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Abstract——The essential task of integrated electricity-heat sys‐
tems (IEHSs) is to provide customers with reliable electric and 
heating services. From the perspective of customers, it is reason‐
able to analyze the reliabilities of IEHSs based on the ability to 
provide energy services with a reasonable assurance of continu‐
ity and quality, which are termed as service-based reliabilities. 
Due to the thermal inertia existing in IEHSs, the heating ser‐
vice performances can present slow dynamic characteristics, 
which has a great impact on the service satisfaction of custom‐
ers. The neglect of such thermal dynamics will bring about inac‐
curate service-based reliability measurement, which can lead to 
the inefficient dispatch decisions of system operators. Therefore, 
it is necessary to provide a tool which can analyze the service-
based reliabilities of IEHSs considering the impacts of thermal 
dynamics. This paper firstly models the energy service perfor‐
mance of IEHSs in contingency states. Specifically, the nodal en‐
ergy supplies are obtained from the optimal power and heat 
flow model under both variable hydraulic and thermal condi‐
tions, in which the transmission-side thermal dynamics are for‐
mulated. On this basis, the energy service performances for cus‐
tomers are further determined with the formulation of demand-
side thermal dynamics. Moreover, a service-based reliability 
analysis framework for the IEHSs is proposed utilizing the time-
sequential Monte Carlo simulation (TSMCS) technique with the 
embedded decomposition algorithm. Furthermore, the indices 
for quantifying service-based reliabilities are defined based on 
the traditional reliability indices, where dynamic service perfor‐
mances and service satisfactions of customers are both consid‐
ered. Numerical simulations are carried out with a test system 
to validate the effectiveness of the proposed framework.

Index Terms——Energy service, integrated electricity-heat sys‐
tem, reliability, thermal dynamics.

I. INTRODUCTION 

WITH the growing need for improving energy utiliza‐
tion efficiency and reducing environmental pollu‐

tion, integrated energy systems (IESs) have gained rapid de‐
velopment during the past few decades [1], [2]. One of the 
most important forms of IESs is the integrated electricity-
heat system (IEHS) consisting of the electric power system 
(EPS) and the district heating system (DHS), which is re‐
sponsible for providing customers with reliable energy sup‐
ply to satisfy their service requirements [3]. For example, 
based on the energy flows in IEHSs, the heating service re‐
quirements of customers can be satisfied by electrical heat‐
ing facilities or direct thermal power from DHS [4].

With the increasing interdependence between EPS and 
DHS, the customers may suffer energy-related service risks 
due to the random failures in IEHSs. For example, the mal‐
function of coupled components such as combined heat and 
power (CHP) units may result in the degradation or interrup‐
tion of both the electric and the heat power supply for cus‐
tomers, which further affects the corresponding energy ser‐
vices of customers [5]. Besides, the sudden faults suffered 
by one energy subsystem will affect the services provided by 
the subsystem of the other energy form considering energy 
interactions, e. g., the blackout in EPSs can bring about the 
shortage of district heating services [6]. Since the energy ser‐
vice performances directly determine the energy usage satis‐
factions of customers, the above energy service risks in 
IEHSs could affect the utilities of customers. It is of signifi‐
cance to comprehensively analyze the reliabilities of IEHSs 
from the viewpoint of energy services for customers. There‐
fore, service-based reliability is defined in this paper as the 
ability of the energy system to provide adequate energy ser‐
vices for customers with a reasonable assurance of continu‐
ity and quality. It is extended from the traditional reliability 
definition of EPSs and applied to reliability measurement of 
IEHSs with different energy service forms.

The reliabilities of the individual energy subsystems, e.g., 
EPSs and DHSs, have been well studied in the previous re‐
search works [7], [8]. Recently, there have been several re‐
search works concerning the reliabilities of IESs considering 
the coupling relationship of the constituent energy subsys‐
tems. Reference [9] builds a capacity reliability model of 
IESs using a multi-dimensional matrix method. Reference 
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[10] develops a systematic framework to assess the reliabili‐
ty of energy supply in IESs considering the inter-relation‐
ships among multiple uncertainties. Reference [11] proposes 
a reliability analysis method for multi-agent IESs with fully 
distributed communication, which aims to protect data priva‐
cy between different stakeholders. Some research works fo‐
cus on the reliabilities of the specific forms of IESs. For ex‐
ample, reliabilities of the integrated electricity-gas systems 
composed of EPSs and natural gas systems are analyzed in 
[12], [13]. In addition, there are also a few studies [5], [14], 
[15] concerning the reliabilities of IEHSs. Specifically, the 
reliability and availability models for IEHSs are developed 
in [5] based on the state spaces of different subsystems. Ref‐
erence [14] evaluates the reliabilities of IEHSs considering 
the maximum output of heat pumps as the critical coupling 
devices. The reliabilities of different forms of energy supply 
including electricity and heat are analyzed in [15] by com‐
bining the state-space method and the probabilistic analysis 
of the Markov model. However, the previous studies mainly 
measure the reliabilities of IEHSs according to energy sup‐
ply conditions such as the overall generating capacities or in‐
stant energy load curtailments in contingency states. These 
research works cannot characterize the energy service condi‐
tions directly perceived by customers. For example, the in‐
sufficient heat power supply can quickly lead to dissatisfac‐
tion of some industrial customers with strict temperature re‐
quirements, while the residential customers with relatively 
low requirements could still be satisfied for a while [16]. By 
comparison, the service-based reliability could consider the 
dynamic characteristics of energy services and is more relat‐
ed to the requirements and satisfactions of customers.

As the two forms of energy service for customers, the 
electric and heating services can show different dynamic 
characteristics in contingency states. In specific, the electric 
services would degrade instantaneously when the failure oc‐
curs, while the heating services would degrade gradually and 
the heating requirements of customers can be maintained for 
a period of time [17]. The dynamic degradation processes of 
heating services are mainly related to the thermal inertia at 
both the transmission side and the demand side [18], [19]. 
At the transmission side of IEHSs, the transfer delays in 
pipelines can slow down the failure propagation from heat‐
ing sources to customers [20]. At the demand side of IEHSs, 
the thermal storage capabilities of buildings are also equiva‐
lent to buffers for the heat power supply shortage, which can 
lead to transient heat losses and maintain the satisfaction of 
thermal customers for a while [21]. Consequently, the ther‐
mal dynamics of both transmission and demand sides can 
significantly affect the energy services in contingency states 
of IEHSs, which need to be considered in the service-based 
reliability analysis.

There have been some previous research works [22]- [28] 
conducting the reliability researches considering thermal dy‐
namics. Reference [22] conducts the reliability simulation of 
thermal dynamic processes inside the power plant. Reference 
[23] concentrates the reliability of heat power supply from 
hybrid energy sources while considering effects of thermal 
inertia. Nonetheless, the component-level methods in [22], 

[23] are not suitable for analyzing thermal dynamics in ener‐
gy systems and their reliabilities. Reference [24] evaluates 
the reliability of district heating networks considering the dy‐
namic influence of changeable external conditions. However, 
the studied object is just an individual heating system rather 
than an IEHS, where the electric and heat flows are strongly 
coupled and present different dynamic characteristics espe‐
cially in contingency states. Recently, [25]-[28] have focused 
on the reliabilities of IEHS while characterizing thermal dy‐
namics at different locations of heating systems. Reference 
[25] formulates the heat losses along the pipelines in heating 
networks but ignores the time-delay for heat power transmis‐
sion and the dynamic phenomena at the demand side. In 
[26], [27], the thermal inertia of buildings is considered in 
reliability assessments of IEHS, but the transmission-side 
thermal dynamics in heating networks are not modelled. Al‐
though a relatively complete thermal dynamic model is giv‐
en in [28], it is limited and inapplicable in practical situa‐
tions without formulating variable hydraulic conditions in 
heating networks. In addition, all of the above research 
works do not consider the energy services for customers, 
which are unsuitable for the service-based reliability analysis.

In order to quantify the service-based reliabilities of 
IEHSs, the pertinent reliability indices are needed. The exist‐
ing reliability indices for EPSs are usually steady-state 
which are utilized to reflect the system reliability levels over 
a long period [29]. In [30], the reliability indices for other 
energy-form systems, e.g., natural gas systems, are proposed 
by modifying traditional EPS reliability indices. Nonetheless, 
these steady-state indices mainly focus on the expected ener‐
gy supply losses and the corresponding probabilities, which 
cannot accurately characterize the reliabilities related to the 
chronologically dynamic energy services. Besides, since the 
service-based reliabilities concentrate on the service satisfac‐
tion of customers derived from system operation, the energy 
service requirements of customers should be considered in 
the definition of the corresponding indices.

In order to bridge the research gaps, this paper contributes 
in the following aspects:

1) The service-based reliability of IEHS is firstly defined 
and analyzed in this paper. The system reliability is evaluat‐
ed based on the energy service conditions of customers rath‐
er than the energy supply conditions in the traditional reli‐
ability research works.

2) The energy service performance of IEHS for customers 
in contingency states is modelled considering thermal dynam‐
ics. In specific, the nodal energy supplies are obtained from 
the optimal power and heat flow (OPHF) model under both 
variable hydraulic and thermal conditions, in which the trans‐
mission-side thermal dynamics are formulated. Then, the en‐
ergy service performances for customers are further deter‐
mined with the formulation of demand-side thermal dynam‐
ics.

3) A service-based reliability analysis framework for the 
IEHSs is proposed based on the time-sequential Monte Carlo 
simulation (TSMCS) technique. During the inner loop of the 
TSMCS, a hydraulic-thermal decomposition algorithm is em‐
bedded to realize the tractable calculation of OPHF model, 
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which characterizes the chronological impacts of thermal dy‐
namics on service-based reliabilities.

4) Conventional steady-state reliability indices are re-de‐
fined to quantify the time-varying service-based reliabilities 
of IEHSs. The dynamic service performances and service sat‐
isfactions of customers are both considered in the definition 
of the indices to ensure the accuracy and effectiveness of re‐
liability evaluation.

II. GENERAL DESCRIPTION FOR IMPACTS OF THERMAL 
DYNAMICS ON SERVICE-BASED RELIABILITIES OF IEHSS 

In this section, the impacts of thermal dynamics on ser‐
vice-based reliabilities of IEHSs are firstly described with 
the schematic diagram shown in Fig. 1. In IEHSs, EPSs and 
DHSs are interconnected through coupled components in‐
cluding CHP units and electric heating devices, and thermal 
dynamics exist in both transmission and demand sides, as 
shown in Fig. 1(a). The electric and heating energies sup‐
plied by IEHSs eventually come down to energy-related ser‐
vices for customers such as lighting services and space heat‐
ing services [31]. The continuity and quality levels of per‐
forming these energy services are referred to as service per‐
formances, which can be measured by specific physical pa‐
rameters. Here, the load power and temperature are used as 
measures of performances for the electric and heating servic‐
es, respectively.

In a certain contingency state, the energy service perfor‐
mances would be affected by thermal dynamics in IEHSs, as 
shown in the shaded area of Fig. 1(b). Failures in IEHSs 
generally lead to insufficient electric and heating supplies, 
which could cause the performance degradation of different 
energy services. After the occurrence of failures, the perfor‐
mance degradation of the electric services, e. g., lighting, is 
instant since the customers will perceive the load power in‐
terruption immediately. In contrast, the degradation of heat‐
ing service performances is transient consisting of two phas‐
es, which are affected by thermal dynamics at transmission 
and demand sides, respectively. In specific, phase I denotes 
the period for failure propagation at the transmission side, 
during which the temperatures of customers vary slightly 
due to the thermal storage of pipelines. Besides, phase II de‐
notes the period after the failure reaches the demand side, 
which reflects the dynamic heat loss due to the thermal iner‐
tia of buildings.

As analyzed above, the performances of energy services 
present dynamic variation processes in contingency states. 
With various kinds and degrees of failures, the dynamic per‐
formances would take different forms such as the slight deg‐
radation for minor disturbances and severe degradation for 
large failures in IEHSs. Considering the possible scenarios 
with different performances, the overall service-based reli‐
ability could be determined, which denotes the ability of 
IEHSs to provide adequate energy services for customers. 
Moreover, the reliability levels of IEHSs in this manner 
would be affected by thermal dynamics, which should be 
consequently considered in the service-based reliability anal‐
ysis.

III. MODELLING ENERGY SERVICE PERFORMANCES IN 
CONTINGENCY STATES CONSIDERING THERMAL DYNAMICS 

To analyze the service-based reliabilities of IEHSs, the en‐
ergy service performances in contingency states are mod‐
elled and calculated considering thermal dynamics in this 
section. Firstly, the reliability models of components in 
IEHSs are proposed to characterize the state transition pro‐
cesses, where both the electric and heat performances in 
each state are considered for coupled components especially. 
Then, the transmission-side and the demand-side thermal dy‐
namics are considered, respectively, in the two stages for 
modelling the energy service performances in contingency 
states. Specifically, the contingency electric and heat power 
supply for customers at each node in IEHSs is determined 
considering the thermal storage of pipelines. According to 
the nodal contingency energy supply, the energy service per‐
formances of customers are measured considering thermal in‐
ertia of buildings.

A. Multi-state Reliability Models of Coupled Components

Random failures of coupled components (e. g., generator 
units, electric lines, pipelines) could make the IEHS enter 
the contingency state. To analyze the contingency perfor‐
mance of the IEHS, the reliability modelling of coupled com‐
ponents is conducted firstly. In practice, the components usu‐
ally present more than two exclusive states (e. g., M + 1 

CHP units
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 Transmission-side thermal dynamics 

Demand-side thermal dynamics

Indoor temperature

Mass flow
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Electric power flow; Heat flow

t
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Load power; Temperature
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Fig. 1.　Thermal dynamics in IEHSs and their impacts on service-based re‐
liabilities. (a) Transmission-side and demand-side thermal dynamics in 
IEHSs. (b) Energy service performances affected by thermal dynamics.
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states) from perfectly functioning s0 to complete failure sM. 
The intermediate states of components (s1, s2, , sM - 1) are 
characterized by the partially functioning performances con‐
sidering performance degradation [32]. Therefore, the multi-
state reliability model can be formulated and each state cor‐
responds to a certain performance level. The state space of a 
certain component can be described by the state transition 
matrix S [8]:

S =

é
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ê

ê

ê

ê
êê
ê

ê

ê

ê ù

û

ú

ú

ú

ú
úú
ú

ú

ú

ú0 λ01  λ0M

μ10 0  λ1M

  
μM0 μM1  0

(1)

where λij and μij are the failure rate and repair rate from 
states i to j, respectively.

Different from the other components related to one type 
of energy, the coupling components in IEHSs, e. g., CHP 
units and electric boilers (EBs), have both the electric and 
the heat performances. To comprehensively measure the per‐
formances of the coupling component in a certain state, a 
two-dimensional parameter represented as C s

EG  and  C s
HG can 

be used, where C s
EG and C s

HG denote the electricity and heat 
generation capacities in state s, respectively. Especially for 
electric heating devices such as EBs, C s

EG is negative to de‐
scribe the electric power consumption behavior. Therefore, 
the two-performance multi-state reliability model for cou‐
pling components can be developed, as shown in Fig. 2. In 
addition, there is a coupling relationship between C s

EG and 
C s

HG considering the working characteristics of coupling com‐
ponents, which will be modelled in the next subsection.

B. Contingency Energy Supply Determination for Customers 
Considering Transmission-side Thermal Dynamics

In the contingency state, the IEHS will be re-dispatched 
and suffer the risk of energy load curtailment. Under this cir‐
cumstance, the contingency energy supply for customers can 
be determined by calculating the energy load curtailment 
based on the thermal dynamic model of pipelines and the 
OPHF technique [3].
1)　Thermal Dynamic Model of Pipelines

As modelled in the previous subsection, failures of cou‐
pled components may lead to the reduction of their heat gen‐

eration capacities. After that, heating services could be main‐
tained for a while considering the propagation time from the 
failure location to geographically distributed customers, 
which has been theoretically analyzed in Section II. Such dy‐
namic process is related to the storage capability of insulated 
pipelines in IEHSs, which could be modelled based on the 
node method [19].

The basic idea of this method is to represent the outlet 
temperatures of pipelines using historic inlet temperatures 
[19]. The mass flow inside the pipeline is discretized into 
multiple blocks to characterize the transfer delays. The de‐
tailed modelling process is presented as follows.

Firstly, the outlet temperature is represented as the mean 
temperature of the outflowing mass flow blocks at the tail of 
the pipeline:

T t
pout = α1T

t
pout1 + α2T

t
pout2 (2)

ì
í
î

α1 = (M1 - ρp AL)/mpDt

α2 = (M2 -M1 )/mpDt
(3)

where T t
pout1 and T t

pout2 are the temperatures of the two out‐
flowing mass flow blocks in pipeline p; mp is the mass flow 
rate in pipeline p; α1 and α2 are the proportion coefficients 
corresponding to the two outflowing mass flow blocks; M1 
and M2 are the two masses for determining α1 and α2, respec‐
tively; and ρp, A, and L are the pipeline parameters denoting 
the mass density, cross-section area, and total length, respec‐
tively.

Then, the temperatures of outflowing mass blocks can be 
calculated by historic inlet temperatures at different time 
steps considering time delays in pipelines:

ì
í
î

ïï

ïï

T t*
pout1 = T t - ο1*

pin1

T t*
pout2 = T t - ο2*

pin2

(4)

{ο1 = round[ρp AL/(mpDt)]- 1

ο2 = ο1 + 1
(5)

where T t*
pout1 T

t*
pout2 and T t - ο1*

pin2  T t - ο2*
pin2  are the current outlet 

temperatures and historic inlet temperatures of the two out-
flowing mass flow blocks without heat losses, respectively; 
and ο1 and ο2 are the integers for time intervals calculated 
by rounding the precise transfer delays.

Besides time delays, heat losses during heat transmission 
along the pipeline should also be characterized. Hence, inlet 
temperatures considering heat losses can be modelled as:

T t - ο1

pin = γ1 (T t - ο1*
pin - Tenv )+ Tenv

T t - ο2

pin = γ2 (T t - ο2*
pin - Tenv )+ Tenv

(6)

ì
í
î

ïï
ïï

γ1 = e-λL1 /(mpcw )

γ2 = e-λL2 /(mpcw )
(7)

where T t - ο1

pin  and T t - ο2

pin  are inlet temperatures of pipeline p at 

times t - ο1  and t - ο2, respectively; γ1 and γ2 are the heat 
loss factors; Tenv is the environment temperature of the pipe‐
line; λ is the heat transfer coefficient; L1 and L2 are the 
equivalent lengths; cw is the specific heat capacity of water; 
and * is a symbol for variables without considering heat loss‐
es.
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Fig. 2.　Two-performance multi-state reliability model for coupling compo‐
nents.
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Combining (2), (4), and (6), the relationship between the 
outlet and inlet temperatures considering both time delays 
and heat losses is formulated as:

T t
pout = α1α2T

t - ο1

pin + γ1γ2T
t - ο2

pin + (α1 + α2 - α1γ1 - α2γ2 )Tenv (8)

When the mass flow rate is fixed, α1, α2, γ1, and γ2 will 
become constant parameters and the relationship formulated 
in (8) will be linear. This feature will be used by the decom‐
position algorithm to solve the following optimal load cur‐
tailment model which integrates the formulated thermal dy‐
namic model of pipelines. The detailed algorithm will be giv‐
en in Section IV-B.
2)　Optimal Load Curtailment Model of IEHSs Considering 
Transmission-side Thermal Dynamics

Based on the OPHF technique, the optimal load curtail‐
ment model of IEHSs is formulated which can determine the 
nodal contingency energy supply. The objective of the model 
is to minimize the total system operation cost in the contin‐
gency state s during the studied period:

min f s =∑
t

é

ë
ê
êê
ê∑

m

(ΟPG (P ts
mc )+ΟPG (P ts

mg )+ΟPL (PC ts
m )) +

ù

û
ú
úú
ú∑

i

(ΟHG (H ts
ic )+ΟHL (HC ts

i )) (9)

∑
m

(ΟPG (P ts
mc )+ΟPG (P ts

mg )+ΟPL (PC ts
m )) denotes the cost re‐

lated to nodal electric power supply, including the generation 
cost of CHP units and non-CHP thermal units along with the 
electric load curtailment cost. ∑

i

(ΟHG (H ts
ic )+ΟHL (HC ts

i )) de‐

notes the cost related to nodal heat power supply consider‐
ing both heat generation of CHP units and heat load curtail‐
ments. Moreover, the electric loads are divided into heating 
and non-heating loads considering the electric heating devic‐
es at the demand side, and the curtailment of the former can 
affect the heating service performances.

The objective function is subject to the constraints of the 
IEHS, including the coupled component constraints, DHS 
constraints, and EPS constraints. It should be noted that the 
superscripts s for variables in (9) are omitted for simplicity.

1) Coupled component constraints
Coupled components in IEHSs mainly include the CHP 

units and the electric heating devices such as EBs. Each cou‐
pled component generates the electric or heat power within 
C s

EG or C s
HG for a certain state as defined in Section III-A:

0 £P t
mc £C s

EGc    0 £H t
ic £C s

HGc (10)

0 £P t
ik £ |C s

EGie |     0 £H t
ik £C s

HGie (11)

where P t
mc and H t

ic are the generated electric power and heat 
power of the CHP unit c, respectively; P t

ik and H t
ik are the 

consumed electric power and generated heat power of the 
EB k at time t, respectively; and | × | is the operator for calcu‐
lating the absolute value.

Besides, the electric and heat energy behaviors for each 
state of these components are strongly coupled. Regarding 
the electric heating devices, the generated heat power is pro‐
portional to the consumed electric power, as denoted in (12). 
Regarding the CHP units, the coupling relation between elec‐

tric and heat generation can be described by the polyhedron 
feasible operating region [33], which is formulated by the 
convex combination of extreme points in polyhedrons, as ex‐
pressed in (13).

H t
ik = ηk P t

ik (12)
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ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

P t
mc =∑

r = 1

NRc

κ t
cr Pcr

H t
ic =∑

r = 1

NRc

κ t
cr Hcr

∑
r = 1

NRc

κ t
cr = 1    0 £ κ t

cr £ 1rÎ {12...NRc}

(13)

where ηk is the conversion efficiency of EB k; NRc is the 
number of extreme points in polyhedron operating region of 
CHP unit c; Pcr and Hcr are the electric power and heat 
power corresponding to the rth extreme point; and κ t

cr is the 
variable for illustrating the operation point of CHP unit c.

Moreover, the generated heat power of the components 
can heat the mass flow at the nodes where they locate in 
IEHSs:

H t
ic +H t

ik = cwmt
i (T

t
is - T t

ir ) (14)

where mt
i is the mass flow rate at node i and time t; T t

is and 
T t

ir are the supply and return mass flow temperatures at node 
i, respectively.

2) DHS constraints
Similar to (14), in the heat load nodes, the heat load pow‐

er of customers is satisfied by the heated mass flow of the 
connected pipelines in IEHSs:

HDt
i -HC t

i = cwmt
i (T

t
is - T t

ir ) (15)

where HDt
i and HC t

i  are the original heat load and the heat 
load curtailment at node i and time t, respectively.

In order to guarantee the heating service quality and pre‐
vent steam forming, temperatures of both supply water and 
return water are bounded as:

{T min
is £ T t

is £ T max
is

T min
ir £ T t

ir £ T max
ir

(16)

where T max
is , T min

is  and T max
ir , T min

ir  are the upper and lower 
boundaries of T t

is and T t
ir, respectively.

The temperature of the confluence node is the weighted 
average value of outlet temperatures in all pipelines ending 
at that node [33]: ∑

pÎ S pin
i

T t
poutm

t
p = T t

i ∑
pÎ S pin

t

mt
p (17)

where S pin
i  is the set of pipelines ending at node i; T t

pout is 
the outlet temperature of pipeline p at time t; and T t

i  is the 
mixed temperature at node i and time t.

According to the Darcy-Weisbach equation [34], the pres‐
sure loss along pipelines is proportional to the square of 
mass flow rate, and the the pressure loss in a closed loop is 
euqual to zero:

ì
í
î

ïïïï

ïïïï

Dπ t
p = ζp (mt

p )2

∑
pÎ Sploop

Kp Dπ
t
p = 0 (18)
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where Dπ t
p is the pressure loss along pipeline p at time t; ζp 

is the coefficient of pressure loss in pipeline p; Sploop is the 
set of pipelines forming a closed loop; and Kp = 1 denotes 
that the directions of mass flow in pipeline p and the loop 
are consistent, while Kp =-1 denotes that the two directions 
are opposite.

3) EPS constraints
The EPS operation in the contingency state mainly sub‐

jects to the following constraints.

P min
mg £P t

mg £P max
mg (19)

-RDmg £P t
mg -P t - 1

mg £RUmg (20)

∑
g

P t
mg +∑

c

P t
mc =∑

m

[(PDt
m0 -PC t

m0 )+ (PDt
mH -PC t

mH )] (21)

P t
l =∑

g

π l - g P t
mg +∑

c

π l - c P t
mc -∑

m

π l - m [(PDt
m0 -PC t

m0 )+

(PDt
mH -PC t

mH )] (22)

-P max t
l £P t

l £P max t
l (23)

where P max
mg  and P min

mg  are the upper and lower boundaries for 
power output of non-CHP generation unit g at node m, re‐
spectively; RUmg and RDmg are the upward and downward 
ramping capabilities of non-CHP generation unit g at node 
m, respectively; PDt

m0, PDt
mH and PC t

m0, PC t
mH are the origi‐

nal non-heating and heating electric loads and the corre‐
sponding load curtailments at node m, respectively; π l - g, π l - c, 
and π l - m are the shift distribution factors from unit g, unit c, 
and node m to line l, respectively; and P max t

l  is the transmis‐
sion capacity determined by dynamic thermal rating (DTR) 
[35] - [38]. Equation (19) is the power output constraint for 
generation units. Equation (20) denotes the ramping con‐
straint for generation units. Equation (21) represents the pow‐
er balance in EPS. Equation (22) formulates the power flow 
P t

l of line l. Equation (23) denotes the line capacity con‐
straint.

Since the conventional static thermal rating (STR) general‐
ly sets the fixed low ratings of power lines with the conser‐
vative assumption of weather conditions, it could lead to the 
underutilization of line capacities [37]. To tackle this prob‐
lem, DTR is used to obtain the dynamic line capacity values 
based on the real-time weather data. In this manner, more po‐
tential line rating flexibility can be offered, which will bene‐
fit the electric power supply in EPS in contingency states. 
According to IEEE 738 standard [39], the DTR model can 
be represented as a heat balance equation for the line:

Hc (TlineTenvVwindφ)+Hr (TlineTenv )=Hs + I 2 R(Tline ) (24)

where Tline, Tenv, Vwind, and φ are the line conductor tempera‐
ture, environment temperature, wind speed, and incident 
wind angle, respectively; I is the line current; R is the line 
conductor resistance changing with Tline; Hc is the convection 
heat loss as a function of Tline, Tenv, Vwind, and φ; Hr is the ra‐
diated heat loss as a function of Tline and Tenv; and Hs and 
I 2 R(Tline ) are the heat gains from solar radiation and line con‐
ductivity, respectively. In DTR model, the line rating denotes 
the current I max that yields the maximum allowable conduc‐
tor temperature T max

line  with the given weather parameters, 
which further determines the line capacity P max

l  in (23).

After obtaining the nodal load curtailment in the formulat‐
ed optimization problem (9) - (23), the contingency energy 
supply for customers can be calculated using (25) and (26). 
Here, the contingency electric power supply is divided into 
the heating and non-heating parts, as represented in (26).

{PDt
m0con =PDt

m0 -PC t
m0

PDt
mHcon =PDt

mH -PC t
mH

(25)

HDt
icon =HDt

i -HC t
i (26)

where PDt
mHcon and PDt

m0con are the heating and non-heating 
parts of the contingency electric power supply at node m, re‐
spectively; and HDt

icon is the contingency heat power supply 
at node i.

C. Energy Service Performance Determination for Custom‐
ers Considering Demand-side Thermal Dynamics

According to the contingency energy supply conditions in 
the previous stage, the energy service performances of 
IEHSs for customers can be further calculated. Since the 
electric service interruptions are mostly static, the corre‐
sponding contingency performances can be measured by the 
supplied load power directly. In contrast, the heating service 
performances are greatly affected by the demand-side ther‐
mal dynamics, which are measured by physical variables re‐
lated to time-varying temperatures in this paper.

In the demand side of IEHSs, the heating services are 
mainly provided by the heat power from DHSs. Besides, for 
customers equipped with electric heating devices, the partial 
heat power demands can also be satisfied by the electric 
power supply. Therefore, the total contingency heat power 
supply for customers is expressed as:

ì
í
î

ïï
ïï

HDt
iALLcon =HDt

icon +HDt
imcon

HDt
mcon = ηm ×PDt

mHcon

(27)

where HDt
iALLcon is the total contingency heat power supply 

for customers at heat node i; HDt
imcon is the heat power at 

node i converted from the electric power at node m; and ηm 
is the conversion efficiency.

When the heat power supply is insufficient, the heat loss 
of the building is a slow and transient process due to the in‐
sulation structures, which can be demonstrated by the dy‐
namic indoor temperatures. Since the heating service satisfac‐
tion of customers is usually determined by the indoor tem‐
peratures, they are utilized as one of the physical variables 
to measure the heating service performances in contingency 
states of IEHSs, as shown in Fig. 3. 

The indoor temperature variation is related to both the 
contingency heat power supply from the IEHSs and the heat 
exchange with the outdoor environment, which is formulated 
utilizing the first-order equivalent thermal parameter (ETP) 
model [40]:

HDt
iALLcon =Cib

dTib

dt
+

Tib - Tenv

Rib
(28)

where Tib is the indoor temperature of the equivalent build‐
ing b at node i; and Cib and Rib are the heat capacity and 
thermal resistance [41] of the equivalent building b, respec‐
tively.
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Furthermore, the variation of the indoor temperature DT t
ib 

at each time slot is obtained by discretizing the differential 
equations as modelled in (28).

Obviously, the indoor temperature variation is limited by 
the time interval as illustrated in (29), and the temperature 
would reduce over time before the heat equilibrium is 
achieved. In other words, the heating services will not be 
lost immediately from the perspective of customers.

DT t
ib = T t + 1

ib - T t
ib =

HDt
iALLcon Rib - (T t

ib - Tenv )
Cib Rib

Dt (29)

To reflect dynamic energy losses during the temperature 
degradation period, the heating service performances also 
need to be measured by power. Hence, the equivalent heat 
load power EHDt

i modelled by temperatures is used as anoth‐
er physical variable for heating service performances, which 
is defined as follows:

EHDt
i =

T t
ib - T t

env

Rib
(30)

D. Analysis of Factors Affecting Dynamic Processes

In the above subsections, thermal dynamics have been 
characterized in the two stages for determining energy ser‐
vice performances in contingency states. These dynamic pro‐
cesses are equivalent to buffers for the energy supply short‐
age in the contingency states, which are beneficial for the 
IEHS to provide reliable energy services. Therefore, it is 
valuable to analyze the factors that affect the dynamic pro‐
cesses for investigating the potential improvement of the ser‐
vice-based reliabilities.

According to the specific thermal dynamic models, there 
are several factors that could affect the transmission-side and 
demand-side thermal dynamics. Regarding the transmission-
side thermal dynamics as formulated in (2) - (8), the factors 
include the pipeline parameters such as the length L and the 
cross-section area A. These factors for dynamic processes are 
related to the failure propagation time in the transmission 
side of IEHS in contingency states. In addition, based on the 
model (28) and (29), the factors affecting the demand-side 
dynamic processes mainly include the heat capacity C and 
thermal resistance R of the equivalent buildings. These fac‐
tors determine the thermal inertia of customers, which are re‐
lated to the dynamic service losses when the energy supply 
is insufficient. In a word, all of the above factors would 
have impacts on the service-based reliability levels of IEHS 
through different dynamic processes in contingency states.

IV. SERVICE-BASED RELIABILITY ANALYSIS FRAMEWORK 
FOR IEHSS USING TSMCS TECHNIQUES 

A. Service-based Reliability Indices

The conventional indices such as the loss of load probabil‐
ity and the expected energy not supplied have been widely 
used to evaluate the reliability of the EPSs [29]. In this pa‐
per, they are re-defined as dynamic indices and extended to 
IEHSs for service-based reliability analysis according to the 
energy service performances modelled in the previous sec‐
tion.

Firstly, the equivalent heat load power and dynamic tem‐
peratures are used to define the reliability indices for heating 
services, as shown in Fig. 4. As mentioned in Section III, 
the equivalent heat load power EHDt

i can measure the heat‐
ing service performances in contingency states. Hence, the 
equivalent heat load curtailment EHC t

i  can be further calcu‐
lated by subtracting EHDt

i from the original total heat load 
power HDt

iALL:

EHC t
i =HDt

iALL -EHDt
i (31)

Different from the conventional static load curtailment, 
the equivalent heat load curtailment can reflect the demand-
side dynamic heat loss processes, as shown in Fig. 4(b). On 
this basis, the expected heating service not supplied EHSNSt 
is defined as:

EHSNSt =
∑
i = 1

NI∑
n = 1

NA ∫
0

t

EHC τ
indτ

NA

(32)

where EHC τ
in is the equivalent heat load curtailment at node 

i and time τ at the nth iteration of TSMCS; NA is the sam‐
pling number of TSMCS; and NI is the number of heat 
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Fig. 4.　Equivalent heat load power and dynamic temperatures used for de‐
fining service-based reliability indices. (a) Heat generation capacity of heat 
source. (b) Heat load curtailment considering thermal dynamics. (c) Dynam‐
ic temperatures of buildings.
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nodes in the IEHS.
Moreover, the failure probability regarding heating servic‐

es with dynamic performances is not suitable to be calculat‐
ed by simply judging the occurrence of load curtailment. In‐
stead, dynamic temperatures are used to achieve the accurate 
judgement which is commonly related to service satisfaction 
of customers, as explained in Fig. 4(c). In general, custom‐
ers would not perceive the failure of heating services if T t

ib 
is higher than their acceptable boundary T min

ib . As shown in 
Fig. 4(c), since the temperature in building 1 is always high‐
er than the acceptable boundary value due to the great ther‐
mal inertia, customers would not perceive the service failure 
during the whole period. In contrast, customers of building 2 
would perceive the failure since the temperature is lower 
than the acceptable boundary value for a period, during 
which time their heating service requirements cannot be sat‐
isfied by IEHS. Based on the dynamic temperatures, the loss 
of heating service probability LOHSPt is defined by compar‐
ing T t

ibn and T min
ib :

LOHSPt =
∑
n = 1

NA

If ( )∑
i = 1

NI

If ( )T min
ib - T t

ibn

NA

(33)

where If (x) is defined as a sign function, and If (x)= 1 when 
x > 0, and If (x)= 0 when x £ 0; and T t

ibn is the indoor temper‐
ature of the equivalent building b at node i and time t at the 
nth iteration of TSMCS.

Since the electric service performances are measured by 
the supplied load power in contingency states, the corre‐
sponding reliability indices are calculated according to the 
time-varying nodal load curtailment. Specifically, the loss of 
electric service probability LOESPt and the expected electric 
service not supplied EESNSt of the EPS can be expressed as:

LOESPt =
∑
n = 1

NA

If ( )∑
m = 1

NM

PC t
m0n

NA

(34)

EESNSt =
∑
m = 1

NM∑
n = 1

NA ∫
0

t

PC τ
m0n dτ

NA

(35)

where NM is the number of nodes in the IEHS.

B. Algorithm to Solve Optimal Load Curtailment Model

Since the hydraulic conditions, e. g., mass flow rate, and 
thermal conditions, e.g., supply temperature, can all be vari‐
able, there are several non-linear terms in DHS constraints 
(14) - (17). Besides, the pipeline dynamic model formulated 
in (2) - (8) is also non-convex. As a result, it would bring 
about the computational burden when solving the optimal 
load curtailment model of IEHSs formulated in Section III-
B. Note that both these DHS constraints and the pipeline dy‐
namic model will be linear and convex when the mass flow 
rates are fixed. On this basis, a hydraulic-thermal decomposi‐
tion algorithm [42] is used to decompose the model into two 
linear programming problems. The procedures of the algo‐
rithm are listed as follows, where ϑ is the temperature devia‐
tion threshold.

C. Reliability Evaluation Procedures

The TSMCS technique is used to evaluate service-based 
reliabilities through numerous iterative simulations for the 
IEHS. At each simulation, the system state sequence is creat‐
ed during the study period ST based on the state sampling of 
components, and then the energy service performances of 
IEHS are further measured. At the last simulation, the pro‐
posed indices could be obtained as the final service-based re‐
liability evaluation results for IEHS.

According to the focused time scale, the reliability could 
be evaluated for either the long term or the short term. Com‐
pared with long-term reliability, the short-term reliability 
could accurately incorporate the time-varying system operat‐
ing conditions, which is consistent with the concept of opera‐
tional reliability [43]. In the reliability evaluation frame‐
work, the ST of TSMCS can be chosen according to the spe‐
cific research requirements [44]. And using TSMCS tech‐
nique for short-term reliability analysis, which is realized by 
setting ST to hours or days, has been applied in many exist‐
ing studies such as [45] - [47]. In this paper, the researched 
service-based reliability is more related to the operational 
phase when the dynamic characteristics of energy services 
are significant. Hence, ST can also be set as short-term time‐
frame, e. g., one week, and the proposed time-varying ser‐
vice-based reliability indices can be obtained using (31) -
(35). In spite of this, the long-term reliability could also be 
assessed by setting a long ST, e.g., one year, which is gener‐
ally measured by the time-independent reliability indi‐
ces [43].

Based on the strong law of large numbers and the central 
limit theorem, the TSMCS will converge after a certain num‐
ber of iterative simulations and the solution could satisfy the 
confidence level [44]. When TSMCS is applied in reliability 
evaluation, the variance coefficient of reliability indices can 
be used to measure the confidence level, which is usually re‐
garded as the stopping criterion of TSMCS [44]. When the 
number of simulations is large enough, the variance coeffi‐
cient will be less than the set criterion value and the 
TSMCS process will stop.

The flowchart for evaluating service-based reliabilities is 
as follows.

Algorithm 1: hydraulic-thermal decomposition algorithm

1: Set the index it = 0, and set the temperature variables to their lower 
boundaries T it =T min

2: while TRUE do
3: Determine the heat losses at the transmission side and obtain the opti‐

mal output of heat sources satisfying the summation of heat loads 
and losses

4: Determine the mass flow rate variables mit using (14), (15) and 
(17), (18)

5: Taking the mass low rates as the fixed values mt =mit, solve the opti‐
mal load curtailment model (2)-(26)

6: Update the temperature variables T it

7: if |T it -T it - 1 | £ ϑ then:

8: Stop while loop, and output the solutions for index it
9: else
10: Set it = it + 1, T it = (T it +T it - 1 )/2, and return to 2
11: end if
12: end while
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Step 1: input initial parameters of components in IEHS. 
Build the multi-state reliability models as expressed in (1) of 
the components, where C s

EG or C s
HG is used to represent the 

component performance in each state.
Step 2: suppose all the components perform perfectly in 

the initial time and determine the initial operation condition 
of IEHS. Set the iteration index n = 1.

Step 3: conduct the TSMCS sampling for components and 
create their state sequences during the whole simulation peri‐
od. Determine the contingency state of IEHS according to 
the state sequences of components.

Step 4: obtain the nodal electric and heat power supply in 
the contingency state of IEHS by solving the optimal energy 
load curtailment model represented as (2)-(26) and utilizing 
the hydraulic-thermal decomposition algorithm in Section 
IV-B.

Step 5: measure the energy service performances for cus‐
tomers using (27) - (30) according to the contingency nodal 
power supply obtained in Step 4.

Step 6: achieve the service-based reliability indices de‐
fined as (31) - (35) according to the energy service perfor‐
mances measured in Step 5.

Step 7: calculate the variance coefficients and check the 
stopping criterion presented in (36). If (36) is satisfied for 
the whole period, go to Step 8; otherwise, set n = n + 1 and 
go back to Step 3 for the next iteration.

θ t =max ( )V (EESNSt )

EESNSt


V (EHSNSt )

EHSNSt
£ θset (36)

where θ t is the variance coefficient at time t; θset is the corre‐
sponding criterion value for stopping TSMCS; and 
V (EESNSt ) and V (EHSNSt ) are the variances of EESNSt 
and EHSNSt, respectively.

Step 8: output the service-based reliability indices of the 
IEHS obtained in the final iteration.

V. CASE STUDIES 

The proposed method is tested on an IEHS which con‐
tains a 30-bus EPS modified from [48] and a meshed 32-
node DHS modified from [49]. The topology of the test 
IEHS is shown in Fig. 5. There are 4 non-CHP thermal units 
(termed as G1-G4), 41 branches, and 20 electric loads in the 
EPS, while 32 pipelines and 18 heat loads are included in 
the DHS. The proportion of the heat loads for space heating 
services is 80%. The electric loads and other heat loads are 
used for the energy services with negligible dynamic charac‐
teristics, e. g., lighting and cooking services. Moreover, the 
coupled components in the test system include 2 CHP units 
(termed as CHP1 and CHP2) and one EB. The CHP units 
are extraction-condensing units, located at electric nodes 2 
and 8 and heat nodes 31 and 1, respectively. The EB is locat‐
ed at electric node 27 and heat node 32.

The reliability parameters of the components in the test 
system are presented in Tables I and II [5], [7], [15]. The 
CHP units are represented as the four-state Markov model 
with same parameters, and the transition rates between differ‐
ent states are shown in Table I. As the coupled components, 

the capacities (C s
EGC

s
HG ) of CHP units at their four states s0 -

s3 are (10 MW, 8 MW), (8 MW, 6.5 MW), (4 MW, 3.5 
MW), (0, 0), respectively. Besides, the non-CHP units and 
the EB are represented as binary Markov models, and their 
reliability parameters are provided in Table II.

The original electric and heat loads in the IEHS are set to 
their peak values. The equivalent heat capacities of buildings 
are 0.1 MWh/℃ . The initial indoor temperature, environ‐
ment temperature, and the minimum acceptable temperature 
of customers are 24 ℃, -4 ℃, and 14 ℃, respectively. The 
modeling and simulations are conducted by MATLAB 
R2018a, which is performed on a computer with an 1.80 
GHz Intel® CoreTM i7-8550U and 8 GB memory. With the 
linearization techniques, the formulated model can be con‐
verted to the linear form and solved by IBM CPLEX solver. 
To demonstrate the effectiveness of the proposed method, 
five cases are carried out as follows.

A. Case 1: Energy Service Performances in Contingency 
State with Effect of Thermal Dynamics

This case study is performed in a specific contingency 
state to demonstrate the energy service performances of the 
test system utilizing the proposed method. The study period 
and the time interval are 72 hours and 15 min, respectively. 
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H32

H1

H3

H5
H2
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Fig. 5.　Topology of test IEHS.

TABLE I
RELIABILITY PARAMETERS OF CHP UNITS

State

s0

s1

s2

s3

s0

0.020

0.020

0.020

s1

0.0022

0.0010

0.0100

s2

0.0022

0.0010

0.0100

s3

0.0011

0.0021

0.0021

TABLE II
RELIABILITY PARAMETERS OF NON-CHP UNITS AND EB

Component

G1

G2

G3

G4

EB

λ01 (1/hour)

0.0021

0.0011

0.0010

0.0022

0.0021

μ10 (1/hour)

0.050

0.020

0.025

0.020

0.050

C s
EG (MW)

10

16

16

20

8

C s
HG (MW)

10

16

16

20

8
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The contingency state of the test system is caused by the 
complete failure of CHP1 from t = 6.75 hours to t = 33.75 
hours, when C s

EG and C s
HG are decreased to zero. The compu‐

tation time of this case is 6.5 s, which is equivalent to the re‐
quired time for a single simulation of TSMCS. The simula‐
tion results in this contingency state are presented as follows.

Firstly, the nodal electric and nodal equivalent heat load 
curtailments (PC and EHC) at some typical nodes are shown 
in Fig. 6, which illustrates the power-measured service per‐
formances of IEHS. As can be observed in Fig. 6, these two 
kinds of load curtailments present significant differences, 
characterizing the electric and heating service performances, 
respectively.

Regarding the heating service performances, the nodal 
equivalent heat load curtailments have transient forms with 
the contingency heat power supply. On the one hand, the dy‐
namic variations can be observed for these nodes during the 
failure period, which originate from the thermal inertia of 
buildings. On the other hand, the delay times of load curtail‐
ments can be observed from the enlarged view for the initial 
failure period, which result from the transfer delays of pipe‐
lines. These time delays are related to the distances from the 
failure location to different heat nodes. For heat node 30 
(H30) near CHP1, the delay time is only 34 min. However, 
it reaches 2.81 hours for heat node 16 (H16) with a long dis‐
tance from CHP1.

Regarding the electric service performances, the load cur‐
tailments at different electric nodes present distinct patterns. 
On the one hand, most of the loads at electric nodes are cur‐
tailed immediately at the beginning of the failure period 

with the contingency electric power supply. On the other 
hand, different from the stable values of load curtailments at 
most electric nodes, load curtailments at some electric nodes 
such as E8 and E28 have transient processes and are delayed 
for about 34 min. These load curtailments are caused by the 
decrease of the electric power output of CHP2. When CHP1 
fails, CHP2 is re-dispatched and increases its heat power out‐
put to compensate for the heat power supply shortage be‐
cause of the higher priority of heat load. At the same time, 
the electric power output of CHP2 has to be decreased due 
to the electricity-heat coupling feature of the extraction-con‐
densing CHP unit, and some electric nodal loads are conse‐
quently curtailed. Since the electric power output of CHP2 
is related to the heat loads, these electric load curtailments 
are indirectly affected by thermal dynamics and thus present 
transient patterns.

As another measure for heating service performances, the  
indoor temperatures of buildings at the above-mentioned 
heat nodes are shown in Fig. 7. It is obvious that some ther‐
mal customers with contingency heat power supply can still 
accept this contingency state. For instance, the minimum in‐
door temperatures at the heat nodes H6, H16, and H18 are 
18.2 ℃, 20.3 ℃ and 20.7 ℃ respectively, which are higher 
than the minimum allowable temperature. Accordingly, in‐
door temperatures at these nodes are always within the ac‐
ceptable temperature zone, and this contingency state can be 
viewed as the acceptable state for thermal customers during 
the whole simulation period. On the other hand, the indoor 
temperatures of buildings at H8, H26, and H30 drop rapidly 
and are lower than the minimum allowable temperature from 
10.13 hours to 39.38 hours. During this period, the thermal 
comfort of customers at these nodes is compromised and the 
state is unacceptable for them. It should be noted that al‐
though CHP1 is repaired at t = 33.75 hours, the failure state 
for customers continues for about 5.63 hours because of the 
temperature recovery processes of buildings. Therefore, con‐
sidering energy service satisfactions of customers, judgment 
methods of the customer acceptances for the electric and 
heating service performances in contingency states are quite 
different. The acceptances for electric service performances 
can be simply judged by the appearance of electric load cur‐
tailments, while the acceptances for heating service perfor‐
mances can be judged by the indoor temperatures more spe‐
cifically.
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B. Case 2: Service-based Reliability Evaluation Results

In the second case, the service-based reliability indices of 
the test system are calculated in two scenarios based on the 
proposed framework. Scenario A neglects the transmission- 
and demand-side thermal dynamics, which are modelled in 
Scenario B. The study period and the time interval are one 
week and 15 min, respectively. The tolerance level of vari‐
ance coefficient is θset = 0.05.

The computation time of TSMCS is presented in Table 
III. Such time performance is acceptable in real application, 
which allows the system operator to conduct the service-
based reliability analysis in the day ahead. In the last itera‐
tions of two scenarios, the maximum coefficients of variance 
θ t are 0.0492 and 0.0497, both of which are lower than the 
tolerance level θset. Hence, the stopping criterion (36) is satis‐
fied, which indicates the convergences of TSMCS in two 
scenarios.

The LOESP and LOHSP and EESNS and EHSNS in two 
scenarios are presented in Figs. 8 and 9, respectively. It can 
be observed that all the reliability indices in Scenario B are 
smaller than those of Scenario A, which means that the ser‐
vice-based reliabilities of IEHS are improved with the con‐
sideration of thermal dynamics. The improvement results 
from the energy storage capability behind thermal dynamic 
phenomena which slows down the degradation of energy ser‐
vice performances in the contingency states. Moreover, com‐
pared with the electric service based indices, the effects of 
thermal dynamics on heating service based reliability indi‐
ces, i. e., LOHSP and EHSNS, are more prominent. During 
the initial period, the two indices remain at low levels close 
to zero in Scenario B, which corresponds to the delay time 
of service performances analyzed in Case 1.

Regarding the evaluation results for the whole study peri‐
od, it can be observed from Fig. 8 that the LOESP and 
LOHSP curves in Scenario B exceeds the curves in Scenario 
A after t equals to 108 hours and 96 hours, respectively. This 
is because the repair of the faults in contingency states can 
be captured in the one-week simulation. During these repair 
periods, the unacceptable states for thermal customers would 
increase due to the temperature recovery processes as shown 
in Fig. 7. However, as shown in Fig. 9, the curves of 
EESNS and EHSNS in Scenario B are below the curves in 
Scenario A all the time, which is consistent with the results 
at the initial period. And the greatest differences of these 
two indices for the whole period between Scenario A and B 
are 1.58 and 3.59 MWh, respectively. This means that the 
expected energy service losses are reduced from the perspec‐
tive of customers, thus thermal dynamics can lessen the cu‐
mulative service damage in IEHSs and improve the service-
based reliabilities.

C. Case 3: Impacts of Thermal Dynamic Factors on Reli‐
ability of IEHS

As analyzed in Section III-D, thermal dynamics could be 
affected by several factors such as the pipeline parameters at 
the transmission side and the equivalent building parameters 
at the demand side. In this case, the impacts of the typical 
factors on the reliability of IEHS are investigated through 
different scenarios. Except for the studied factors, other set‐
tings in this case are the same as those in Scenario B of 
Case 2.

Firstly, three scenarios are considered and distinguished 
by different pipeline lengths in IEHS, which belong to the 
factors for the transmission-side thermal dynamics. In these 
scenarios, the pipeline lengths are set to be 0.5, 1.0, 2.0 
times of original values, respectively. The LOESP and 
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TABLE III
COMPUTATION TIME OF TSMCS
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A
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Number of iterations
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LOHSP for different pipeline lengths are shown in Fig. 10. 
It is illustrated that both the LOESP and LOHSP indices will 
decrease if the pipelines are longer, indicating the probabili‐
ties reduction of unsatisfactory or unacceptable service from 
the viewpoint of customers. For example, when pipeline 
lengths change from 0.5 to 2.0 times, the LOESP at t = 18 
hours decreases by 45% from 0.0077 to 0.0042 while the 
LOHSP at the same time decreases by 78% from 0.0121 to 
0.0027. Besides, in the third scenario, the two indices re‐
main at low levels close to zero for the longest time during 
the initial period, reaching 10 and 13 hours, respectively.

In addition, the impacts of the heat capacity of the equiva‐
lent buildings, as the factor for the demand-side thermal dy‐
namics, are also evaluated in this case. There are also three 
scenarios where the heat capacity levels of the equivalent 
buildings in IEHS are set to be 0.5, 1.0, and 2.0 times the 
original values respectively. The indices EESNS and EHSNS 
in these scenarios are used to illustrate the reliability results, 
as shown in Fig. 11. Similar to the scenarios for the pipeline 
length factor, the reliability indices tend to reduce with the 
increase of heat capacity levels. At the end of the study peri‐
od when t = 168 hours, the differences of EESNS and 
EHSNS for heat capacity levels of 0.5 and 2.0 times are 
5.60 and 9.46 MWh, respectively. The reduction proportions 
of the two indices are 14% and 18%, respectively, indicating 
the decline of the cumulative service damages in IEHS.

In summary, the factors for both the transmission-side and 
demand-side thermal dynamics could affect the reliability of 
IEHS, since they determine the potential energy storage capa‐
bilities of the system. Either the longer pipelines or the larg‐
er building heat capacities correspond to the greater energy 
storage capabilities with more significant dynamic processes. 
Under these circumstances, the energy service provisions for 
customers are better ensured in contingency states and thus 
the reliability levels of IEHS could be improved.

D. Case 4: Impacts of DTR on Reliability of IEHS

Apart from thermal dynamic factors, the DTR could also 
have impacts on the reliability of IEHS, which is investigat‐
ed in Case 4. Here, two scenarios are considered where the 
STR and DTR are applied in IEHS, respectively. The maxi‐
mum allowable conductor temperature of power lines is set 
to be 100 ℃ . The conductor coefficients and weather data 
for DTR are referred to [36] and [39]. Other simulation set‐
tings in this case are the same as those in Scenario B of 
Case 2.

The reliability indices EESNS and EHSNS and their dif‐
ferences in STR and DTR are shown in Fig. 12. The results 
indicate that both EESNS and EHSNS indices of the DTR 
scenario decrease significantly compared with those of the 
STR scenario, and the differences between two scenarios 
grow with time. The reason is that the capacities of power 
lines are raised by DTR, which could relieve the transmis‐
sion congestions in the contingency states and benefit the en‐
ergy service provisions in IEHS. In addition, the reliability 
indices and their differences in STR and DTR scenarios are 
also presented in Fig. 12. It can be observed that the differ‐
ence of EESNS at each time is larger than that of EHSNS. 
At t = 168 hours, the EESNS difference is 7.82 MWh, ac‐
counting for 20% of the EESNS value in STR scenario. At 
the same time, the EHSNS difference is 4.27 MWh, which 
indicates an 8% reduction from STR to DTR scenario. 
Hence, the DTR applied in power lines has a greater impact 
on the reliability of IEHS for ensuring electric services. 
Moreover, the heating-service-based reliability of IEHS is 
slightly affected by DTR since some heating services depend 
on the reliable electric power supplies.

E. Case 5: Long-term Reliability Evaluation Results

Although the service-based reliability concerned in this pa‐
per is more related to the short-term timeframe, the long-
term reliability evaluation is also worth studying. In this 
case, the one-year simulation is conducted using the pro‐
posed method, where the study period and time interval are 
8760 hours and 1 hour, respectively. The scenario settings 
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are consistent with the previous cases including Scenarios A 
and B. The tolerance level of variance coefficient is θset =
0.05.

The computation time of TSMCS for two scenarios is 
presented in Table IV. At the last iterations of two scenari‐
os, the maximum coefficients of variance θ t are 0.0490 and 
0.0493. The two coefficients all satisfy the stopping criteri‐
on (36) and thus the simulations in two scenarios are con‐
verged. The long-term reliability results in different scenari‐
os are presented in Table V. Similar to the one-week simula‐
tion results as presented before, the service-based reliability 
in Scenario B is improved compared with that in Scenario 
A due to the impacts of thermal dynamics. For example, 
the average LOHSP is reduced from 0.077 in Scenario A to 
0.072 in Scenario B, because the amount of unacceptable 
IEHS states decreases when the dynamic services are con‐
sidered. Besides, an 11.78% reduction can be observed in 
the average EHSNS from Scenario A to Scenario B, reach‐
ing 298.1 MWh. It indicates the decline of energy service 
losses during the one-year horizon, reflecting the cumula‐
tive benefits of thermal dynamics for the service-based reli‐
ability in the long term. Actually, the differences of reliabili‐
ty indices between the two scenarios would be more signifi‐
cant when the time interval of TSMCS is set to be a small‐
er value and the dynamic processes of energy can be better 
characterized. However, it is not applicable because a lot of 
computation time will be required to complete the long-
term simulation with high temporal precision. This also 
shows that the service-based reliability evaluation technique 
for IEHS in this paper is more suitable for the operational 
phase with short-term timeframe, as previously analyzed in 
Section IV-B.

VI. CONCLUSION 

The service-based reliabilities of IEHSs from the perspec‐
tive of customers are defined and analyzed in this paper, 
where thermal dynamics are considered to ensure the accura‐
cy of the reliability analysis. The energy service performanc‐
es of IEHSs in contingency states are firstly modelled. On 
this basis, the framework for service-based reliability analy‐
sis is further proposed. Besides, the pertinent reliability indi‐
ces are proposed considering both the dynamic service per‐
formances and service satisfactions of customers.

The simulation results demonstrate that the proposed 
framework can effectively quantify the reliability levels of 
IEHSs based on energy services for customers. The reduced 
EESNS and EHSNS indicate that thermal dynamics can less‐
en the damage of IEHSs in contingency states. And the 
LOHSP can specifically represent the probability of the heat‐
ing service loss by judging the acceptable or unacceptable 
states utilizing temperature-measured service performances. 
Moreover, both the thermal dynamic factors and the DTR 
could affect the reliability of IEHS, since they determine the 
potential energy storage capabilities of the system. During 
the long-term period, the service-based reliability of IEHS 
could benefit more from thermal dynamics due to the tempo‐
rally cumulative effects. The reliability analysis results ob‐
tained from the proposed framework can provide the deci‐
sion-making guidance for operators to ensure the reliable en‐
ergy services for customers in IEHS.
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