
bution of the corresponding independent variable to the ob‐
servations. Therefore, the SR method provides a systematic 

C2n

Phase C

Distribution transformer

Phase A Phase B

… … …

C21 C22C12 C1n C25

Consumers

Fig. 2.　Phase topology of LVDN.
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way of identifying the consumer phase connectivity in a sta‐
tistical framework, which considers errors and can achieve a 
higher identification accuracy. The key steps of SR algo‐
rithm are described as follows.

1) Based on the observations of current or active power, 
the multi-linear model as shown in (5) can be established. 

2) The SR algorithm is used to add and remove the inde‐
pendent variables from (5) based on their statistical signifi‐
cances. The consumer phase is then determined according to 
the significant independent variable subsets for each phase.

3) Based on the correction factor, the calculation results 
of the SR algorithm are corrected to obtain the final identifi‐
cation of the consumer phase connectivity.

4) For cases where consumer phase connectivity cannot 
be determined due to light load or error influence, the meth‐
ods such as voltage correlation analysis or field testing can 
be adopted.

A. Significance Test

The independent variable significantly influences the ob‐
servations of the dependent variable when there is a linear 
correlation independent variable and a dependent variable. 
This means that the corresponding regression coefficients 
should be significantly different from 0. From the perspec‐
tive of hypothesis testing, it is equivalent to testing whether 
hypothesis (12) is accepted.

H0: βj = 0    "j ∈ L (12)

In this paper, the F-test is used to test the significance of 
the regression coefficient of a single variable, and the F-test 
value of the j th variable Fj is constructed as:

Fj = (T -N - 1)× DSSEj /SSE (13)

ΔSSEj = SSEj - SSE (14)

SSE = Y TY - βT X TY (15)

where SSE is the residual sum of squares obtained by linear 
regression (5) of the dependent variable on the N indepen‐
dent variables; SSEj is the residual sum of squares obtained 
by linear regression (5) of the dependent variable on the re‐
maining N - 1 independent variables after removing the j th in‐
dependent variable; and DSSEj is the partial residual sum of 
squares, and its value is equal to the difference between 
SSEj and SSE.

Assuming regression error satisfies the normal distribu‐
tion, Fj will obey the F-distribution with degrees of freedom 
(1T -N - 1) when βj = 0, i.e.,

Fj~F(1T -N - 1) (16)

Then, the probability that the hypothesis holds is:

P0j =P(βj = 0)=P(F >Fj ) (17)

where P0j is called the P-value for the F-test when regres‐
sion coefficient βj = 0. A smaller P-value indicates a higher 
likelihood that the corresponding independent variable has 
significant contributions to the observation of dependent vari‐
able, and vice versa.

B. SR Algorithm

SR is an iterative procedure to find the subset of the inde‐

pendent variable and corresponding regression coefficients 
that “best” explain the observations of the dependent vari‐
able. The main idea of the SR algorithm is to introduce the 
variables one by one, and if the j th independent variable 
meets the introduction criteria based on its significance, i.e., 
P0j < λentry, this new variable is introduced. Each time a new 
variable is introduced, the old variables of the selected equa‐
tions are tested one by one. If the non-significant exclusion 
condition is met, i.e., P0j > λremove, the old variable is removed 
to ensure that the variables in the independent variable sub‐
set are all significant. This process is repeated by several 
times until no new variables can be introduced.

In order to avoid falling into the infinite loop of introduc‐
ing-removing-introducing the same variable, it is generally 
required that λentry is smaller than λremove, i. e., λentry < λremove. 
The detailed calculation procedure of the SR algorithm is ex‐
plained below.

As explained above, using the SR algorithm, the signifi‐
cant independent variable subset for each phase can be ob‐
tained as:

X inΦ ={xinΦ (1) xinΦ (2)  xinΦ (i)  xinΦ (nΦ )}    "ΦÎ J  (21)

Considering the influence of errors and the settings of sig‐
nificance threshold, there could be intersections among X inA, 
X inB, and X inC, as shown in Fig. 3, indicating a single-phase 
consumer is connected to multiple phases. However, it is not 
possible in practice because single-phase consumers cannot 
be connected to different phases at the same time. So, it is 
necessary to correct the results directly obtained from SR al‐
gorithm.

Algorithm 1: SR algorithm

Inputs: observation vector Y, design matrix X, significance thresholds 
λentry and λremove

Outputs: significant independent variable subset XinΦ

Step 1: start with initial regression model only with the DC component
Step 2: select and add one independent variable xj to the regression model. 

The significance is checked using the F-test to obtain the P-val‐
ue P0j

Step 3: if P0j < λentry, xj shall be added to the regression model, and XinΦ =
XinΦ∪{xj }. If P0j⩾λentry, go directly to Step 6

Step 4: the significance of all independent variables in regression model 
shall be checked using the F-test to obtain a set of significant P-
value {P01, P02, , P0k}

Step 5: let P0i = max{P01, P02, , P0k}. If P0i ³ λremove, xj shall be removed to 
the regression model, and XinΦ = XinΦ–{xi }. If P0i < λremove, go di‐
rectly to Step 6

Step 6: Steps 2-5 are repeated until no independent variable needs to be 
added or removed from the regression model according to F-test

Step 7: End

X
inA

X
inC

X
inB

X
inAC

=X
inA
∩X

inC
X
inAB

= X
inA
∩X

inB

X
inBC

= X
inB
∩X

inC

Fig. 3.　Intersections among subsets of variables for each phase.
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C. Correction of Results from SR Algorithm

According to the linear correlation principle, for the con‐
sumers with smaller errors and heavier load, the expected 
value of the corresponding regression coefficient should be 
closer to 1 and the variance should be smaller. It means that 
the likelihood of βj = 1 is larger and the likelihood of βj = 0 
is smaller. Based on this principle, the significance correc‐
tion factor ζ can be defined as:

ζ = ln(P1 /P0 ) (18)

where P1 represents the P-value for the F-test of βj = 1. The 
smaller the value, the smaller the likelihood of β = 1. Its cal‐
culation method is similar to that for P0.

The ζ values are in the range of (-¥ +¥). If P1 >P0,  
ζ > 0. In extreme cases, if P1 = 1 and P0 = 0, this means that 
the likelihood for β = 0 will be highest. Conversely, if 
P1 <P0, ζ < 0. In extreme cases, if P1 = 0 and P0 = 1, it means 
that the likelihood for β = 1 will be highest. If P1 =P0, ζ = 0. 
This means that the likelihood for β = 0 or β = 1 will be the 
same at the highest uncertainty.

For "xiÎX inΦ, if ζinΦ(xi )£ 0, the reliability of the phase 
identification result on the corresponding consumer xi shall 
be unacceptable. For the intersections of subsets X inA, X inB, 
and X inC, taking the intersection set XinAB as an example 
"xi ∈X inAB, if ζinA (xi )> ζinB (xi ), the phase of consumer xi is 
more likely to be phase A rather than phase B. In this way, 
the identification results from the SR algorithm can be cor‐
rected based on the values of ζ. The detailed steps are de‐
scribed as follows.

D. Evaluation of Algorithm Performance

The final identification result of the consumer phase con‐
nectivity is obtained according to X 'inΦ. In order to evaluate 
the performance of the algorithm, two indicators, i.e., preci‐
sion rate Ωp and recall rate Ωr, are proposed as:

Ωp =(Ncorrect/Noutput )´ 100% (19)

Ωr = (Noutput/N)´ 100% (20)

where Noutput is the number of consumers with identifiable 
phase connectivity information from Algorithm 1 and Algo‐

rithm 2; and Ncorrect is the number of consumers with correct 
phase identification from the outputs of the two algorithms.

The output results of the algorithm under different signifi‐
cance thresholds are calculated since it is difficult to obtain 
the optimal threshold in advance in practical applications. To 
facilitate the comparison, define the credible precision rate 
Ωpave|g, which represents the average precision rate under dif‐
ferent threshold values when the recall rate Ωr is larger 
than g:

Ωpave|g =
1

1 - g ∫g

1

Ωp (x)dx (21)

where Ωp (x) is the precision rate when Ωr = x; and g is the 
lower limit of the allowable recall rate.

IV. SIMULATION RESULTS 

A. Test System

The real LVDN of Guangdong Province in China is used 
to test the performance of the proposed method. Only the 
single line diagram of phase A of the test network is shown 
in Fig. 4 due to the page limit. There are 63 mixed residen‐
tial or commercial customers in the real LVDN. The consum‐
er IDs of phases A, B, and C are 1-21, 22-42, and 43-63, re‐
spectively. The main line model is BLV-150, and the service 
drop line model is BLV-50. The length of each line is indi‐
cated in Fig. 4.

B. Identification Procedure

The consumer load data are collected with a sampling in‐
terval of 15 min. The sampling period is 2 days with a total 
of 192 time instants. The power consumption summary of 
each phase consumed in 2 days is presented in Fig. 5. The 
corresponding current or active power on each phase is ob‐
tained by executing power flow 192 times. Considering a 
measurement error ratio εs = 8%, the significance thresholds 
λremove = 0.05 and λentry = λremove/2 = 0.025, and the consumer 
phase identification results are shown in Table II using Algo‐
rithm 1. The numbers in bold indicate incorrect phase identi‐
fication result.

There will be a number of misidentifications (Ωp = 72.4%, 
Ωr = 92.0%) with a low precision rate of 72.4%. Also, there 
are a lot of intersections between the independent variable 
subsets for each phase in Table II.

To improve the accuracy of identification, the significance 
correction factor ζ of each variable in X inΦ is calculated, as 
shown in Fig. 6 and Fig. 7.

According to the significance correction factors in Fig. 6 
and Fig. 7, the results from Table II are corrected by Algo‐
rithm 2. The corrected identification results are shown in Ta‐
ble III, where the numbers in bold indicate incorrect identifi‐
cation.

It can be observed from Table III that the corrected results 
have a much lower number of misidentifications and the ac‐
curacy of the identification is significantly improved to Ωp =
96.5%. The recall rate is slightly decreased to 90.4%. Since 
the output accuracy is of greater importance for engineering 
applications, it is acceptable to sacrifice a small amount of 
recall rate to significantly improve the accuracy rate.

Algorithm 2: correction of results from SR algorithm

Inputs: subset of significant independent variables for phase Φ: XinΦ

Outputs: corrected subset of significant independent variables for phase 
Φ X'inΦ

Step 1: calculate the significant correction factor sets ζinΦ corresponding to 
XinΦ

Step 2: find the elements that are less than 0 in ζinΦ, and remove the corre‐
sponding independent variables from XinΦ

Step 3: for "xi ∈XinAXinB, if ζinA(xi )< ζinB(xi ), remove xi from XinA; if 
ζinA (xi )> ζinB (xi ), remove xi from XinB; otherwise, remove xi 
from both XinA and XinB

Step 4: for "xi ∈XinAXinC, if ζinA(xi )< ζinC(xi ), remove xi from XinA; if 
ζinA (xi )> ζinC (xi ), remove xi from XinC; otherwise, remove xi 
from both XinA and XinC

Step 5: for "xi ∈XinBXinC, if ζinB(xi )< ζinC(xi ), remove xi from XinB; if 
ζinB (xi )> ζinC (xi ), remove xi from XinC; otherwise, remove xi 
from both XinB and XinC

Step 6: repeat Steps 3-5 to get X 'inΦ form XinΦ

Step 7: end
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In order to analyze the influence of significance thresh‐
olds setting on the performance of the proposed method, the 
value of λremove is varied in the range of (0, 0.5]. The corre‐
sponding Ωp and Ωr under different significance thresholds 
are shown in Fig. 8.

When the significance threshold is raised, the conditions 
for adding the independent variables to the regression model 
will be more relaxed, so the recall rate will continue to in‐
crease, and the corresponding precision rate will continue to 
decrease in Fig. 8. The typical values are shown in Table IV 
below. According to Ωpave|g = 0.8 = 95.1%, it can be observed 
that when more than 80% of the consumer phase connectivi‐
ty can be identified, the average accuracy rate is higher than 
95%.

To evaluate the computational burden, the SR algorithm 
implemented by MATLAB statistics toolbox (version 
R2019b) through the function “stepwisefit” is applied 100 
times when λremove varies in the range of (0, 0.5]. The compu‐
tational time of the SR process is counted and averaged. 

TABLE II
IDENTIFICATION RESULTS USING SR ALGORITHM

Subset

XinA

XinB

XinC

Consumer ID

1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19, 23, 31, 
38, 44, 48, 53

3, 10, 14, 15, 21, 22, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 
36, 37, 38, 39, 40, 41, 42, 45

1, 4, 39, 40, 43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 
55, 56, 57, 58, 59, 60, 61, 62, 63
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Fig. 6.　 Significance correction factors for variables of each phase. (a) 
Phase A. (b) Phase B. (c) Phase C.

16

15

20

18

21

14

10 kV/0.4 kV
315 kVA

7 9

3 5 6

11

8

13

12

4
2

19

17

40 m

40 m

40 m

60 m

80 m

100 m 60 m 60 m

1

10

15 m
15 m 15 m

60 m

10 m
10 m 10 m 10 m 15 m

15 m
15 m15 m

10 m 15 m

15 m

10 m 10 m

20 m

20 m

15 m
20 m

Phase consumers 1-21 (phase A)
Service drop line: BLV-50
Phase-A line: BLV-150

Customers

43-63

Customers

22-42

Phase A

Phase A Phase B Phase C

Phase B
Phase C

Phase consumers 43-63 (phase C)
Phase consumers 22-42 (phase B)

Fig. 4.　LVDN test system with 63 consumers.

5

10

15

20

25

30

35

40

45

50

0 32 64 96 128 160 192

A
ct

iv
e 

p
o

w
er

 l
o

ad
 (

k
W

)

Time instant

Phase A
Phase B
Phase C

Fig. 5.　Power consumption summary of each phase.

1230



YI et al.: PHASE IDENTIFICATION OF LOW-VOLTAGE DISTRIBUTION NETWORK BASED ON STEPWISE REGRESSION METHOD

On average, the computation time used by the SR algo‐
rithm is approximately 32 s using a computer with an Intel 
Core i5-8265 CPU of 3.4 GHz and a RAM of 8 GB. Then, 
the computational time will increase insignificantly when the 
number of consumers in the network increases. Therefore, 
the proposed method is not applied to real-time applications.

C. Error Analysis

When the influence of hidden error is not considered, the 
relative error e/y of the regression model (5) is mainly affect‐
ed by the model error and measurement error, wherein the 
model error is related to the type of the selected regression 
variable. Taking phase A of the LVDN shown in Fig. 4 as an 
example, under different measurement errors, the Monte Car‐
lo method is used to randomly perform 5000 power flow 

simulations, and the cumulative distribution function curves 
based on the relative error e/y of current and active power 
are obtained, as shown in Fig. 9.

As can be observed from Fig. 9, when the measurement 
error ratio εs = 1%, the relative error e/y generated based on 
the current and active power calculation does not exceed 
7%; when the measurement error ratio 4% £ εs £ 8%, the rela‐
tive error has a large random variation range and can be up 
to 30%. From a statistical point of view, the relative error 
generated by the current-based calculation is likely to be 
smaller than that by the active power calculation. It means 
that within the normal measurement error range (εs £ 8%), ig‐
noring the phase angle produces less model error than ignor‐
ing the technical loss.

In order to further compare the identification results when 
the current and active power are used as regression vari‐
ables, the test system shown in Fig. 4 is taken as an exam‐
ple. Under different measurement errors, the indices for 
Ωpave|g = 0.8 are shown in Table V. It can be observed that com‐
pared with the active power, using the current as the regres‐

TABLE IV
Ωp AND Ωr UNDER DIFFERENT SIGNIFICANCE THRESHOLDS

λremove

0.001

0.500

λentry

0.0005

0.2500

Ωp (%)

100

91.9

Ωr (%)

63.5

98.4

Ωpave|g = 0.8 (%)

95.1

95.1
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TABLE III
CORRECTED IDENTIFICATION RESULTS USING ALGORITHM 2

Subset

X 'inA

X 'inB

X 'inC

Consumer ID

1, 2, 4, 5, 6, 7, 8, 9, 10, 11, 12, 14, 15, 16, 18, 19

3, 21, 22, 24, 26, 27, 28, 29, 30, 31, 33, 34, 35, 36, 37, 38, 
39, 40, 41, 42

43, 44, 45, 46, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 
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Fig. 8.　Ωp and Ωr under different significance thresholds.
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sion variable will be more beneficial in improving the identi‐
fication accuracy of the proposed method.

D. Comparison with Other Methods

This subsection compares the proposed method (M4) with 
LS method (M1) [31], the integer quadratic programming 
(IOP) method (M2) [18], Lasso regression method (M3) 
[22], and voltage correlation comparison (M5) [8]. Two 
types of scenarios are considered according to whether the 
hidden error is considered. The current is used as the optimi‐
zation or regression variable and the identification results of 
each method are compared.
1)　Without Considering Hidden Errors

Under different measurement errors, the precision rate Ωp 
and recall rate Ωr of M1, M2, M4, and M5 are calculated as 
shown in Table VI. Since M1, M2, and M5 have no indepen‐
dent variable screening mechanism, their recall rates are 
100%.

Comparing the identification results of different methods, 
it can be observed that under the same measurement error, 
the proposed method has the highest accuracy. But when the 
measurement error is large (εs ³ 4%), the recall rate of the 
proposed method cannot reach 100% due to the large mea‐
surement error. The accuracy corresponding to M5 is nonide‐
al since the voltage profiles of customers within short electri‐
cal distances are similar.
2)　Considering Hidden Error

One case is that the current observations of consumers 9-
39 are either 0 or missing due to electricity theft or interrup‐
tion of communication at partial time instants. Then, under 
different measurement errors, the precision rate of M1 and 
M2 are calculated, as shown in Table VII. The credible preci‐
sion rates Ωpave|g = 0.8 for M3 and M4 are calculated as shown 
in Table VIII.

It can be observed from Table VII that when there is a 
hidden error and the measurement error is large (εs > 4%), 
the precision rate of the traditional optimization methods 
will be lower than 70%, and can be as low as 63% in the ex‐
treme case. Such a low identification accuracy will have 
very limited practical applications.

It can be observed from Table VIII that when the test sys‐
tem has hidden errors and the measurement error is small 
(εs £ 4%), the proposed method can still ensure that the recall 
rate is not less than 80%, and the precision rate is greater 
than 95%. This is much larger than the precision rate of M3 
under the same conditions (Ωp = 81.7%). When the measure‐
ment error is large (εs > 4%), the proposed method can still 
maintain a higher precision.

Another case is that the phase current observations mea‐
sured by the sensors are missing at partial time instants. To 
avoid making mistakes in algorithm operation, these time in‐
stants with data missing should be abandoned. Considering 
the reduction of valid data samples, it could lead to the dete‐
rioration of results.

When the measurement error ratio is 4%, the precision 
rate Ωp and recall rate Ωr of M3 and M4 can be presented, 
as shown in Fig. 10. The range of (0, 0.5] is considered for 
the significance threshold λremove and the regularization pa‐
rameter λlasso of M3.

It can be observed from Fig. 10 that when the algorithm 
parameters change, the precision rates of the proposed meth‐
od and M3 are slightly changed but with a significant 
change of recall rates. When the recall rate is greater than 
80%, the result accuracy of the proposed method is about 
95%; while the accuracy of M3 is only about 80%. Thus, it 
can be observed that under the same recall rate, the accuracy 
of the proposed method is higher.

V. CONCLUSION

This paper has proposed an SR-based phase identification 
method of LVDN. The SR algorithm is used to identify the 
consumer phase connectivity based on their significances, 
and the significance correction factor is proposed for result 
correction. Through case studies based on a test system, the 
following conclusions can be drawn.

1) Compared with the LS and IQP methods, the proposed 
method has higher identification accuracy, especially when 
there is a hidden error. But the recall rate of the proposed 
method cannot reach 100% when the errors are large.

TABLE V
Ωpave|g = 0.8 WITH DIFFERENT REGRESSION VARIABLES

εs (%)

1

4

8

Ωpave|g = 0.8 (%)

Current

100.0

99.9

95.1

Active power

100.0

98.4

93.7

TABLE VI
ΩP AND ΩR OF M1, M2, M4, AND M5 IN SCENARIO 1

εs 
(%)

1

4

8

M1

Ωp (%)

98.41

96.80

85.70

Ωr (%)

100

M2

Ωp (%)

100.0

98.4

95.2

Ωr (%)

100

M4

Ωp (%)

83.2

77.5

70.2

Ωr (%)

100

M5

Ωp (%)

100.0

100.0

96.5

Ωr (%)

100.0

93.7

90.5

TABLE VII
Ωp OF M1 AND M2 IN SCENARIO 2

εs (%)

1

4

8

Ωp (%)

M1

80.9

79.3

66.7

M2

73.0

69.8

63.5

TABLE VIII
Ωpave|g = 0.8 OF M3 AND M4 IN SCENARIO 2

εs (%)

1

4

8

Ωpave|g = 0.8 (%)

M3

82.7

81.7

71.5

M4

98.2

95.2

84.4
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2) Compared with using active power, when the current is 
used as the regression variable, the multi-linear model error 
is smaller, which is beneficial for improving the accuracy of 
the proposed method.

3) Compared with the Lasso regression method, when 
there is a hidden error and the recall rate is higher than 
80%, the accuracy of the proposed method is increased by 
an average of 14%.

For the practical application of the proposed method, fu‐
ture research will focus on improving the recall rate without 
reducing the precision rate. Also, the impact of distributed 
generation on the identification results of the proposed meth‐
od will also be studied.
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Fig. 10.　Ωp and Ωr curves of M3 and M4. (a) M3. (b) M4.
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