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Abstract—Reliable and accurate ultra-short-term prediction
of wind power is vital for the operation and optimization of
power systems. However, the volatility and intermittence of
wind power pose uncertainties to traditional point prediction,
resulting in an increased risk of power system operation. To
represent the uncertainty of wind power, this paper proposes a
new method for ultra-short-term interval prediction of wind
power based on a graph neural network (GNN) and an im-
proved Bootstrap technique. Specifically, adjacent wind farms
and local meteorological factors are modeled as the new form
of a graph from the graph-theoretic perspective. Then, the
graph convolutional network (GCN) and bi-directional long
short-term memory (Bi-LSTM) are proposed to capture spatio-
temporal features between nodes in the graph. To obtain high-
quality prediction intervals (PIs), an improved Bootstrap tech-
nique is designed to increase coverage percentage and narrow
PIs effectively. Numerical simulations demonstrate that the pro-
posed method can capture the spatiotemporal correlations from
the graph, and the prediction results outperform popular base-
lines on two real-world datasets, which implies a high potential
for practical applications in power systems.

Index Terms—Wind power, graph neural network (GNN), bi-
directional long short-term memory (Bi-LSTM), prediction in-
terval, Bootstrap technique.

1. INTRODUCTION

ORMALLY, the ultra-short-term prediction of wind

power refers to the estimation of wind power with the
time horizon, which ranges from a few minutes to several
hours [1]. Ultra-short-term prediction of wind power has a
significant impact on the safe and economic operation (e.g.,
real-time dispatch planning) of power systems because of
the risks associated with their fluctuation and intermittence
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[2]. Therefore, there is a need to develop accurate ultra-short-
term prediction methods of wind power [3].

Generally, ultra-short-term prediction of wind power con-
sists of two components: deterministic point prediction and
error estimation. The works of deterministic point prediction
fall under three headings: physical methods, statistical meth-
ods, and artificial intelligence (AI) based methods.

1) Physical methods rely on the information of surround-
ing wind field (e.g., obstacle, surface roughness, and terrain)
and numerical weather prediction (NWP) data (e.g., humidi-
ty, pressure, wind speed, and temperature) to model the rela-
tionship between wind power and wind speeds [4]. The phys-
ical methods are suitable for ultra-short-term prediction of
new wind farms or wind turbines, since historical data are
not required to train the model. However, the detailed physi-
cal parameters and NWP data bring a severe computational
burden [5]. In addition, wrong meteorological parameter is
easy to accumulate errors of the physical methods, which se-
riously affects the prediction accuracy.

2) Statistical methods mainly include auto-regressive
(AR), auto-regressive integrated moving average (ARIMA),
auto-regressive moving average (ARMA), and gray methods
[6], which employ historical wind power to predict future
wind power. Although the calculation speeds of these meth-
ods are very fast, most of them have limited prediction accu-
racy, especially for the wind power generation curves with
strong stochastic nature (e.g., prominent peaks and steep
ramps). This is because these methods ignore the correlation
between wind power and meteorological factors [7].

3) Support vector machine (SVM), light gradient boosting
machine (LightGBM), and multi-layer perceptron (MLP) are
widely-used Al-based methods for ultra-short-term prediction
of wind power in the last 20 years [8]. Compared with physi-
cal methods, SVM, LightGBM, and MLP are more cost-ef-
fective, but they have difficulty in capturing the temporal
correlation of wind power generation curves accurately. To
solve this problem, a variety of deep neural networks
(DNNs) have been proposed recently. In particular, recurrent
neural networks (RNNs) [9], such as long short-term memo-
ry (LSTM) and gated recurrent unit (GRU), have shown out-
standing performance in modeling the temporal dependence
of wind power generation curves, which significantly im-
proves the ultra-short-term prediction accuracy of wind power.
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The traditional point prediction aims to generate determin-
istic prediction values, which cannot represent the prediction
error caused by various reason such as volatility and inter-
mittence of wind power. Further, interval prediction is one
of the mainstream ways to estimate the error by adding low-
er and upper boundaries to each deterministic prediction val-
ue. The popular methods to construct prediction intervals
(PIs) mainly include the Delta [10], Bayesian [11], Gaussian
[12], mean-variance estimation [13], lower upper bound esti-
mation (LUBE) [14], and Bootstrap technique [15]. Specifi-
cally, the first four methods [10]-[13] are restricted with
specified probability distributions of prediction errors as-
sumed artificially, since numerous factors (e.g., input data,
point prediction model, and time horizon of prediction) af-
fect the probability distribution of prediction error, which is
difficult to be formulated accurately in most cases. The
LUBE employs a DNN with two outputs to calculate the
lower and upper boundaries of PIs, but the design of loss
functions suitable for the gradient descent method remains a
challenge when training the DNN [16]. The Bootstrap tech-
nique is a flexible and efficient way, which iteratively resam-
ples historical prediction errors to generate PIs without any
distribution assumptions of prediction errors. So far, the
Bootstrap technique has been widely used for interval predic-
tion of renewable energy sources and loads because of its
simple process and outstanding performance [17]. All the
same, a great limitation of the traditional Bootstrap tech-
nique remains to be solved. For each prediction value, the
Bootstrap technique has a very close PI width. In theory, if
the number of resamples is infinite, the PI width of each pre-
diction is the same. Ideally, the perfect PIs should be narrow
when the prediction error is small, and PIs should be wide
when the prediction error is large. In other words, the simi-
lar widths of PIs constructed by the traditional Bootstrap
technique have difficulty in balancing the coverage percent-
age and width of PIs.

In a broad sense, the inputs of wind power prediction
should be considered as a graph [18]. Specifically, geographi-
cally adjacent wind farms and local meteorological factors
are represented as nodes of the graph whose adjacency ma-
trix can represent the spatial correlation between nodes. His-
torical data are the features of nodes, which can model the
temporal correlation of time series. However, the traditional
point prediction models (e.g., MLP, LightGBM, and LSTM)
defined in the Euclidean domain cannot deal with the graph,
so few publications have been oriented from a graph perspec-
tive in the past few years. Usually, traditional point predic-
tion models have to simplify the graph into Euclidean data
by ignoring the adjacency matrix, which adversely affects
the prediction accuracy. This simplification makes it difficult
for the traditional point prediction models defined in the Eu-
clidean domain to capture the spatial correlation between
multiple adjacent wind farms, limiting the prediction accura-
cy.

There has been increasing interests in generalizing tradi-
tional DNNs into graph neural networks (GNNs) in recent
years. In particular, graph convolutional networks (GCNs)
have been widely used in different fields (e.g., link predic-
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tion, drug synthesis, and traffic flow prediction) due to their
superiority in modeling the spatial correlation between nodes
[19]. Although GNNs have great potential for wind power
prediction whose inputs are regarded as a graph, the applica-
tions of GNNs for wind power prediction are relatively limit-
ed. In [20], GCNs are applied to model the relationships be-
tween offshore wind farms. To capture spatial and temporal
correlations between multiple wind nodes, a GCN and an
LSTM are integrated in [21] and [22]. However, these previ-
ous publications [18], [20]-[22] only model adjacent wind
farms as nodes and ignore meteorological factors. In other
words, they are not suitable for ultra-short-term prediction
considering meteorological factors for individual wind farm.
Besides, they do not involve the uncertainty of wind power.
Especially, GNNs have rarely been applied to interval predic-
tion such as ultra-short-term interval prediction of wind pow-
er.

Based on the above discussion, this paper proposes a nov-
el GNN-based point prediction model and an improved Boot-
strap technique for ultra-short-term interval prediction of
wind power. Specifically, a GCN is employed to model the
spatial correlation between nodes, and a more recent ad-
vanced model named bi-directional long short-term memory
(Bi-LSTM) is utilized to capture the temporal correlation of
time-series curves. Then, an improved Bootstrap technique is
designed to balance the coverage percentage and width of
PIs. Finally, the effectiveness of the proposed method is veri-
fied through real datasets. The main difference between this
paper and previous publications involving GNNs lies in:

1) The nodes are generalized from adjacent wind farms in-
to both wind farms and meteorological factors.

2) Different from previous publications [21], [22] without
considering the uncertainty of wind power, this paper ex-
tends the GNN from point prediction into the interval predic-
tion to account for the uncertainty.

3) The performance of point prediction model is improved
by applying bidirectional learning techniques into the tradi-
tional LSTM, i.e., Bi-LSTM replaces the traditional LSTM
to capture temporal correlations.

The key contributions of this paper are summarized as fol-
lows.

1) Without simplifying the inputs of ultra-short-term pre-
diction of wind power into Euclidean data, this paper innova-
tively attempts to model the inputs as the new form of a
graph from a graph-theoretic perspective. The spatial correla-
tion between nodes is represented by an adjacency matrix.
The historical data are viewed as the features of nodes to de-
scribe the temporal correlation of the wind power generation
curves and meteorological factors.

2) To improve the accuracy of the point prediction, a nov-
el GNN combining the GCN and Bi-LSTM is proposed to
capture spatiotemporal correlations without artificial feature
engineering.

3) As a flexible and efficient way, the improved Bootstrap
technique is proposed to balance the coverage percentage
and width of PIs. Besides, it is free of any distribution as-
sumptions of prediction errors.

4) Extensive numerical simulations on two real-world data-
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sets are performed to validate the effectiveness of the pro-
posed method for ultra-short-term interval prediction of wind
power.

The rest of this paper is organized as follows. Section II
proposes a novel GNN for wind power prediction. Section
IIT presents the improved Bootstrap technique and introduces
the commonly-used evaluation indices of PlIs. Section IV
tests the proposed method and popular baselines on real data-
sets. Section V discusses the proposed method. Finally, the
conclusion is given in Section VI.

II. A NOVEL GNN FOR WIND POWER PREDICTION

Normally, interval prediction includes two steps: determin-
istic point prediction and error estimation. In this section,
the predictive information (i.e., wind power of multiple wind
farms and nearby meteorological factors) is represented as
an undirected graph. Then, a GCN and a Bi-LSTM are inte-
grated to model spatiotemporal correlations for point predic-
tions, whose prediction errors are represented in the next sec-
tion through the improved Bootstrap technique.

A. Problem Definition

Normally, ultra-short-term prediction of wind power is per-
formed using wind power of multiple wind farms and sur-
rounding meteorological factors as inputs to a point predic-
tion model. In other words, each wind farm is represented
by its wind power, rather than the physical model.

As one of the innovations, this subsection employs a sim-
ple undirected graph G=(V,E) to represent multiple wind
farms and surrounding meteorological factors [23] (e. g.,
wind speed, temperature, and humidity), as shown in Fig. 1.
Note that meteorological factors are generally collected from
the supervisory control and data acquisition (SCADA) sys-
tem or surrounding weather stations. Specifically, the wind
power of the wind farm is viewed as a real node, and each
meteorological factor is considered as a virtual node. All
nodes of this undirected graph can be represented as V=
{vl,vz, cens vn}, where v, is the i" node; and # is the total num-
ber of real nodes and virtual nodes. The features at time ¢ of
the graph can be expressed as Xf= {X,”',X,VZ, ...,X,V"}, where
X" is the feature of the i" node at time .

e Wind power of wind farm (real node); - Correlation coefficient (edge)
© Meteorological factor (virtual node)

Fig. 1. Simple undirected graph to represent multiple wind farms and sur-
rounding meteorological factors.

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 4, July 2023

In practice, the predictive information is not always avail-
able. For example, some datasets without meteorological fac-
tors only include real nodes, and some datasets with one
wind farm and surrounding meteorological factors only in-
clude a real node and multiple virtual nodes.

With respect to social networks, the correlation between
nodes is generally described by an adjacency matrix A4 con-
sisting of 0 and 1, where 0 means there is not an edge; and
1 means there is an edge. Similarly, the adjacency matrix of
graph for wind farms and surrounding meteorological factors
can be emulated with a correlation matrix C € R"*" to model
the spatial dependence between nodes. There may exist dif-
ferent ways to construct graphs, which may be explored in
future works due to page limits. For example, multiple wind
farms can be constructed as a directed graph if the dataset in-
cludes only wind power without meteorological factors.
However, the inputs of wind power prediction normally in-
clude wind power and meteorological factors. The wind pow-
er of the wind farm is viewed as a real node, and each mete-
orological factor is considered as a virtual node. It is diffi-
cult to describe the direction between real nodes and virtual
nodes. Therefore, the undirected graph is constructed to de-
scribe the correlation (i.e., edge) between nodes.

As a simple example, the widely-used Pearson correlation
coefficient C(v,,v;,7) is employed to represent the distance
(i.e., edge) between the i" node and the /" node at time ¢ as:

i
z(/\,lv_,l_)?v,)(le_,[_Xv,)

h
/E(Xtv—'z_iv‘y ;(Xtv—’l_iv/)z

=0

C(vvt) = (1)

=

where X", and X,”, are the historical features of the i" and
the /™ nodes at time ¢—/, respectively; and X" and X" are
the average features of the i" and the ;™ nodes from time ¢—
h to time ¢, respectively. Note that the correlation matrix is
time-varying with features of the graph.

So far, the inputs of the point prediction model have been
modeled as an undirected graph to capture the correlation be-
tween wind farms and surrounding meteorological factors.

Ultra-short-term point prediction aims to predict the wind
power of the i wind farm at time 7+ based on the histori-
cal features from time #—/ to time ¢ and its correlation ma-
trix C(f). The outputs and inputs of GNNs can be expressed
as (2) and (3), respectively.

X,=GNN (€ (), Xeuue ) )
Xfeature: (th’Xt%I’ ’Xt%h) (3)

Vr

where k is the time horizon; )A(H ; 1s the predicted wind pow-
er of the i" wind farm at time ¢+k; and X, € R"*" is the
feature matrix of the graph from time #—#/ to time ¢, and
each node has 4 features. Note that (2) represents one-step
prediction, which can be generalized into multi-step predic-
tion by modifying k and training multiple models.

In the next subsections, a novel GNN is proposed to mod-
el the spatiotemporal correlations of wind farms and meteo-
rological factors, as shown in Fig. 2. Firstly, the correlation
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matrix and feature matrix of nodes are used as inputs of
GCN layers to represent topological information of the
graph for modeling the spatial features [24]. Then, the time
series with spatial features obtained from the GCN are fed
into Bi-LSTM layers, which capture temporal features
through information transmission among input gate, a forget
gate, an output gate, and a cell state. In the end, two dense
layers are employed to output X,",.

c o] [xE] ] [XE] [ dopus |

::::12::::_::::::::::Iﬁ:::::i::::

' |GCN|—>|GCN|—>| |—>| GCN| | Spatial feature IE
|

::::::::::::::::::l:::::i::::
E |Dense‘ | Prediction I'
:i:iii:iii:iii:iii:iii:iilﬁ:iii:iii:iii:
| [ X% ] | Outputs |

Fig. 2. Framework of proposed GNN.

B. GCN

It is a vital issue to model the complex spatial dependen-
cies between nodes for ultra-short-term prediction of wind
power. Traditional CNN can only extract local spatial fea-
tures of data (e.g., images) defined in the Euclidean domain,
while the input data of ultra-short-term prediction of wind
power are a graph rather than 2-dimensional matrices, which
means that traditional CNN cannot capture complex topologi-
cal information and spatial dependencies between nodes of
the graph. Fortunately, the traditional CNN has been extend-
ed into the GCN defined in the graph domain to handle
graph-structured data, and has received more and more atten-
tion because of its powerful performances.

There are many variants of GCN, which is mainly classi-
fied into two broad categories [25]: spectral-based GCN and
spatial-based GCN. Among them, the spectral-based GCN
maps the graph to a new space through the Fourier trans-
form, and performs convolutional operations in the new
space, just like the traditional CNN. Then, the data are
mapped back to the graph domain to obtain spatial features.
The calculation process of spatial-based GCN is relatively
simple, since it directly defines convolutional operation
based on the spatial correlation of nodes in the graph do-
main. In general, both spatial-based GCN and spectral-based
GCN are developing and evolving rapidly, and it is difficult
to identify which one performs better. Compared with the
spatial-based GCN, the spectral-based GCN is more widely
used because it was proposed ecarlier. Without loss of gener-
ality, the popular spectral-based GCN is employed to obtain
the spatial features of inputs.

Given a correlation matrix C(f) and a feature matrix
Xpeares the graph convolutional layer captures the spatial fea-
tures between nodes through its first-order polynomial in the
Laplacian after constructing a filter in the Fourier domain.
As shown in Fig. 3, a spectral-based GCN generally consists
of multiple graph convolutional layers, which can be repre-
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sented as:
Hin=oCHEWE) sy
Hg)éN = Xfeature
o L1
C=D :CD 2
C=C+I (5)
D.

where I is the identity matrix; € is a new form of correla-
tion matrix with self-loop (the correlation matrix of each
graph convolutional layer is the same); D is the degree ma-
trix of the correlation matrix; n, is the number of graph con-
volutional layers; o,() is the activation function of graph
convolutional layers; W, represents the parameters to be
optimized through supervised training of the /" graph convo-
lutional layer; and H{., represents the outputs. Note that the
time series with spatial features obtained from the GCN are
considered as inputs of the Bi-LSTM in the following sub-
section.

Graph convolution
layer

Graph convolution
layer

Inputs

%&5

C(t)s Xl‘

eature

Outputs

+...*@D

()
H G’::‘N

(1) )
Hgex Hex

Fig. 3. Framework of spectral-based GCN consisting of multiple graph
convolutional layers.

C. Bi-LSTM

Another key issue to ultra-short-term prediction of wind
power is modeling temporal dependence. Traditional DNNs
(e.g., MLP) are incompatible for modeling time-series data,
while RNN is a very promising algorithm, which is profi-
cient in processing time-series data such as audio signals.
Considering the traditional RNN involves vanishing gradient
problems, some excellent variants have been proposed and
show outstanding performance in different fields [26]. There-
fore, a recent advanced variant (e.g., Bi-LSTM layers) is em-
ployed to capture temporal features of time series from the
last GCN layer.

Figure 4 shows the structure of a simple LSTM unit,
which consists of an input gate, a forget gate, an output
gate, and a cell state. The cell state memorizes the values
over different time lengths, and the above-mentioned three
gates adjust the data flow into and out of the cell state. The
relationship between input and output of LSTM is as follows.
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Fig. 4. Structure of LSTM unit.

C . =o(We [H .H,_]+B)
F=o(W, [H _.H,_ ]+B,)
0=0(Wo [H .H,_]+B,) ©
L=o(W, [H .H_]+B)

C.=F0OC,, +10C,,

H,=000,(C_,)

where O,, I,, F, and C~'L_’t are the activation vectors of the
output gate, input gate, forget gate, and cell input activation,
respectively; o,(-) and o, () are the sigmoid function and hy-
perbolic tangent function, respectively; W, is the weight of
the output gate; W, is the weight of the forget gate; W, is
the weight of the cell state; W, is the weight of the update
gate; By, B, B,, and B. are the bias vectors of the forget
gate, input gate, output gate, and cell state, respectively; H,
is the latent state vector at time #; X| , is the feature informa-
tion at time #; C_, is the cell state vector at time ¢ and O is
the Hadamard product.

Bidirectional learning is a widely-used technique to im-
prove the prediction accuracy of traditional LSTM for se-
quence learning tasks, since the output of time-series predic-
tion is not the only product of the previous input data, but a
continuously correlated component. Bidirectional learning
can help LSTM capture the temporal features in bidirection-
al aspects (i.e., the forward and reverse paths), while tradi-
tional LSTM is trained to model temporal features in one-
way data flow (i.e., the forward path) only. The LSTM with
bidirectional learning technique shows higher performance
than traditional LSTM in various sequence learning tasks
such as audio signal processing. Therefore, the Bi-LSTM is
presented to capture the temporal features of time series
from the last GCN layer.

As shown in Fig. 5, the forward LSTM is used to model
the relationship among feature information at time ¢, latent
state vector at time ¢—1, and the cell state vector at time
t—1, while the backward LSTM is employed to combine the
feature information at time ¢, latent state vector at time ¢+ 1,
and cell state vector at time ¢+ 1. The mathematical equa-
tions of the Bi-LSTM are expressed as:

ﬁt:LSTM(HI—I’CL,tfl’XLJ)
ﬁt:LSTM(H CL,1+17XL,t)

t+12

(7
HBi_tzoBi(ﬁ,,I;t)
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where ﬁt is the latent state vector at time ¢ of the forward

LSTM; ﬁ, is the latent state vector at time ¢ of the backward
LSTM; Hy; , is the latent state vector at time ¢ of the Bi-
LSTM; and oy (-) is a mathematical operator (e.g., summa-
tion, multiplication, and concatenation) that is used to com-
bine P}, and ﬁt.

Structure of Bi-LSTM unit.

Fig. 5.

D. Dense Layer

Finally, the temporal features obtained from multiple Bi-
LSTM layers are used as the inputs of a dense layer at the
end of the GNN, which outputs the predicted wind power of
the i™ wind farm at time ¢+ k:

sz#k:%(Xde"‘Bd) (8)

where X, is the vector of inputs of the dense layer; W, and
B, are the vectors of weights and biases of the dense layer,
respectively; and o, (-) is the activation function of the dense
layer.

III. CONSTRUCTION OF PIS

A deterministic point prediction model is proposed in the
previous section. In this section, the traditional Bootstrap
technique is improved to represent the prediction errors us-
ing narrow PIs. Then, several evaluation indices of PIs are
presented.

A. Traditional Bootstrap Technique

A traditional deterministic point prediction only provides a
single point that hides the error of wind power from noises
of the dataset and the model itself, while interval prediction
is an effective way to quantify the uncertainty through a low-
er and upper boundary. The PIs surround the prediction val-
ue from the deterministic point prediction model and cover
the real value with high probability.

Bootstrap is a robust technique for error estimation, which
can be used to generate PIs without making any assumption
about the functional form of the probability distribution of
prediction errors. Specifically, the construction of Pls for ul-
tra-short-term prediction of wind power using the traditional
Bootstrap technique mainly includes two steps [27].

1) Error Estimation of Training Set

A pre-trained point prediction model and real wind power
are used to obtain the prediction errors of the training set.
Then, the prediction errors of the training set are employed
to construct the PIs of point predictions for the test set. In
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particular, the prediction errors of the training set are ran-
domly sampled n, times into the group 1, where n, is the
number of Bootstrap repeats, which should be large enough
to ensure meaningful statistics. Ideally, the Bootstrap repeats
are often hundreds or thousands given the time resources. In
this paper, n, is 5000. A prediction error is obtained for each
sampling process. Note that the Bootstrap technique allows a
prediction error of the training set to be sampled more than
once (i.e., sampling with replacement).
2) Construction of Pls

The prediction errors in group 1 are sorted in descending
order, and the values at the given percentile a are considered
as the PI nominal confidence (PINC). For instance, when a
is equal to 0.9, a confidence interval of 90% PINC can be
obtained by selecting the errors at the 95% percentile as the
upper boundary and the 5% percentile as the lower boundary.

B. Improved Bootstrap Technique

Although Bootstrap is a widely powerful and applicable
statistical technique for quantifying uncertainty, its PIs are
too conservative. Figure 6 presents a simple example of
wind power interval prediction with a prediction time hori-
zon of 1 hour, which includes a real wind power generation
curve, point predictions generated from the GNN, and PIs
constructed from traditional Bootstrap technique.

15

The width of PIs
is too wide

The width of PIs
is too wide

Wind power (MW)

108

Time (hour)
PIs; — Real value; — Point prediction

Fig. 6. A simple example of wind power interval prediction.

For each wind power, the traditional Bootstrap technique
constructs PIs with a fixed interval width. The wide PIs are
suitable for the periods when the wind power generation
curve is highly volatile, as shown in the area surrounded by
a rectangular. However, these fixed PIs are obviously too
wide for wind power with small volatility (e.g., the area en-
closed by ellipses), which will lead to the lack of concentra-
tion of PIs. Too wide PIs are also called conservative PIs,
that is when wide PIs are used for risk-based decision-mak-
ing (e.g., interval optimization) of power systems, their solu-
tions require more reserve capacity of generation sides, giv-
ing a negative impact on economics. In short, the fixed Pls
of the traditional Bootstrap technique is a great limitation,
which remains to be solved.

Ideally, appropriate PIs should be narrow when the wind
power is weakly volatile, as weak volatility tends to imply
small prediction errors. Relatively, PIs should be wide, when
wind power is highly volatile, because highly volatile often
means large prediction errors. To evaluate the volatility of
predicted wind power at time ¢+, the widely-used standard
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deviation is employed as:

Ste=Std (XX K ) ©)

where S;7, is the standard deviation of predicted wind power
of the i" wind farm from time t+k—g to time t+k Note
that the size of ¢ is determined to be 7 in this paper by ana-
lyzing the Pearson correlation coefficient between standard
deviation and prediction errors. For other datasets, g may
vary, but it can also be determined by analyzing the Pearson
correlation coefficient.

In the previous paragraph, the standard deviations of point
predictions are employed to reflect the volatility and predic-
tion errors of wind power. In other words, if the standard de-
viation is large, the prediction error is also large. If the stan-
dard deviation is small, the prediction error is also small.

To valid the relationship between the prediction errors and
the standard deviation of point predictions, the proposed
GNN is used to obtain point predictions for the test set.
Then, the standard deviation of each point prediction is cal-
culated by (9), and the prediction error of each point predic-
tion can be obtained by calculating the absolute error. Final-
ly, the standard deviation of each point prediction is consid-
ered as the x-axis, and the prediction error of each point pre-
diction is regarded as the y-axis, as shown in Fig. 7.

£l :

= .

g ¢ o

E ¢ o, °

o .

.8 e%ee® o . .

o °

2 , :

: Al T A .
0.06 0.09 0.12 0.15

Standard deviation (p.u.)

Fig. 7. Prediction error and standard deviation.

From Fig. 7, the following conclusions can be found.

1) When the standard deviation is small (i.e., the volatility
is weak), the point prediction errors are also small. In other
words, a small standard deviation implies a small prediction
error. For example, for the region surrounded by ellipses in
Fig. 7, the standard deviation of point prediction is tiny, cor-
responding to a very small prediction error.

2) As the standard deviation becomes larger, some large
prediction errors start to appear, and the large prediction er-
rors are distributed at the locations where the standard devia-
tion is greater than 0.03 p.u.. At these points, PIs should be
wide to cover real values.

Generally, point prediction errors are strongly correlated
with standard deviations, which should have the potential to
guide the design of PIs. In brief, when the standard devia-
tions of point predictions are small, the PIs should be nar-
row, because the prediction errors are small. When the stan-
dard deviations of point predictions are large, the PIs should
be wide, since the prediction error may be large.

Based on the above analysis, this paper improves the tradi-
tional Bootstrap technique using standard deviation to obtain
appropriate Pls. Firstly, the prediction errors are grouped
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based on the standard deviation of point predictions. For
point predictions in the test set, standard deviations are cal-
culated to determine which group they belong to. Then, this
paper resamples the prediction errors from the same grouped
validation set for point predictions of the test set.

A vivid explanation is that the improved Bootstrap tech-
nique narrows the PIs of the ellipse-enclosed regions in Fig.
6 without changing the PIs of the other areas. The specific
implementation steps of the improved Bootstrap technique
are as follows.

1) Grouping Prediction Errors and Standard Deviation of
Validation Set

Normally, compared with the training set, prediction er-
rors of the validation set are closer to those of the test set.
Therefore, the prediction errors of validation set are used to
estimate the prediction errors of test set in the improved
Bootstrap technique. For each point prediction of the valida-
tion set, its prediction error and standard deviation are calcu-
lated. This prediction error is put into group 1. Meanwhile,
if the standard deviation is lower than s,, this prediction er-
ror is also placed in group 2. Obviously, group 2 is the prop-
er subset of group 1.

2) Group Assignment

For each point prediction of the test set, its standard devia-
tion is calculated using (9). If this standard deviation is less
than s,, assign all prediction errors in group 2 to group 3;
otherwise, assign all prediction errors in group 1 to group 3.
Then, the prediction errors in group 3 are randomly sampled
n, times, and the sampled prediction errors are put into
group 4. Note that the prediction error in group 3 can be
sampled more than once (i.e., sampling with replacement).

Theoretically, s, should be greater than s,. If s, is smaller
than s,, prediction errors of group 1 are smaller than the real
point prediction errors for the test set, so the constructed PIs
will be too narrow to cover real values.

For example, if s, is 0.01, all prediction errors in group 1
are less than 0.15, which can be observed from Fig. 7 (i.e.,
when the standard deviation is less than 0.01, the maximum
value of the prediction error is smaller than 0.15). Further, if
s, i1s 0.06 and the standard deviation of a point prediction is
0.04, the prediction errors in group 1 will be used to con-
struct the PIs according the second step of the improved
Bootstrap technique. Obviously, this is not reasonable. The
reason is that the standard deviation of the point prediction
is 0.04, and its real prediction error may be greater than 0.3,
as shown in Fig. 7. However, the maximum error in group 1
is less than 0.15, so the constructed PIs cannot cover the re-
al value.

3) Construction of Pls

The prediction errors in group 4 are sorted in descending
order, and the values at the given percentile a are considered
as the confidence interval. Specifically, the error at the
(100a.+ 100((1 — @)/2))™ percentile is the upper boundary, and
the (50(1 — @)™ percentile is the lower boundary.

For ease of understanding and reproducing the improved
Bootstrap technique, the Algorithm 1 in Appendix A shows
the codes and comments directly with MATLAB.
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C. Evaluation Indices of Pls

The evaluation of PIs is often considered in terms of reli-
ability and sharpness [2], [3]. Specifically, reliability is mea-
sured by prediction interval coverage percentage (PICP) and
sharpness is represented by prediction interval normalized av-
erage width (PINAW):

1 N
PICP= N;gi (10)

1 N
PINAW = NE(U,—L,.) (11)

i=1
where U, is the upper boundary of the i" point prediction;
and L, is the lower boundary of the i" point prediction. If the
real wind power is within Pls, g,=1; otherwise, g,=0.
Generally, the larger the PICP is, the more reliable the Pls
are. With the same PICP, a smaller PINAW indicates narrow-
er PIs and higher quality of PIs. In addition, PICP and
PINAW are two conflicting metrics, so previous research of-
ten employs the coverage width criterion (CWC) to balance
them [2], [3], [14], [28]:

CWC=PINAW (1 +y(PICP, a) e ""=) (12)
0 PICP>a
y(PICP,a) = {1 PICP < (13)

where 7 is a penalty coefficient. The larger # is, the greater
contributions of the PICP to the CWC are. Generally, # is de-
termined by the system operator. As an example, # is equal
to 5 in this paper according to [2], [3]. The smaller the
CWC is, the better the performance of interval prediction is.

IV. CASE STUDY

A. Data Description and Simulation Conditions

To fully test the performance of the proposed GNN and
improved Bootstrap technique, different features of two wind
power datasets are used for simulation and discussion. Spe-
cifically, the first dataset includes the real wind power of 16
geographically adjacent wind farms without meteorological
factors, so the first dataset can be considered as a graph with
16 real nodes whose features are the historical wind power.
The second dataset consists of real wind power of a wind
farm and local meteorological factors (e.g., wind direction,
wind speed, temperature, pressure, and density), and the sec-
ond dataset can also be viewed as a graph with 6 nodes (1
real node and 5 virtual nodes), whose features are represent-
ed by historical wind power or historical meteorological fac-
tors.

Wind power prediction is performed based on the follow-
ing information: 1) NWP information (i.e., forecasts of mete-
orological factors); (2 historical meteorological factors and
wind power. Their respective importance is highly dependent
on the predicted time horizon. The shorter the time horizon
is, the more impact historical measurements have, and vice
versa for NWP information. Normally, the equilibrium is
about 2 hours according to [29]. The NWP information for
both datasets is not available due to various reasons, so this
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paper focuses on the comparisons between the proposed
method and baselines for ultra-short-term prediction of wind
power within 2 hours. The NWP information can be easily
included as nodes to validate ultra-short-term prediction of
wind power for longer time horizon in future works.

Both datasets are collected by the National Renewable En-
ergy Laboratory [23], [30], and they have a temporal resolu-
tion of 10 min for wind power and meteorological factors.
The first dataset covers the period from March 2011 to Feb-
ruary 2012, and the second one ranges from March 2008 to
February 2009. Considering that variable weather conditions
in different seasons contribute to the uncertainties of wind
power, the proposed method is separately trained to test the
performance in different seasons, including spring (March to
May), summer (June to August), autumn (September to No-
vember), and winter (December to February). There is no op-
timal split percentage of the training set, validation set, and
test set. The commonly used rough standard splits are 80%,
10%, and 10%, where 80% of the data are used to train the
model for each season, the immediately following 10% of
the data are utilized to determine the parameters of the mod-
el, and the final 10% of the data are employed to test the
performance.

To wvalidate the performance of the proposed method,
some advanced deterministic point prediction models (e.g.,
MLP in [31], LightGBM in [8], GCN in [18], Bi-LSTM in
[14], and GNN in [21]) are employed as baselines. The pa-
rameters of these models vary slightly for different regional
and seasonal wind power datasets. In this paper, the model
parameters for the different seasons are determined by the
control variables in [32]-[34]. As a simple example, the
main parameters of each model for the first dataset in spring
are given as follows.

1) The middle layer of the MLP includes 3 dense layers,
whose numbers of neurons are 30, 35, and 20, respectively.

2) For the LightGBM, the maximum tree depth is 5, and
the number of the maximum tree leaves is 25; the number of
boosted trees is 1000, and the learning rate is 0.001; the min-
imum number in a child is 80, and the subsample ratio is
0.8.

3) The middle layer of the GCN includes 3 GCN layers,
whose numbers of output channels are 32, 16, and 16, re-
spectively.

4) The middle layer of the Bi-LSTM includes 3 Bi-LSTM
layers, whose dimensions of the output space are 25, 25, and
20, respectively.

5) As shown in Fig. 8, the middle layer of the proposed
GNN includes 2 GCN layers and 2 Bi-LSTM layers, where
the numbers of output channels of GCN layers are 32 and
16, respectively; and the dimensions of outputs of Bi-LSTM
layers are 25 and 20, respectively.

6) For the GNN in [21], its structure is similar to the pro-
posed model, but it replaces Bi-LSTM layers with traditional
LSTM layers.

Besides, the following parameters are common to these
models: the optimizer is the Adam algorithm, and the loss
function is the mean absolute error. The training epoch is
200, and the batch size is 32. The activation function of
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each middle layer is rectified linear unit (ReLU) function.
The output layer of each model is a dense layer with 1 neu-
ron, and its activation function is the sigmoid function.

Structure of GNN Output size

Input correlation matrix and feature matrix C:16x16,
Xfcalurc: 16x12

| |

I GCN layer, ReLU, channels are 32 ‘ ‘ 16x32 ‘
! |

’ GCN layer, ReLU, channels are 16 ‘ ‘ 16x16 ‘
{ |

| BiLSTM,ReLU, dimensionsare25 | | 16x50 |
| )

‘ Bi-LSTM, ReLU, dimensions are 20 ‘ ‘ 40 ‘
| |

I Dense, Sigmoid, neuron is 1 ‘ ‘ 1 ‘
| |

’ Output predicted wind power ‘ ‘ 1 ‘

Fig. 8. Parameters of proposed GNN.

All the above-mentioned models are tested in the Spyder
4.1.5 with the Spektral 1.0 and Tensorflow 2.0, which are
popular libraries of deep learning. The key parameters of
computer are as follows: CPU 1.60 GHz, 8 GB RAM, Intel
Core™ i5-10210U.

B. Parameter Discussion of Improved Bootstrap Technique

To discuss the key parameters of the improved Bootstrap
technique, two cases from the spring are used as simple ex-
amples to show how to select s, and s,. This selection pro-
cess provides general guidance. Repetition can reduce anom-
alous results. Considering limited time resources, the pro-
posed GNN is independently trained 30 times. In addition,
the difference of metrics between the traditional and im-
proved Bootstrap techniques is presented to analyze whether
key parameters have a positive or negative impact on perfor-
mance.

Specifically, the traditional Bootstrap technique is used to
obtain the average metrics of the validation set, recorded as
PICP, and PINAW,. Then, the improved Bootstrap technique
with different parameters (s, and s, varying from 0.004 to
0.1) is employed to obtain the average metrics of the valida-
tion set, recorded as PICP, and PINAW,. Finally, the differ-
ences between metrics APICP=PICP,-PICP, and APINAW =
PINAW,— PINAW, are visualized, as shown in Fig. 9(a)-(d).

If 5,<s,, PICP, is also smaller than PICP,, even though
PINAW, is smaller than PINAW,. In other words, narrow Pls
come at the expense of PI accuracy. Relatively, when s,>s,,
PICP, is very close to PICP, and most of the PINAW, is
smaller than PINAW, as we expect, since the improved Boot-
strap technique outperforms the traditional one.

Further, the partial CWCs of the validation set are shown
in Fig. 9(e) and (f), where PICP, is greater than PICP,, and
PINAW, is less than PINAW,. For example, s,=0.036 and
5,=0.024 are the suitable parameters for the first data set in
spring. Generally, in order to reduce the width of Pls with-
out reducing the PI/CP, s, should be larger than s,, which is
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consistent with the theoretical analysis in Section III-B. Con-
versely, the performance of improved Bootstrap technique
may be inferior to that of traditional one, if s, <s,. For other
datasets, the sizes of s, and s, may vary (they can be ex-
plored by similar simulations), but s, must be greater than s,.

0.100 APIgP 0.100 AP]%‘P
50.076 5"0.076- 0.1
g 0.052 % 0.052 202
& 0.028 & 0.028} 03

0.004 0.004 -0.4

0.004 0.052 0.100 0.004 0.052 0.100
Parameter s, Parameter s,
(@) (b)
APINAW APINAW

0.100 0 0.100 0
= 0.076 = 0.076 -0.1
5 01 3
5] 5]
g0 £ 0.052
£0.028 02 5 -0.2

0.004L2 03 03

0.004 0.052 0.100 0.052 0.100
Parameter s, Parameter s,
(© (d)
cwe cwe
0.100 0.92 0.100 - 1.12
L]
£0.076 'Hl; 0.88 = 0.076}. = - 116
g -1 g - 1.12
£ 0.052 0.84 2 0.052f
S s b 1.08
]
£ 0.028 080 & 0.028} 104
0.004 \ 076 0,004 ‘ 1.00
0.004 0.052 0.100 0.004 0.052 0.100
Parameter s, Parameter s,
(e) 0]
Fig. 9. Average metrics of validation set. (a) APICP of the first dataset.

(b) APICP of the second dataset. (¢) APINAW of the first dataset. (d)
APINAW of the second dataset. (e) CWC of the first dataset. (f) CWC of the
second dataset.

C. Comparative Analysis of Interval Construction

The main goal of wind power interval prediction is to de-
rive reliable and narrow PIs. Compared with low-confidence-
level PIs, high-confidence-level PIs are more practically
meaningful for economic and safe operation of power sys-
tems, so different confidence levels varying from 90% to
99% will be considered in following simulations.

To test the performance of the improved Bootstrap tech-
nique, the traditional Bootstrap technique [15] and Gaussian
methods [12] are considered as baselines, which are used to
construct Pls. Taking the 1-hour prediction time horizon as
an example, the different average metrics of the test set in
different seasons are given in Tables I-IV.

Although the PINAW of the Gaussian method is smaller
than those of Bootstrap techniques, its PICP is much smaller
than the PINC. The reason for this phenomenon is that the
prediction errors of deterministic point prediction models do
not follow the Gaussian distribution. From the above four ta-
bles, it is found that both traditional and improved Bootstrap
techniques provide more reliable PIs of the measured wind
power than the Gaussian method.
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TABLE I
DIFFERENT AVERAGE METRICS OF TEST SET IN SPRING

The first dataset The second dataset

PINC

Method = PICP  PINAW CWC PICP  PINAW CWC

(%)  (pu) (pu) (%)  (puw) (pu)

‘ 90  42.1  0.090 1.074 588 0208 1.196

Gaussian o5 495 0107 1164 687 0248 1.176
method

99 593  0.141 1167 789 0327 1220

N 90 843 0300 0700 804 0309 0.808

Traditional o5 o1 6404 0939 871 0404  1.004
bootstrap

99 99.1  0.847 0847 938 0772 1.774

90 844 0274 0637 811 0283 0.725

Improved o5 911 0371 082 870 0372 0926
bootstrap

99 987  0.627 1262 961 0633 1364

TABLE 11

DIFFERENT AVERAGE METRICS OF TEST SET IN SUMMER

The first dataset The second dataset

PINC
Method = o/ PICP  PINAW CWC PICP PINAW CWC
(%) (pu) (puw) (%) (puw) (pu)
. 90 603 0.024 0.129 609 0.163 0.862
Gaussian o5 642 0028 0.161 686  0.195 0929
method
99 697 0037 0199 789 0257  0.959
N 90 927 0.168 0.168 92.1 0347 0.347
Traditional o ¢ 97.0 0248 0248 968 0466  0.466
bootstrap
99 1000 0553 0553 99.7  0.858  0.858
90 923  0.109 0.109 91.9 0323 0323
Improved 4 5 97.6  0.160 0.160 972 0445 0445
bootstrap
99 997 0314 0314 992 0716 0.716
TABLE 111

DIFFERENT AVERAGE METRICS OF TEST SET IN AUTUMN

The first dataset The second dataset

PINC

Method = o\ PICP  PINAW CWC PICP PINAW CWC

(%) (pu) (pu) (%) (pu) (pu)

. 90 578 0127 0761 517  0.173 1348

Gaussian o5 a4 0152 0853 60.8 0207 1352
method

99 737 0200 0907 766 0272 1.104

N 90 857 0215 0482 825 0314 0771

Traditional o5 g1 9 (345 0748 926 0444 0945
bootstrap

99 983 0637 1296 98.1 0741 1518

90 842 0164 0383 829 0262 0.635

Improved = o576 0268 0571 930 0391  0.823
bootstrap

99 983 0457 0930 98.1 0585 1.199

Note that the partial CWCs of the Gaussian method are
smaller than those of Bootstrap techniques in some scenarios
(e. g., the first dataset with 99% PINC in summer), but it
does not mean that the Gaussian method is better than Boot-
strap techniques. The reason is that the PICP of the Gauss-
ian method is much smaller than the PINC. For example, in
the first dataset with 99% PINC in summer, the PICP of the
Gaussian method is 69.7%, whereas the expected probability
to cover real values is 99%. Relatively, the PICPs of Boot-
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strap techniques are greater than the PICNs in most scenari-
os, which indicates that Bootstrap techniques can ensure the
security of the power system with the expected probability.

TABLE IV
DIFFERENT AVERAGE METRICS OF TEST SET IN WINTER

The first dataset The second dataset

PINC

Method = o "' PICP  PINAW CWC  PICP PINAW CWC

(%) (pu)  (puw) (%) (pu) (pu)

_ 90  47.8  0.100 0921 595  0.115  0.646

Gaussian o5 543 119 1031 678 0138  0.675
method

99 638  0.157 1.069 77.9 0184 0.712

N 90  81.8 0267 0.669 90.0 0280 0.560

Traditional o5 g, 5 368 0806 949 0425 0852
Bootstrap

99 992 0822 0822 988 0805 1.617

90 824 0236 0579 895 0234 0474

gnp“’ved 95 915 0316 0692 942 0331 0.676
ootstrap

99 992 0612 0612 99.0 0562  0.562

Further, the comparison of the PICP and PINAW between
the traditional Bootstrap technique and the improved Boot-
strap technique shows that their PICPs are very similar, but
the PINAW of the latter is smaller, suggesting that the im-
proved Bootstrap technique can effectively narrow the width
of PIs with negligible reduction of PICP. For example, in the
first dataset in winter, the PICP is 0.992 for both the tradi-
tional and improved Bootstrap techniques when the PINC is
99%, and the PINAW for the improved Bootstrap technique
is reduced by 25.54% compared with the traditional Boot-
strap technique.

In the first dataset with PINC=99% in spring, the CWC
of the improved Bootstrap technique is larger than that of
the traditional Bootstrap technique. This is because the defi-
nition of CWC derived from [2], [3] is not reasonable in
some extreme scenarios. The PICP of the improved Boot-
strap technique is 98.7%, which is slightly less than 99%.
The penalty coefficient in the definition makes the CWC in-
crease sharply. In fact, compared with the traditional Boot-
strap technique, the improved Bootstrap technique has only
0.4% lower PICP, while its PINAW is reduced by 25.97%. It
is worthwhile to reduce the coverage percentage a little in
exchange for very narrow Pls. In other words, the improved
Bootstrap technique is better than the traditional Bootstrap
technique for this case.

Figure 10 randomly selects two samples from the first and
second datasets respectively to visually compare the tradi-
tional and improved Bootstrap techniques. Note that the pre-
diction time horizon is still 1 hour.

It is clear that the traditional and improved Bootstrap tech-
niques have similar Pls for the strong volatile regions (e.g.,
steep ramps, prominent peaks and valleys). This is because
prediction errors in strong volatile regions tend to be large,
and narrowing the PIs in these regions may cause the PICP
to drop. The improved Bootstrap technique aims to keep the
Pls in strong volatile regions and reduce the width of PIs in
the weak volatile regions. For example, elliptical enclosed re-
gions in Fig. 10 are less volatile and the PlIs constructed by
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the traditional Bootstrap method are too wide, whereas the
improved Bootstrap technique effectively narrows the Pls in
these regions. Based on the above comparisons, the im-
proved Bootstrap technique with high PICPs and narrow
PINAWs is applied for the proposed method and four base-
lines in next sub-sections.

20 PICP=0.906 20 PICP=0.904
= PINAW=0410 & PINAW=0.347
S1s CWe=0918 S5 CWC=0.784
210 210

> Q

a. o

Z il 2 5|

= =

108

0 36 72 144 0 36 72 108 144
Time (hour) Time (hour)
(a) (b)
25 PICP=0.884 25, PICP=0.880
. PINAW=0.406 — PINAW=0.334
220 CWC=0.968 £ 20t CWC=0.808
= e
515 5
z Z
2,10 2,
o =
£ 5 &
= =
0 0 36 72 108 144
Time (hour) Time (hour)
(c) (d)

PI, — Real value; — Point prediction

Fig. 10. Comparison of traditional and improved Bootstrap techniques us-
ing two samples from the first and second datasets. (a) Interval prediction
using traditional Bootstrap technique in the first dataset. (b) Interval predic-
tion using improved Bootstrap technique in the first dataset. (c) Interval pre-
diction using traditional Bootstrap technique in the second dataset. (d) Inter-
val prediction using improved Bootstrap technique in the second dataset.

D. Comparison Between Proposed Method and Baselines

In order to validate the superiority of the proposed meth-
od, the popular deterministic point prediction methods (e.g.,
MLP in [31], LightGBM in [8], GCN in [18], Bi-LSTM in
[14], and GNN in [21]) are performed as baselines. The 1-
hour prediction time horizon is used as an example. Each
point prediction model is trained 30 times independently,
and average metrics (e.g., PICP, PINAW, and CWC) of the
test set are listed in Table V.

1) Strong prediction performance: it can be observed that
the proposed method obtains the smallest CWCs under all
PINCs and seasons for both two real datasets, proving the ef-
fectiveness for wind power interval prediction. For example,
for the first dataset with 90% PINC in spring, the CWCs of
the proposed method are 15.18%, 15.40%, 13.69%, 1.70%,
and 1.85% lower than those of the MLP, LightGBM, GCN,
Bi-LSTM, and GNN, respectively. Note that some methods
may have higher PICPs compared with the proposed meth-
od, but they are at the cost of interval width, that is, their
PINAWSs are much larger than that of the proposed method.
For example, for the first dataset with 99% PINC in summer,
the PICPs and PINAWSs of the Bi-LSTM are increased by
0.1% and 29.3% compared with the proposed method, re-
spectively, which leads to smaller CWCs of the proposed
method than the baselines.
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TABLE V
AVERAGE METRICS OF DIFFERENT PREDICTION METHODS WITH DIFFERENT PINCS

MLP LightGBM GCN Bi-LSTM GNN Proposed method
Dataset Season P({])ZS PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC
(%) (u) (u) (%) (u) (pu) (%) @Eu) Eu) (%) @Eu) @Eu) %) @Eu) @Eu) (%) @Eu) (eu)
90 80 0.282 0.751 80 0.286 0.753 84 0.316 0.738 86 0.290 0.648 85 0.285 0.649 84 0274 0.637
Spring 95 92 0456 0980 94 0.449 0913 91 0.407 0900 92 0.404 0865 92 0394 0861 91 0371 0.822
99 99 0.780 1.574 98 0.769 1.561 99 0.726 1.456 98 0.668 1386 98 0.645 1313 99 0.627 1.262
90 91 0.144 0.144 92 0.135 0.135 94 0.116 0.116 93 0.124 0.124 92 0.121 0.121 92 0.109 0.109
Summer 95 93 0434 0903 99 0.270 0.270 98 0.205 0.205 97 0.191 0.191 97 0.175 0.175 98 0.160 0.160
First 99 100 0.496 0.496 100 0.464 0.464 100 0.387 0.387 100 0.406 0.406 100 0.383 0.383 100 0314 0314
90 83 0217 0.518 81 0.205 0.522 87 0.211 0462 82 0.158 0391 83 0.16 038 84 0.164 0.383
Autumn 95 87 0.368 0.921 89 0.340 0.827 91 0.330 0.740 92 0376 0803 92 0333 0.716 93 0.268 0.571
99 91 0.562 1.397 95 0.550 1.215 98 0.564 1.166 98 0.469 0964 98 0464 0954 98 0.457 0.930
90 85 0312 0.712 81 0.262 0.681 83 0.284 0.695 84 0.285 0.672 83 0271 0.656 82 0236 0.579
Winter 95 95 0499 1.010 91 0412 0921 92 0419 0911 88 0.348 0.833 90 0329 0760 92 0316 0.692
99 98 0.688 1405 99 0.710 0.710 99 0.695 0.695 99 0.697 0.697 99 0.672 0.672 99 0.612 0.612
90 79 0302 0.820 81 0.320 0.815 81 0306 0.779 79 0.275 0.762 79 0.281 0.758 81 0.283 0.725
Spring 95 88 0.448 1.097 86 0415 1.083 89 0.447 1.048 88 0.413 1.005 &7 0394 0973 87 0372 0.926
99 96 0.717 1569 96 0.633 1375 98 0.652 1352 98 0.643 1324 98 0.64 1323 97 0.631 1318
90 87 0329 0.714 95 0.396 0396 93 0372 0372 92 0363 0363 92 0354 0354 92 0323 0.323
Summer 95 94 0427 0.878 98 0.509 0.509 98 0.518 0.518 97 0.485 0485 97 0477 0477 97 0.445 0.445
Second 99 100 0.784 0.784 100 0.764 0.764 99 0.741 0.741 100 0.748 0.748 100 0.742 0.742 99 0.716 0.716
90 83 0329 0.805 83 0.287 0.692 84 0.295 0.692 80 0.248 0.666 80 0.248 0.653 83 0.262 0.635
Autumn 95 92 0414 0.887 90 0.388 0.893 94 0428 0.877 92 0.38% 0.850 92 039 0841 93 0391 0.823
99 99 0.714 1440 98 0.644 1328 98 0.645 1312 97 0.605 1.290 97 0.612 1285 98 0.585 1.199
90 87 0.255 0.560 87 0.251 0.550 88 0.236 0.502 83 0.200 0.489 84 0223 0483 90 0234 0474
Winter 95 95 0408 0.825 91 0.339 0.761 94 0370 0.751 92 0.333 0.711 93 0332 0.699 94 0331 0.676
99 99 0.637 1277 99 0.596 1.207 98 0.461 0951 99 0.586 0.586 99 0.579 0.579 99 0.562 0.562

2) Spatiotemporal prediction capability: compared with
the traditional MLP and LightGBM, neural network-based
models (e.g., GCN, Bi-LSTM, GNN, and proposed GNN),
which aim to model temporal features or spatial features,
usually have better precision for ultra-short-term interval pre-
diction of wind power. For instance, for the first dataset with
90% PINC in spring, the PICPs of the GCN, Bi-LSTM,
GNN, and the proposed method are increased by approxi-
mately 4.4%, 6.0%, 5.3%, and 4.6% compared with the
MLP, and the CWCs are 1.73%, 13.72%, 13.58%, and
15.18% lower than that of the MLP, respectively. The CWCs
of the GCN, Bi-LSTM, GNN in [21], and the proposed
method are approximately reduced by 1.99%, 13.94%,
13.81%, and 15.41% than that of the LightGBM, and their
PICPs are improved by 4.0%, 5.6%, 4.9%, and 4.2%, respec-
tively. This is mainly because MLP and LightGBM have dif-
ficulties in dealing with complex and non-stationary wind
power data and meteorological factors. Besides, the perfor-
mances of GCN and Bi-LSTM are limited and unable to be
further improved, since GCN can only consider spatial fea-
tures and ignore temporal features, while Bi-LSTM can only
account for temporal features and neglect spatial features.
Note that the GNN in [21] consists of both GCN and
LSTM, while the proposed method replaces LSTM with Bi-
LSTM. The performance of the proposed method is better
than that of the traditional GNN in [21], which shows that

Bi-LSTM has stronger ability to model temporal features
than traditional LSTM.

3) An ablation study: to verify if the proposed method has
the ability to capture spatiotemporal features from wind pow-
er data, an ablation study is conducted to analyze how each
part (i. e., GCN and Bi-LSTM) of the proposed method
works. The average CWCs of two datasets with 90% and
95% PINCs are visualized in Fig. 11.

It is clear that the proposed method based on the spatio-
temporal features has a smaller CWC than others based on a
single feature, implying that the proposed method is able to
model spatiotemporal features from wind power data and me-
teorological factors accurately. For instance, for the first data-
set with 90% PINC in summer, the CWC of the proposed
method is reduced by approximately 12.10% compared with
the Bi-LSTM that considers only temporal features. The
CWC of the proposed method is reduced by 16.23% for the
first dataset with 95% PINC in summer, indicating that the
proposed method can portray temporal dependence of wind
power data. Compared with GCN, which considers spatial
features and ignores temporal features, for the first dataset
with 90% PINC and 95% PINC in summer, the CWCs of
the proposed method are decreased by approximately 6.03%
and 21.95%, respectively, implying that the proposed method
can portray spatial dependence well.

Further, the time complexity is tested by performing each
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method 30 times. Specifically, the samples from the first da-
taset in spring are used as a simple example. The average
training time (i.e., the time to train a model) and inference
time (i.e., the time to obtain PIs of a sample using the
trained model) of different methods are listed in Table VI.
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0.9r
Spring Summer Autumn Winter
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(©)

Winter
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[ GCN; I Bi-LSTM; 5 Proposed method

Fig. 11.  Average CWCs of two datasets with different PINCs. (a) CWC of
the first dataset with 90% PINC. (b) CWC of the first dataset with 95%
PINC. (c) CWC of the second dataset with 90% PINC. (d) CWC of the sec-
ond dataset with 95% PINC.

The training time of the proposed method is relatively
long, which is the main disadvantage of the proposed meth-
od. It has to be mentioned that a few minutes of training
time is acceptable in practical engineering. In addition, the
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inference time of each method is far less than 1 s, which can
meet the real-time requirement of ultra-short-term prediction
of wind power.

TABLE VI
AVERAGE TRAINING AND INFERENCE TIME OF DIFFERENT METHODS

Method Training time (s) Inference time (s)
MLP 14.836 0.002
LightGBM 2.783 0.001
GCN 29.514 0.003
Bi-LSTM 196.731 0.004
Proposed method 393.638 0.008
GNN 262.438 0.006

E. Interval Prediction with Different Time Horizons

In fact, the multi-step wind power interval prediction with
one-hour-ahead and two-hour-ahead has been implemented
to obtain satisfactory Pls based on the proposed method. Be-
sides wind power interval prediction with the hourly hori-
zon, the wind farm controller and transmission system opera-
tor are also highly interested in intra-hour PlIs. For example,
the 30-min measures are indispensable to reserve dispatch,
continuous generation, wind farm control, and so on. In addi-
tion to the 1-hour time horizon in previous sections, this sub-
section further tests the performance of the proposed method
for different look-ahead horizons, e.g., 0.5, 1.5, and 2 hours,
and average prediction results of the test set with 95% PINC
are given in Table VIL

From Table VII, it can be found that the CWC of each
method increases as the prediction horizon becomes larger.
This is because the uncertainty of wind power intensifies
with the prediction horizon, which leads to a larger predic-
tion error for deterministic point prediction models. To en-
sure sufficient PICPs, each method has to increase the width
of PIs, which eventually results in a large CWC. Further, no
matter how the time horizon changes, the proposed method
can obtain the superior performance than other baselines (e.g.,
MLP, LightGBM, GCN, Bi-LSTM, and GNN) for hourly
and intra-hourly wind power interval predictions. With suc-
cessful application to the first dataset and second dataset in
this paper, the proposed method can perform well for ultra-
short-term wind power interval prediction no matter whether
the dataset includes or excludes meteorological factors, indi-
cating the proposed method is highly flexible for various da-
tasets with different data compositions.

Practically, the wind farm controller and transmission sys-
tem operator are likely to focus on system-level aggregated
wind power. In this case, historical wind power of wind
farms and surrounding meteorological factors can be taken
as inputs to the proposed method with high flexibility to pre-
dict intervals of aggregated wind power based on the farm-
level information. With the high precision and flexibility, the
proposed method provides Pls of ultra-short-term wind pow-
er to facilitate various rise-based decision-making tasks (e.g.,
interval optimization and robust optimization of power sys-
tems) to determine the needed reserve [35].
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TABLE VII
AVERAGE METRICS OF DIFFERENT PREDICTION METHODS WITH DIFFERENT TIME HORIZONS

. MLP LightGBM GCN Bi-LSTM GNN Proposed method

Dataset Season H(ﬁf,‘j;’)“ PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC PICP PINAW CWC
(%) (pu) (pu) (%) (u) (pu) () (u) @Pu) (%) (Eu) (Pu) (%) @Ew) @Eu) *%) @Eu) Euo)

05 90 0345 0791 94 0336 0690 90 0296 0670 92 0285 0.614 92 0274 0597 93 0268 0.569

Spring 1.5 95 0560 1135 94 0542 1112 90 0498 1130 92 0489 1055 91 0476 1049 92 0450 0977

20 95 0652 1320 95 0630 1272 88 0572 1368 93 0565 1202 90 0527 1200 91 0511 1149

05 95 0204 0204 98 0.98 0198 98 0148 0.148 98 0151 0151 98 0148 0.148 97 0.125 0.125

Summer 15 94 0435 0895 97 0355 0355 98 0252 0252 98 0237 0237 97 0229 0229 97 0.196 0.196

, 20 93 0434 0905 95 0384 0384 98 0293 0293 97 0276 0276 96 0271 0271 96 0226 0226
st 05 85 0299 0793 87 0314 078 91 0205 0462 93 0196 0412 92 0189 0406 92 0.180 0.388
Auumn 15 94 0817 1685 86 0428 1104 89 0456 1.061 89 0425 0997 88 0387 0936 87 0349 0870

20 94 0818 1692 93 0580 1222 89 0513 1202 88 0491 1182 88 0468 1149 88 0414 0996

05 95 0367 0.738 92 0285 0610 92 0302 0645 91 0228 0503 92 0221 0479 92 0212 0454

Winter 15 94 0706 1468 91 0524 1162 88 0458 1114 93 0518 1082 91 0428 0951 91 0406 0.891

20 94 0732 1499 93 0628 1335 88 0535 1311 94 0624 1290 89 0543 1269 91 0550 1227

05 88 0328 0791 89 0325 0772 86 0287 0747 89 0312 0726 88 0301 0726 87 0284 0.700

Spring 1.5 89 0575 1339 89 0573 1359 85 0496 1336 86 0523 1338 86 0497 1280 86 0470 1220

20 88 0676 1616 87 0647 1502 85 0600 1570 86 0576 1484 85 0563 1477 86 0.548 1390

05 95 0294 059 99 0394 0394 99 0375 0375 98 0373 0373 98 0355 0355 98 0313 0313

Summer 15 92 0549 1192 98 0.601 0.601 97 0591 0591 96 0576 0576 96 0548 0548 96 0452 0452
Soond 20 93 0639 1359 97 0668 0668 96 0659 0659 95 0624 0.624 95 0614 0614 95 0596 0.596
05 93 0312 0659 92 0301 0645 92 0300 0646 88 0259 0619 91 0269 0.591 93 0274 0.579

Autumn 15 88 0496 1206 94 0537 1101 94 0511 1045 88 0434 1049 91 0465 1039 94 0495 1027

20 94 0635 1298 89 0536 1279 90 0563 1282 95 0619 1252 93 0593 1252 93 0596 1240

05 91 0226 0497 94 0225 0468 95 0267 0535 96 0266 0266 95 0256 0256 95 0230 0.230

Winter 15 95 0484 0971 93 0464 0974 95 0481 0972 92 0439 0959 93 0431 0915 94 0435 0.884

20 91 0529 1163 93 0545 1149 95 0577 1158 95 0583 0583 95 0562 0562 95 0.525 0.525

V. DISCUSSIONS

In this paper, the goal is to propose a new GNN and the
improved Bootstrap technique for ultra-short-term interval
prediction of wind power. The key factors affecting the per-
formance of the proposed method are the standard deviations
to be initialized in the improved Bootstrap technique.

Both theoretical analysis and simulation suggest that the
parameter s, should be larger than the parameter s, to obtain
a wide enough Pls, which can cover real values with a speci-
fied probability (i.e., PI nominal confidence). When the pro-
posed method is migrated into other datasets, these key pa-
rameters can be determined by similar simulation steps in
Section IV-B.

VI. CONCLUSION

To improve the precision of ultra-short-term prediction of
wind power, this paper attempts to model the inputs as a
graph from a new perspective. A GNN-based point predic-
tion model is presented to model spatiotemporal features,
and then an improved Bootstrap technique is proposed to ob-
tain high-quality PIs. Through numerical simulation on two
real-world datasets, the following conclusions are obtained.

1) The improved Bootstrap technique can effectively re-
duce the width of PIs with negligible reduction of PICP, es-
pecially for wind power generation curves with weak vola-

tile regions.

2) Compared with other popular point prediction methods
(e.g., MLP, LightGBM, GCN, Bi-LSTM, and GNN in [21]),
the proposed method has better precision for ultra-short-term
interval prediction of wind power under different confidence
levels and seasons, since it can capture spatiotemporal fea-
tures from time-series data accurately.

3) No matter how the time horizon changes, the proposed
method can obtain the superior performance to other base-
lines (e.g., MLP, LightGBM, GCN, Bi-LSTM, and GNN in
[21]) for hourly and intra-hourly wind power interval predic-
tions. Practically, the proposed method with a high precision
and flexibility can provide high-quality PIs of ultra-short-
term prediction of wind power to facilitate various rise-
based decision-making tasks to determine needed reserves.

Although the numerical simulation results show that the
proposed method outperforms popular baselines, it still has
some limitations to be addressed.

1) The traditional and improved Bootstrap techniques
have similar PIs for the strong volatile regions, since the re-
duction of the interval width of these regions easily causes
the PICP to drop, and the improved Bootstrap technique on-
ly aims to reduce the width of PIs for the weak volatile re-
gions. In future works, the Bootstrap technique can be fur-
ther improved to target regions with strong volatility.

2) In addition to hourly and intra-hourly wind power inter-
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val predictions, the proposed method may be extended to
wind power prediction with a longer time horizon.

3) The widely-used PICP, PINAW, and CWC are used to
test the performance of the proposed method. In the future,
more metrics (e.g., pinball loss, Winkler score, and continu-
ous ranked probability score) can also be used for further
evaluation of models.

APPENDIX A

Algorithm 1: construction of PIs using improved Bootstrap technique

% Initialize parameters a, Bootstrap repeats Br, s1, s2:
Alpha=0.95; % a=0.95;
Br=5000; % Bootstrap repeats is 5000
51=0.036; % 5,=0.036;
52=0.024; % 5,=0.024;
% Calculate prediction errors and standard deviation of validation set
Errors=Predictions-Real values_of validation_set
STD_Error=STD(Point_predictions_of validation_set)
% Assign errors to group 1 and group 2
k=1
for i=1:length(STD_Error)
Group(i)=Errors(i)
if STD_ Error<sl
Group2(k)=Errors(i)
k=k+1
end
end
% Assign errors to group 3
if STD(Point_predictions_of test set)<s2
Group3=Group2
else
Group3=Group1
end
% Assign errors to group 4
for i=1:Br
id=randperm(length(Group3))
Group4(i)=Group3(id(1))
end
% Construct PIs
Group4 = sort(Group4);
Lower = percentile(Group4, (1 - Alpha)/2)
Upper=percentile(Group4, Alpha +((1 - Alpha)/2))
% Output results
sprintf(‘ %.2f*, Lower)
sprintf(‘ %.2f, Upper)
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