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Abstract—Dynamic state estimation (DSE) accurately tracks
the dynamics of power systems and demonstrates the evolution
of the system state in real time. This paper proposes a DSE ap-
proach for a doubly-fed induction generator (DFIG) with un-
known inputs based on adaptive interpolation and cubature
Kalman filter (AICKF-UI). DFIGs adopt different control strat-
egies in normal and fault conditions; thus, the existing DSE ap-
proaches based on the conventional control model of DFIG are
not applicable in all cases. Consequently, the DSE model of
DFIGs is reformulated to consider the converter controller out-
puts as unknown inputs, which are estimated together with the
DFIG dynamic states by an exponential smoothing model and
augmented-state cubature Kalman filter. Furthermore, as the re-
porting rate of existing synchro-phasor data is not sufficiently
high to capture the fast dynamics of DFIGs, a large estimation
error may occur or the DSE approach may diverge. To this
end, in this paper, a local-truncation-error-guided adaptive in-
terpolation approach is developed. Extensive simulations con-
ducted on a wind farm and the modified IEEE 39-bus test sys-
tem show that the proposed AICKF-UI can (D effectively ad-
dress the divergence issues of existing cubature Kalman filters
while being computationally more efficient; 2 accurately track
the dynamic states and unknown inputs of the DFIG; and (3
deal with various types of system operating conditions such as
time-varying wind and different system faults.

Index Terms—Adaptive interpolation, cubature Kalman filter-
ing, doubly-fed induction generator (DFIG), dynamic state esti-
mation, unknown input.

1. INTRODUCTION

IND energy has attracted significant attention in re-
cent years owing to its renewability, easy availability,
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and environmental friendliness. Accordingly, the penetration
of wind generation is rapidly increasing in power systems
around the world. Consequently, doubly-fed induction gener-
ators (DFIGs) have been widely deployed owing to their
good controllability and high efficiency [1]. However, their
intermittency and dynamic responses during transient events
have a substantial impact on secure system operation. This
requires the development of innovative dynamic monitoring
tools such as the dynamic state estimation (DSE) approaches
using fast and synchronized measurements from phasor mea-
surement units (PMUs) [2], [3].

Most existing DSE approaches are developed for tradition-
al synchronous generators [4]-[6]. However, the complexity
of wind generators has increased from the modeling perspec-
tive, particularly in terms of power electronics and related
controllers [7]. An appropriate dynamic model of DFIGs is
critical for the DSE. In [8] and [9], the conventional control
of DFIGs is modeled using the DSE, but fault control strate-
gies [10], [11] are ignored. However, when a fault occurs,
the transient dynamic process of DFIGs under the fault con-
trol strategies plays an essential role in affecting the power
system dynamics, and thus should be effectively captured by
the DSE [12]. In addition, in the event of a serious fault,
some protection circuits such as crowbars are used to pre-
vent overcurrent situations [13]. To solve this problem, a
general DSE framework for permanent magnet synchronous
generator (PMSG) -based wind generation is proposed in
[14]. This framework decouples the generator model from
the controllers in a PMSG but assumes that the outputs of
the converter controller are measured or available in the
DSE; however, this may not be practical because the DSE is
mainly based on the synchronous measurement of PMUs
[6], which does not include the outputs of the converter con-
trollers.

The most widely used DSE approaches for DFIGs include
the extended Kalman filter [15], unscented Kalman filter [8],
cubature Kalman filter (CKF) [16], and particle filter [9],
[17]. However, the mismatch between the fast dynamics of
DFIGs and the existing phasor measurement reporting rate is
ignored in these studies. Note that DFIGs generally have a
small capacity and the dynamic states of their rotor, DC ca-
pacitor, AC windings, and filter inductance have relatively
low time constants [18]. Consequently, the state prediction
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for the DSE approaches may be inaccurate, as the DSE time
step is large, e.g., consistent with the PMU reporting rate of
50 or 60 samples per second [19]. To this end, an impracti-
cal high sampling rate of 4000 samples per second is as-
sumed in [14], while in [16], pseudo measurements are used
to increase the sampling rate by performing a simple mea-
surement interpolation without selection basis for the interpo-
lation parameter. The latter is a viable approach, but the
computing time increases due to the interpolation. Thus, it is
critical to choose an appropriate interpolation parameter to
balance the tradeoff between the computing efficiency and
estimation accuracy of the DSE approaches. In numerical
analysis and time-domain simulation, an adaptive step size
[20] based on the integral difference between two numerical
approaches with different accuracy orders is widely used,
such as the RKF45 [21]. Considering that the discrete predic-
tion step of the DSE approaches also involves numerical in-
tegration, the idea of an adaptive step size can be extended
to the measurement interpolation of the DSE approaches for
DFIGs.

To address these issues, this paper proposes a DSE ap-
proach for a DFIG based on adaptive interpolation and CKF
(AICKF-UI). The main contributions of this paper are sum-
marized as follows.

1) The DSE model for DFIGs is reformulated to consider
the status of the crowbar and the converter controller outputs
as the unknown inputs to cope with the diverse control strat-
egies, significantly increasing the generalizability of the pro-
posed AICKF-UI approach and reducing the model complexi-
ty.

2) The unknown inputs are accurately estimated together
with the DFIG dynamic states by an exponential smoothing
model and a CKF with an augmented state vector, which
consider the correlations among the unknown inputs d,, dy-
namic states x,, and measurements z,.

3) The AICKF-UI approach with the adaptive interpola-
tion parameter is proposed to estimate the states of the
DFIG. A local truncation error (LTE)-aware estimation ap-
proach is developed to mitigate the discretization error of
the prediction step. This is critical during large disturbances,
where the existing approaches either yield large estimation
errors or diverge.

The remainder of this paper is structured as follows. The
reformulated DFIG model with unknown inputs is described
in Section II. Section III describes the proposed AICKF-UI
approach. Section IV presents case studies and evaluates the
performance of the proposed approach on a wind farm and
the modified IEEE 39-bus test system. Finally, the conclu-
sions are provided in Section V.

II. DFIG MODEL WITH UNKNOWN INPUTS

Figure 1 shows the basic structure of the DFIG model cou-
pled with a wind turbine and power grid, where RSC and
GSC represent the rotor-side and grid-side converters, respec-
tively; I, and I, are the stator and rotor currents, respective-
ly; U, is the stator voltage; w, is the speed of the wind tur-
bine; R, is the resistance of the crowbar; /, is the output cur-
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rent of DFIG; U, is the DC capacitor voltage; F¢, is the
crowbar controller output; Uy and U, are the outputs of the
converter controllers. The actual circuit connections are
shown by solid red lines; the controller outputs are shown
by solid blue lines; and the measurements are indicated by
black dashed lines. The complete dynamic model of a grid-
connected DFIG includes a wind turbine, an asynchronous
generator, a set of AC-DC and DC-AC converters with con-
trollers, a grid-side filter, and a crowbar circuit. The wind
turbine transfers wind energy to the DFIG through the me-
chanical shaft. The stator of the induction machine is direct-
ly connected to the grid while the rotor is fed through a
back-to-back converter.

Wind turbine

1,
Wind A
- 1 [
v |
. | i Filter !
- RSC  GSC i
L] |
— L EIRS i
1 el |
R I___LU:EMK e E
Converter -7
T | controllers |
| controller 1 Converters with
_______ controllers
Fig. 1. Structure of DFIG model.

The mathematical model of the DFIG comprising a set of
differential and algebraic equations is described below in de-
tail.

A. Wind Turbine

The wind turbine is the primary energy conversion compo-
nent of the DFIG. It can be described by:

Tm = _Pﬂl /wV

P, =C, (L p)V:KyP, /P M

m,nom'~ e,nom

where 7, is the torque of the wind turbine; P, is the mechan-
ical power; C, is the mechanical power coefficient, and the
detailed mathematical descriptions of C, are given in [8]; 4
is the blade tip ratio; f is the pitch angle of the wind tur-
bine; V, is the wind speed; K, is the factor of the output
power of the wind turbine; and P, ,,, and P,,,, are the nom-

inal mechanical and electric power, respectively.

B. Asynchronous Generator

A single-mass model of the drive train [22] in (2) is adopt-
ed to describe the relationships among the rotor speed w,,
mechanical torque 7, and electrical torque 7 :

dow,/dt=(T,-T,~Fw,)2H,

. . 2
Te = l//dsqu - Wq.vlds ( )

where H, is the inertia of the generator; F' is the friction fac-
tor; and w,, v, and i,, i, are the d-g components of the sta-
tor flux w, and current I, respectively.

The voltage equations of the generator winding based on
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electromotor conventions are expressed as:
dt//dr/dt: wb (uds + wqus _Rsids )
dl//qs/dt: wb (uqs - wsl//ds -Ri )

svqs (3)
dl//dr/dt = wb (udr + (a)x - wr )l//qr - Rridr)
dl//qr/dt = wb (uqr - (a)x - wr )l//dr - Rriqr )

where the subscripts d and ¢ represent the d-g components
of the rotor current I, rotor voltage U,, stator voltage U,
and rotor flux w,, respectively; w, is the base angular speed;
o, is the synchronous angular speed; and R and R, are the
stator and rotor resistances, respectively.

The stator currents (i, and i,) and the rotor currents (i,
and i,) can be expressed as:

la=Wa = Wan )Ly
l,= (qu ~Yim YLy
I =Wa=Van )Ly
Ly =Wy =W )Ly

“4)

where L, and L, are the leakage inductances of the stator
and rotor windings, respectively; and v, and v, are the sta-
tor-rotor mutual fluxes given by:
Wan=Wa /(0L )+ /(0L )
Won=Wo! (0L, )+, /(0L,)
o=1/L,+1/L, +1/L,

)

where L is the mutual inductance.

C. Converter with Controller

The converter of the DFIG consists of an RSC, GSC, and
DC link. As the time constant of the converter is on the or-
der of microseconds, its modulation process can be ignored.
Then, the converter outputs U, and U, are considered equal
to their corresponding control commands, i.e., U; and Uy,
Therefore, the converter controller considerably affects the
dynamics of the DFIG, and proper handling of the converter
controllers is important in the DSE.

The detailed controller model is considered in [8], [9] for
the DSE of the DFIG, but it only involves the conventional
control strategies applied to normal conditions. However,
when a voltage drop occurs owing to a fault, a series low-
voltage ride-through (LVRT) control strategy [10] will be ac-
tivated to keep the DFIG connected to the power grid. A
crowbar circuit will be switched on when a severe voltage
drop occurs. Thus, it is inappropriate to only consider the
conventional control strategies in the DSE. In addition, the
controllers providing instructions based on proportional-inte-
gral (PI) control belong to secondary systems, and the inte-
gral dynamic states of PI control are not our focus. Conse-
quently, it is difficult and unnecessary to consider the de-
tailed controller model in the DSE.

The converter outputs U, and U, are assumed to be avail-
able in [14], and the controller impacts can be simply cap-
tured by considering them as time-varying known inputs in
the DSE. However, the DSE is usually deployed at the main
station of a measurement system and uses the synchronous
measurements of PMUs [6], where the DFIG terminal volt-
age and current phasors are measured, but the outputs of the
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converter controllers are not included. Moreover, the mea-
surements of the DFIGs are usually asynchronous and only
used for local control. In addition, for the equivalent model
of the wind farm, the converter outputs do not exist, and
thus, cannot be measured.

Considering the aforementioned problems, the converter
outputs U, and U, are considered as the unknown inputs d of
the DSE in this paper to deal with the complex control strat-
egies of the DFIG as follows:

d=[U,. U, =[ug 11, g1, 1" (6)
where u,, and u,, are the d-q components of the grid-side
voltage U, respectively. d is estimated by the proposed ap-
proach in Section III. Note that the converter outputs are re-
garded as unknown inputs only in the DSE, and the simula-
tions performed in a simulation software still adopt the com-
plete DFIG model.

Moreover, the model of the grid-side filter in the d-q
frame is given by:

!didg/dt=a)b(udy—udg—Rgidg+L i )/L,

ldiqg/dt:wb(uqs—qu—Rgiqg+Lgidg)/Lg

87498

(7

where i,, and i, are the d-g components of the grid-side cur-
rent 1, respectively; L, is the filter inductance; and R, is the
resistance of the grid-side filter.

D. Crowbar Model

Under the normal condition, the RSC operates normally to
regulate the output power of the turbine, as shown in Fig.
2(a). However, when there is a severe voltage drop at the ter-
minal of the DFIG, the transient control strategies based on
converter controllers may not guarantee the LVRT ability of
the DFIG. Then, the crowbar must be put into operation, and
meanwhile, the RSC is locked to maintain the connection of
the DFIG to the power grid, as shown in Fig. 2(b). The rotor
windings are short-circuited by the crowbar, and the DFIG
becomes an asynchronous generator [23]. Hence, this pro-
cess needs to be considered in the DSE model. F,, defined
as the status of the crowbar, is considered as an input of the
DSE. When F;=1, i.e., the crowbar is switched on, the
mathematical model of the induction motor must be modi-
fied according to the following equation:

udr: uqr: 0

R'=R,+R, ®)

R, ™~ R.
=T RSC =h
e

k¥ —
Crowbar

(@) (b)

Fig. 2. Cases where crowbar is switched off or on. (a) Crowbar is
switched off. (b) Crowbar is switched on.

Crowbar

E. Summary of DSE Model for DFIG

The estimation model of the DFIG can be summarized as
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the following general continuous state-space model:
x=f.(x,u)+G.d+w
z=h,(x,u)+v

©)

where f, is the function that represents the system dynamic
equations, including (2), (3), and (7); G, is the distribution
matrix of the unknown input vector; A, is the function that
represents the measurement equations; and weR” and
v € R” are the process and measurement noise, and their cor-
responding covariance matrices are @ and A, respectively,
and m and n are the dimensions of z and x, respectively.
Then, the dynamic state vector x, input vector u, unknown
input vector d, and measurement vector z are expressed as:

_ . .qT _ T

x_[a)r’ Wd.v’ t//qs’ l//dr’ l//qw ldg’ lqg] _[x17x2’x37x4ax57x55x7]
T T

oo Vi Fepl =luy,uyus,u,]

— T _ T
d_[udr’ uqr’ udg’ qu _[d17d27d3’d4]

u=[u,.u

(10)

. . T T
=[P, Qpiyiy] =[21.25.25,2,]

where P, and Q, are the terminal active power and reactive
power measurements, respectively. According to the second-
level data record [24], the fluctuation of ¥, can be ignored
within the DSE execution interval, which is generally the
same as the PMU measurement interval, i.e., 0.02 s or short-
er. Then, the measurement results of the existing wind speed
measurement equipment in the wind farm such as nacelle an-
emometers and anemometer towers can be used. Thus, it is
assumed reasonably that the wind speed V,, can be measured
and considered as a known input of the DSE.

Then, the system (9) should be discretized to be suitable
for the Kalman filter frame. Considering the balance be-
tween the computational efficiency and the accuracy, the sec-
ond-order Runge-Kutta (2-RK) approach [25] is used in this
paper as:

X, =x;,_;+(Ax,+Ax,)/2
Ax,=f,(x,_,)Ah
Axy=f. (X +Ax, )Ah

(11)

where Ak is the step size. Thus, the discrete model of (9) is
expressed as:

X, =f(x,_u_ )+ Gdy_ +w,
L=h(x,u)+v,

(12)

where f and h are the discrete versions of f, and &, respec-
tively. The unknown input distribution matrix G is given in
(13), showing the relationship between the dynamic states

and the unknown inputs.
T

000 wAh 0 0 0

G_|0 00 0 @A 0 0 s
000 0 0 -wAWL, 0
000 0 0 0 —w,AWL,

As there are unknown inputs in the DFIG state space and
they are considered as part of the states in this paper, it is
necessary to check whether the selected measurement is rea-
sonable and to analyze the observability of the DFIG system
with augmented states. The rank requirement to estimate the

1089

unknown inputs is discussed in [26], where the unknown in-
put vector is estimated and then substituted into the dynamic
model for a repeated Kalman filter. Specifically, the un-
known input vector can be obtained using the following
equation:

dkz(GTchTI%lHkG)flGTHkTIéfl (zk_zk\k—l) (14)

where H, is the Jacobian matrix of A,; Ié:H,{E,d,HHkT+@;
2,1 1s the covariance matrix of the predicted state vector
X > and gz, is the predicted measurement vector. The
aforementioned estimation equation for the unknown inputs
requires rank(H,G)=rank(G)=m to make the inversion of
the matrix, which is expressed in (14), possible, i.e., the
number of measurement outputs m should be at least equal
to the number of unknown inputs p. Appendix A provides
the expression of H,G' of the DFIG, and the results show
that the rank requirement in (14) is satisfied for the DFIG
case, and the unknown input vector d can be observed from
the selected measurement vector z.

System observability is defined as the ability to determine
the states of the system uniquely from available measure-
ments [6]. The observability of a dynamical system can be
readily determined by whether its observability matrix O in
(15) has full rank, i.e., the rank of O is equal to n (the di-
mension of the state vector).

O=[H", (HF)", ..., (HF" )T (15)

where F is the Jacobian matrix of the system dynamic func-
tions. As the unknown inputs are considered as part of the
states in this paper, the above approach is considered appro-
priate for the observability analysis of the augmented states,
similar to the approach in [27]. The analysis result in Appen-
dix B shows that the observability matrix O of the DFIG sys-
tem with augmented states satisfies full-rank requirement,
and thus, the augmented states are observable under the se-
lected measurement set.

III. PROPOSED AICKF-UI APPROACH

The proposed AICKF-UI approach consists of three key
steps: (D an exponential smoothing model for predicting un-
known inputs; @ a CKF with an augmented state vector;
and 3 adaptive measurement interpolation.

A. Exponential Smoothing Model for Predicting Unknown In-
puts

From (3), it can be observed that U, affects y,, which can
change w, and I, through w,, and consequently, the stator
output power P, and Q, relying on I can also be affected. I,
is affected by U, in (7), and thus, the GSC output power P,
and @, is also affected. This indicates that d, has spatial cor-
relations with x,. Moreover, the output power of the stator
and GSC affects U, and U, in turn through PI feedback con-
trol where integral state variables and differential equations
exist. Therefore, there are temporal correlations among the
time series signals of d,.

For the temporal correlations, the following historical time
series d, is used to predict d, for time step k:
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‘ih:{d’\k—T"ik—Tﬂv""ék—l} (16)
where 7>2 is the dimension of the historical time series;
and d, , is the estimation of d, , at time step k—i (i=
1,2,...,7). In this paper, an exponential smoothing model
(ESM) is used to consider the temporal correlations of the

time series of unknown inputs [28]. The simplest form of
the ESM is given by:

dy_=ad,_ +(1-o)d,_,_, 0<a<l (17)
smoothing factor. The ESM obEains dy, , by as-
signing different weights to the estimation d,_, and forecasts
d,_,;_, at the previous time step k—1. Recursively replacing
dk—l\k—2 with dk—2|k—3! dk—3\k—4’ cees dk—T+l\k—P dk|k—1 can be ex-
pressed as:

dy_ = 0“2/(71 +( _0‘)[0“21(72 -,y 5 ]=

-1
o 2(1 —o)'d,_+(1 _a)Tildk—TJrl\k—T
=1

where a is a

(18)

The weight o(l-a) of tikﬂ. decreases geometrically;
hence, the earlier historical data have a smaller contribution
to dy, ,, and a greater weight will be given to more recent
estimations if o is large (i.e., close to 1). In addition, d, of
the DFIG will inevitably show a trend and periodicity in the
dynamic process owing to the PI control of the converter
controllers. The single ESM in (17) will exhibit a lag bias
and is not suitable for this case. Therefore, multiple smooth-
ing is used to consider the information of lag deviation and
enable d,, | to follow the trend of the time series. Then,
(22) is extended to the following triple ESM:

dﬁi 1—ad (1 —a)d k-2
d1§|2k) 1—ad15|11)c = a)dk k=2

[€) — 2
dk|k—1 = adk|k—1 +(1- a)dk— k=2

(19)

Ay 1=y +by  +cey (20)
ay =3dy | -3dg)  +df_,
by =n(x, dm . széﬁ?,1+x3d§|3£,l) 1)
Copa1 = na(df,‘lz,fl - 2d;,§?,1 + d,ﬁfk),l )
where =a/2(1 —a)*; k,=6—-50a; K,=2(5—4a); and x,=4—3a.

The above process is represented by g:

dk\k—l =g, r.d; 1.\, ..d,_)) (22)
The relation between the forecast d,, , and the true value
d, is given by:
dk:dk\k—l +u, (23)
where g, is the prediction error of the triple ESM, and its co-
variance matrix is expressed as I',=E[u,, p; |

B. CKF with Augmented State Vector

Considering the spatial correlations between the unknown
input d, and the state x,, an augmented state vector is de-
fined as:

x, =[x di 1 (24)
Then, d, is estimated together with x, by the augmented-
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state CKF.

Specifically, with the estimated states at time step k—1
that have a mean x,, =[x, 1,dkT .]" and a covariance ma-
trix X, _,, 2n Welghted sigma points are generated as:

k-1

Subsequently, x/,, , is propagated through the nonlinear
models fand g to obtain the transformed samples as:

; {x,i‘k_l] f(xli—l’uk—l)dl_GdAk—l)
Xake-1=| i = A A A
i 8 rdi_ri1sndiy)

And the predicted state vector x,,, , and its covariance
matrix X, , are calculated by:

2n
Xie-1
Xo k-1~ [ = zxam 1

k\k 1

2n
2= %;(xé,m-l X k-1 )(x:z,k\k—l X k-1 )+ [@k I-,k]
(28)
k1= ], 2. and X', are the covari-
ance matrices of x;, , and d,, ,, respectively, both contain-
ing information from previous time steps, and X', is the
cross-covariance matrix of d and x that contains their spatial
correlation information.
Then, the propagated sigma points of the predicted mea-
surement z;, , and their mean z,, , are obtained as:

(26)

@7

where X =[Z .2 ;202

xx?

zli\k— 1= h(xli\k— Uy

1 2n
Lie-1= 5

, (29)
1
L1
i=1
And the covariance matrix 2 ;| of the predicted measure-
ment error and cross-covariance X};” | are given by:

) 1 2n ) ) T
2= n z(z/lc\k—l_zk\k—l)(z;c\k—l_zk\k—l) +4,  (30)
i=1

2n

Z(Xa K17

where X} | = [EYT,,ET]
ance matrices of the measurement z,, , with x,, , and 4, ,
respectively, where the spatial correlations between x, and z
are included.

After obtaining the measurement vector z,, the estimated
X, and its covariance matrix X, can be calculated by:

€2))

and 2, and X, are the cross-covari-

z [ T
21?\7(71 X kk-1 )(zltdk—l ~Zhh-1 )

X =X 1 VK (20— Z)

. (32)
Ee,kzza.k\k—l _Kkzk\k—lKkT

where K =X (27 O =2LEITNE il ) is the filter-
ing gain, which determines the degree to which the measure-
ment vector g, modifies x, , and dy,_,. Then, the process re-
turns to (25) to estimate the states of the next time step.
Remark: the prediction dy, , by the ESM may be inaccu-
rate when there is a sudden change in d,, which is inevitable
because disturbances cannot be reflected in the historical da-

ta. However, it can be observed from (25)-(32) that the pre-
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diction step and the filtering step of CKF are executed alter-
nately; hence, the cross-correlations of the dynamic state x,
unknown inputs d, and measurement vector z can be used to
correct d,, , and yield a more accurate estimation of un-
known inputs.

C. Adaptive Measurement Interpolation

Owing to discrete measurements and numerical computa-
tion, the system dynamic equations in (9) should be dis-
cretized into (12). The integral of both sides of the differen-
tial equations in (9) during [#,_,,¢,] is calculated as:

[ swar=x,—x = [ posto.uonr

I

(33)

s+ [ f.uoy (4

Both the numerical integration approach and the step size
Ah can affect the integral accuracy in (34), but the latter has
a larger impact for the DFIG, which has fast dynamics ow-
ing to its small capacity and power electronic converters.
The value of Ah of the DSE is usually consistent with the
PMU reporting rate, i.e., Ah=0.02 s. However, this step size
may not satisfy the requirements of the DSE for the DFIG.
Figure 3 presents the comparison of the rotor speed w, of a
synchronous generator (SG) and a DFIG in the same system
with a short-circuit fault. @, of the DFIG fluctuates consider-
ably within a step size Ak, which is not the case for the SG.
Therefore, the dynamic states of the DFIG are difficult to
predict within a step size Ah=0.02 s and may lead to the di-
vergence of the DSE.
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Fig. 3. Comparison between w, of SG and DFIG.

Reducing the step size A/ is an effective way to improve
the accuracy of numerical integration. However, it is diffi-
cult to improve significantly the reporting rate of PMUs be-
cause of the restrictions of computing power and communi-
cation technology. An alternative approach is the linear inter-
polation of the measurements.

The interpolation parameter L is defined as the number of
pseudo-measurements added between two consecutive mea-
surement samples. The value of L in [16] is simply set to be
10 throughout the DSE process. However, when there is no
fault, the DFIG states are stable, and accurate state predic-
tion can be made with a small L; when a fault occurs, the
DFIG dynamic states will fluctuate owing to the unbalanced
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power flow caused by the fault, and L needs to be increased
to reduce the discretization error of the CKF prediction step.
Therefore, L is expected to change adaptively. Hence, an
adaptive approach based on the LTE is proposed to achieve
a good tradeoff between the computing time and the estima-
tion accuracy.

First, the LTE is defined. Let x(¢) denote the function of
the state vector x in (9) with respect to time ¢, and the p-or-
der Taylor expansion of x(¢) is performed at ¢,_, with x(z,_,)
represented by x,_;:

x”,
! (=t Y +olt=t,_,))
(35)
Let t=t, and Ah=t,—t, ,, and the differential equations in
(9) are substituted for x,_,. Then, x, is expressed as:
X, =X, +f(x_u,_ )AL+ .+

f(p_l)(xk—l’ u,_)
p!

x(O)=x,_,+x,_,(t—t,_) )+ ...+

AR +o(AR) (36)

Take the Euler approach [29] as an example. Let p=1,
and we can obtain:

X=X, +f(x,_,u_ )Ah+o(Ah) (37

x/fuler:xkf Hf (e u_ )AR (38)
where x/“" is the state prediction vector calculated using the
Euler approach. o(A%) in (39) is defined as the LTE of the
Euler approach, which has first-order accuracy because p=1.

o(Ah)=x,—x """ (39)
The LTE can reflect the discretization error, and hence
can be used as an index to adjust the interpolation parameter
L. However, the true state vector x, is not available in prac-
tice, and thus the LTE must be estimated.
Consider two discretization approaches A and B that have
p- and g-order accuracy, respectively.
o(AW )=x,—x! (40)
o(Ah)=x,-x] 41)
where x;' and x; are the state prediction vectors calculated
using approaches A and B, respectively; ¢ is much larger
than p. Then, subtracting (40) from (41) yields:

X —x2=0o(AW )—o(AR?) (42)
where o(Ah?) is much smaller than o(A#”). Then, we can ob-
tain:

o(AW )= o(AR ) — o( AR )=x]' — xP (43)

Formula (43) indicates that the LTE of the discrete ap-
proach A with p-order accuracy can be estimated by x;' —x;.

Then, L is determined based on the estimation of the LTE.

If the step size changes from Ak to Ah/L, the LTE of the dis-
cretization approach A with p-order accuracy becomes:

o((AR/LY )= o(AW)/LF (44)
The following definition is given:
CrY i k= O(Ahp ) :x/? - xlf (45)

And the maximum tolerance is represented by ¢. Then,
(46) should be satisfied to determine L.
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o(h")/LF ~max |err,,, /L' <€

L=/ maxlerr,. /e

The result is then rounded up to an integer to obtain L

adaptively as:
L= R/ max |err,M,7k|/8-‘

Remark: the larger the ¢ of approach B, the more accurate
is the estimation of the LTE of approach A. However, a dis-
cretization approach with high-order accuracy is usually com-
putationally inefficient, which is not suitable for the DSE
that operates in real time. Moreover, the objective of AICKF-
Ul is not to estimate the LTE accurately, but to realize the
adaptive adjustment of L when the discretization error based
on Ak is unacceptable. Therefore, the third-order Runge-Kut-
ta (3-RK) approach with ¢=3 [30] in (48) is used in this pa-
per to estimate the LTE of 2-RK with p=2, and then L is de-
termined by (47).

X, =X,_; +(Ax, +4Ax, + Ax, )/6

A =f (X, )AR

Ay =f (%, +Ax, /2, (uy_y +u, )/2)Ah
Ax;=f(x,_,+(=Ax, +2Ax,)/2,u, )Ah

(40)

47

(4%)

D. Procedure of AICKF-UI

The flowchart in Fig. 4 illustrates the execution process of
the AICKF-UI visually. The proposed approach comprises
four steps. In Step 0, the AICKF-UI is initialized, and the
mean value x, and covariance matrix X, of the states are set
up at k=0. In Step 1, the real PMU measurement interval is
input at time step k, and the parameter L is calculated by the
proposed adaptive measurement interpolation approach (40)-
(47). Then, j is set to be 1. In Step 2, the states and un-
known inputs are predicted by (25)-(28). The measurement
filtering step given by (29)-(32) is performed in Step 3.
Then, a logical judgment is required: if j<L, let j=j+1, and
return to Step 2; if j=L, let k=k+1, and return to Step 1.

| Step 0: initialization |
|
v

Step I: determine L adaptively by (40)-(47),
interpolate at time step k and set j=1
T

k
IE@ ‘ Step 2: predict states and inputs by (25)-(28)‘
!

‘ Step 3: filter measurement by (29)-(32) ‘ |Ej+1

Fig. 4. Flowchart of AICKF-UIL
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IV. CASE STUDIES

To evaluate the performance of the proposed AICKF-UI
approach, a DFIG-based wind farm and modified IEEE 39-
bus system with a group of lumped DFIGs are utilized to
generate the simulated PMU data that mimic the real system
responses to different disturbances. The simulation is per-
formed using MATLAB/Simulink R2020a on a desktop com-
puter with the following specifications: Intel® Core™ i7-
10700K (8 cores) CPU @ 3.80 GHz, 16 GB RAM (DDR4),
and 64-bit Windows 10 operating system.

A. Simulation and DSE Settings

The maximum simulation time step in MATLAB/Simulink
is set to be 0.001 s, and all simulation cases last for 10 s. To
mimic the field measurements from PMUSs, the simulation
data are sampled 50 times per second, i.e., AZ=0.02 s, and
zero mean Gaussian noise that accounts for 1% of the origi-
nal signal amplitude is added. Then, the measurements are
used in the DSE to estimate the dynamic states and un-
known inputs of the DFIG. In the DSE, the covariance ma-
trix A of the measurement noise is set to be 1071, accord-
ing to the added measurement noise. As the system has un-
known inputs, the diagonal component values of the system
process noise covariance matrix @ associated with the un-
known inputs are set to be 107, which are 100 times larger
than those associated with the state transition model in (12).
The maximum tolerance ¢ of the AICKF-UI approach is set
to be 107, In addition, the maximum error (ME) and root-
mean-square error (RMSE) are defined in (49) and (50), re-
spectively, to quantify the prediction or estimation errors.

ME(x,, )=max {jx,, —x/|.i=1,2,....n} (49)

T,
RMSE(x,)= %Z(x—x : (50)
where x,, is the i element of the predicted state vector Xy
or the estimated state vector x, at time step k; x/; is the cor-
responding true value; and 7, is the length of the measure-
ment data.

Moreover, to determine a proper smoothing factor a of the
ESM, mRMSE, which quantifies the overall estimation error,
is defined in (51) based on the RMSE. N is the dimension
of the extended state vector x,. Considering that o lies be-
tween 0 and 1, a=0, 0.1, ..., 1 (i.e., the interval is 0.1) are
employed for the simulation data of both test systems. It is
observed that the mRMSE values decrease as o increases,
and they do not change significantly when a>0.6. There-
fore, a=0.7 is used in this paper.

1 N
mRMSE = N;RMSE(x,.) (51)

B. Results for DFIG-based Wind Farm

A DFIG-based wind farm composed of 16 DFIG units is
built in MATLAB/Simulink, as shown in Fig. 5. The parame-
ters of a 1.5 MW DFIG unit are listed in Table I. The mea-
surements of each DFIG unit are synchronously uploaded to
the master station of the measurement system, and then, the
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DSE for each DFIG can be performed using AICKF-UI. Ow-
ing to space limitation, only the estimated results of DFIG
w;,, are utilized for illustration. The mean estimated RMSE
values of each state of all the DFIGs in the wind farm are
given in the form of tables.

Main
Powe Line  transformer
wer
grid Point of common
120kV  25kV coupling (PCC)

3
5
3
X

»
»
»
>

[ﬂ Wi3 [E Wa3 [H W33 [E Wa3
Wig Was W3q Wiy
Fig. 5. Topological structure of wind farm.
TABLE I
PARAMETERS OF A 1.5 MW DFIG UNIT
Parameter Value Parameter Value
o 1.5 MW o 1.67 MW
K, 0.73 p.u. paom 0.48 p.u.
o 1.2 p.u. Lo 8.1 p.u.
Vg om 12 m/s H, 5.04 s
F 0.01 L, 2.9 p.u.
R, 0.00706 p.u. L, 0.171 p.u.
R 0.005 p.u. L, 0.156 p.u.
R, 0.0015 p.u. L, 0.15 p.u.
R, 0.075 p.u. , 1 pu.

1) Effectiveness Test of Measurement Interpolation

This subsection compares the performance of the pro-
posed AICKF-UI approach and CKF-UI without measure-
ment interpolation. The wind speed variation of DFIG w,, is
shown in Fig. 6. A step change at 2 s and a sinusoidal varia-
tion at 2-6 s for the wind speed are set to test the perfor-
mance of the AICKF-UI approach under quasi-steady-state
condition.

The step size of CKF-UI is fixed as the PMU measure-
ment interval Ah=0.02 s, and 2-RK and 3-RK are used as
the discretization approaches to evaluate the influence of dif-
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ferent numerical approaches on the DSE. Note that the dis-
cretization approach adopted by AICKF-UI is still 2-RK, but
its step size is AA/L. Figure 7(a) shows the comparison of
ME for x;, , by different approaches.

10.8 ¢
2 104}
E 10.0
961
92 s ‘ ‘ s ‘
0 2 4 6 8 10
Time (s)
Fig. 6.  Wind speed variation of DFIG w;,.
CKF-UI with 2-RK
and Ah max|err,.,|
0.15 — CKF-UI with 3-RK 0.15 L of AICKF-UI - 16
and Ah 5
= Y —
&
=) £
0.05
i R
=)

0 2 4 6 8 10
Time (s)

Time (s)
(@) (b)

Fig. 7. Evaluation of state prediction accuracy by different approaches. (a)
Comparison of ME for x;, . (b) max|err,,.,| and interpolation parameter L
of AICKF-UL

The ME of CKF-UI with 3-RK is smaller than that of
CKF-UI with 2-RK, as the former has higher discretization
accuracy. However, the ME of AICKF-UI is much smaller
despite the use of 2-RK, because the measurement interpola-
tion considerably reduces the step size, and thus the discreti-
zation error decreases. The variations of max|err, | in (46)
and the interpolation parameter L of AICKF-UI are shown in
Fig. 7(b). The value of L mainly changes in the range of 6
to 10, and the step size of AICKF-UI changes according to
AR/L. The change in the wind speed has no obvious influ-
ence on L because it corresponds to a quasi-steady-state dis-
turbance.

The mean RMSE of estimated states and unknown inputs
of all the DFIGs are listed in Table II, and the estimated
states and unknown inputs of DFIG w;,, are shown in Fig. 8.
In the case of wind speed fluctuation, AICKF-UI can accu-
rately estimate the DFIG states and unknown inputs owing
to measurement interpolation, whereas the estimation results
of CKF-UI approach have a large deviation. Therefore, for a
DFIG with fast dynamics, a smaller A/ is more beneficial to
the DSE than discretization approaches of higher-order accu-
racy.

TABLE 11
MEAN RMSE OF ESTIMATED STATES AND UNKNOWN INPUTS OF ALL DFIGS

Mean RMSE of x

Mean RMSE of d

Approach - -
@, [ Yor Was Ves Lag Ly Uy Uy Ugg Ugg
CKF with 2-RK and Ak 0.0036 0.0262 0.0353 0.0679 0.0553 0.0409 0.0356  0.0081 0.0072 0.0097  0.0096
CKF with 3-RK and Ak 0.0024 0.0215 0.0332  0.0318 0.0357 0.0215 0.0167  0.0068  0.0062 0.0075  0.0088
AICKF-UI with Ah/L 0.0012 0.0067 0.0095 0.0115 0.0193 0.0112 0.0096  0.0022  0.0026 0.0048  0.0051
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Fig. 8. Estimated states and unknown inputs of DFIG w,,. (a) Rotor speed

o, (b) Rotor flux y,. (c) Rotor voltage u,. (d) Rotor voltage U,

2) Comparison of Results of Proposed AICKF-UI and ICKF-
UI with Different Constant L Values

To demonstrate the advantages of the proposed AICKF-UI
approach over the interpolation-based CKF-UI (ICKF-UI)
with a constant L, the value of L in ICKF-UI is set to be 1,
3, 7, 12, and 20, and the estimation results of ICKF-UI are
compared with those of AICKF-UI. A 10% voltage drop is
applied to the PCC bus of the wind farm at 2 s, which will
not activate the LVRT control strategies of the DFIG. The
fault lasts for 500 ms.

Figure 9(a) shows the mean ME for x;, , of different L
values. The reduction in the mean ME with the increase in L
further proves the effect of the measurement interpolation on
reducing the discretization error.

0.5 25 30
= 04 220 20 5
NS N o
E 0.3 = 15§ 10 %
< 02 £ 1.0 0 <
B % s
s 0.1 g 0.5 -10 3
0 ; : s ‘ ; —_— -20
L=1 L=7 L=20 0 2 4 6 8 10
L=3 L=12  AICKF- Time (s)
Ul max|err;,.,|
Case L of AICKF-UI
(@) (b)
Fig. 9. Evaluation of state prediction accuracy by different approaches. (a)

Comparison of mean ME for x;, , of different L values. (b) max|err,,,| and
interpolation parameter L of AICKF-UIL

Moreover, the mean ME of AICKF-UI is close to that of
ICKF-UI with L =20, but the value of L of the former is usu-
ally small, as shown in Fig. 9(b), which results in the varia-
tions of max|err,,/ and the interpolation parameter L of
AICKF-UI The value of L mainly changes from 5 to 12, but
it increases to more than 20 around 2 s and 2.5 s, which in-
dicates that the discretization error increases during the fault,
and that the proposed approach can change L adaptively.
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Figure 10 shows the estimation results of the dynamic
states @, and y, and the unknown inputs u, and u, of
DFIG w,,. The DSE based on ICKF-UI with L=1 is termi-
nated because of the nonpositive definite state covariance
matrix, and thus its estimation results are not shown here.
The mean RMSE values of the estimation results of all the
DFIGs and mean computing time of single step are listed in
Table III. The estimation errors of ICKF-UI with both L=3
and 7 are large, particularly during the fault. The estimated
results of ICKF-UI with L =20 track the true states well, and
the unknown inputs are also estimated accurately; however,
owing to the large interpolation parameter L, the mean com-
puting time of a single step exceeds the PMU measurement
interval (20 ms), and thus is impractical.

-1.0
0.04r1 195 205 2151 g6 24 255 265

3 fi 3 .
g 0 b £ 0.01 T
S ] = ‘f

-0.04 h . . . ) -0.04 . . . )

0 2 4 6 8 10 0 2 4 6 8 10

Time (s) Time (s)
(© (d)

o ICKF-UI with L=3;
« ICKF-UI with L=7;

o ICKF-UI with L=12; — AICKF-UI
ICKF-UI with L=20; - - True value

Fig. 10. Estimation results of dynamic states e, and y, and unknown in-
puts u, and u, of DFIG w;,. (a) Rotor speed o, (b) Rotor flux y,,. (c) Ro-
tor voltage u,,. (d) Rotor voltage u,,.

By contrast, the mean RMSE of AICKF-UI is close to
that of ICKF with L=20 but with a shorter computing time.
This demonstrates that the proposed approach is more effi-
cient by changing L adaptively in different situations.

Furthermore, note that the value of L of AICKF-UI in Fig.
9(b) is larger than 20 at some time steps, and consequently,
the single-step computing time (SSCT) of these time steps
may exceed the PMU measurement interval. Therefore, it is
necessary to add an upper limit for the value L of AICKF-
UL A reasonable upper limit will have no impact on the esti-
mation accuracy because the accuracy improvement is tiny
when L increases to a certain level, as shown in Fig. 9(a).
The actual SSCT for the cases of L=16, 17, 18, 19, and 20
is measured, and the corresponding mean values and stan-
dard deviation (STD) of SSCT are listed in Table IV. When
L=17, the mean SSCT is 19.581 ms, which is shorter than
the PMU measurement interval. Thus, 17 is chosen as the
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upper limit for the interpolation parameter L in AICKF-UI in
the following cases. The mean RMSE of all DFIGs for
AICKF-UI with an upper limit is shown in Table V, and the
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estimation accuracy does not decrease significantly com-
pared with the results of AICKF-UI without a limit.

TABLE III
MEAN RMSE VALUES OF ESTIMATION RESULTS OF ALL DFIGS AND MEAN COMPUTING TIME OF SINGLE STEP

Mean RMSE of x

Mean RMSE of d

Approach Py Ve Ve ” Ve i i ", “, 0 - Time (ms)
ICKF (L=3) 0.0329 0.0487 0.1082 0.2052 0.3146 0.2539 0.1872 0.0178 0.0225 0.0212 0.0365 3.511
ICKF (L=17) 0.0187 0.0191 0.0554 0.0628 0.1293 0.1432 0.1027 0.0108 0.0153 0.0129 0.0145 8.897
ICKF (L=12) 0.0032 0.0045 0.0193 0.0133 0.0265 0.0587 0.0413 0.0069 0.0065 0.0078 0.0095 14.153
ICKF (L=20) 0.0008 0.0018 0.0058 0.0067 0.0087 0.0015 0.0017 0.0046 0.0031 0.0039 0.0041 25.518

AICKF-UI 0.0009 0.0029 0.0066 0.0067 0.0074 0.0018 0.0016 0.0043 0.0025 0.0042 0.0033 11.466

TABLE IV actual DFIG terminal voltage during the fault.

MEAN VALUES AND STD OF SSCT Figure 11(a) shows the variation of u, under conventional
B Mean valne (ms) SO control and LVRT control, where.as Flg 11(b) shows that of
6 7943 0459 0, under the two control strategies. Figure 11(a) shows that
. 10581 0.359 u, =0 when the crowbar is switched on from 2.0 to 2.1 s,
18 21509 0.548 but u, of the conventional control fluctuates considerably. In
19 23.923 0.492 Fig. 11(b), the DFIG with reactive power priority control
20 25518 0.390 outputs more reactive power from 2.1 to 2.5 s, whereas Q,

TABLE V
MEAN RMSE OF ALL DFIGS FOR AICKF-UI WITH AN UPPER LIMIT

Mean RMSE of d (107°)

Mean RMSE of x (107)
Voo Vs -
75 6.8

@, Var

1.1 3.1

Yas Lag lgg Ugr Uy Ugg Ugg

23 27 20 58 29 43 38

3) Performance of Unknown Input Estimation Under Severe
Voltage Drop

In the event of a severe voltage drop, the DFIG control
will switch to LVRT control strategies to keep the DFIG con-
nected to the grid, which presents a challenge to the estima-
tion of unknown inputs.

The performance of the proposed AICKF-UI approach in
such a situation is evaluated in this subsection. A 70% volt-
age drop is applied to the PCC bus of the wind farm at 2 s,
and the fault is cleared at 2.5 s.

The LVRT control strategies of DFIG used in the simula-
tion are as follows: the crowbar is switched on at 2.0-2.1 s
to protect the DFIG rotor from an overcurrent, and mean-
while the RSC is blocked. As the DFIG becomes an asyn-
chronous generator after the crowbar is switched on, it will
absorb more reactive power [23]. The DFIG is also required
to provide reactive power support during the fault of a volt-
age drop. Therefore, the reactive power priority control strat-
egy is enabled at 2.1-2.5 s, and the reactive current reference
value i, . is no longer given by the conventional power out-
er loop [8], but is determined by:

1 5(09 Us, nom U:A,ﬁlult )] (52)
where 7,

.max 1S the maximum allowable current of the RSC;
U is the rated DFIG terminal voltage; and U, is the

s,nom

idl; re/’: min [1

r,max?

of the DFIG with conventional control is almost zero. Thus,
the DFIG behaves differently when the LVRT control is acti-
vated, and it is impractical to consider only conventional
control in the DSE. By contrast, the proposed AICKF-UI ap-
proach has broad applicability because it regards the outputs
of the converter as unknown inputs of the DSE regardless of
the specific control strategies of DFIG converter.

Reactive power Reactive power

Crowbar  priority Crowbar priority
0.50 - r
037+ 7
’5 024+ ’3‘
& 011t &
F-002FT {‘* ol
-0.15F |
-0.28 — e e
1.9 21 23 25 1.9 21 23 25
20 22 24 26 20 22 24 26
Time (s) Time (s)
(a) (b)
--- Conventional control; — LVRT

Fig. 11.  Comparison of u, and O, under conventional control and LVRT
control. (a) Variation of u,. (b) Variation of Q.

The unknown inputs of DFIG w;,, predicted and estimated
by AICKF-UI are compared in Fig. 12. The prediction is ac-
curate when the unknown inputs change smoothly, but there
will be a bias for a duration when there is a sudden change
caused by a fault, which is inevitable because the ESM is
based on historical data. However, the deviation is corrected
in the measurement filtering step of AICKF-UI by consider-
ing the correlations of the unknown inputs d,, dynamic states
x,, and measurements z,. In addition, the measurement inter-
polation enables multiple corrections of d, within a measure-
ment interval, which is beneficial to the accurate estimation
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of d,. Therefore, the estimated unknown inputs track the true
values well even when LVRT control is activated by a se-
vere voltage drop.

Reactive power Reactive power

| 0Crowbar priority 0Crowbar priority
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S 015E ; = 03f 1
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©) (d)
Predicted; — Estimated; --- True
Fig. 12. Unknown inputs of DFIG w;, predicted and estimated by AICKF-

UL (a) Grid-side u,, of GSC. (b) Grid-side u,, of GSC. (c) Rotor voltage
u,. (d) Rotor voltage u,,.

Figure 13 shows the estimation results of all the dynamic
states of DFIG w,,. In the case of a severe voltage drop, the
interpolation parameter L increases above 15, which enables
AICKF-UI to estimate the states of DFIG w,, accurately.

The results of other DFIG units in the wind farm have
similar trends, and hence are not shown here to be concise.

C. Results for Modified IEEE 39-bus System

In the case of large-scale systems, the equivalent model of
a wind farm is often used to reduce the model order and im-
prove the simulation efficiency. Thus, the DSE can only be
developed at the point where the wind farm is connected to
the power grid, and only the measurements of the PMU in-
stalled at the connection point are available. However, if the
DFIG controller model is included in the DSE, it may cause
observability problems owing to the existence of too many
dynamic states [6]. Moreover, it is a considerable challenge
to accurately acquire the equivalent controller parameters.
For the equivalent model of the wind farm, the converter
outputs do not exist, and thus cannot be measured. By con-
trast, the proposed AICKF-UI approach considers the con-
verter controller outputs as the unknown inputs of the DSE
and eliminates the dependence on the control models and pa-
rameters. Therefore, the approach is well suited for this sce-
nario.

The IEEE 39-bus system [9], modified by connecting a
group of lumped DFIGs (60 x 1.5 MW) to bus 29, is used to
verify the generalization of the proposed approach. Note that
the equivalent model of the wind farm in a simulation soft-
ware still adopts the complete DFIG model. A break line
fault is applied from 2 to 3 s by opening the transmission
line between buses 28 and 29. Some of the results of the es-
timated states and unknown inputs of DFIG are shown in
Figs. 14 and 15.
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Fig. 13.  Estimation results of all dynamic states of DFIG w,. (a)
max|err,,.,| and interpolation parameter L of AICKF-UL (b) Rotor speed w.
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Fig. 14. Estimated states of DFIG. (a) max|err,,.,| and interpolation param-
eter L of AICKF-UL (b) Rotor speed w

B
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ug, (p.u.)

0 2 4 6 8 10
Time (s)

Time (s)
(@) (b)

— Estimated; --- True

Fig. 15. Estimated unknown inputs of DFIG. (a) Rotor voltage u,. (b) Ro-
tor voltage u,,.

The value of L of AICKF-UI varies from 5 to 11 in nor-
mal situations and increases adaptively to more than 15
when the disconnection fault occurs. As the adaptive mea-
surement interpolation is used, the estimated states in Fig.
14 and the unknown inputs in Fig. 15 of the DFIG track the
corresponding true values well, which validate the proposed
approach for the equivalent DFIG in a large-scale system.

V. CONCLUSION

In this paper, an AICKF-UI approach has been developed
for estimating the dynamic states of a DFIG. Instead of us-
ing the full dynamic model with high complexity, we have
proposed to consider the converter controller outputs as the
unknown inputs of the DSE and estimated them together
with the original DFIG dynamic states using triple ESM and
the augmented-state CKF. This eliminates the dependence on
different control models.

The discretization process of the continuous system has
been analyzed, and an adaptive interpolation approach based
on the LTE has been proposed to achieve the desired trad-
eoff between the computing time and the estimation accura-
cy. Simulation results show that the proposed AICKF-UI ap-
proach can adaptively adjust the interpolation factor based
on the variation of the LTE, yielding an accurate estimation
of dynamic states and unknown inputs.

APPENDIX A

The Jacobian matrix of 4, is used to check whether the re-
quirement of rank(H,G)=rank(G)=m is met. Therefore, the
DFIG measurement function can be expressed as:

oh

L T TR P v
oi—a%i 0 _aLiL,, 0 0 0
_o 0 L%_aii 0 _aLiLh 0 0

Then, H,G can be calculated as:
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o, A, o,Ahu, uo,Ah u,w,Ah

O-LlsLlr O-LISLIV Lg Lg

w,Ahu, o Ahuy  uy0,Ah u0,Ah

oL, L, oL, L, L L

Hsz Is™1; Is ™1 g g (A2)
Sl 0 0
oL,L,
o, Ah

L O O-Llsl‘lr 0 0 i

As is clear from the (A2), the row and column vectors of
HG are all linearly independent, which means that the rank of
H,G is equal to that of G (equal to 4 in the DFIG case of this
paper). Therefore, the rank requirement is satisfied and the un-
known input vector d can be observed from the selected mea-
surement vector z of the DFIG system.

APPENDIX B

In the case of nonlinear DFIG system, its augmented state
transition equations are represented by:

v = |:x,i| _ |:f(xkl’uk1 )+Gd,_, j|
“ L, 8, rdi_ 115l y)
where g denotes the transition equations of d. Then, the first-
order approximation for matrices F,, and H,, can be calculat-
ed at a given time step k. H,,=[H,,0,,. ], the expression of H,

is shown in (A1), and F,, is expressed as:

(B

F, = [Fﬁf Ffd:|
" F, F,
_d
A ox ex,
_o| _
Fu=2a|, =€ (B2)
_og| _
ng_ 6x x:x,_O
_%| _g4
ng— od d:dk—dlag(a, 0, a, )

Then, the observability matrix O can be constructed. The
singular value decomposition (SVD) of O is a factorization of
the form O=USV", where S is given as:

S=diag(d,,9,,...,0,) 0,20,>...20, (B3)

where 0, is the singular value of 0; and the number of the non-
zero singular values is equal to rank(0). If the smallest singu-
lar value (SSV) 9, of O is non-zero, we can get rank(0)=n,
i.e., the system is observable.

The simulation setups are the same as those used in the sec-
ond case of the Section IV-B. Analysis results show that the
SSV always keeps greater than zero throughout the process
and the mean and standard deviation of the SSV of the observ-
ability matrices is 1.975+0.046, which means that the SSV of
0 is always non-zero. Therefore, the DFIG system with the
augmented states is considered observable under the selected
measurement set.
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