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Abstract——Reliable and accurate ultra-short-term prediction 
of wind power is vital for the operation and optimization of 
power systems. However, the volatility and intermittence of 
wind power pose uncertainties to traditional point prediction, 
resulting in an increased risk of power system operation. To 
represent the uncertainty of wind power, this paper proposes a 
new method for ultra-short-term interval prediction of wind 
power based on a graph neural network (GNN) and an im‐
proved Bootstrap technique. Specifically, adjacent wind farms 
and local meteorological factors are modeled as the new form 
of a graph from the graph-theoretic perspective. Then, the 
graph convolutional network (GCN) and bi-directional long 
short-term memory (Bi-LSTM) are proposed to capture spatio‐
temporal features between nodes in the graph. To obtain high-
quality prediction intervals (PIs), an improved Bootstrap tech‐
nique is designed to increase coverage percentage and narrow 
PIs effectively. Numerical simulations demonstrate that the pro‐
posed method can capture the spatiotemporal correlations from 
the graph, and the prediction results outperform popular base‐
lines on two real-world datasets, which implies a high potential 
for practical applications in power systems.

Index Terms——Wind power, graph neural network (GNN), bi-
directional long short-term memory (Bi-LSTM), prediction in‐
terval, Bootstrap technique.

I. INTRODUCTION 

NORMALLY, the ultra-short-term prediction of wind 
power refers to the estimation of wind power with the 

time horizon, which ranges from a few minutes to several 
hours [1]. Ultra-short-term prediction of wind power has a 
significant impact on the safe and economic operation (e.g., 
real-time dispatch planning) of power systems because of 
the risks associated with their fluctuation and intermittence 

[2]. Therefore, there is a need to develop accurate ultra-short-
term prediction methods of wind power [3].

Generally, ultra-short-term prediction of wind power con‐
sists of two components: deterministic point prediction and 
error estimation. The works of deterministic point prediction 
fall under three headings: physical methods, statistical meth‐
ods, and artificial intelligence (AI) based methods. 

1) Physical methods rely on the information of surround‐
ing wind field (e.g., obstacle, surface roughness, and terrain) 
and numerical weather prediction (NWP) data (e.g., humidi‐
ty, pressure, wind speed, and temperature) to model the rela‐
tionship between wind power and wind speeds [4]. The phys‐
ical methods are suitable for ultra-short-term prediction of 
new wind farms or wind turbines, since historical data are 
not required to train the model. However, the detailed physi‐
cal parameters and NWP data bring a severe computational 
burden [5]. In addition, wrong meteorological parameter is 
easy to accumulate errors of the physical methods, which se‐
riously affects the prediction accuracy. 

2) Statistical methods mainly include auto-regressive 
(AR), auto-regressive integrated moving average (ARIMA), 
auto-regressive moving average (ARMA), and gray methods 
[6], which employ historical wind power to predict future 
wind power. Although the calculation speeds of these meth‐
ods are very fast, most of them have limited prediction accu‐
racy, especially for the wind power generation curves with 
strong stochastic nature (e. g., prominent peaks and steep 
ramps). This is because these methods ignore the correlation 
between wind power and meteorological factors [7]. 

3) Support vector machine (SVM), light gradient boosting 
machine (LightGBM), and multi-layer perceptron (MLP) are 
widely-used AI-based methods for ultra-short-term prediction 
of wind power in the last 20 years [8]. Compared with physi‐
cal methods, SVM, LightGBM, and MLP are more cost-ef‐
fective, but they have difficulty in capturing the temporal 
correlation of wind power generation curves accurately. To 
solve this problem, a variety of deep neural networks 
(DNNs) have been proposed recently. In particular, recurrent 
neural networks (RNNs) [9], such as long short-term memo‐
ry (LSTM) and gated recurrent unit (GRU), have shown out‐
standing performance in modeling the temporal dependence 
of wind power generation curves, which significantly im‐
proves the ultra-short-term prediction accuracy of wind power.

Manuscript received: September 30, 2022; revised: November 8, 2022; accept‐
ed: December 8, 2022. Date of CrossCheck: December 8, 2022. Date of online 
publication: January 25, 2023. 

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

W. Liao, B. Bak-Jensen, J. R. Pillai, Z. Yang (corresponding author), and K. 
Liu are with the AAU Energy, Aalborg University, Aalborg 9220, Denmark (e-
mail: weli@energy.aau.dk; bbj@energy.aau.dk; jrp@energy.aau.dk; zya@energy.
aau.dk; kuli@energy.aau.dk).

S. Wang is with the Key Laboratory of Smart Grid of Ministry of Education, 
School of Electrical and Information Engineering, Tianjin University, Tianjin 
300072, China (e-mail: sxwang@tju.edu.cn).

DOI: 10.35833/MPCE.2022.000632

1100



LIAO et al.: ULTRA-SHORT-TERM INTERVAL PREDICTION OF WIND POWER BASED ON GRAPH NEURAL NETWORK AND...

The traditional point prediction aims to generate determin‐
istic prediction values, which cannot represent the prediction 
error caused by various reason such as volatility and inter‐
mittence of wind power. Further, interval prediction is one 
of the mainstream ways to estimate the error by adding low‐
er and upper boundaries to each deterministic prediction val‐
ue. The popular methods to construct prediction intervals 
(PIs) mainly include the Delta [10], Bayesian [11], Gaussian 
[12], mean-variance estimation [13], lower upper bound esti‐
mation (LUBE) [14], and Bootstrap technique [15]. Specifi‐
cally, the first four methods [10] - [13] are restricted with 
specified probability distributions of prediction errors as‐
sumed artificially, since numerous factors (e. g., input data, 
point prediction model, and time horizon of prediction) af‐
fect the probability distribution of prediction error, which is 
difficult to be formulated accurately in most cases. The 
LUBE employs a DNN with two outputs to calculate the 
lower and upper boundaries of PIs, but the design of loss 
functions suitable for the gradient descent method remains a 
challenge when training the DNN [16]. The Bootstrap tech‐
nique is a flexible and efficient way, which iteratively resam‐
ples historical prediction errors to generate PIs without any 
distribution assumptions of prediction errors. So far, the 
Bootstrap technique has been widely used for interval predic‐
tion of renewable energy sources and loads because of its 
simple process and outstanding performance [17]. All the 
same, a great limitation of the traditional Bootstrap tech‐
nique remains to be solved. For each prediction value, the 
Bootstrap technique has a very close PI width. In theory, if 
the number of resamples is infinite, the PI width of each pre‐
diction is the same. Ideally, the perfect PIs should be narrow 
when the prediction error is small, and PIs should be wide 
when the prediction error is large. In other words, the simi‐
lar widths of PIs constructed by the traditional Bootstrap 
technique have difficulty in balancing the coverage percent‐
age and width of PIs.

In a broad sense, the inputs of wind power prediction 
should be considered as a graph [18]. Specifically, geographi‐
cally adjacent wind farms and local meteorological factors 
are represented as nodes of the graph whose adjacency ma‐
trix can represent the spatial correlation between nodes. His‐
torical data are the features of nodes, which can model the 
temporal correlation of time series. However, the traditional 
point prediction models (e.g., MLP, LightGBM, and LSTM) 
defined in the Euclidean domain cannot deal with the graph, 
so few publications have been oriented from a graph perspec‐
tive in the past few years. Usually, traditional point predic‐
tion models have to simplify the graph into Euclidean data 
by ignoring the adjacency matrix, which adversely affects 
the prediction accuracy. This simplification makes it difficult 
for the traditional point prediction models defined in the Eu‐
clidean domain to capture the spatial correlation between 
multiple adjacent wind farms, limiting the prediction accura‐
cy.

There has been increasing interests in generalizing tradi‐
tional DNNs into graph neural networks (GNNs) in recent 
years. In particular, graph convolutional networks (GCNs) 
have been widely used in different fields (e. g., link predic‐

tion, drug synthesis, and traffic flow prediction) due to their 
superiority in modeling the spatial correlation between nodes 
[19]. Although GNNs have great potential for wind power 
prediction whose inputs are regarded as a graph, the applica‐
tions of GNNs for wind power prediction are relatively limit‐
ed. In [20], GCNs are applied to model the relationships be‐
tween offshore wind farms. To capture spatial and temporal 
correlations between multiple wind nodes, a GCN and an 
LSTM are integrated in [21] and [22]. However, these previ‐
ous publications [18], [20] - [22] only model adjacent wind 
farms as nodes and ignore meteorological factors. In other 
words, they are not suitable for ultra-short-term prediction 
considering meteorological factors for individual wind farm. 
Besides, they do not involve the uncertainty of wind power. 
Especially, GNNs have rarely been applied to interval predic‐
tion such as ultra-short-term interval prediction of wind pow‐
er.

Based on the above discussion, this paper proposes a nov‐
el GNN-based point prediction model and an improved Boot‐
strap technique for ultra-short-term interval prediction of 
wind power. Specifically, a GCN is employed to model the 
spatial correlation between nodes, and a more recent ad‐
vanced model named bi-directional long short-term memory 
(Bi-LSTM) is utilized to capture the temporal correlation of 
time-series curves. Then, an improved Bootstrap technique is 
designed to balance the coverage percentage and width of 
PIs. Finally, the effectiveness of the proposed method is veri‐
fied through real datasets. The main difference between this 
paper and previous publications involving GNNs lies in:

1) The nodes are generalized from adjacent wind farms in‐
to both wind farms and meteorological factors.

2) Different from previous publications [21], [22] without 
considering the uncertainty of wind power, this paper ex‐
tends the GNN from point prediction into the interval predic‐
tion to account for the uncertainty.

3) The performance of point prediction model is improved 
by applying bidirectional learning techniques into the tradi‐
tional LSTM, i. e., Bi-LSTM replaces the traditional LSTM 
to capture temporal correlations.

The key contributions of this paper are summarized as fol‐
lows.

1) Without simplifying the inputs of ultra-short-term pre‐
diction of wind power into Euclidean data, this paper innova‐
tively attempts to model the inputs as the new form of a 
graph from a graph-theoretic perspective. The spatial correla‐
tion between nodes is represented by an adjacency matrix. 
The historical data are viewed as the features of nodes to de‐
scribe the temporal correlation of the wind power generation 
curves and meteorological factors.

2) To improve the accuracy of the point prediction, a nov‐
el GNN combining the GCN and Bi-LSTM is proposed to 
capture spatiotemporal correlations without artificial feature 
engineering.

3) As a flexible and efficient way, the improved Bootstrap 
technique is proposed to balance the coverage percentage 
and width of PIs. Besides, it is free of any distribution as‐
sumptions of prediction errors.

4) Extensive numerical simulations on two real-world data‐
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sets are performed to validate the effectiveness of the pro‐
posed method for ultra-short-term interval prediction of wind 
power.

The rest of this paper is organized as follows. Section II 
proposes a novel GNN for wind power prediction. Section 
III presents the improved Bootstrap technique and introduces 
the commonly-used evaluation indices of PIs. Section IV 
tests the proposed method and popular baselines on real data‐
sets. Section V discusses the proposed method. Finally, the 
conclusion is given in Section VI.

II. A NOVEL GNN FOR WIND POWER PREDICTION 

Normally, interval prediction includes two steps: determin‐
istic point prediction and error estimation. In this section, 
the predictive information (i.e., wind power of multiple wind 
farms and nearby meteorological factors) is represented as 
an undirected graph. Then, a GCN and a Bi-LSTM are inte‐
grated to model spatiotemporal correlations for point predic‐
tions, whose prediction errors are represented in the next sec‐
tion through the improved Bootstrap technique.

A. Problem Definition

Normally, ultra-short-term prediction of wind power is per‐
formed using wind power of multiple wind farms and sur‐
rounding meteorological factors as inputs to a point predic‐
tion model. In other words, each wind farm is represented 
by its wind power, rather than the physical model.

As one of the innovations, this subsection employs a sim‐
ple undirected graph G = (VE) to represent multiple wind 
farms and surrounding meteorological factors [23] (e. g., 
wind speed, temperature, and humidity), as shown in Fig. 1. 
Note that meteorological factors are generally collected from 
the supervisory control and data acquisition (SCADA) sys‐
tem or surrounding weather stations. Specifically, the wind 
power of the wind farm is viewed as a real node, and each 
meteorological factor is considered as a virtual node. All 
nodes of this undirected graph can be represented as V =
{ }v1v2vn , where vi is the ith node; and n is the total num‐

ber of real nodes and virtual nodes. The features at time t of 
the graph can be expressed as X g

t = {X v1

t X v2

t X vn

t }, where 

X vi

t  is the feature of the ith node at time t.

Node 1

Node 2

Node 4

Node 5Node 6

Wind power of wind farm (real node); Correlation coefficient (edge)

Meteorological factor (virtual node)

Node 3

Fig. 1.　Simple undirected graph to represent multiple wind farms and sur‐
rounding meteorological factors.

In practice, the predictive information is not always avail‐
able. For example, some datasets without meteorological fac‐
tors only include real nodes, and some datasets with one 
wind farm and surrounding meteorological factors only in‐
clude a real node and multiple virtual nodes.

With respect to social networks, the correlation between 
nodes is generally described by an adjacency matrix A con‐
sisting of 0 and 1, where 0 means there is not an edge; and 
1 means there is an edge. Similarly, the adjacency matrix of 
graph for wind farms and surrounding meteorological factors 
can be emulated with a correlation matrix CÎRn ´ n to model 
the spatial dependence between nodes. There may exist dif‐
ferent ways to construct graphs, which may be explored in 
future works due to page limits. For example, multiple wind 
farms can be constructed as a directed graph if the dataset in‐
cludes only wind power without meteorological factors. 
However, the inputs of wind power prediction normally in‐
clude wind power and meteorological factors. The wind pow‐
er of the wind farm is viewed as a real node, and each mete‐
orological factor is considered as a virtual node. It is diffi‐
cult to describe the direction between real nodes and virtual 
nodes. Therefore, the undirected graph is constructed to de‐
scribe the correlation (i.e., edge) between nodes.

As a simple example, the widely-used Pearson correlation 
coefficient C(vivjt) is employed to represent the distance 
(i.e., edge) between the ith node and the jth node at time t as:

C (vivjt ) =
|

|

|
||
||

|

|
||
|∑

l = 0

h

( )X vi

t - l - X̄ vi ( )X vj

t - l - X̄ vj

∑
l = 0

h

( )X vi

t - l - X̄ vi
2 ∑

l = 0

h ( )X vj

t - l - X̄ vj
2

(1)

where X vi

t - l and X vj

t - l are the historical features of the ith and 
the j th nodes at time t - l, respectively; and X̄ vi and X̄ vj are 
the average features of the ith and the j th nodes from time t -
h to time t, respectively. Note that the correlation matrix is 
time-varying with features of the graph.

So far, the inputs of the point prediction model have been 
modeled as an undirected graph to capture the correlation be‐
tween wind farms and surrounding meteorological factors.

Ultra-short-term point prediction aims to predict the wind 
power of the ith wind farm at time t + k based on the histori‐
cal features from time t - h to time t and its correlation ma‐
trix C(t). The outputs and inputs of GNNs can be expressed 
as (2) and (3), respectively.

X̂ vi

t + k =GNN (C (t ) Xfeature ) (2)

Xfeature = ( X g
t X

g
t - 1X g

t - h ) (3)

where k is the time horizon; X̂ vi

t + k is the predicted wind pow‐
er of the ith wind farm at time t + k; and XfeatureÎRn ´ h is the 
feature matrix of the graph from time t - h to time t, and 
each node has h features. Note that (2) represents one-step 
prediction, which can be generalized into multi-step predic‐
tion by modifying k and training multiple models.

In the next subsections, a novel GNN is proposed to mod‐
el the spatiotemporal correlations of wind farms and meteo‐
rological factors, as shown in Fig. 2. Firstly, the correlation 
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matrix and feature matrix of nodes are used as inputs of 
GCN layers to represent topological information of the 
graph for modeling the spatial features [24]. Then, the time 
series with spatial features obtained from the GCN are fed 
into Bi-LSTM layers, which capture temporal features 
through information transmission among input gate, a forget 
gate, an output gate, and a cell state. In the end, two dense 
layers are employed to output X vi

t + k.

B. GCN

It is a vital issue to model the complex spatial dependen‐
cies between nodes for ultra-short-term prediction of wind 
power. Traditional CNN can only extract local spatial fea‐
tures of data (e.g., images) defined in the Euclidean domain, 
while the input data of ultra-short-term prediction of wind 
power are a graph rather than 2-dimensional matrices, which 
means that traditional CNN cannot capture complex topologi‐
cal information and spatial dependencies between nodes of 
the graph. Fortunately, the traditional CNN has been extend‐
ed into the GCN defined in the graph domain to handle 
graph-structured data, and has received more and more atten‐
tion because of its powerful performances.

There are many variants of GCN, which is mainly classi‐
fied into two broad categories [25]: spectral-based GCN and 
spatial-based GCN. Among them, the spectral-based GCN 
maps the graph to a new space through the Fourier trans‐
form, and performs convolutional operations in the new 
space, just like the traditional CNN. Then, the data are 
mapped back to the graph domain to obtain spatial features. 
The calculation process of spatial-based GCN is relatively 
simple, since it directly defines convolutional operation 
based on the spatial correlation of nodes in the graph do‐
main. In general, both spatial-based GCN and spectral-based 
GCN are developing and evolving rapidly, and it is difficult 
to identify which one performs better. Compared with the 
spatial-based GCN, the spectral-based GCN is more widely 
used because it was proposed earlier. Without loss of gener‐
ality, the popular spectral-based GCN is employed to obtain 
the spatial features of inputs.

Given a correlation matrix C(t) and a feature matrix 
Xfeature, the graph convolutional layer captures the spatial fea‐
tures between nodes through its first-order polynomial in the 
Laplacian after constructing a filter in the Fourier domain. 
As shown in Fig. 3, a spectral-based GCN generally consists 
of multiple graph convolutional layers, which can be repre‐

sented as:

ì
í
î

ïï
ïï

H (i)
GCN = σg( )ĈH (i- 1)

GCNW (i- 1)
GCN

H (0)
GCN =Xfeature

    i = 12ng (4)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

Ĉ =D
-

1
2C͂D

-
1
2

C͂ =C + I

Dii =∑
j

C͂ij

(5)

where I is the identity matrix; C͂ is a new form of correla‐
tion matrix with self-loop (the correlation matrix of each 
graph convolutional layer is the same); D is the degree ma‐
trix of the correlation matrix; ng is the number of graph con‐
volutional layers; σg (×) is the activation function of graph 
convolutional layers; W (i)

GCN represents the parameters to be 
optimized through supervised training of the ith graph convo‐
lutional layer; and H (i)

GCN represents the outputs. Note that the 
time series with spatial features obtained from the GCN are 
considered as inputs of the Bi-LSTM in the following sub‐
section.

C. Bi-LSTM

Another key issue to ultra-short-term prediction of wind 
power is modeling temporal dependence. Traditional DNNs 
(e.g., MLP) are incompatible for modeling time-series data, 
while RNN is a very promising algorithm, which is profi‐
cient in processing time-series data such as audio signals. 
Considering the traditional RNN involves vanishing gradient 
problems, some excellent variants have been proposed and 
show outstanding performance in different fields [26]. There‐
fore, a recent advanced variant (e.g., Bi-LSTM layers) is em‐
ployed to capture temporal features of time series from the 
last GCN layer.

Figure 4 shows the structure of a simple LSTM unit, 
which consists of an input gate, a forget gate, an output 
gate, and a cell state. The cell state memorizes the values 
over different time lengths, and the above-mentioned three 
gates adjust the data flow into and out of the cell state. The 
relationship between input and output of LSTM is as follows.

Inputs

Spatial feature

Temporal feature

PredictionDense

X
t+k

GCN GCN GCN

Outputs

C(t) X
t�h
g

X
t

g…

…

…Bi-LSTM Bi-LSTM Bi-LSTM

vi

Fig. 2.　Framework of proposed GNN.

Graph convolution

Inputs Outputs

HGCN

σg σg

Graph convolution

C(t), Xfeature

layer layer

(1)
HGCN

(2)

…

… …

HGCN
(ng)

Fig. 3.　 Framework of spectral-based GCN consisting of multiple graph 
convolutional layers.
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C͂Lt = σh( )WC × [ ]HLtHt - 1 +BC

Ft = σs( )WF × [ ]HLtHt - 1 +BF

Ot = σs( )WO × [ ]HLtHt - 1 +BO

I t = σs( )WI × [ ]HLtHt - 1 +BI

CLt =FtCLt - 1 + I tC͂Lt

H t =Otσh( )CLt

(6)

where Ot, I t, Ft, and C͂Lt are the activation vectors of the 
output gate, input gate, forget gate, and cell input activation, 
respectively; σs (×) and σh (×) are the sigmoid function and hy‐
perbolic tangent function, respectively; WO is the weight of 
the output gate; WF is the weight of the forget gate; WC is 
the weight of the cell state; WI is the weight of the update 
gate; BF, BI, BO, and BC are the bias vectors of the forget 
gate, input gate, output gate, and cell state, respectively; Ht 
is the latent state vector at time t; XLt is the feature informa‐
tion at time t; CLt is the cell state vector at time t; and  is 
the Hadamard product.

Bidirectional learning is a widely-used technique to im‐
prove the prediction accuracy of traditional LSTM for se‐
quence learning tasks, since the output of time-series predic‐
tion is not the only product of the previous input data, but a 
continuously correlated component. Bidirectional learning 
can help LSTM capture the temporal features in bidirection‐
al aspects (i. e., the forward and reverse paths), while tradi‐
tional LSTM is trained to model temporal features in one-
way data flow (i.e., the forward path) only. The LSTM with 
bidirectional learning technique shows higher performance 
than traditional LSTM in various sequence learning tasks 
such as audio signal processing. Therefore, the Bi-LSTM is 
presented to capture the temporal features of time series 
from the last GCN layer.

As shown in Fig. 5, the forward LSTM is used to model 
the relationship among feature information at time t, latent 
state vector at time t - 1, and the cell state vector at time 
t - 1, while the backward LSTM is employed to combine the 
feature information at time t, latent state vector at time t + 1, 
and cell state vector at time t + 1. The mathematical equa‐
tions of the Bi-LSTM are expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

Ht = LSTM ( )H t - 1CLt - 1XLt

Ht = LSTM ( )H t + 1CLt + 1XLt

HBi t = σBi( )HtHt

(7)

where Ht is the latent state vector at time t of the forward 
LSTM; Ht is the latent state vector at time t of the backward 
LSTM; HBi t is the latent state vector at time t of the Bi-
LSTM; and σBi (×) is a mathematical operator (e. g., summa‐
tion, multiplication, and concatenation) that is used to com‐
bine Ht and Ht.

D. Dense Layer

Finally, the temporal features obtained from multiple Bi-
LSTM layers are used as the inputs of a dense layer at the 
end of the GNN, which outputs the predicted wind power of 
the ith wind farm at time t + k:

X̂ vi

t + k = σd( XdWd +Bd ) (8)

where Xd is the vector of inputs of the dense layer; Wd and 
Bd are the vectors of weights and biases of the dense layer, 
respectively; and σd (×) is the activation function of the dense 
layer.

III. CONSTRUCTION OF PIS 

A deterministic point prediction model is proposed in the 
previous section. In this section, the traditional Bootstrap 
technique is improved to represent the prediction errors us‐
ing narrow PIs. Then, several evaluation indices of PIs are 
presented.

A. Traditional Bootstrap Technique

A traditional deterministic point prediction only provides a 
single point that hides the error of wind power from noises 
of the dataset and the model itself, while interval prediction 
is an effective way to quantify the uncertainty through a low‐
er and upper boundary. The PIs surround the prediction val‐
ue from the deterministic point prediction model and cover 
the real value with high probability.

Bootstrap is a robust technique for error estimation, which 
can be used to generate PIs without making any assumption 
about the functional form of the probability distribution of 
prediction errors. Specifically, the construction of PIs for ul‐
tra-short-term prediction of wind power using the traditional 
Bootstrap technique mainly includes two steps [27].
1)　Error Estimation of Training Set

A pre-trained point prediction model and real wind power 
are used to obtain the prediction errors of the training set. 
Then, the prediction errors of the training set are employed 
to construct the PIs of point predictions for the test set. In 

σs  σs  σs σh

σh  

σs  σs  σs σh  

 

H
t

F
t

I
t
CL,t O

t

X
t

~

× + σh  × +

× ×

CL,t�1

CL,t

H
t�1

σh  × +

× ×

Fig. 4.　Structure of LSTM unit.
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Fig. 5.　Structure of Bi-LSTM unit.
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particular, the prediction errors of the training set are ran‐
domly sampled nt times into the group 1, where nt is the 
number of Bootstrap repeats, which should be large enough 
to ensure meaningful statistics. Ideally, the Bootstrap repeats 
are often hundreds or thousands given the time resources. In 
this paper, nt is 5000. A prediction error is obtained for each 
sampling process. Note that the Bootstrap technique allows a 
prediction error of the training set to be sampled more than 
once (i.e., sampling with replacement).
2)　Construction of PIs

The prediction errors in group 1 are sorted in descending 
order, and the values at the given percentile α are considered 
as the PI nominal confidence (PINC). For instance, when α 
is equal to 0.9, a confidence interval of 90% PINC can be 
obtained by selecting the errors at the 95% percentile as the 
upper boundary and the 5% percentile as the lower boundary.

B. Improved Bootstrap Technique

Although Bootstrap is a widely powerful and applicable 
statistical technique for quantifying uncertainty, its PIs are 
too conservative. Figure 6 presents a simple example of 
wind power interval prediction with a prediction time hori‐
zon of 1 hour, which includes a real wind power generation 
curve, point predictions generated from the GNN, and PIs 
constructed from traditional Bootstrap technique.

For each wind power, the traditional Bootstrap technique 
constructs PIs with a fixed interval width. The wide PIs are 
suitable for the periods when the wind power generation 
curve is highly volatile, as shown in the area surrounded by 
a rectangular. However, these fixed PIs are obviously too 
wide for wind power with small volatility (e.g., the area en‐
closed by ellipses), which will lead to the lack of concentra‐
tion of PIs. Too wide PIs are also called conservative PIs, 
that is when wide PIs are used for risk-based decision-mak‐
ing (e.g., interval optimization) of power systems, their solu‐
tions require more reserve capacity of generation sides, giv‐
ing a negative impact on economics. In short, the fixed PIs 
of the traditional Bootstrap technique is a great limitation, 
which remains to be solved.

Ideally, appropriate PIs should be narrow when the wind 
power is weakly volatile, as weak volatility tends to imply 
small prediction errors. Relatively, PIs should be wide, when 
wind power is highly volatile, because highly volatile often 
means large prediction errors. To evaluate the volatility of 
predicted wind power at time t + k, the widely-used standard 

deviation is employed as:

S vi

t + k = Std ( X̂ vi

t + kX̂
vi

t + k - 1X̂ vi

t + k - q ) (9)

where S vi

t + k is the standard deviation of predicted wind power 
of the ith wind farm from time t + k - q to time t + k. Note 
that the size of q is determined to be 7 in this paper by ana‐
lyzing the Pearson correlation coefficient between standard 
deviation and prediction errors. For other datasets, q may 
vary, but it can also be determined by analyzing the Pearson 
correlation coefficient.

In the previous paragraph, the standard deviations of point 
predictions are employed to reflect the volatility and predic‐
tion errors of wind power. In other words, if the standard de‐
viation is large, the prediction error is also large. If the stan‐
dard deviation is small, the prediction error is also small.

To valid the relationship between the prediction errors and 
the standard deviation of point predictions, the proposed 
GNN is used to obtain point predictions for the test set. 
Then, the standard deviation of each point prediction is cal‐
culated by (9), and the prediction error of each point predic‐
tion can be obtained by calculating the absolute error. Final‐
ly, the standard deviation of each point prediction is consid‐
ered as the x-axis, and the prediction error of each point pre‐
diction is regarded as the y-axis, as shown in Fig. 7.

From Fig. 7, the following conclusions can be found. 
1) When the standard deviation is small (i.e., the volatility 

is weak), the point prediction errors are also small. In other 
words, a small standard deviation implies a small prediction 
error. For example, for the region surrounded by ellipses in 
Fig. 7, the standard deviation of point prediction is tiny, cor‐
responding to a very small prediction error.

2) As the standard deviation becomes larger, some large 
prediction errors start to appear, and the large prediction er‐
rors are distributed at the locations where the standard devia‐
tion is greater than 0.03 p.u.. At these points, PIs should be 
wide to cover real values.

Generally, point prediction errors are strongly correlated 
with standard deviations, which should have the potential to 
guide the design of PIs. In brief, when the standard devia‐
tions of point predictions are small, the PIs should be nar‐
row, because the prediction errors are small. When the stan‐
dard deviations of point predictions are large, the PIs should 
be wide, since the prediction error may be large.

Based on the above analysis, this paper improves the tradi‐
tional Bootstrap technique using standard deviation to obtain 
appropriate PIs. Firstly, the prediction errors are grouped 
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based on the standard deviation of point predictions. For 
point predictions in the test set, standard deviations are cal‐
culated to determine which group they belong to. Then, this 
paper resamples the prediction errors from the same grouped 
validation set for point predictions of the test set.

A vivid explanation is that the improved Bootstrap tech‐
nique narrows the PIs of the ellipse-enclosed regions in Fig. 
6 without changing the PIs of the other areas. The specific 
implementation steps of the improved Bootstrap technique 
are as follows.
1)　Grouping Prediction Errors and Standard Deviation of 
Validation Set

Normally, compared with the training set, prediction er‐
rors of the validation set are closer to those of the test set. 
Therefore, the prediction errors of validation set are used to 
estimate the prediction errors of test set in the improved 
Bootstrap technique. For each point prediction of the valida‐
tion set, its prediction error and standard deviation are calcu‐
lated. This prediction error is put into group 1. Meanwhile, 
if the standard deviation is lower than s1, this prediction er‐
ror is also placed in group 2. Obviously, group 2 is the prop‐
er subset of group 1.
2)　Group Assignment

For each point prediction of the test set, its standard devia‐
tion is calculated using (9). If this standard deviation is less 
than s2, assign all prediction errors in group 2 to group 3; 
otherwise, assign all prediction errors in group 1 to group 3. 
Then, the prediction errors in group 3 are randomly sampled 
nt times, and the sampled prediction errors are put into 
group 4. Note that the prediction error in group 3 can be 
sampled more than once (i.e., sampling with replacement).

Theoretically, s1 should be greater than s2. If s1 is smaller 
than s2, prediction errors of group 1 are smaller than the real 
point prediction errors for the test set, so the constructed PIs 
will be too narrow to cover real values.

For example, if s1 is 0.01, all prediction errors in group 1 
are less than 0.15, which can be observed from Fig. 7 (i.e., 
when the standard deviation is less than 0.01, the maximum 
value of the prediction error is smaller than 0.15). Further, if 
s2 is 0.06 and the standard deviation of a point prediction is 
0.04, the prediction errors in group 1 will be used to con‐
struct the PIs according the second step of the improved 
Bootstrap technique. Obviously, this is not reasonable. The 
reason is that the standard deviation of the point prediction 
is 0.04, and its real prediction error may be greater than 0.3, 
as shown in Fig. 7. However, the maximum error in group 1 
is less than 0.15, so the constructed PIs cannot cover the re‐
al value.
3)　Construction of PIs

The prediction errors in group 4 are sorted in descending 
order, and the values at the given percentile α are considered 
as the confidence interval. Specifically, the error at the 
(100α+ 100((1 - α)/2))th percentile is the upper boundary, and 
the (50(1 - α))th percentile is the lower boundary.

For ease of understanding and reproducing the improved 
Bootstrap technique, the Algorithm 1 in Appendix A shows 
the codes and comments directly with MATLAB.

C. Evaluation Indices of PIs

The evaluation of PIs is often considered in terms of reli‐
ability and sharpness [2], [3]. Specifically, reliability is mea‐
sured by prediction interval coverage percentage (PICP) and 
sharpness is represented by prediction interval normalized av‐
erage width (PINAW):

PICP =
1
N∑i = 1

N

gi (10)

PINAW =
1
N∑i = 1

N

( )Ui - Li (11)

where Ui is the upper boundary of the ith point prediction; 
and Li is the lower boundary of the ith point prediction. If the 
real wind power is within PIs, gi = 1; otherwise, gi = 0.

Generally, the larger the PICP is, the more reliable the PIs 
are. With the same PICP, a smaller PINAW indicates narrow‐
er PIs and higher quality of PIs. In addition, PICP and 
PINAW are two conflicting metrics, so previous research of‐
ten employs the coverage width criterion (CWC) to balance 
them [2], [3], [14], [28]:

CWC =PINAW (1 + γ (PICPα)e-η ( )PICP - α ) (12)

γ (PICPα) = {0    PICP ³ α
1    PICP < α (13)

where η is a penalty coefficient. The larger η is, the greater 
contributions of the PICP to the CWC are. Generally, η is de‐
termined by the system operator. As an example, η is equal 
to 5 in this paper according to [2], [3]. The smaller the 
CWC is, the better the performance of interval prediction is.

IV. CASE STUDY 

A. Data Description and Simulation Conditions

To fully test the performance of the proposed GNN and 
improved Bootstrap technique, different features of two wind 
power datasets are used for simulation and discussion. Spe‐
cifically, the first dataset includes the real wind power of 16 
geographically adjacent wind farms without meteorological 
factors, so the first dataset can be considered as a graph with 
16 real nodes whose features are the historical wind power. 
The second dataset consists of real wind power of a wind 
farm and local meteorological factors (e. g., wind direction, 
wind speed, temperature, pressure, and density), and the sec‐
ond dataset can also be viewed as a graph with 6 nodes (1 
real node and 5 virtual nodes), whose features are represent‐
ed by historical wind power or historical meteorological fac‐
tors.

Wind power prediction is performed based on the follow‐
ing information: ① NWP information (i.e., forecasts of mete‐
orological factors); ② historical meteorological factors and 
wind power. Their respective importance is highly dependent 
on the predicted time horizon. The shorter the time horizon 
is, the more impact historical measurements have, and vice 
versa for NWP information. Normally, the equilibrium is 
about 2 hours according to [29]. The NWP information for 
both datasets is not available due to various reasons, so this 
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paper focuses on the comparisons between the proposed 
method and baselines for ultra-short-term prediction of wind 
power within 2 hours. The NWP information can be easily 
included as nodes to validate ultra-short-term prediction of 
wind power for longer time horizon in future works.

Both datasets are collected by the National Renewable En‐
ergy Laboratory [23], [30], and they have a temporal resolu‐
tion of 10 min for wind power and meteorological factors. 
The first dataset covers the period from March 2011 to Feb‐
ruary 2012, and the second one ranges from March 2008 to 
February 2009. Considering that variable weather conditions 
in different seasons contribute to the uncertainties of wind 
power, the proposed method is separately trained to test the 
performance in different seasons, including spring (March to 
May), summer (June to August), autumn (September to No‐
vember), and winter (December to February). There is no op‐
timal split percentage of the training set, validation set, and 
test set. The commonly used rough standard splits are 80%, 
10%, and 10%, where 80% of the data are used to train the 
model for each season, the immediately following 10% of 
the data are utilized to determine the parameters of the mod‐
el, and the final 10% of the data are employed to test the 
performance.

To validate the performance of the proposed method, 
some advanced deterministic point prediction models (e. g., 
MLP in [31], LightGBM in [8], GCN in [18], Bi-LSTM in 
[14], and GNN in [21]) are employed as baselines. The pa‐
rameters of these models vary slightly for different regional 
and seasonal wind power datasets. In this paper, the model 
parameters for the different seasons are determined by the 
control variables in [32] - [34]. As a simple example, the 
main parameters of each model for the first dataset in spring 
are given as follows.

1) The middle layer of the MLP includes 3 dense layers, 
whose numbers of neurons are 30, 35, and 20, respectively. 

2) For the LightGBM, the maximum tree depth is 5, and 
the number of the maximum tree leaves is 25; the number of 
boosted trees is 1000, and the learning rate is 0.001; the min‐
imum number in a child is 80, and the subsample ratio is 
0.8. 

3) The middle layer of the GCN includes 3 GCN layers, 
whose numbers of output channels are 32, 16, and 16, re‐
spectively. 

4) The middle layer of the Bi-LSTM includes 3 Bi-LSTM 
layers, whose dimensions of the output space are 25, 25, and 
20, respectively. 

5) As shown in Fig. 8, the middle layer of the proposed 
GNN includes 2 GCN layers and 2 Bi-LSTM layers, where 
the numbers of output channels of GCN layers are 32 and 
16, respectively; and the dimensions of outputs of Bi-LSTM 
layers are 25 and 20, respectively. 

6) For the GNN in [21], its structure is similar to the pro‐
posed model, but it replaces Bi-LSTM layers with traditional 
LSTM layers.

Besides, the following parameters are common to these 
models: the optimizer is the Adam algorithm, and the loss 
function is the mean absolute error. The training epoch is 
200, and the batch size is 32. The activation function of 

each middle layer is rectified linear unit (ReLU) function. 
The output layer of each model is a dense layer with 1 neu‐
ron, and its activation function is the sigmoid function.

All the above-mentioned models are tested in the Spyder 
4.1.5 with the Spektral 1.0 and Tensorflow 2.0, which are 
popular libraries of deep learning. The key parameters of 
computer are as follows: CPU 1.60 GHz, 8 GB RAM, Intel 
Core(TM) i5-10210U.

B. Parameter Discussion of Improved Bootstrap Technique

To discuss the key parameters of the improved Bootstrap 
technique, two cases from the spring are used as simple ex‐
amples to show how to select s1 and s2. This selection pro‐
cess provides general guidance. Repetition can reduce anom‐
alous results. Considering limited time resources, the pro‐
posed GNN is independently trained 30 times. In addition, 
the difference of metrics between the traditional and im‐
proved Bootstrap techniques is presented to analyze whether 
key parameters have a positive or negative impact on perfor‐
mance.

Specifically, the traditional Bootstrap technique is used to 
obtain the average metrics of the validation set, recorded as 
PICP1 and PINAW1. Then, the improved Bootstrap technique 
with different parameters (s1 and s2 varying from 0.004 to 
0.1) is employed to obtain the average metrics of the valida‐
tion set, recorded as PICP2 and PINAW2. Finally, the differ‐
ences between metrics DPICP=PICP2-PICP1 and DPINAW =
PINAW2 -PINAW1 are visualized, as shown in Fig. 9(a)-(d).

If s1 < s2, PICP2 is also smaller than PICP1, even though 
PINAW2 is smaller than PINAW1. In other words, narrow PIs 
come at the expense of PI accuracy. Relatively, when s1 > s2, 
PICP2 is very close to PICP1 and most of the PINAW2 is 
smaller than PINAW1 as we expect, since the improved Boot‐
strap technique outperforms the traditional one.

Further, the partial CWCs of the validation set are shown 
in Fig. 9(e) and (f), where PICP2 is greater than PICP1, and 
PINAW2 is less than PINAW1. For example, s1 = 0.036 and 
s2 = 0.024 are the suitable parameters for the first data set in 
spring. Generally, in order to reduce the width of PIs with‐
out reducing the PICP, s1 should be larger than s2, which is 
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Fig. 8.　Parameters of proposed GNN.
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consistent with the theoretical analysis in Section III-B. Con‐
versely, the performance of improved Bootstrap technique 
may be inferior to that of traditional one, if s1 < s2. For other 
datasets, the sizes of s1 and s2 may vary (they can be ex‐
plored by similar simulations), but s1 must be greater than s2.

C. Comparative Analysis of Interval Construction

The main goal of wind power interval prediction is to de‐
rive reliable and narrow PIs. Compared with low-confidence-
level PIs, high-confidence-level PIs are more practically 
meaningful for economic and safe operation of power sys‐
tems, so different confidence levels varying from 90% to 
99% will be considered in following simulations.

To test the performance of the improved Bootstrap tech‐
nique, the traditional Bootstrap technique [15] and Gaussian 
methods [12] are considered as baselines, which are used to 
construct PIs. Taking the 1-hour prediction time horizon as 
an example, the different average metrics of the test set in 
different seasons are given in Tables I-IV.

Although the PINAW of the Gaussian method is smaller 
than those of Bootstrap techniques, its PICP is much smaller 
than the PINC. The reason for this phenomenon is that the 
prediction errors of deterministic point prediction models do 
not follow the Gaussian distribution. From the above four ta‐
bles, it is found that both traditional and improved Bootstrap 
techniques provide more reliable PIs of the measured wind 
power than the Gaussian method.

Note that the partial CWCs of the Gaussian method are 
smaller than those of Bootstrap techniques in some scenarios 
(e. g., the first dataset with 99% PINC in summer), but it 
does not mean that the Gaussian method is better than Boot‐
strap techniques. The reason is that the PICP of the Gauss‐
ian method is much smaller than the PINC. For example, in 
the first dataset with 99% PINC in summer, the PICP of the 
Gaussian method is 69.7%, whereas the expected probability 
to cover real values is 99%. Relatively, the PICPs of Boot‐

TABLE I
DIFFERENT AVERAGE METRICS OF TEST SET IN SPRING

Method

Gaussian
method

Traditional
bootstrap

Improved
bootstrap

PINC 
(%)

90

95

99

90

95

99

90

95

99

The first dataset

PICP 
(%)

42.1

49.2

59.3

84.3

91.1

99.1

84.4

91.1

98.7

PINAW
(p.u.)

0.090

0.107

0.141

0.300

0.424

0.847

0.274

0.371

0.627

CWC 
(p.u.)

1.074

1.164

1.167

0.700

0.939

0.847

0.637

0.822

1.262

The second dataset

PICP 
(%)

58.8

68.7

78.9

80.4

87.1

93.8

81.1

87.0

96.1

PINAW
(p.u.)

0.208

0.248

0.327

0.309

0.404

0.772

0.283

0.372

0.633

CWC 
(p.u.)

1.196

1.176

1.220

0.808

1.004

1.774

0.725

0.926

1.364

TABLE II
DIFFERENT AVERAGE METRICS OF TEST SET IN SUMMER

Method

Gaussian
method

Traditional
bootstrap

Improved
bootstrap

PINC 
(%)

90

95

99

90

95

99

90

95

99

The first dataset

PICP 
(%)

60.3

64.2

69.7

92.7

97.0

100.0

92.3

97.6

99.7

PINAW 
(p.u.)

0.024

0.028

0.037

0.168

0.248

0.553

0.109

0.160

0.314

CWC 
(p.u.)

0.129

0.161

0.199

0.168

0.248

0.553

0.109

0.160

0.314

The second dataset

PICP 
(%)

60.9

68.6

78.9

92.1

96.8

99.7

91.9

97.2

99.2

PINAW 
(p.u.)

0.163

0.195

0.257

0.347

0.466

0.858

0.323

0.445

0.716

CWC 
(p.u.)

0.862

0.929

0.959

0.347

0.466

0.858

0.323

0.445

0.716

TABLE III
DIFFERENT AVERAGE METRICS OF TEST SET IN AUTUMN

Method

Gaussian
method

Traditional
bootstrap

Improved
bootstrap

PINC 
(%)

90

95

99

90

95

99

90

95

99

The first dataset

PICP 
(%)

57.8

64.4

73.7

85.7

91.9

98.3

84.2

92.6

98.3

PINAW 
(p.u.)

0.127

0.152

0.200

0.215

0.345

0.637

0.164

0.268

0.457

CWC 
(p.u.)

0.761

0.853

0.907

0.482

0.748

1.296

0.383

0.571

0.930

The second dataset

PICP 
(%)

51.7

60.8

76.6

82.5

92.6

98.1

82.9

93.0

98.1

PINAW 
(p.u.)

0.173

0.207

0.272

0.314

0.444

0.741

0.262

0.391

0.585

CWC 
(p.u.)

1.348

1.352

1.104

0.771

0.945

1.518

0.635

0.823

1.199
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Fig. 9.　Average metrics of validation set. (a) DPICP of the first dataset. 
(b) DPICP of the second dataset. (c) DPINAW of the first dataset. (d) 
DPINAW of the second dataset. (e) CWC of the first dataset. (f) CWC of the 
second dataset.
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strap techniques are greater than the PICNs in most scenari‐
os, which indicates that Bootstrap techniques can ensure the 
security of the power system with the expected probability.

Further, the comparison of the PICP and PINAW between 
the traditional Bootstrap technique and the improved Boot‐
strap technique shows that their PICPs are very similar, but 
the PINAW of the latter is smaller, suggesting that the im‐
proved Bootstrap technique can effectively narrow the width 
of PIs with negligible reduction of PICP. For example, in the 
first dataset in winter, the PICP is 0.992 for both the tradi‐
tional and improved Bootstrap techniques when the PINC is 
99%, and the PINAW for the improved Bootstrap technique 
is reduced by 25.54% compared with the traditional Boot‐
strap technique.

In the first dataset with PINC = 99% in spring, the CWC 
of the improved Bootstrap technique is larger than that of 
the traditional Bootstrap technique. This is because the defi‐
nition of CWC derived from [2], [3] is not reasonable in 
some extreme scenarios. The PICP of the improved Boot‐
strap technique is 98.7%, which is slightly less than 99%. 
The penalty coefficient in the definition makes the CWC in‐
crease sharply. In fact, compared with the traditional Boot‐
strap technique, the improved Bootstrap technique has only 
0.4% lower PICP, while its PINAW is reduced by 25.97%. It 
is worthwhile to reduce the coverage percentage a little in 
exchange for very narrow PIs. In other words, the improved 
Bootstrap technique is better than the traditional Bootstrap 
technique for this case.

Figure 10 randomly selects two samples from the first and 
second datasets respectively to visually compare the tradi‐
tional and improved Bootstrap techniques. Note that the pre‐
diction time horizon is still 1 hour.

It is clear that the traditional and improved Bootstrap tech‐
niques have similar PIs for the strong volatile regions (e.g., 
steep ramps, prominent peaks and valleys). This is because 
prediction errors in strong volatile regions tend to be large, 
and narrowing the PIs in these regions may cause the PICP 
to drop. The improved Bootstrap technique aims to keep the 
PIs in strong volatile regions and reduce the width of PIs in 
the weak volatile regions. For example, elliptical enclosed re‐
gions in Fig. 10 are less volatile and the PIs constructed by 

the traditional Bootstrap method are too wide, whereas the 
improved Bootstrap technique effectively narrows the PIs in 
these regions. Based on the above comparisons, the im‐
proved Bootstrap technique with high PICPs and narrow 
PINAWs is applied for the proposed method and four base‐
lines in next sub-sections.

D. Comparison Between Proposed Method and Baselines

In order to validate the superiority of the proposed meth‐
od, the popular deterministic point prediction methods (e.g., 
MLP in [31], LightGBM in [8], GCN in [18], Bi-LSTM in 
[14], and GNN in [21]) are performed as baselines. The 1-
hour prediction time horizon is used as an example. Each 
point prediction model is trained 30 times independently, 
and average metrics (e.g., PICP, PINAW, and CWC) of the 
test set are listed in Table V.

1) Strong prediction performance: it can be observed that 
the proposed method obtains the smallest CWCs under all 
PINCs and seasons for both two real datasets, proving the ef‐
fectiveness for wind power interval prediction. For example, 
for the first dataset with 90% PINC in spring, the CWCs of 
the proposed method are 15.18%, 15.40%, 13.69%, 1.70%, 
and 1.85% lower than those of the MLP, LightGBM, GCN, 
Bi-LSTM, and GNN, respectively. Note that some methods 
may have higher PICPs compared with the proposed meth‐
od, but they are at the cost of interval width, that is, their 
PINAWs are much larger than that of the proposed method. 
For example, for the first dataset with 99% PINC in summer, 
the PICPs and PINAWs of the Bi-LSTM are increased by 
0.1% and 29.3% compared with the proposed method, re‐
spectively, which leads to smaller CWCs of the proposed 
method than the baselines.
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Fig. 10.　Comparison of traditional and improved Bootstrap techniques us‐
ing two samples from the first and second datasets. (a) Interval prediction 
using traditional Bootstrap technique in the first dataset. (b) Interval predic‐
tion using improved Bootstrap technique in the first dataset. (c) Interval pre‐
diction using traditional Bootstrap technique in the second dataset. (d) Inter‐
val prediction using improved Bootstrap technique in the second dataset.

TABLE IV
DIFFERENT AVERAGE METRICS OF TEST SET IN WINTER

Method

Gaussian
method

Traditional
Bootstrap

Improved
Bootstrap

PINC 
(%)

90

95

99

90

95

99

90

95

99

The first dataset

PICP 
(%)

47.8

54.3

63.8

81.8

91.5

99.2

82.4

91.5

99.2

PINAW 
(p.u.)

0.100

0.119

0.157

0.267

0.368

0.822

0.236

0.316

0.612

CWC 
(p.u.)

0.921

1.031

1.069

0.669

0.806

0.822

0.579

0.692

0.612

The second dataset

PICP 
(%)

59.5

67.8

77.9

90.0

94.9

98.8

89.5

94.2

99.0

PINAW 
(p.u.)

0.115

0.138

0.184

0.280

0.425

0.805

0.234

0.331

0.562

CWC 
(p.u.)

0.646

0.675

0.712

0.560

0.852

1.617

0.474

0.676

0.562
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2) Spatiotemporal prediction capability: compared with 
the traditional MLP and LightGBM, neural network-based 
models (e. g., GCN, Bi-LSTM, GNN, and proposed GNN), 
which aim to model temporal features or spatial features, 
usually have better precision for ultra-short-term interval pre‐
diction of wind power. For instance, for the first dataset with 
90% PINC in spring, the PICPs of the GCN, Bi-LSTM, 
GNN, and the proposed method are increased by approxi‐
mately 4.4%, 6.0%, 5.3%, and 4.6% compared with the 
MLP, and the CWCs are 1.73%, 13.72%, 13.58%, and 
15.18% lower than that of the MLP, respectively. The CWCs 
of the GCN, Bi-LSTM, GNN in [21], and the proposed 
method are approximately reduced by 1.99%, 13.94%, 
13.81%, and 15.41% than that of the LightGBM, and their 
PICPs are improved by 4.0%, 5.6%, 4.9%, and 4.2%, respec‐
tively. This is mainly because MLP and LightGBM have dif‐
ficulties in dealing with complex and non-stationary wind 
power data and meteorological factors. Besides, the perfor‐
mances of GCN and Bi-LSTM are limited and unable to be 
further improved, since GCN can only consider spatial fea‐
tures and ignore temporal features, while Bi-LSTM can only 
account for temporal features and neglect spatial features. 
Note that the GNN in [21] consists of both GCN and 
LSTM, while the proposed method replaces LSTM with Bi-
LSTM. The performance of the proposed method is better 
than that of the traditional GNN in [21], which shows that 

Bi-LSTM has stronger ability to model temporal features 
than traditional LSTM.

3) An ablation study: to verify if the proposed method has 
the ability to capture spatiotemporal features from wind pow‐
er data, an ablation study is conducted to analyze how each 
part (i. e., GCN and Bi-LSTM) of the proposed method 
works. The average CWCs of two datasets with 90% and 
95% PINCs are visualized in Fig. 11.

It is clear that the proposed method based on the spatio‐
temporal features has a smaller CWC than others based on a 
single feature, implying that the proposed method is able to 
model spatiotemporal features from wind power data and me‐
teorological factors accurately. For instance, for the first data‐
set with 90% PINC in summer, the CWC of the proposed 
method is reduced by approximately 12.10% compared with 
the Bi-LSTM that considers only temporal features. The 
CWC of the proposed method is reduced by 16.23% for the 
first dataset with 95% PINC in summer, indicating that the 
proposed method can portray temporal dependence of wind 
power data. Compared with GCN, which considers spatial 
features and ignores temporal features, for the first dataset 
with 90% PINC and 95% PINC in summer, the CWCs of 
the proposed method are decreased by approximately 6.03% 
and 21.95%, respectively, implying that the proposed method 
can portray spatial dependence well.

Further, the time complexity is tested by performing each 

TABLE V
AVERAGE METRICS OF DIFFERENT PREDICTION METHODS WITH DIFFERENT PINCS

Dataset

First

Second

Season

Spring

Summer

Autumn

Winter

Spring

Summer

Autumn

Winter

PINC 
(%)

90

95

99

90

95

99

90

95

99

90

95

99

90

95

99

90

95

99

90

95

99

90

95

99

MLP

PICP 
(%)

80

92

99

91

93

100

83

87

91

85

95

98

79

88

96

87

94

100

83

92

99

87

95

99

PINAW
(p.u.)

0.282

0.456

0.780

0.144

0.434

0.496

0.217

0.368

0.562

0.312

0.499

0.688

0.302

0.448

0.717

0.329

0.427

0.784

0.329

0.414

0.714

0.255

0.408

0.637

CWC 
(p.u.)

0.751

0.980

1.574

0.144

0.903

0.496

0.518

0.921

1.397

0.712

1.010

1.405

0.820

1.097

1.569

0.714

0.878

0.784

0.805

0.887

1.440

0.560

0.825

1.277

LightGBM

PICP 
(%)

80

94

98

92

99

100

81

89

95

81

91

99

81

86

96

95

98

100

83

90

98

87

91

99

PINAW
(p.u.)

0.286

0.449

0.769

0.135

0.270

0.464

0.205

0.340

0.550

0.262

0.412

0.710

0.320

0.415

0.633

0.396

0.509

0.764

0.287

0.388

0.644

0.251

0.339

0.596

CWC 
(p.u.)

0.753

0.913

1.561

0.135

0.270

0.464

0.522

0.827

1.215

0.681

0.921

0.710

0.815

1.083

1.375

0.396

0.509

0.764

0.692

0.893

1.328

0.550

0.761

1.207

GCN

PICP 
(%)

84

91

99

94

98

100

87

91

98

83

92

99

81

89

98

93

98

99

84

94

98

88

94

98

PINAW
(p.u.)

0.316

0.407

0.726

0.116

0.205

0.387

0.211

0.330

0.564

0.284

0.419

0.695

0.306

0.447

0.652

0.372

0.518

0.741

0.295

0.428

0.645

0.236

0.370

0.461

CWC 
(p.u.)

0.738

0.900

1.456

0.116

0.205

0.387

0.462

0.740

1.166

0.695

0.911

0.695

0.779

1.048

1.352

0.372

0.518

0.741

0.692

0.877

1.312

0.502

0.751

0.951

Bi-LSTM

PICP 
(%)

86

92

98

93

97

100

82

92

98

84

88

99

79

88

98

92

97

100

80

92

97

83

92

99

PINAW
(p.u.)

0.290

0.404

0.668

0.124

0.191

0.406

0.158

0.376

0.469

0.285

0.348

0.697

0.275

0.413

0.643

0.363

0.485

0.748

0.248

0.388

0.605

0.200

0.333

0.586

CWC 
(p.u.)

0.648

0.865

1.386

0.124

0.191

0.406

0.391

0.803

0.964

0.672

0.833

0.697

0.762

1.005

1.324

0.363

0.485

0.748

0.666

0.850

1.290

0.489

0.711

0.586

GNN

PICP 
(%)

85

92

98

92

97

100

83

92

98

83

90

99

79

87

98

92

97

100

80

92

97

84

93

99

PINAW
(p.u.)

0.285

0.394

0.645

0.121

0.175

0.383

0.16

0.333

0.464

0.271

0.329

0.672

0.281

0.394

0.64

0.354

0.477

0.742

0.248

0.39

0.612

0.223

0.332

0.579

CWC 
(p.u.)

0.649

0.861

1.313

0.121

0.175

0.383

0.386

0.716

0.954

0.656

0.760

0.672

0.758

0.973

1.323

0.354

0.477

0.742

0.653

0.841

1.285

0.483

0.699

0.579

Proposed method

PICP 
(%)

84

91

99

92

98

100

84

93

98

82

92

99

81

87

97

92

97

99

83

93

98

90

94

99

PINAW
(p.u.)

0.274

0.371

0.627

0.109

0.160

0.314

0.164

0.268

0.457

0.236

0.316

0.612

0.283

0.372

0.631

0.323

0.445

0.716

0.262

0.391

0.585

0.234

0.331

0.562

CWC 
(p.u.)

0.637

0.822

1.262

0.109

0.160

0.314

0.383

0.571

0.930

0.579

0.692

0.612

0.725

0.926

1.318

0.323

0.445

0.716

0.635

0.823

1.199

0.474

0.676

0.562
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method 30 times. Specifically, the samples from the first da‐
taset in spring are used as a simple example. The average 
training time (i. e., the time to train a model) and inference 
time (i. e., the time to obtain PIs of a sample using the 
trained model) of different methods are listed in Table VI.

The training time of the proposed method is relatively 
long, which is the main disadvantage of the proposed meth‐
od. It has to be mentioned that a few minutes of training 
time is acceptable in practical engineering. In addition, the 

inference time of each method is far less than 1 s, which can 
meet the real-time requirement of ultra-short-term prediction 
of wind power.

E. Interval Prediction with Different Time Horizons

In fact, the multi-step wind power interval prediction with 
one-hour-ahead and two-hour-ahead has been implemented 
to obtain satisfactory PIs based on the proposed method. Be‐
sides wind power interval prediction with the hourly hori‐
zon, the wind farm controller and transmission system opera‐
tor are also highly interested in intra-hour PIs. For example, 
the 30-min measures are indispensable to reserve dispatch, 
continuous generation, wind farm control, and so on. In addi‐
tion to the 1-hour time horizon in previous sections, this sub‐
section further tests the performance of the proposed method 
for different look-ahead horizons, e.g., 0.5, 1.5, and 2 hours, 
and average prediction results of the test set with 95% PINC 
are given in Table VII.

From Table VII, it can be found that the CWC of each 
method increases as the prediction horizon becomes larger. 
This is because the uncertainty of wind power intensifies 
with the prediction horizon, which leads to a larger predic‐
tion error for deterministic point prediction models. To en‐
sure sufficient PICPs, each method has to increase the width 
of PIs, which eventually results in a large CWC. Further, no 
matter how the time horizon changes, the proposed method 
can obtain the superior performance than other baselines (e.g., 
MLP, LightGBM, GCN, Bi-LSTM, and GNN) for hourly 
and intra-hourly wind power interval predictions. With suc‐
cessful application to the first dataset and second dataset in 
this paper, the proposed method can perform well for ultra-
short-term wind power interval prediction no matter whether 
the dataset includes or excludes meteorological factors, indi‐
cating the proposed method is highly flexible for various da‐
tasets with different data compositions.

Practically, the wind farm controller and transmission sys‐
tem operator are likely to focus on system-level aggregated 
wind power. In this case, historical wind power of wind 
farms and surrounding meteorological factors can be taken 
as inputs to the proposed method with high flexibility to pre‐
dict intervals of aggregated wind power based on the farm-
level information. With the high precision and flexibility, the 
proposed method provides PIs of ultra-short-term wind pow‐
er to facilitate various rise-based decision-making tasks (e.g., 
interval optimization and robust optimization of power sys‐
tems) to determine the needed reserve [35].
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Fig. 11.　Average CWCs of two datasets with different PINCs. (a) CWC of 
the first dataset with 90% PINC. (b) CWC of the first dataset with 95% 
PINC. (c) CWC of the second dataset with 90% PINC. (d) CWC of the sec‐
ond dataset with 95% PINC.

TABLE VI
AVERAGE TRAINING AND INFERENCE TIME OF DIFFERENT METHODS

Method

MLP

LightGBM

GCN

Bi-LSTM

Proposed method

GNN

Training time (s)

14.836

2.783

29.514

196.731

393.638

262.438

Inference time (s)

0.002

0.001

0.003

0.004

0.008

0.006

1111



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 4, July 2023

V. DISCUSSIONS

In this paper, the goal is to propose a new GNN and the 
improved Bootstrap technique for ultra-short-term interval 
prediction of wind power. The key factors affecting the per‐
formance of the proposed method are the standard deviations 
to be initialized in the improved Bootstrap technique.

Both theoretical analysis and simulation suggest that the 
parameter s1 should be larger than the parameter s2 to obtain 
a wide enough PIs, which can cover real values with a speci‐
fied probability (i.e., PI nominal confidence). When the pro‐
posed method is migrated into other datasets, these key pa‐
rameters can be determined by similar simulation steps in 
Section IV-B.

VI. CONCLUSION

To improve the precision of ultra-short-term prediction of 
wind power, this paper attempts to model the inputs as a 
graph from a new perspective. A GNN-based point predic‐
tion model is presented to model spatiotemporal features, 
and then an improved Bootstrap technique is proposed to ob‐
tain high-quality PIs. Through numerical simulation on two 
real-world datasets, the following conclusions are obtained.

1) The improved Bootstrap technique can effectively re‐
duce the width of PIs with negligible reduction of PICP, es‐
pecially for wind power generation curves with weak vola‐

tile regions.
2) Compared with other popular point prediction methods 

(e.g., MLP, LightGBM, GCN, Bi-LSTM, and GNN in [21]), 
the proposed method has better precision for ultra-short-term 
interval prediction of wind power under different confidence 
levels and seasons, since it can capture spatiotemporal fea‐
tures from time-series data accurately.

3) No matter how the time horizon changes, the proposed 
method can obtain the superior performance to other base‐
lines (e.g., MLP, LightGBM, GCN, Bi-LSTM, and GNN in 
[21]) for hourly and intra-hourly wind power interval predic‐
tions. Practically, the proposed method with a high precision 
and flexibility can provide high-quality PIs of ultra-short-
term prediction of wind power to facilitate various rise-
based decision-making tasks to determine needed reserves.

Although the numerical simulation results show that the 
proposed method outperforms popular baselines, it still has 
some limitations to be addressed.

1) The traditional and improved Bootstrap techniques 
have similar PIs for the strong volatile regions, since the re‐
duction of the interval width of these regions easily causes 
the PICP to drop, and the improved Bootstrap technique on‐
ly aims to reduce the width of PIs for the weak volatile re‐
gions. In future works, the Bootstrap technique can be fur‐
ther improved to target regions with strong volatility.

2) In addition to hourly and intra-hourly wind power inter‐

TABLE VII
AVERAGE METRICS OF DIFFERENT PREDICTION METHODS WITH DIFFERENT TIME HORIZONS

Dataset

First

Second

Season

Spring

Summer

Autumn

Winter

Spring

Summer

Autumn

Winter

Horizon
(hour)

0.5

1.5

2.0

0.5

1.5

2.0

0.5

1.5

2.0

0.5

1.5

2.0

0.5

1.5

2.0

0.5

1.5

2.0

0.5

1.5

2.0

0.5

1.5

2.0

MLP

PICP 
(%)

90

95

95

95

94

93

85

94

94

95

94

94

88

89

88

95

92

93

93

88

94

91

95

91

PINAW
(p.u.)

0.345

0.560

0.652

0.204

0.435

0.434

0.299

0.817

0.818

0.367

0.706

0.732

0.328

0.575

0.676

0.294

0.549

0.639

0.312

0.496

0.635

0.226

0.484

0.529

CWC 
(p.u.)

0.791

1.135

1.320

0.204

0.895

0.905

0.793

1.685

1.692

0.738

1.468

1.499

0.791

1.339

1.616

0.596

1.192

1.359

0.659

1.206

1.298

0.497

0.971

1.163

LightGBM

PICP 
(%)

94

94

95

98

97

95

87

86

93

92

91

93

89

89

87

99

98

97

92

94

89

94

93

93

PINAW
(p.u.)

0.336

0.542

0.630

0.198

0.355

0.384

0.314

0.428

0.580

0.285

0.524

0.628

0.325

0.573

0.647

0.394

0.601

0.668

0.301

0.537

0.536

0.225

0.464

0.545

CWC 
(p.u.)

0.690

1.112

1.272

0.198

0.355

0.384

0.786

1.104

1.222

0.610

1.162

1.335

0.772

1.359

1.592

0.394

0.601

0.668

0.645

1.101

1.279

0.468

0.974

1.149

GCN

PICP 
(%)

90

90

88

98

98

98

91

89

89

92

88

88

86

85

85

99

97

96

92

94

90

95

95

95

PINAW
(p.u.)

0.296

0.498

0.572

0.148

0.252

0.293

0.205

0.456

0.513

0.302

0.458

0.535

0.287

0.496

0.600

0.375

0.591

0.659

0.300

0.511

0.563

0.267

0.481

0.577

CWC 
(p.u.)

0.670

1.130

1.368

0.148

0.252

0.293

0.462

1.061

1.202

0.645

1.114

1.311

0.747

1.336

1.570

0.375

0.591

0.659

0.646

1.045

1.282

0.535

0.972

1.158

Bi-LSTM

PICP 
(%)

92

92

93

98

98

97

93

89

88

91

93

94

89

86

86

98

96

95

88

88

95

96

92

95

PINAW
(p.u.)

0.285

0.489

0.565

0.151

0.237

0.276

0.196

0.425

0.491

0.228

0.518

0.624

0.312

0.523

0.576

0.373

0.576

0.624

0.259

0.434

0.619

0.266

0.439

0.583

CWC 
(p.u.)

0.614

1.055

1.202

0.151

0.237

0.276

0.412

0.997

1.182

0.503

1.082

1.290

0.726

1.338

1.484

0.373

0.576

0.624

0.619

1.049

1.252

0.266

0.959

0.583

GNN

PICP 
(%)

92

91

90

98

97

96

92

88

88

92

91

89

88

86

85

98

96

95

91

91

93

95

93

95

PINAW
(p.u.)

0.274

0.476

0.527

0.148

0.229

0.271

0.189

0.387

0.468

0.221

0.428

0.543

0.301

0.497

0.563

0.355

0.548

0.614

0.269

0.465

0.593

0.256

0.431

0.562

CWC 
(p.u.)

0.597

1.049

1.200

0.148

0.229

0.271

0.406

0.936

1.149

0.479

0.951

1.269

0.726

1.280

1.477

0.355

0.548

0.614

0.591

1.039

1.252

0.256

0.915

0.562

Proposed method

PICP 
(%)

93

92

91

97

97

96

92

87

88

92

91

91

87

86

86

98

96

95

93

94

93

95

94

95

PINAW
(p.u.)

0.268

0.450

0.511

0.125

0.196

0.226

0.180

0.349

0.414

0.212

0.406

0.550

0.284

0.470

0.548

0.313

0.452

0.596

0.274

0.495

0.596

0.230

0.435

0.525

CWC 
(p.u.)

0.569

0.977

1.149

0.125

0.196

0.226

0.388

0.870

0.996

0.454

0.891

1.227

0.700

1.220

1.390

0.313

0.452

0.596

0.579

1.027

1.240

0.230

0.884

0.525
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val predictions, the proposed method may be extended to 
wind power prediction with a longer time horizon.

3) The widely-used PICP, PINAW, and CWC are used to 
test the performance of the proposed method. In the future, 
more metrics (e.g., pinball loss, Winkler score, and continu‐
ous ranked probability score) can also be used for further 
evaluation of models.
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