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Abstract——Dynamic state estimation (DSE) accurately tracks 
the dynamics of power systems and demonstrates the evolution 
of the system state in real time. This paper proposes a DSE ap‐
proach for a doubly-fed induction generator (DFIG) with un‐
known inputs based on adaptive interpolation and cubature 
Kalman filter (AICKF-UI). DFIGs adopt different control strat‐
egies in normal and fault conditions; thus, the existing DSE ap‐
proaches based on the conventional control model of DFIG are 
not applicable in all cases. Consequently, the DSE model of 
DFIGs is reformulated to consider the converter controller out‐
puts as unknown inputs, which are estimated together with the 
DFIG dynamic states by an exponential smoothing model and 
augmented-state cubature Kalman filter. Furthermore, as the re‐
porting rate of existing synchro-phasor data is not sufficiently 
high to capture the fast dynamics of DFIGs, a large estimation 
error may occur or the DSE approach may diverge. To this 
end, in this paper, a local-truncation-error-guided adaptive in‐
terpolation approach is developed. Extensive simulations con‐
ducted on a wind farm and the modified IEEE 39-bus test sys‐
tem show that the proposed AICKF-UI can ① effectively ad‐
dress the divergence issues of existing cubature Kalman filters 
while being computationally more efficient; ② accurately track 
the dynamic states and unknown inputs of the DFIG; and ③ 
deal with various types of system operating conditions such as 
time-varying wind and different system faults.

Index Terms——Adaptive interpolation, cubature Kalman filter‐
ing, doubly-fed induction generator (DFIG), dynamic state esti‐
mation, unknown input.

I. INTRODUCTION

WIND energy has attracted significant attention in re‐
cent years owing to its renewability, easy availability, 

and environmental friendliness. Accordingly, the penetration 
of wind generation is rapidly increasing in power systems 
around the world. Consequently, doubly-fed induction gener‐
ators (DFIGs) have been widely deployed owing to their 
good controllability and high efficiency [1]. However, their 
intermittency and dynamic responses during transient events 
have a substantial impact on secure system operation. This 
requires the development of innovative dynamic monitoring 
tools such as the dynamic state estimation (DSE) approaches 
using fast and synchronized measurements from phasor mea‐
surement units (PMUs) [2], [3].

Most existing DSE approaches are developed for tradition‐
al synchronous generators [4] - [6]. However, the complexity 
of wind generators has increased from the modeling perspec‐
tive, particularly in terms of power electronics and related 
controllers [7]. An appropriate dynamic model of DFIGs is 
critical for the DSE. In [8] and [9], the conventional control 
of DFIGs is modeled using the DSE, but fault control strate‐
gies [10], [11] are ignored. However, when a fault occurs, 
the transient dynamic process of DFIGs under the fault con‐
trol strategies plays an essential role in affecting the power 
system dynamics, and thus should be effectively captured by 
the DSE [12]. In addition, in the event of a serious fault, 
some protection circuits such as crowbars are used to pre‐
vent overcurrent situations [13]. To solve this problem, a 
general DSE framework for permanent magnet synchronous 
generator (PMSG) -based wind generation is proposed in 
[14]. This framework decouples the generator model from 
the controllers in a PMSG but assumes that the outputs of 
the converter controller are measured or available in the 
DSE; however, this may not be practical because the DSE is 
mainly based on the synchronous measurement of PMUs 
[6], which does not include the outputs of the converter con‐
trollers.

The most widely used DSE approaches for DFIGs include 
the extended Kalman filter [15], unscented Kalman filter [8], 
cubature Kalman filter (CKF) [16], and particle filter [9], 
[17]. However, the mismatch between the fast dynamics of 
DFIGs and the existing phasor measurement reporting rate is 
ignored in these studies. Note that DFIGs generally have a 
small capacity and the dynamic states of their rotor, DC ca‐
pacitor, AC windings, and filter inductance have relatively 
low time constants [18]. Consequently, the state prediction 
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for the DSE approaches may be inaccurate, as the DSE time 
step is large, e.g., consistent with the PMU reporting rate of 
50 or 60 samples per second [19]. To this end, an impracti‐
cal high sampling rate of 4000 samples per second is as‐
sumed in [14], while in [16], pseudo measurements are used 
to increase the sampling rate by performing a simple mea‐
surement interpolation without selection basis for the interpo‐
lation parameter. The latter is a viable approach, but the 
computing time increases due to the interpolation. Thus, it is 
critical to choose an appropriate interpolation parameter to 
balance the tradeoff between the computing efficiency and 
estimation accuracy of the DSE approaches. In numerical 
analysis and time-domain simulation, an adaptive step size 
[20] based on the integral difference between two numerical 
approaches with different accuracy orders is widely used, 
such as the RKF45 [21]. Considering that the discrete predic‐
tion step of the DSE approaches also involves numerical in‐
tegration, the idea of an adaptive step size can be extended 
to the measurement interpolation of the DSE approaches for 
DFIGs.

To address these issues, this paper proposes a DSE ap‐
proach for a DFIG based on adaptive interpolation and CKF 
(AICKF-UI). The main contributions of this paper are sum‐
marized as follows.

1) The DSE model for DFIGs is reformulated to consider 
the status of the crowbar and the converter controller outputs 
as the unknown inputs to cope with the diverse control strat‐
egies, significantly increasing the generalizability of the pro‐
posed AICKF-UI approach and reducing the model complexi‐
ty.

2) The unknown inputs are accurately estimated together 
with the DFIG dynamic states by an exponential smoothing 
model and a CKF with an augmented state vector, which 
consider the correlations among the unknown inputs dk, dy‐
namic states xk, and measurements zk.

3) The AICKF-UI approach with the adaptive interpola‐
tion parameter is proposed to estimate the states of the 
DFIG. A local truncation error (LTE) -aware estimation ap‐
proach is developed to mitigate the discretization error of 
the prediction step. This is critical during large disturbances, 
where the existing approaches either yield large estimation 
errors or diverge.

The remainder of this paper is structured as follows. The 
reformulated DFIG model with unknown inputs is described 
in Section II. Section III describes the proposed AICKF-UI 
approach. Section IV presents case studies and evaluates the 
performance of the proposed approach on a wind farm and 
the modified IEEE 39-bus test system. Finally, the conclu‐
sions are provided in Section V.

II. DFIG MODEL WITH UNKNOWN INPUTS

Figure 1 shows the basic structure of the DFIG model cou‐
pled with a wind turbine and power grid, where RSC and 
GSC represent the rotor-side and grid-side converters, respec‐
tively; Is and Ir are the stator and rotor currents, respective‐
ly; Us is the stator voltage; ωr is the speed of the wind tur‐
bine; Rc is the resistance of the crowbar; It is the output cur‐

rent of DFIG; Udc is the DC capacitor voltage; F c
CB is the 

crowbar controller output; U c
r  and U c

g  are the outputs of the 
converter controllers. The actual circuit connections are 
shown by solid red lines; the controller outputs are shown 
by solid blue lines; and the measurements are indicated by 
black dashed lines. The complete dynamic model of a grid-
connected DFIG includes a wind turbine, an asynchronous 
generator, a set of AC-DC and DC-AC converters with con‐
trollers, a grid-side filter, and a crowbar circuit. The wind 
turbine transfers wind energy to the DFIG through the me‐
chanical shaft. The stator of the induction machine is direct‐
ly connected to the grid while the rotor is fed through a 
back-to-back converter.

The mathematical model of the DFIG comprising a set of 
differential and algebraic equations is described below in de‐
tail.

A. Wind Turbine

The wind turbine is the primary energy conversion compo‐
nent of the DFIG. It can be described by:

ì
í
î

ïïTm =-Pm /ωr

Pm =Cp (λβ)V 3
w KN Pmnom /Penom

(1)

where Tm is the torque of the wind turbine; Pm is the mechan‐
ical power; Cp is the mechanical power coefficient, and the 
detailed mathematical descriptions of Cp are given in [8]; λ 
is the blade tip ratio; β is the pitch angle of the wind tur‐
bine; Vw is the wind speed; KN is the factor of the output 
power of the wind turbine; and Pm,nom and Pe,nom are the nom‐
inal mechanical and electric power, respectively.

B. Asynchronous Generator

A single-mass model of the drive train [22] in (2) is adopt‐
ed to describe the relationships among the rotor speed ωr, 
mechanical torque Tm, and electrical torque Te:

ì
í
î

ïïdωr /dt = (Tm - Te -Fωr )/2Hg

Te =ψdsiqs -ψqsids

(2)

where Hg is the inertia of the generator; F is the friction fac‐
tor; and ψds, ψqs and ids, iqs are the d-q components of the sta‐
tor flux ψs and current Is, respectively.

The voltage equations of the generator winding based on 
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Fig. 1.　Structure of DFIG model.
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electromotor conventions are expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

dψds /dt =ωb (uds +ωsψqs -Rsids )

dψqs /dt =ωb (uqs -ωsψds -Rsiqs )

dψdr /dt =ωb (udr + (ωs -ωr )ψqr -Rridr )

dψqr /dt =ωb (uqr - (ωs -ωr )ψdr -Rriqr )

(3)

where the subscripts d and q represent the d-q components 
of the rotor current Ir, rotor voltage Ur, stator voltage Us, 
and rotor flux ψr, respectively; ωb is the base angular speed; 
ωs is the synchronous angular speed; and Rs and Rr are the 
stator and rotor resistances, respectively.

The stator currents (ids and iqs) and the rotor currents (idr 
and iqr) can be expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

ids = (ψds -ψdm )/Lls

iqs = (ψqs -ψqm )/Lls

idr = (ψdr -ψdm )/Llr

iqr = (ψqr -ψqm )/Llr

(4)

where Lls and Llr are the leakage inductances of the stator 
and rotor windings, respectively; and ψdm and ψqm are the sta‐
tor-rotor mutual fluxes given by:

ì

í

î

ïïïï

ïïïï

ψdm =ψdr /(σLlr )+ψds /(σLls )

ψqm =ψqr /(σLlr )+ψqs /(σLls )

σ = 1/Lls + 1/Llr + 1/Lm

(5)

where Lm is the mutual inductance.

C. Converter with Controller

The converter of the DFIG consists of an RSC, GSC, and 
DC link. As the time constant of the converter is on the or‐
der of microseconds, its modulation process can be ignored. 
Then, the converter outputs Ur and Ug are considered equal 
to their corresponding control commands, i. e., Uc

r and Uc
g. 

Therefore, the converter controller considerably affects the 
dynamics of the DFIG, and proper handling of the converter 
controllers is important in the DSE.

The detailed controller model is considered in [8], [9] for 
the DSE of the DFIG, but it only involves the conventional 
control strategies applied to normal conditions. However, 
when a voltage drop occurs owing to a fault, a series low-
voltage ride-through (LVRT) control strategy [10] will be ac‐
tivated to keep the DFIG connected to the power grid. A 
crowbar circuit will be switched on when a severe voltage 
drop occurs. Thus, it is inappropriate to only consider the 
conventional control strategies in the DSE. In addition, the 
controllers providing instructions based on proportional-inte‐
gral (PI) control belong to secondary systems, and the inte‐
gral dynamic states of PI control are not our focus. Conse‐
quently, it is difficult and unnecessary to consider the de‐
tailed controller model in the DSE.

The converter outputs Ur and Ug are assumed to be avail‐
able in [14], and the controller impacts can be simply cap‐
tured by considering them as time-varying known inputs in 
the DSE. However, the DSE is usually deployed at the main 
station of a measurement system and uses the synchronous 
measurements of PMUs [6], where the DFIG terminal volt‐
age and current phasors are measured, but the outputs of the 

converter controllers are not included. Moreover, the mea‐
surements of the DFIGs are usually asynchronous and only 
used for local control. In addition, for the equivalent model 
of the wind farm, the converter outputs do not exist, and 
thus, cannot be measured.

Considering the aforementioned problems, the converter 
outputs Ur and Ug are considered as the unknown inputs d of 
the DSE in this paper to deal with the complex control strat‐
egies of the DFIG as follows:

d =[UrUg ]T =[udruqrudguqg ]T (6)

where udg and uqg are the d-q components of the grid-side 
voltage Ug, respectively. d is estimated by the proposed ap‐
proach in Section III. Note that the converter outputs are re‐
garded as unknown inputs only in the DSE, and the simula‐
tions performed in a simulation software still adopt the com‐
plete DFIG model.

Moreover, the model of the grid-side filter in the d-q 
frame is given by:

ì
í
î

ïïdidg /dt =ωb (uds - udg -Rgidg + Lgiqg )/Lg

diqg /dt =ωb (uqs - uqg -Rgiqg + Lgidg )/Lg

(7)

where idg and iqg are the d-q components of the grid-side cur‐
rent Ig, respectively; Lg is the filter inductance; and Rg is the 
resistance of the grid-side filter.

D. Crowbar Model

Under the normal condition, the RSC operates normally to 
regulate the output power of the turbine, as shown in Fig. 
2(a). However, when there is a severe voltage drop at the ter‐
minal of the DFIG, the transient control strategies based on 
converter controllers may not guarantee the LVRT ability of 
the DFIG. Then, the crowbar must be put into operation, and 
meanwhile, the RSC is locked to maintain the connection of 
the DFIG to the power grid, as shown in Fig. 2(b). The rotor 
windings are short-circuited by the crowbar, and the DFIG 
becomes an asynchronous generator [23]. Hence, this pro‐
cess needs to be considered in the DSE model. FCB, defined 
as the status of the crowbar, is considered as an input of the 
DSE. When FCB = 1, i. e., the crowbar is switched on, the 
mathematical model of the induction motor must be modi‐
fied according to the following equation:

ì
í
î

udr = uqr = 0

R'r =Rr +Rc

(8)

E. Summary of DSE Model for DFIG

The estimation model of the DFIG can be summarized as 

(a) (b)

DFIG

RSC

Crowbar

R
c

DFIG

RSC

Crowbar

R
c

Fig. 2.　 Cases where crowbar is switched off or on. (a) Crowbar is 
switched off. (b) Crowbar is switched on.
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the following general continuous state-space model:

ì
í
î

ẋ = fc (xu)+Gcd +w

z = hc (xu)+ v
(9)

where fc is the function that represents the system dynamic 
equations, including (2), (3), and (7); Gc is the distribution 
matrix of the unknown input vector; hc is the function that 
represents the measurement equations; and wÎRn and 
vÎRm are the process and measurement noise, and their cor‐
responding covariance matrices are Θ and Λ, respectively, 
and m and n are the dimensions of z and x, respectively. 
Then, the dynamic state vector x, input vector u, unknown 
input vector d, and measurement vector z are expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

x =[ωrψdsψqsψdrψqridgiqg ]T =[x1x2x3x4x5x6x7 ]T

u =[udsuqsVwFCB ]T =[u1u2u3u4 ]T

d =[udruqrudguqg ]T =[d1d2d3d4 ]T

z =[PtQtidsiqs ]T =[z1z2z3z4 ]T

(10)

where Pt and Qt are the terminal active power and reactive 
power measurements, respectively. According to the second-
level data record [24], the fluctuation of Vw can be ignored 
within the DSE execution interval, which is generally the 
same as the PMU measurement interval, i.e., 0.02 s or short‐
er. Then, the measurement results of the existing wind speed 
measurement equipment in the wind farm such as nacelle an‐
emometers and anemometer towers can be used. Thus, it is 
assumed reasonably that the wind speed Vw can be measured 
and considered as a known input of the DSE.

Then, the system (9) should be discretized to be suitable 
for the Kalman filter frame. Considering the balance be‐
tween the computational efficiency and the accuracy, the sec‐
ond-order Runge-Kutta (2-RK) approach [25] is used in this 
paper as:

ì

í

î

ïïïï

ïïïï

xk = xk - 1 + (Dx1 +Dx2 )/2

Dx1 = fc (xk - 1 )Dh

Dx2 = fc (xk - 1 +Dx1 )Dh
(11)

where Δh is the step size. Thus, the discrete model of (9) is 
expressed as:

ì
í
î

xk = f (xk - 1uk - 1 )+Gdk - 1 +wk

zk = h(xkuk )+ vk

(12)

where f and h are the discrete versions of fc and hc, respec‐
tively. The unknown input distribution matrix G is given in 
(13), showing the relationship between the dynamic states 
and the unknown inputs.

G =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú0 0 0 ωbDh 0 0 0
0 0 0 0 ωbDh 0 0
0 0 0 0 0 -ωbDh/Lg 0
0 0 0 0 0 0 -ωbDh/Lg

T

(13)

As there are unknown inputs in the DFIG state space and 
they are considered as part of the states in this paper, it is 
necessary to check whether the selected measurement is rea‐
sonable and to analyze the observability of the DFIG system 
with augmented states. The rank requirement to estimate the 

unknown inputs is discussed in [26], where the unknown in‐
put vector is estimated and then substituted into the dynamic 
model for a repeated Kalman filter. Specifically, the un‐
known input vector can be obtained using the following 
equation:

dk = (GT H T
k R͂-1 HkG)-1GT H T

k R͂-1 (zk - zk|k - 1 ) (14)

where Hk is the Jacobian matrix of hk; R͂ =HkΣk|k - 1 H T
k +Θ; 

Σk|k - 1 is the covariance matrix of the predicted state vector 
xk|k - 1; and zk|k - 1 is the predicted measurement vector. The 
aforementioned estimation equation for the unknown inputs 
requires rank(HkG)= rank(G)= m to make the inversion of 
the matrix, which is expressed in (14), possible, i. e., the 
number of measurement outputs m should be at least equal 
to the number of unknown inputs p. Appendix A provides 
the expression of HkG of the DFIG, and the results show 
that the rank requirement in (14) is satisfied for the DFIG 
case, and the unknown input vector d can be observed from 
the selected measurement vector z.

System observability is defined as the ability to determine 
the states of the system uniquely from available measure‐
ments [6]. The observability of a dynamical system can be 
readily determined by whether its observability matrix O͂ in 
(15) has full rank, i.e., the rank of O͂ is equal to n (the di‐
mension of the state vector).

O͂ = [H T (HF)T (HF n - 1 )T ]T (15)

where F is the Jacobian matrix of the system dynamic func‐
tions. As the unknown inputs are considered as part of the 
states in this paper, the above approach is considered appro‐
priate for the observability analysis of the augmented states, 
similar to the approach in [27]. The analysis result in Appen‐
dix B shows that the observability matrix O͂ of the DFIG sys‐
tem with augmented states satisfies full-rank requirement, 
and thus, the augmented states are observable under the se‐
lected measurement set.

III. PROPOSED AICKF-UI APPROACH

The proposed AICKF-UI approach consists of three key 
steps: ① an exponential smoothing model for predicting un‐
known inputs; ② a CKF with an augmented state vector; 
and ③ adaptive measurement interpolation.

A. Exponential Smoothing Model for Predicting Unknown In‐
puts

From (3), it can be observed that Ur affects ψr, which can 
change ψs and Is through ψm, and consequently, the stator 
output power Ps and Qs relying on Is can also be affected. Ig 
is affected by Ug in (7), and thus, the GSC output power Pg 
and Qg is also affected. This indicates that dk has spatial cor‐
relations with xk. Moreover, the output power of the stator 
and GSC affects Ur and Ug in turn through PI feedback con‐
trol where integral state variables and differential equations 
exist. Therefore, there are temporal correlations among the 
time series signals of dk.

For the temporal correlations, the following historical time 
series d̂h is used to predict dk for time step k:
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d̂h ={d̂k - Td̂k - T + 1...d̂k - 1 } (16)

where T ³ 2 is the dimension of the historical time series; 
and d̂k - i is the estimation of dk - i at time step k - i (i =
1, 2, ..., T). In this paper, an exponential smoothing model 
(ESM) is used to consider the temporal correlations of the 
time series of unknown inputs [28]. The simplest form of 
the ESM is given by:

dk|k - 1 = αd̂k - 1 + (1 - α)dk - 1|k - 2    0 < α £ 1 (17)

where α is a smoothing factor. The ESM obtains dk|k - 1 by as‐
signing different weights to the estimation d̂k - 1 and forecasts 
dk - 1|k - 2 at the previous time step k - 1. Recursively replacing 
dk - 1|k - 2 with dk - 2|k - 3, dk - 3|k - 4, , dk - T + 1|k - T, dk|k - 1 can be ex‐
pressed as:

dk|k - 1 = αd̂k - 1 + (1 - α)[αd̂k - 2 + (1 - α)dk - 2|k - 3 ]=

α∑
i = 1

T - 1

(1 - α)i - 1 d̂k - i + (1 - α)T - 1dk - T + 1|k - T (18)

The weight α(1 - α)i of d̂k - i decreases geometrically; 
hence, the earlier historical data have a smaller contribution 
to dk|k - 1, and a greater weight will be given to more recent 
estimations if α is large (i.e., close to 1). In addition, dk of 
the DFIG will inevitably show a trend and periodicity in the 
dynamic process owing to the PI control of the converter 
controllers. The single ESM in (17) will exhibit a lag bias 
and is not suitable for this case. Therefore, multiple smooth‐
ing is used to consider the information of lag deviation and 
enable dk|k - 1 to follow the trend of the time series. Then, 
(22) is extended to the following triple ESM:

ì

í

î

ï
ïï
ï

ï
ïï
ï

d (1)
k|k - 1 = αd̂k - 1 + (1 - α)d (1)

k - 1|k - 2

d (2)
k|k - 1 = αd (1)

k|k - 1 + (1 - α)d (2)
k - 1|k - 2

d (3)
k|k - 1 = αd (2)

k|k - 1 + (1 - α)d (3)
k - 1|k - 2

(19)

dk|k - 1 = ak|k - 1 + bk|k - 1 + ck|k - 1 (20)

ì

í

î

ïïïï

ï
ïï
ï

ak|k - 1 = 3d (1)
k|k - 1 - 3d (2)

k|k - 1 + d (3)
k|k - 1

bk|k - 1 = η(κ1d (1)
k|k - 1 - κ2d (2)

k|k - 1 + κ3d (3)
k|k - 1 )

ck|k - 1 = ηα(d (1)
k|k - 1 - 2d (2)

k|k - 1 + d (3)
k|k - 1 )

(21)

where η = α/2(1 - α)2; κ1 = 6 - 5α; κ2 = 2(5 - 4α); and κ3 = 4 - 3α.
The above process is represented by g:

dk|k - 1 = g(d̂k - Td̂k - T + 1d̂k - 1 ) (22)

The relation between the forecast dk|k - 1 and the true value 
dk is given by:

dk = dk|k - 1 + μk (23)

where μk is the prediction error of the triple ESM, and its co‐
variance matrix is expressed as Γk = E[μkμ

T
k ].

B. CKF with Augmented State Vector

Considering the spatial correlations between the unknown 
input dk and the state xk, an augmented state vector is de‐
fined as:

xak =[x T
k d

T
k ]T (24)

Then, dk is estimated together with xk by the augmented-

state CKF.
Specifically, with the estimated states at time step k - 1 

that have a mean x̂ak - 1 =[x̂ T
k - 1d̂

T
k - 1 ]T and a covariance ma‐

trix Σa,k - 1, 2n weighted sigma points are generated as:

x i
ak - 1 =

é
ë
êêêê ù

û
úúúúx i

k - 1

d i
k - 1

= x̂ak - 1 ± ( )nΣak - 1
i
    i = 12...n (25)

Subsequently, x i
ak|k - 1 is propagated through the nonlinear 

models f and g to obtain the transformed samples as:

x i
ak|k - 1 =

é
ë
êêêê ù

û
úúúúx i

k|k - 1

d i
k|k - 1

=
é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
úf (x i

k - 1uk - 1 )+Gd̂k - 1 )

g(d̂k - Td̂k - T + 1...d̂
i
k - 1 )

(26)

And the predicted state vector xa,k|k - 1 and its covariance 
matrix Σa,k|k - 1 are calculated by:

xak|k - 1 =
é
ë
êêêê ù

û
úúúúxk|k - 1

dk|k - 1

=
1
2n∑i = 1

2n

x i
ak|k - 1 (27)

Σak|k - 1 =
1
2n∑i = 1

2n

(x i
ak|k - 1 - xak|k - 1 )(x i

ak|k - 1 - xak|k - 1 )Τ + é
ë
êêêê ù

û
úúúúΘk

Γk

(28)

where Σak|k - 1 =[ΣxxΣxd ;Σ Τ
xdΣdd ], Σxx and Σdd are the covari‐

ance matrices of xk|k - 1 and dk|k - 1, respectively, both contain‐
ing information from previous time steps, and Σxd is the 
cross-covariance matrix of d and x that contains their spatial 
correlation information.

Then, the propagated sigma points of the predicted mea‐
surement z i

k|k - 1 and their mean zk|k - 1 are obtained as:

ì

í

î

ïïïï

ïïïï

z i
k|k - 1 = h(x i

k|k - 1uk )

zk|k - 1 =
1
2n∑i = 1

2n

z i
k|k - 1

(29)

And the covariance matrix Σ zz
k|k - 1 of the predicted measure‐

ment error and cross-covariance Σ xa z
k|k - 1 are given by:

Σ zz
k|k - 1 =

1
2n∑i = 1

2n

(z i
k|k - 1 - zk|k - 1 )(z i

k|k - 1 - zk|k - 1 )T +Λk (30)

Σ xa z
k|k - 1 =

1
2n∑i = 1

2n

(x i
ak|k - 1 - xak|k - 1 )(z i

k|k - 1 - zk|k - 1 )T (31)

where Σ xa z
k|k - 1 =[Σ T

xzΣ
Τ
dz ]T, and Σxz and Σdz are the cross-covari‐

ance matrices of the measurement zk|k - 1 with xk|k - 1 and dk|k - 1, 
respectively, where the spatial correlations between xe and z 
are included.

After obtaining the measurement vector zk, the estimated 
x̂ak and its covariance matrix Σe,k can be calculated by:

ì
í
î

ïï
ïï

x̂ak = xak|k - 1 +Kk (zk - zk|k - 1 )

Σek =Σak|k - 1 -KkΣ
zz
k|k - 1 K T

k

(32)

where Kk =Σ
xa z
k|k - 1 (Σ zz

k|k - 1 )-1 =[Σ Τ
xzΣ

Τ
dz ]Τ (Σ zz

k|k - 1 )-1 is the filter‐

ing gain, which determines the degree to which the measure‐
ment vector zk modifies xk|k - 1 and dk|k - 1. Then, the process re‐
turns to (25) to estimate the states of the next time step.

Remark: the prediction dk|k - 1 by the ESM may be inaccu‐
rate when there is a sudden change in dk, which is inevitable 
because disturbances cannot be reflected in the historical da‐
ta. However, it can be observed from (25)-(32) that the pre‐
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diction step and the filtering step of CKF are executed alter‐
nately; hence, the cross-correlations of the dynamic state x, 
unknown inputs d, and measurement vector z can be used to 
correct dk|k - 1 and yield a more accurate estimation of un‐
known inputs.

C. Adaptive Measurement Interpolation

Owing to discrete measurements and numerical computa‐
tion, the system dynamic equations in (9) should be dis‐
cretized into (12). The integral of both sides of the differen‐
tial equations in (9) during [tk - 1tk ] is calculated as:

∫
tk - 1

tk

ẋ(t)dt = xk - xk - 1 = ∫
tk - 1

tk

f (x(t)u(t))dt (33)

xk = xk - 1 + ∫
tk - 1

tk

f (x(t)u(t))dt (34)

Both the numerical integration approach and the step size 
Δh can affect the integral accuracy in (34), but the latter has 
a larger impact for the DFIG, which has fast dynamics ow‐
ing to its small capacity and power electronic converters. 
The value of Δh of the DSE is usually consistent with the 
PMU reporting rate, i.e., Δh = 0.02 s. However, this step size 
may not satisfy the requirements of the DSE for the DFIG. 
Figure 3 presents the comparison of the rotor speed ωr of a 
synchronous generator (SG) and a DFIG in the same system 
with a short-circuit fault. ωr of the DFIG fluctuates consider‐
ably within a step size Δh, which is not the case for the SG. 
Therefore, the dynamic states of the DFIG are difficult to 
predict within a step size Dh = 0.02 s and may lead to the di‐
vergence of the DSE.

Reducing the step size Δh is an effective way to improve 
the accuracy of numerical integration. However, it is diffi‐
cult to improve significantly the reporting rate of PMUs be‐
cause of the restrictions of computing power and communi‐
cation technology. An alternative approach is the linear inter‐
polation of the measurements.

The interpolation parameter L is defined as the number of 
pseudo-measurements added between two consecutive mea‐
surement samples. The value of L in [16] is simply set to be 
10 throughout the DSE process. However, when there is no 
fault, the DFIG states are stable, and accurate state predic‐
tion can be made with a small L; when a fault occurs, the 
DFIG dynamic states will fluctuate owing to the unbalanced 

power flow caused by the fault, and L needs to be increased 
to reduce the discretization error of the CKF prediction step. 
Therefore, L is expected to change adaptively. Hence, an 
adaptive approach based on the LTE is proposed to achieve 
a good tradeoff between the computing time and the estima‐
tion accuracy.

First, the LTE is defined. Let x(t) denote the function of 
the state vector x in (9) with respect to time t, and the p-or‐
der Taylor expansion of x(t) is performed at tk - 1 with x(tk - 1 ) 
represented by xk - 1:

x(t)= xk - 1 + ẋk - 1 (t - tk - 1 )+ +
x (p)

k - 1

p!
(t - tk - 1 )p + o((t - tk - 1 )p )

(35)

Let t = tk and Dh = tk - tk - 1, and the differential equations in 
(9) are substituted for ẋk - 1. Then, xk is expressed as:

xk = xk - 1 + f (xk - 1uk - 1 )Dh + +

f (p - 1) (xk - 1uk - 1 )
p!

Dhp + o(Dhp ) (36)

Take the Euler approach [29] as an example. Let p = 1, 
and we can obtain:

xk = xk - 1 + f (xk - 1uk - 1 )Dh + o(Dh) (37)

x Euler
k = xk - 1 + f (xk - 1uk - 1 )Dh (38)

where x Euler
k  is the state prediction vector calculated using the 

Euler approach. o(Dh) in (39) is defined as the LTE of the 
Euler approach, which has first-order accuracy because p = 1.

o(Dh)= xk - x Euler
k (39)

The LTE can reflect the discretization error, and hence 
can be used as an index to adjust the interpolation parameter 
L. However, the true state vector xk is not available in prac‐
tice, and thus the LTE must be estimated.

Consider two discretization approaches A and B that have 
p- and q-order accuracy, respectively.

o(Dhp )= xk - x A
k (40)

o(Dhq )= xk - x B
k (41)

where x A
k  and x B

k  are the state prediction vectors calculated 
using approaches A and B, respectively; q is much larger 
than p. Then, subtracting (40) from (41) yields:

x A
k - x B

k = o(Dhp )- o(Dhq ) (42)

where o(Dhq ) is much smaller than o(Dhp ). Then, we can ob‐
tain:

o(Dhp )» o(Dhp )- o(Dhq )= x A
k - x B

k (43)

Formula (43) indicates that the LTE of the discrete ap‐
proach A with p-order accuracy can be estimated by x A

k - x B
k .

Then, L is determined based on the estimation of the LTE. 
If the step size changes from Δh to Δh/L, the LTE of the dis‐
cretization approach A with p-order accuracy becomes:

o((Dh/L)p )= o(Dhp )/Lp (44)

The following definition is given:

err localk = o(Dhp )= x A
k - x B

k (45)

And the maximum tolerance is represented by ε. Then, 
(46) should be satisfied to determine L.

Δh=0.02 s
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Fig. 3.　Comparison between ωr of SG and DFIG.
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ì
í
î

ïï

ïï

o(hp )/Lp »max |err localk|/L
p £ ε

L ³ max |err localk|/ε
p (46)

The result is then rounded up to an integer to obtain L 
adaptively as:

L = é
ê

ù
úmax |err local_k|/ε

p
(47)

Remark: the larger the q of approach B, the more accurate 
is the estimation of the LTE of approach A. However, a dis‐
cretization approach with high-order accuracy is usually com‐
putationally inefficient, which is not suitable for the DSE 
that operates in real time. Moreover, the objective of AICKF-
UI is not to estimate the LTE accurately, but to realize the 
adaptive adjustment of L when the discretization error based 
on Δh is unacceptable. Therefore, the third-order Runge-Kut‐
ta (3-RK) approach with q = 3 [30] in (48) is used in this pa‐
per to estimate the LTE of 2-RK with p = 2, and then L is de‐
termined by (47).

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

xk = xk - 1 + (Dx1 + 4Dx2 +Dx3 )/6

Dx1 = f (x̂k - 1uk - 1 )Dh

Dx2 = f (x̂k - 1 +Dx1 /2 (uk - 1 + uk )/2)Dh

Dx3 = f (x̂k - 1 + (-Dx1 + 2Dx2 )/2uk )Dh

(48)

D. Procedure of AICKF-UI

The flowchart in Fig. 4 illustrates the execution process of 
the AICKF-UI visually. The proposed approach comprises 
four steps. In Step 0, the AICKF-UI is initialized, and the 
mean value x0 and covariance matrix Σ0 of the states are set 
up at k = 0. In Step 1, the real PMU measurement interval is 
input at time step k, and the parameter L is calculated by the 
proposed adaptive measurement interpolation approach (40)-
(47). Then, j is set to be 1. In Step 2, the states and un‐
known inputs are predicted by (25) - (28). The measurement 
filtering step given by (29) - (32) is performed in Step 3. 
Then, a logical judgment is required: if j < L, let j = j + 1, and 
return to Step 2; if j = L, let k = k + 1, and return to Step 1.

IV. CASE STUDIES

To evaluate the performance of the proposed AICKF-UI 
approach, a DFIG-based wind farm and modified IEEE 39-
bus system with a group of lumped DFIGs are utilized to 
generate the simulated PMU data that mimic the real system 
responses to different disturbances. The simulation is per‐
formed using MATLAB/Simulink R2020a on a desktop com‐
puter with the following specifications: Intel(R) Core(TM) i7-
10700K (8 cores) CPU @ 3.80 GHz, 16 GB RAM (DDR4), 
and 64-bit Windows 10 operating system.

A. Simulation and DSE Settings

The maximum simulation time step in MATLAB/Simulink 
is set to be 0.001 s, and all simulation cases last for 10 s. To 
mimic the field measurements from PMUs, the simulation 
data are sampled 50 times per second, i.e., Δh = 0.02 s, and 
zero mean Gaussian noise that accounts for 1% of the origi‐
nal signal amplitude is added. Then, the measurements are 
used in the DSE to estimate the dynamic states and un‐
known inputs of the DFIG. In the DSE, the covariance ma‐
trix Λ of the measurement noise is set to be 10-4Im × m accord‐
ing to the added measurement noise. As the system has un‐
known inputs, the diagonal component values of the system 
process noise covariance matrix Θ associated with the un‐
known inputs are set to be 10-4, which are 100 times larger 
than those associated with the state transition model in (12). 
The maximum tolerance ε of the AICKF-UI approach is set 
to be 10-3. In addition, the maximum error (ME) and root-
mean-square error (RMSE) are defined in (49) and (50), re‐
spectively, to quantify the prediction or estimation errors.

ME(x ik )=max{|x ik - x true
ik |i = 12n} (49)

RMSE(x i )=
1
Ts
∑
k = 1

Ts

(x ik - x true
ik )2 (50)

where xi,k is the ith element of the predicted state vector xk|k - 1 
or the estimated state vector x̂k at time step k; x true

ik  is the cor‐
responding true value; and Ts is the length of the measure‐
ment data.

Moreover, to determine a proper smoothing factor α of the 
ESM, mRMSE, which quantifies the overall estimation error, 
is defined in (51) based on the RMSE. N is the dimension 
of the extended state vector xe. Considering that α lies be‐
tween 0 and 1, α = 0 0.1  1 (i.e., the interval is 0.1) are 
employed for the simulation data of both test systems. It is 
observed that the mRMSE values decrease as α increases, 
and they do not change significantly when α ³ 0.6. There‐
fore, α = 0.7 is used in this paper.

mRMSE =
1
N∑i = 1

N

RMSE(x i ) (51)

B. Results for DFIG-based Wind Farm

A DFIG-based wind farm composed of 16 DFIG units is 
built in MATLAB/Simulink, as shown in Fig. 5. The parame‐
ters of a 1.5 MW DFIG unit are listed in Table I. The mea‐
surements of each DFIG unit are synchronously uploaded to 
the master station of the measurement system, and then, the 

Step 0��initialization

Start

Step 1: determine L adaptively by (40)-(47),

interpolate at time step k and set j=1

Step 2: predict states and inputs by (25)-(28)

Step 3: filter measurement by (29)-(32)

j ≤ L?

j = j+1

End

Y

k = k+1

k ≤ kend ?

N

Y

N

Fig. 4.　Flowchart of AICKF-UI.

1092



ZHU et al.: DYNAMIC STATE ESTIMATION FOR DFIG WITH UNKNOWN INPUTS BASED ON CUBATURE KALMAN FILTER...

DSE for each DFIG can be performed using AICKF-UI. Ow‐
ing to space limitation, only the estimated results of DFIG 
w31 are utilized for illustration. The mean estimated RMSE 
values of each state of all the DFIGs in the wind farm are 
given in the form of tables.

1)　Effectiveness Test of Measurement Interpolation
This subsection compares the performance of the pro‐

posed AICKF-UI approach and CKF-UI without measure‐
ment interpolation. The wind speed variation of DFIG w31 is 
shown in Fig. 6. A step change at 2 s and a sinusoidal varia‐
tion at 2-6 s for the wind speed are set to test the perfor‐
mance of the AICKF-UI approach under quasi-steady-state 
condition.

The step size of CKF-UI is fixed as the PMU measure‐
ment interval Δh = 0.02 s, and 2-RK and 3-RK are used as 
the discretization approaches to evaluate the influence of dif‐

ferent numerical approaches on the DSE. Note that the dis‐
cretization approach adopted by AICKF-UI is still 2-RK, but 
its step size is Δh/L. Figure 7(a) shows the comparison of 
ME for xk|k - 1 by different approaches.

The ME of CKF-UI with 3-RK is smaller than that of 
CKF-UI with 2-RK, as the former has higher discretization 
accuracy. However, the ME of AICKF-UI is much smaller 
despite the use of 2-RK, because the measurement interpola‐
tion considerably reduces the step size, and thus the discreti‐
zation error decreases. The variations of max|errlocal| in (46) 
and the interpolation parameter L of AICKF-UI are shown in 
Fig. 7(b). The value of L mainly changes in the range of 6 
to 10, and the step size of AICKF-UI changes according to 
Δh/L. The change in the wind speed has no obvious influ‐
ence on L because it corresponds to a quasi-steady-state dis‐
turbance.

The mean RMSE of estimated states and unknown inputs 
of all the DFIGs are listed in Table II, and the estimated 
states and unknown inputs of DFIG w31 are shown in Fig. 8. 
In the case of wind speed fluctuation, AICKF-UI can accu‐
rately estimate the DFIG states and unknown inputs owing 
to measurement interpolation, whereas the estimation results 
of CKF-UI approach have a large deviation. Therefore, for a 
DFIG with fast dynamics, a smaller Δh is more beneficial to 
the DSE than discretization approaches of higher-order accu‐
racy.
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Power

grid

Line

Main

transformer

25 kV120 kV

w11

w12
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w14

w21

w22

w23
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w41

w42

w43

w44

~

Fig. 5.　Topological structure of wind farm.

TABLE I
PARAMETERS OF A 1.5 MW DFIG UNIT

Parameter

Pm,nom

KN

ωnom

Vω,nom

F

Rs

Rr

Rg

Rc

Value

1.5 MW

0.73 p.u.

1.2 p.u.

12 m/s

0.01

0.00706 p.u.

0.005 p.u.

0.0015 p.u.

0.075 p.u.

Parameter

Pe,nom

Cp,nom

λnom

Hg

Lm

Lls

Llr

Lg

ωs

Value

1.67 MW

0.48 p.u.

8.1 p.u.

5.04 s

2.9 p.u.

0.171 p.u.

0.156 p.u.

0.15 p.u.

1 p.u.

V
w
 (

m
/s

)

10.8

10.4

10.0

9.6

9.2
0 2 4 6 8 10

Time (s)

Fig. 6.　Wind speed variation of DFIG w31.
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Fig. 7.　Evaluation of state prediction accuracy by different approaches. (a) 
Comparison of ME for xk|k - 1. (b) max|errlocal | and interpolation parameter L 
of AICKF-UI.

TABLE II
MEAN RMSE OF ESTIMATED STATES AND UNKNOWN INPUTS OF ALL DFIGS

Approach

CKF with 2-RK and Δh

CKF with 3-RK and Δh

AICKF-UI with Δh/L

Mean RMSE of x

ωr

0.0036

0.0024

0.0012

ψdr

0.0262

0.0215

0.0067

ψqr

0.0353

0.0332

0.0095

ψds

0.0679

0.0318

0.0115

ψqs

0.0553

0.0357

0.0193

idg

0.0409

0.0215

0.0112

Mean RMSE of d

iqg

0.0356

0.0167

0.0096

udr

0.0081

0.0068

0.0022

uqr

0.0072

0.0062

0.0026

udg

0.0097

0.0075

0.0048

uqg

0.0096

0.0088

0.0051
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2)　Comparison of Results of Proposed AICKF-UI and ICKF-
UI with Different Constant L Values

To demonstrate the advantages of the proposed AICKF-UI 
approach over the interpolation-based CKF-UI (ICKF-UI) 
with a constant L, the value of L in ICKF-UI is set to be 1, 
3, 7, 12, and 20, and the estimation results of ICKF-UI are 
compared with those of AICKF-UI. A 10% voltage drop is 
applied to the PCC bus of the wind farm at 2 s, which will 
not activate the LVRT control strategies of the DFIG. The 
fault lasts for 500 ms.

Figure 9(a) shows the mean ME for xk|k - 1 of different L 
values. The reduction in the mean ME with the increase in L 
further proves the effect of the measurement interpolation on 
reducing the discretization error.

Moreover, the mean ME of AICKF-UI is close to that of 
ICKF-UI with L = 20, but the value of L of the former is usu‐
ally small, as shown in Fig. 9(b), which results in the varia‐
tions of max|err local| and the interpolation parameter L of 
AICKF-UI. The value of L mainly changes from 5 to 12, but 
it increases to more than 20 around 2 s and 2.5 s, which in‐
dicates that the discretization error increases during the fault, 
and that the proposed approach can change L adaptively.

Figure 10 shows the estimation results of the dynamic 
states ωr and ψdr and the unknown inputs udr and uqr of 
DFIG w31. The DSE based on ICKF-UI with L = 1 is termi‐
nated because of the nonpositive definite state covariance 
matrix, and thus its estimation results are not shown here. 
The mean RMSE values of the estimation results of all the 
DFIGs and mean computing time of single step are listed in 
Table III. The estimation errors of ICKF-UI with both L = 3 
and 7 are large, particularly during the fault. The estimated 
results of ICKF-UI with L = 20 track the true states well, and 
the unknown inputs are also estimated accurately; however, 
owing to the large interpolation parameter L, the mean com‐
puting time of a single step exceeds the PMU measurement 
interval (20 ms), and thus is impractical.

By contrast, the mean RMSE of AICKF-UI is close to 
that of ICKF with L = 20 but with a shorter computing time. 
This demonstrates that the proposed approach is more effi‐
cient by changing L adaptively in different situations.

Furthermore, note that the value of L of AICKF-UI in Fig. 
9(b) is larger than 20 at some time steps, and consequently, 
the single-step computing time (SSCT) of these time steps 
may exceed the PMU measurement interval. Therefore, it is 
necessary to add an upper limit for the value L of AICKF-
UI. A reasonable upper limit will have no impact on the esti‐
mation accuracy because the accuracy improvement is tiny 
when L increases to a certain level, as shown in Fig. 9(a). 
The actual SSCT for the cases of L = 16, 17, 18, 19, and 20 
is measured, and the corresponding mean values and stan‐
dard deviation (STD) of SSCT are listed in Table IV. When 
L = 17, the mean SSCT is 19.581 ms, which is shorter than 
the PMU measurement interval. Thus, 17 is chosen as the 
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upper limit for the interpolation parameter L in AICKF-UI in 
the following cases. The mean RMSE of all DFIGs for 
AICKF-UI with an upper limit is shown in Table V, and the 

estimation accuracy does not decrease significantly com‐
pared with the results of AICKF-UI without a limit.

3)　Performance of Unknown Input Estimation Under Severe 
Voltage Drop

In the event of a severe voltage drop, the DFIG control 
will switch to LVRT control strategies to keep the DFIG con‐
nected to the grid, which presents a challenge to the estima‐
tion of unknown inputs.

The performance of the proposed AICKF-UI approach in 
such a situation is evaluated in this subsection. A 70% volt‐
age drop is applied to the PCC bus of the wind farm at 2 s, 
and the fault is cleared at 2.5 s.

The LVRT control strategies of DFIG used in the simula‐
tion are as follows: the crowbar is switched on at 2.0-2.1 s 
to protect the DFIG rotor from an overcurrent, and mean‐
while the RSC is blocked. As the DFIG becomes an asyn‐
chronous generator after the crowbar is switched on, it will 
absorb more reactive power [23]. The DFIG is also required 
to provide reactive power support during the fault of a volt‐
age drop. Therefore, the reactive power priority control strat‐
egy is enabled at 2.1-2.5 s, and the reactive current reference 
value idrref is no longer given by the conventional power out‐
er loop [8], but is determined by:

idrref =min[Irmax1.5(0.9Usnom -Usfault )] (52)

where Ir,max is the maximum allowable current of the RSC; 
Us,nom is the rated DFIG terminal voltage; and Usfault is the 

actual DFIG terminal voltage during the fault.
Figure 11(a) shows the variation of udr under conventional 

control and LVRT control, whereas Fig. 11(b) shows that of 
Qe under the two control strategies. Figure 11(a) shows that 
udr = 0 when the crowbar is switched on from 2.0 to 2.1 s, 
but udr of the conventional control fluctuates considerably. In 
Fig. 11(b), the DFIG with reactive power priority control 
outputs more reactive power from 2.1 to 2.5 s, whereas Qe 
of the DFIG with conventional control is almost zero. Thus, 
the DFIG behaves differently when the LVRT control is acti‐
vated, and it is impractical to consider only conventional 
control in the DSE. By contrast, the proposed AICKF-UI ap‐
proach has broad applicability because it regards the outputs 
of the converter as unknown inputs of the DSE regardless of 
the specific control strategies of DFIG converter.

The unknown inputs of DFIG w31 predicted and estimated 
by AICKF-UI are compared in Fig. 12. The prediction is ac‐
curate when the unknown inputs change smoothly, but there 
will be a bias for a duration when there is a sudden change 
caused by a fault, which is inevitable because the ESM is 
based on historical data. However, the deviation is corrected 
in the measurement filtering step of AICKF-UI by consider‐
ing the correlations of the unknown inputs dk, dynamic states 
xk, and measurements zk. In addition, the measurement inter‐
polation enables multiple corrections of dk within a measure‐
ment interval, which is beneficial to the accurate estimation 

TABLE III
MEAN RMSE VALUES OF ESTIMATION RESULTS OF ALL DFIGS AND MEAN COMPUTING TIME OF SINGLE STEP

Approach

ICKF (L = 3)

ICKF (L = 7)

ICKF (L = 12)

ICKF (L = 20)

AICKF-UI

Mean RMSE of x

ωr

0.0329

0.0187

0.0032

0.0008

0.0009

ψdr

0.0487

0.0191

0.0045

0.0018

0.0029

ψqr

0.1082

0.0554

0.0193

0.0058

0.0066

ψds

0.2052

0.0628

0.0133

0.0067

0.0067

ψqs

0.3146

0.1293

0.0265

0.0087

0.0074

idg

0.2539

0.1432

0.0587

0.0015

0.0018

iqg

0.1872

0.1027

0.0413

0.0017

0.0016

Mean RMSE of d

udr

0.0178

0.0108

0.0069

0.0046

0.0043

uqr

0.0225

0.0153

0.0065

0.0031

0.0025

udg

0.0212

0.0129

0.0078

0.0039

0.0042

uqg

0.0365

0.0145

0.0095

0.0041

0.0033

Time (ms)

3.511

8.897

14.153

25.518

11.466

TABLE IV
MEAN VALUES AND STD OF SSCT

L

16

17

18

19

20

Mean value (ms)

17.943

19.581

21.509

23.923

25.518

STD

0.489

0.359

0.548

0.492

0.390

TABLE V
MEAN RMSE OF ALL DFIGS FOR AICKF-UI WITH AN UPPER LIMIT

Mean RMSE of x (10-3)

ωr

1.1

ψdr

3.1

ψqr

7.5

ψds

6.8

ψqs

2.3

idg

2.7

iqg

2.0

Mean RMSE of d (10-3)

udr

5.8

uqr
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control. (a) Variation of udr. (b) Variation of Qe.
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of dk. Therefore, the estimated unknown inputs track the true 
values well even when LVRT control is activated by a se‐
vere voltage drop.

Figure 13 shows the estimation results of all the dynamic 
states of DFIG w31. In the case of a severe voltage drop, the 
interpolation parameter L increases above 15, which enables 
AICKF-UI to estimate the states of DFIG w31 accurately. 

The results of other DFIG units in the wind farm have 
similar trends, and hence are not shown here to be concise.

C. Results for Modified IEEE 39-bus System

In the case of large-scale systems, the equivalent model of 
a wind farm is often used to reduce the model order and im‐
prove the simulation efficiency. Thus, the DSE can only be 
developed at the point where the wind farm is connected to 
the power grid, and only the measurements of the PMU in‐
stalled at the connection point are available. However, if the 
DFIG controller model is included in the DSE, it may cause 
observability problems owing to the existence of too many 
dynamic states [6]. Moreover, it is a considerable challenge 
to accurately acquire the equivalent controller parameters. 
For the equivalent model of the wind farm, the converter 
outputs do not exist, and thus cannot be measured. By con‐
trast, the proposed AICKF-UI approach considers the con‐
verter controller outputs as the unknown inputs of the DSE 
and eliminates the dependence on the control models and pa‐
rameters. Therefore, the approach is well suited for this sce‐
nario.

The IEEE 39-bus system [9], modified by connecting a 
group of lumped DFIGs (60 × 1.5 MW) to bus 29, is used to 
verify the generalization of the proposed approach. Note that 
the equivalent model of the wind farm in a simulation soft‐
ware still adopts the complete DFIG model. A break line 
fault is applied from 2 to 3 s by opening the transmission 
line between buses 28 and 29. Some of the results of the es‐
timated states and unknown inputs of DFIG are shown in 
Figs. 14 and 15.
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The value of L of AICKF-UI varies from 5 to 11 in nor‐
mal situations and increases adaptively to more than 15 
when the disconnection fault occurs. As the adaptive mea‐
surement interpolation is used, the estimated states in Fig. 
14 and the unknown inputs in Fig. 15 of the DFIG track the 
corresponding true values well, which validate the proposed 
approach for the equivalent DFIG in a large-scale system.

V. CONCLUSION

In this paper, an AICKF-UI approach has been developed 
for estimating the dynamic states of a DFIG. Instead of us‐
ing the full dynamic model with high complexity, we have 
proposed to consider the converter controller outputs as the 
unknown inputs of the DSE and estimated them together 
with the original DFIG dynamic states using triple ESM and 
the augmented-state CKF. This eliminates the dependence on 
different control models.

The discretization process of the continuous system has 
been analyzed, and an adaptive interpolation approach based 
on the LTE has been proposed to achieve the desired trad‐
eoff between the computing time and the estimation accura‐
cy. Simulation results show that the proposed AICKF-UI ap‐
proach can adaptively adjust the interpolation factor based 
on the variation of the LTE, yielding an accurate estimation 
of dynamic states and unknown inputs.

APPENDIX A 

The Jacobian matrix of hk is used to check whether the re‐
quirement of rank(HkG)= rank(G)= m is met. Therefore, the 
DFIG measurement function can be expressed as:
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Then, HkG can be calculated as:
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As is clear from the (A2), the row and column vectors of 
HkG are all linearly independent, which means that the rank of 
HkG is equal to that of G (equal to 4 in the DFIG case of this 
paper). Therefore, the rank requirement is satisfied and the un‐
known input vector d can be observed from the selected mea‐
surement vector z of the DFIG system.

APPENDIX B

In the case of nonlinear DFIG system, its augmented state 
transition equations are represented by:

xak =
é
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where g denotes the transition equations of d. Then, the first-
order approximation for matrices Fa,k and Ha,k can be calculat‐
ed at a given time step k. Ha,k =[Hk 0m × p], the expression of Hk 
is shown in (A1), and Fa,k is expressed as:
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Then, the observability matrix O͂ can be constructed. The 
singular value decomposition (SVD) of O͂ is a factorization of 
the form O͂ =USV T, where S is given as:

S = diag(δ1δ2...δn )    δ1 ³ δ2 ³ ... ³ δn (B3)

where δi is the singular value of O͂; and the number of the non-
zero singular values is equal to rank(O͂). If the smallest singu‐
lar value (SSV) δn of O͂ is non-zero, we can get rank(O͂) = n , 
i.e., the system is observable.

The simulation setups are the same as those used in the sec‐
ond case of the Section IV-B. Analysis results show that the 
SSV always keeps greater than zero throughout the process 
and the mean and standard deviation of the SSV of the observ‐
ability matrices is 1.975 ± 0.046, which means that the SSV of 
O͂ is always non-zero. Therefore, the DFIG system with the 
augmented states is considered observable under the selected 
measurement set.
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