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Improved Particle Filter for Non-Gaussian 
Forecasting-aided State Estimation

Lyuzerui Yuan, Jie Gu, Honglin Wen, and Zhijian Jin

Abstract——Gaussian assumptions of non-Gaussian noises hin‐
der the improvement of state estimation accuracy. In this paper, 
an asymmetric generalized Gaussian distribution (AGGD), as a 
unified representation of various unimodal distributions, is ap‐
plied to formulate the non-Gaussian forecasting-aided state esti‐
mation problem. To address the problem, an improved particle 
filter is proposed, which integrates a near-optimal AGGD pro‐
posal function and an AGGD sampling method into the typical 
particle filter. The AGGD proposal function can approximate 
the target distribution of state variables to greatly alleviate par‐
ticle degeneracy and promote precise estimation, through con‐
sidering both state transitions and latest measurements. For 
rapid particle generation from the AGGD proposal function, an 
efficient inverse cumulative distribution function (CDF) sam‐
pling method is employed based on the derived approximation 
of inverse CDF of AGGD. Numerical simulations are carried 
out on a modified balanced IEEE 123-bus test system. The re‐
sults validate that the proposed method outperforms other pop‐
ular state estimation methods in terms of accuracy and robust‐
ness, whether in Gaussian, non-Gaussian, or abnormal measure‐
ment errors.

Index Terms——State estimation, particle filter, asymmetric gen‐
eralized Gaussian distribution, non-Gaussian noise.

I. INTRODUCTION 

AS a significant tool in power system monitoring and 
control, forecasting-aided state estimation (FASE, also 

referred to as dynamic state estimation [1]) has attracted 
wide attention [2]. It seeks to estimate the power system 
states, i.e., voltage magnitudes and phase angles, via system 
process trends and limited noisy measurements. In general, 
the FASE is described by the transition function of state vari‐
ables and a function that maps the power system states to 
measurements. Both of them are blurred by uncertainties, 
which are referred to as process noise and measurement 
noise, respectively.

Since the FASE inevitably involves the aforementioned 

noises, researchers often assume that the noises follow spe‐
cific families of distributions such as Gaussian distribution 
and student-t distribution. Although Gaussian distribution is 
widely used in existing works due to its nice properties in al‐
gebra, increasing works suggest that both measurement noise 
and process noise are non-Gaussian variables [3]. For in‐
stance, [4] presents that phasor measurement unit errors 
obey heavy-tailed distributions rather than a short-tailed 
Gaussian distribution. In cases of non-Gaussian noises, 
Gaussian assumptions may lead to significantly biased esti‐
mates [5], [6]. This has motivated many FASE methods ap‐
plicable to non-Gaussian noise environments. It has been 
proposed to embed information theoretic criteria, e.g., mini‐
mum error entropy [7], into traditional FASE methods, in 
which the criteria can filter out non-Gaussian noises by 
Gaussian kernel functions [7]-[10]. However, the runtime of 
these improved methods are usually more than twice that of 
the original ones, due to high computational complexity of 
the criteria. Another route assumes specific distributions al‐
lowing for non-Gaussianity in noises. Although several non-
Gaussian statistical distributions, e. g., student-t distribution 
[11], have been validated to improve the robustness of FASE 
[11] - [13], they cannot deal with mixed noise systems, e.g., 
some noises follow the asymmetric Laplace distribution 
while the others follow student-t distribution. Thus, research 
on FASE methods is needed with more generalized distribu‐
tion assumptions of noises, to achieve accurate and robust es‐
timation in complicated noise environments.

To develop such a method, particle filter (PF) is selected 
as a basic method, as it can cope with arbitrary noise distri‐
bution theoretically through the Monte Carlo simulation 
method [14]. Specifically, a sampling distribution (known as 
proposal distribution) is predefined to generate numerous par‐
ticles. It is almost always Gaussian for convenient sampling. 
Each particle has a weight that is associated with the distri‐
butions of process noise, measurement noise, and the propos‐
al. The overall weighted particles are regarded as a numeri‐
cal approximation for the target distribution of state vari‐
ables. Under conditions of non-Gaussian process and mea‐
surement noises, the target distribution also has non-Gaussi‐
anity [14]. In this situation, the Gaussian proposal distribu‐
tion may greatly deviate from the target distribution, leading 
to particle degeneracy, i.e., a great majority of particles have 
negligible weights to cause unreliable or even divergent esti‐
mates [15]. The problem can be alleviated by constructing a 
non-Gaussian proposal distribution close to the target distri‐
bution and providing the corresponding sampling method. 
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These improvements for PF will yield a competitive FASE 
method applicable to general noise distributions. In this pa‐
per, we make an asymmetric generalized Gaussian distribu‐
tion (AGGD) assumption for noise in the FASE problem, 
where the AGGD is a family of unimodal distributions and 
can represent many symmetric/asymmetric statistical distribu‐
tions [16], e. g., Laplace, Gaussian, logistic, student-t, and 
skewed distributions. Given this assumption, a generalized 
particle filter (GPF) method is proposed to solve the FASE 
problem, which integrates a near-optimal AGGD proposal 
distribution and a fast sampling method into the framework 
of PF. The AGGD proposal distribution, inspired by the 
GMapping algorithm in [15], is established by combining 
both state transition information and current measurements. 
It can approximate the target distribution to relieve the risk 
of particle degeneracy and then facilitate accurate estimation. 
For rapidly sampling from the AGGD proposal distribution, 
we select the inverse CDF sampling method because of its 
higher efficiency compared with other popular methods such 
as the Markov chain Monte Carlo sampling [17]. Consider‐
ing that the inverse CDF of AGGD cannot be expressed ex‐
plicitly [16], its approximate expression is derived based on 
a Gaussian piecewise function of the AGGD.

Experiments are performed on a balanced IEEE 123-bus 
test system with eight distributed generators (DGs) [18]. The 
results demonstrate that the estimation accuracy of GPF out‐
performs that of the seven benchmarks, i. e., weighted least 
squares [19], extended Kalman filter (EKF) [1], cubature 
Kalman filter (CKF), unscented Kalman filter (UKF) [3], 
UKF with generalized correntropy loss (GCL-UKF) [10], PF 
[14], and unscented PF (UPF) [20], in the presence of Gauss‐
ian and non-Gaussian noises. Thanks to the efficient inverse 
CDF sampling, the AGGD proposal distribution can facili‐
tate superior estimates without sacrificing real time of GPF. 
Furthermore, it is verified that the GPF is robust under con‐
ditions of abnormal measurements. The main contributions 
are outlined as follows.

1) An asymmetric generalized Gaussian distribution (AG‐
GD) is introduced for the assumptions of noises in FASE, 
which can characterize many popular statistical distributions.

2) A near-optimal AGGD proposal distribution close to 
the target distribution is established to alleviate particle de‐
generacy.

3) An accurate and robust PF method is proposed to ad‐
dress the non-Gaussian FASE problem, which embeds the 
AGGD proposal distribution and an efficient AGGD sam‐
pling method into the typical PF.

The rest of this paper is organized as follows. Section II 
reviews the related work. Section III presents the formula‐
tion of the FASE problem under AGGD assumptions of nois‐
es. The proposed GPF is presented in Section IV. Section V 
presents case study and illustrates the competitive perfor‐
mances of the GPF. Conclusion is drawn in Section VI.

II. RELATED WORK

For better performances of FASE methods in non-Gauss‐
ian noise environments, two main routes are optimality crite‐
ria against noises, and appropriate distribution assumptions 

of noises. Their pros and cons are shown in Table I.

The popular Kalman-based filters, i.e., Kalman filter (KF) 
and their variants, are generally improved through optimality 
criteria, as they cannot achieve optimal estimation with re‐
spect to the minimum mean square error under non-Gaussian 
noise assumptions [6]. The studies in [7] - [10] replace the 
mean square error loss of the Kalman-based filters with en‐
tropy criteria, e.g., the minimum error entropy [7], the maxi‐
mum correntropy [8], the cross-correntropy [9], and the gen‐
eralized correntropy [10]. These criteria use Gaussian kernel 
functions to filter out non-Gaussian noises. A non-entropy-
based criterion named inflatable noise variance is designed 
in [21] to apply to the EKF, which compares actual noise co‐
variances with the ideal Gaussian covariances to identify 
non-Gaussian noises. Reference [22] proposes a robust square-
root embedded cubature rule dedicated to the CKF. Although 
the above criteria are sensitive to non-Gaussian disturbances, 
they make the improved methods consume more than twice 
computational time compared with the original ones.

Non-Gaussian noise assumptions are described by the 
Gaussian mixture model (GMM) or heavy-tailed statistical 
distributions. The GMM is a combination of Gaussian distri‐
butions to approximate any continuous distribution. It can be 
applied to improve Kalman-based filters, as well as com‐
bined with the PF, e.g., a GMM-based generalized CKF [12] 
and a GMM-based expectation-maximization PF [23]. How‐
ever, parameter selection of the GMM is quite time-consum‐
ing. A more efficient way is to directly utilize specific distri‐
butions. Accordingly, PF becomes the most commonly used 
basic method [14]. Reference [13] assumes the student-t dis‐
tribution of measurement noise and addresses it by a varia‐
tional Bayesian PF. Based on the asymmetric Laplace distri‐
bution assumption, an optimum proposal distribution of PF 
is derived in [17], which contains both measurement and pro‐
cess information to alleviate particle degeneracy. Neverthe‐
less, these assumptions are only available for specific noise 
statistics. Reference [24] assumes that the noise follows a 

TABLE I
COMPARISON OF TWO ROUTES FOR DEALING WITH NON-GAUSSIAN NOISE

Route

Robust 
criteria to 
filter out 

non-
Gaussian 

noises

Non-
Gaussian 
distribu‐
tion as‐

sumptions 
of noises

Basic 
method

UKF, 
EKF

CKF

UKF, 
PF

PF

Criterion/distribution

Minimum error entropy [7]

Maximum correntropy [8]

Cross-correntropy [9]

Generalized correntropy [10]

Inflatable noise variance [21]

Square-root embedded cuba‐
ture rule [22]

GMM [12], [23]

Student-t distribution [13]

Asymmetric Laplace distri‐
bution [17]

Generalized Gaussian distri‐
bution [24]

Pros (+) and cons (-)

(+) Wide application
(-) Heavy time con‐

sumption

(+) Wide application
(-) Heavy time con‐

sumption

(+) Time-efficiency
(-) Limited applica‐

tion

(+) Wide application, 
time-efficiency

(-) Particle degenera‐
cy
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more general distribution, i. e., generalized Gaussian func‐
tion, which can describe multiple unimodal symmetric distri‐
butions. Under this non-Gaussian assumption, however, the 
Gaussian proposal distribution in [24] may cause particle de‐
generacy and large estimate errors. Thus, this paper will con‐
struct a near-optimal proposal distribution to form an accu‐
rate and robust PF method, under a generalized distribution 
assumption.

III. FORMULATION OF FASE PROBLEM

This section introduces an AGGD. With noises satisfying 
the AGGD, the FASE problem is formulated and the typical 
PF algorithm is described to solve this problem.

A. AGGD

AGGD is a family of unimodal distributions to provide 
modeling of generic noise statistics [16]. It can describe a 
large group of symmetric/asymmetric statistical distributions, 
e.g., impulsive, Gaussian, logistic, student-t, and skewed dis‐
tributions. The probability density function (PDF) of AGGD 
is given by:
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where Γ(×) is the Gamma function; μ is the mode, i. e., the 
value that is most likely to be sampled; and α is the shape 
parameter that represents the exponential rate of decay. This 
paper considers the range of α as [1 +¥) that is general 
enough to hold different sharpness of noise distributions 
[16], [25]. σ 2

l  and σ 2
r  (σlσr > 0) control the skewness and 

width, named left variance and right variance, respectively. 
For convenience, we denote an AGGD as AGGD(μασ 2

l σ
2
r ). 

Many popular PDFs can be represented by setting parameters 
of AGGD, e.g., AGGD(μ1σ2σ2 ) and AGGD(μ2σ2σ2 ) are 
the Laplace and Gaussian PDFs, respectively.

B. FASE

The states of power systems usually refer to voltage mag‐
nitudes and phase angles of buses. Although we hardly ob‐

tain their true values because of the limited noisy measure‐
ments, FASE can provide an optimal estimate of states, ac‐
cording to state transition characteristics, measurements, and 
noise statistics. Concretely, the state transitions give a priori 
knowledge of system process trends. The measurements are 
used to acquire the likelihood that the estimates are equal to 
the true states. They include the data received from measure‐
ment devices such as phasor measurement unit (PMU) and 
supervisory control and data acquisition (SCADA) system, 
and the pseudo-measurements generated by algorithms. Nois‐
es are inevitably involved in state transitions and measure‐
ments, which should also be considered into the FASE.

Based on the above, the non-Gaussian FASE problem can 
be formulated. Given a power system with n nodes, we de‐
note its state variables at timestep t as x t =
[θ1tθ2tθntV1tV2tVnt ]

T, where θit and Vit repre‐
sent the voltage phase angle and magnitude of node i at 
timestep t, respectively. To describe the process trends of x t, 
a discrete-time first-order Markov model is applied [26], i.e.,

x t + 1 = f (x t )+ωt (3)

where f (×) is a nonlinear state-transition function. For conve‐
nience, it is typically linearized by the Holt-Winters double 
exponential smoothing. More details are given in [26]. ωt rep‐
resents the process noise. Its distribution is characterized by a 
known PDF called priori PDF p(x t|x t - 1 ), i. e., ωt  p(x t + 1|x t ). 
In this paper, ωtÎωt follows AGGD(0αωσ

2
ωlσ

2
ωr ), where 

αω is the shape parameter of the AGGD that ωt follows; and 
σ 2
ωl and σ 2

ωr are the left variance and right variance of the 
AGGD that ωt follows, respectively. Besides, we denote all 
measurements at timestep t as a measurement vector z t, and 
assume that the measurement noise variables are indepen‐
dent. The equation between z t and x t is given by:

z t = h(x t )+ υt (4)

where h(×) is the nonlinear measurement function described 
in [26]; and υt is the measurement noise. Similar to ωt, υt is 
associated with a given PDF called likelihood PDF p(z t|x t ), 
i.e., υt  p(z t|x t ), and υtÎ υt follows AGGD(0αυσ

2
υlσ

2
υr ), 

where αυ is the shape parameter of the AGGD that υt fol‐
lows; and σ 2

υl and σ 2
υr are the left variance and right variance 

of the AGGD that υt follows, respectively. Note that υt and 
ωt are independent.

The priori PDF p(x t|x t - 1 ) in (3) and the likelihood PDF 
p(z t|x t ) in (4) provide priori and likelihood statistics of x t, re‐
spectively. According to the Bayesian theory [14], these two 
PDFs can be used to obtain full statistical information of x t 
that is referred to as posterior PDF p(x t|z1:t ), where z1:t =
{z1z2z t } represents the all measurements up to timestep 
t. The posterior PDF p(x t|z1:t ) is considered as the target 
PDF of state variables, which is expressed as:

p(x t|z1:t )=
p(z t|x t )p(x t|z1:t - 1 )

∫p(z t|x t )p(x t|z1:t - 1 )dx t

(5)

p(x t|z1:t - 1 )= ∫p(x t - 1|z1:t - 1 )p(x t|x t - 1 )dx t - 1 (6)

With the initial PDF p(x0 ) known, p(x t|z1:t ) can be ob‐
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tained by recursively calculating (5) and (6). We use it to 
calculate the optimal state estimate x̂ t via the maximum pos‐
terior probability estimator [27], i.e.,

x̂ t =E{x t|z1:t }= ∫x t p(x t|z1:t )dx t (7)

C. PF

In practice, the integrals in (5) and (6) usually cannot be 
calculated analytically. To cope with the problem, the PF is 
proposed to approximate p(x t|z1:t ) using the Monte Carlo 
simulation method [14]. First, Np particles {x i

t } (i=12Np ) 
are generated from a predetermined PDF called proposal 
PDF q(x t ), where each particle is regarded as an estimate of 
state variables and the superscript i represents the ith particle. 
Then, their corresponding weights {wi

t }{x i
ct } (i = 12Np ) 

( )∑
i = 1

Np

wi
t = 1  are given by:

wi
t =wi

t - 1

p(z t|x
i
t )p(x i

t |x
i
t - 1 )

q(x i
t )

(8)

where wi
t - 1 is the weight of the ith particle at timestep t - 1. 

Finally, the posterior PDF is given by:

p(x t|z1:t )»∑
i = 1

Np

wi
tδ(x t - x i

t ) (9)

where δ(×) is the standard Dirac delta function. In terms of 
(7) and (9), the optimal estimate of x t is:

x̂ t » ∫x t∑
i = 1

Np

wi
tδ(x t - x i

t )dx t =∑
i = 1

Np

wi
t x

i
t (10)

Typically, the proposal PDF q(x t ) is set equal to the priori 
PDF p(x t|x t - 1 ) [14], which can simplify the weight equation 
in (8) to wi

t =wi
t - 1 p(z t|x

i
t ). However, it may much differ from 

the likelihood PDF, resulting in particle degeneracy, as shown 
in Fig. 1.

Moreover, the priori distribution in this paper follows an 
AGGD rather than a Gaussian distribution to make sampling 
difficult. To overcome the two issues, we should construct a 

near-optimal AGGD proposal PDF that holds both priori 
knowledge and likelihood information [17], and develop an 
efficient AGGD sampling method.

IV. GPF

In this section, a GPF method is proposed to solve the 
non-Gaussian FASE problem, which combines a near-opti‐
mal proposal PDF and the inverse CDF sampling method 
with the typical PF. Its block diagram is illustrated in Fig. 2.

A. AGGD Proposal Distribution

Referring to [15], [17], an optimum proposal PDF q* (x t ) 
should consider both process and measurement information 
to overcome particle degeneracy and facilitate high-precision 
estimation, i.e.,

q* (x t )= p(x t|x t - 1z t )=
p(z t|x t )p(x t|x t - 1 )

∫p(z t|x t )p(x t|x t - 1 )dx t

=
q̂* (x t )

λ
 

(11)

where λ = ∫p(z t|x t )p(x t|x t - 1 ) dx t is a constant; and q̂* (x t )=

p(z t|x t )p(x t|x t - 1 ) is the unnormalized optimum proposal 
PDF. Although q̂* (x t ) is the best choice to generate parti‐
cles, we hardly acquire its exact expression. Therefore, an ac‐
cessible near-optimal proposal PDF needs to be built.

In general, the likelihood PDF p(z t|x t ) is more peaked 
compared with the priori PDF, due to the high precision of 
measurement devices but high volatility of state transitions. 
This infers that the sharpness of the optimum proposal PDF 
p(x t|x t - 1z t ) is similar to p(z t|x t ). Accordingly, we define an 
effective likelihood area, i. e., Lt ={x t|p(z t|x t )>Δ}, to judge 
whether the particles can be regarded as the feasible states, 
where Δ is a fixed parameter to limit the scale of Lt. In this 
paper, we set Δ =max(p(z t|x t ))/2. Inspired by the GMapping 
algorithm in [15], Lt is characterized via particles to estab‐
lish a near-optimal proposal PDF.

First, Np points {x i
ct } (i = 12Np ) named candidate parti‐

cles are sampled from the priori PDF p(x t|x t - 1 ). Under con‐
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dition of $ x i
ctÎ Lt, the most effective candidate particle x͂ t is 

selected by:

x͂ t = arg max
xt

p(z t|x t )    x tÎ{x i
ct }Lt (12)

The solution to the optimization problem in (12), i. e., x͂ t, 
can be obtained through the traversal of likelihood values of 
all candidate particles, as shown in Algorithm 1.

Since the traversal process only needs to calculate p(z t|x t ), 
there is no increase in the computational complexity com‐
pared with the weight calculation in (8) of typical PF. Next, 
we generate K effective particles {x͂ j

t } ( j = 12k) around 
x͂ t to provide a numerical approximation of Lt. Finally, ac‐
cording to (11), the effective particles {x͂ j

t } can be utilized to 
obtain a near-optimal AGGD proposal AGGD(μ tαtσ

2
tlσ

2
tr ), 

i.e.,

μt =
1
λt
∑
j = 1

K

x͂ j
t p(x͂ j

t |x t - 1 )p(z t|x͂
j
t ) (13)

σ 2
tl =

1
λtl
∑
x͂ j

t < μt

(x͂ j
t - μt )(x͂ j

t - μt )
T p(x͂ j

t |x t - 1 )p(z t|x͂
j
t ) (14)

σ 2
tr =

1
λtr
∑
x͂ j

t ³ μt

(x͂ j
t - μt )(x͂ j

t - μt )
T p(x͂ j

t |x t - 1 )p(z t|x͂
j
t ) (15)

λt =∑
j = 1

K

p(x͂ j
t |x t - 1 )p(z t|x͂

j
t ) (16)

λtl = ∑
x͂ j

t < μt

p(x͂ j
t |x t - 1 )p(z t|x͂

j
t ) (17)

λtr = ∑
x͂ j

t ³ μt

p(x͂ j
t |x t - 1 )p(z t|x͂

j
t ) (18)

Each shape parameter αtÎ αt can be estimated according 
to the relationship between the Kurtosis (kt > 1.865) and αt 
[25], i.e.,

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

αt »
5

kt - 1.865
- 0.12

kt =
E((x - μt )

4 )

E((x - μt )
2 )2

(19)

Considering the heavy computation of kt, we simply ap‐
proximate αt to the shape parameter α of p(z t|x t ), since the 
proposal PDF is based on Lt ={x t|p(z t|x t )>Δ}.

B. AGGD Inverse CDF Sampling

The inverse CDF sampling is a random sampling method 
applicable to arbitrary PDF with its inverse CDF known. It 
is more accurate and convenient than other methods such as 
the rejection sampling and the Markov chain Monte Carlo 
sampling [17]. Given the difficulty in expressing the inverse 
CDF of AGGD, we derive a Gaussian piecewise function 
from AGGD to facilitate acquisition of the inverse CDF. The 
AGGD with α = 1, i.e., asymmetric/symmetric Laplace distri‐
bution, is not within the scope of this derivation, as an effi‐
cient sampling method for it has been presented in [28].

Consider the AGGD expression under condition of 
x - μ < 0 in (1), i.e.,

pl (x)=
α

(β l + βr )Γ ( )1
α

exp ( - ( -(x - μ)
βl ) α ) =

α

(β l + βr )Γ ( )1
α

exp(Al (x))
(20)

Around x0 = ε + μ (ε < 0), we expand Al (x) to a second-or‐
der Taylor series expansion and ignore its third-order Taylor 
remainder. The quadratic expansion can substitute Al (x) back 
into (20) to obtain:

pl (x)»
α 2πc2

l (ε) exp(Cl′ (ε))

(β l + βr )Γ ( )1
α

N (x|bl (ε)c
2
l (ε))=

al (ε)N (x|bl (ε)c
2
l (ε))    xÎ[ε + μ - ηε + μ + η) (21)

where N (x|bl (ε)c
2
l (ε)) represents the Gaussian PDF with 

mean bl (ε) and variance c2
l (ε). ε determines the Taylor expan‐

sion point and η (η > 0ε + η < 0) controls the expansion scale. 
Cl′ (ε) is a formula about ε, and its derivation process is the 
same as that of Cr′ (ε

i
r ) in (A12) in Appendix A. Based on 

this, the domain of x < μ is divided into multiple continuous 

but non-overlapping intervals, i. e., xÎ ∪
i = 1

¥

(εi
l + μ - η

i
l ε

i
l + μ +

ηi
l )= ∪

i = 1

¥

D(εi
lη

i
l ). In xÎD(εi

lη
i
l ), pl (x) is proportional to a 

Gaussian PDF. Similarly, the approximation of 
pr (x|μασ 2

r σ
2
r ) (x ³ μ) is given in Appendix A, where the 

subscript r represents the case of x ³ μ.
According to (21), the CDF of AGGD can be approxi‐

mately expressed as:

P(x)= ∫
-¥

x

p(x)dx »

ì
í
î

ïï
ïï

al (ε
i
l )Φ(x ; bl (ε

i
l )c

2
l (εi

l ))+ ϕ(ε
i
lη

i
l )      xÎD(εi

lη
i
l )

ar (εi
r )Φ(x ; br (εi

r )c2
r (εi

r ))+ ϕ(εi
rη

i
r )    xÎD(εi

rη
i
r )

(22)

where ϕ(εi
lη

i
l ) and ϕ(εi

rη
i
r ) are constants; and Φ(x ; bc2 ) 

is the CDF of N (x|bc2 ). We denote the inverse of 
Φ(x ; bc2 ) as Φ-1 (x|bc2 ), and then the inverse of P(x) is 
given by:

Algorithm 1: find the most effective candidate particle at timestep t

Input: candidate particles {x i
ct } (i = 12Np ), measurements zt, likeli‐

hood PDF p(zt|xt ), and scale parameter Δ of Lt

Output: the most effective candidate particle x͂t

1: Lmax = 0
2: for j = 12Np do
3:  //Calculate the likelihood value of x j

ct
4:  Lj = p(zt|x

j
ct )

5:  //Judge whether x j
ct is the most effective candidate particle in {x i

ct } (i =
           12j) 
6:  if Lj >Δ and Lj > Lmax then
7:    x͂t = x j

ct, Lmax = Lj

8:  end if
9: end for
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P-1 (y)=

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

Φ-1( )y - ϕ(εi
lη

i
l )

al (ε
i
l )

; bl (ε
i
l )c

2
l (εi

l )      yÎP(D(εi
lη

i
l ))

Φ-1( )y - ϕ(εi
rη

i
r )

ar (εi
r )

; br (εi
r )c2

r (εi
r )     yÎP(D(εi

rη
i
r ))

(23)

Finally, the inverse CDF sampling for AGGD is as fol‐
lows.

1) Determine appropriate intervals ∪
i = 1

¥

D(εi
lη

i
l ) and 

∪
i = 1

¥

D(εi
rη

i
r ).

2) Randomly sample a point u from the uniform distribu‐
tion U(01), i.e., u U(01).

3) Calculate x =P-1 (u) in (23) to get a sample of AGGD.

C. GPF

With embedding the AGGD proposal PDF and the AGGD 
sampling method into the typical PF, we propose a GPF 
method to the non-Gaussian FASE problem. It is assumed 
that the initial state x0, the priori PDF p(x t|x t - 1 ) and the like‐
lihood PDF p(z t|x t ) are known and independent [20], [29]. 
At timestep t, Np candidate particles {x i

ct } from p(x t|x t - 1 ) 
are generated by the inverse CDF sampling. Then, we find 
the most effective candidate particle x͂ t within Lt =
{x t|p(z t|x t )>Δ}. In case of the nonexistence of x͂ t, the subse‐
quent steps are the same as those of the typical PF described 
in Section III-C. Otherwise, we generate K effective parti‐
cles around x͂ t to construct an AGGD proposal PDF 

AGGD(μ tαtσ
2
tlσ

2
tr ). Next, Np particles |{ẋ i

t }
Np

i = 1
 are sam‐

pled from AGGD(μ tαtσ
2
tlσ

2
tr ) to update the weights based 

on (8) and (11), i.e.,

wi
t »wi

t - 1∑
j = 1

Np

p(z t|ẋ
j
t )p(ẋ j

t |x t - 1 ) (24)

Finally, the optimal estimate of x t is given by:

x̂ t =∑
i = 1

Np

wi
t ẋ

i
t (25)

In addition, an adaptive resampling technique [15], which 
can keep a suitable variety of particles, is applied to the 
GPF for further decreasing the risk of particle degeneracy. 
The details of the GPF at timestamp t are described in Algo‐
rithm 2.

V. CASE STUDY

In this section, numerical simulations are conducted on a 
modified balanced IEEE 123-bus test system with eight 
DGs, to demonstrate the accuracy and robustness of the pro‐
posed GPF. All experiments are run on a computer with In‐
tel-i5-10400F CPU and 16 GB memory.

A. Test System and Benchmarks

The balanced IEEE 123-bus network presented in [18], 
which has seven photovoltaic (PV) units and one wind farm, 
is selected as the test system.

The details of eight DGs in the modified balanced IEEE 
123-bus test system for simulating power outputs of PVs 
and wind farms are illustrated in Table II, where 
Weibull(ks) is the Weibull PDF with shape parameter k and 
scale parameter s [30], and Beta(uv) is the Beta PDF with 
two parameters u and v [31]. Node 1 is selected as the slack 
bus with 1.05 p.u. voltage magnitude, and node 98 associat‐
ed with the wind farm is regarded as the PV-type bus with 
1.0 p. u. voltage magnitude. The bus loads are randomly 
changed within 80% to 120% of the base loads given in 
[18]. Additional network parameters are available in [18].

Based on the above settings, we simulate dynamic power 
flows of the test system over 100 timesteps. The voltage 
magnitudes and phase angles in the outcomes are considered 
as the true states. For comparison purposes, seven bench‐

Algorithm 2: GPF at timestep t

Input: weighted particles St - 1 ={(ẋ i
t - 1w

i
t - 1 )}(i = 12Np ), measurements 

zt, priori PDF p(xt|xt - 1 ), likelihood PDF p(zt|xt ), and effective particle 
number K

Output: St ={(ẋ i
t w

i
t )}, x̂t

1: //Prediction step
2: for ẋ i

t - 1Î St - 1 do
3:   x i

ct  p(xt|xt - 1 )
4: end for
5: //Estimate the effective likelihood
6: Find the most effective candidate particle x͂t in (12)
7: if x͂t is nonexistent then

8:   ẋ i
t = x i

ct, w
i
t =wi

t - 1 p(zt|ẋ
i
t ), x̂t =∑

i = 1

Np

wi
t ẋ

i
t

9: else
10:  for j = 12K do
11:    r  p(zt|xt ), x͂

j
t = x͂t + r

12:  end for
13:  //Obtain AGGD proposal distribution
14:  Calculate μt, λt, λtl, and λtr in (13), (16), (17), and (18), respectively
15:  Calculate σ 2

tl and σ 2
tr in (14) and (15), respectively

16:  αt is set to be the α of p(zt|xt )
17:  Obtain AGGD(μtαtσ

2
tlσ

2
tr )

18:  //Generate new weighted particles
19:  for i = 12Np do
20:    ẋ i

t AGGD(μtαtσ
2
tlσ

2
tr )

21:  end for

22:  λ =∑
j = 1

Np

p(zt|ẋ
j
t )p(ẋ j

t |xt - 1 )

23:  wt = λwt - 1, x̂t =∑
i = 1

Np

wi
t ẋ

i
t

24: end if
25: //Adaptive resampling

26: if 
1∑(wi

t )
2
<

1
2

Np then

27:   C(0)= 0
28:   for i = 12Np do
29:     C(i)=C(i + 1)+wi

t

30:   end for
31:   x′t = ẋt

32:   for j = 12Np do
33:     u U(01)
34:     if C(m)> u and C(m + 1)£ u then

35:       x′t
j = ẋ m

t , wi
t =

1
Np

36:     end if
37:   end for

38:   ẋt = x′t, w
i
t =

1
Np

, x̂t =∑
i = 1

Np

wi
t ẋ

i
t

39: end if
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marks are chosen, including one traditional state estimation 
method, i.e., weighted least squares (WLS) [19], three popu‐
lar FASE methods, i. e., EKF, UKF, and CKF, and three 
FASE methods applicable to non-Gaussian noises, i.e., UKF 
with generalized correntropy loss (GCL-UKF) [10], PF, and 
unscented PF (UPF) [20]. The root-mean-square error 
(RMSE), as a commonly used metric to evaluate the accura‐
cy of FASE [14], [24], is applied in the experiments. Based 
on the average result from M = 50 Monte Carlo simulations, 
the RMSE within T = 100 timesteps can be calculated as:

RMSE =
1
M

1
T∑m

M∑
t

T

(x̂ m
t - x t )

2 (26)

The RMSEs of voltage magnitudes and phase angles are 
denoted as RMSEV and RMSEθ, respectively.

B. Measurements

It is assumed that 46 PMUs are set in the test system for 
the acquisition of voltage phasors. Their locations are re‐
ferred to the result in [32]. Also, voltage magnitudes of the 
remaining nodes, injection power of randomly selected 80 
nodes, and power flows of randomly selected 60 branches 
can be obtained by SCADA. To simplify experimental set‐
tings, the imperfect synchronization of PMU and SCADA is 
neglected, as it has little impact on testifying the performanc‐
es of state estimation algorithms in dealing with non-Gauss‐
ian noises [33], [34]. Gaussian noises, non-Gaussian noises, 
and some outliers are added into the simulation outcomes as‐
sociated with the measurement devices, respectively, to cre‐
ate three cases of measurements. The details are described 
below.

1) Case 1: PMU measurements are contaminated by the 
additive Gaussian noise with the variance QP = 2.5 ´ 10-5 I, 
i.e., N (0QP ), while the noise PDF of SCADA measure‐
ments is N (0QS ) with the variance QS = 10-4 I.

2) Case 2: noise PDFs of PMU and SCADA measurements 
are AGGD(01.3QPQP ) and AGGD(01.6QSQS ), respec‐
tively. Since AGGD(01.3QPQP ) and AGGD(01.6QSQS ) 
are more concentrated near zero than N (0QP ) and 
N (0QS ), respectively, the measurements in Case 2 are more 
precise than those in Case 1.

3) Case 3: the measurements of Case 2 are taken as the 
original measurements, and five nodes, i. e., nodes 30, 33, 
55, 91, and 113, are randomly selected to generate outliers 

in their associated measurements. It is assumed that the er‐
rors between the outliers and true values are 5%-10%. Each 
original measurement associated with the five nodes has a 
20% probability of being replaced with an outlier. Thus, the 
measurements in Case 3 have bad data.

C. Case 1

In this case, each estimate of WLS is obtained after 5 iter‐
ations. For particle-based filters, the particle number is usual‐
ly determined via trial and error [35]. We conduct the repeat‐
ed experiments with different particle numbers, and then se‐
lect a suitable particle number with trading off runtime and 
accuracy. Finally, PF and UPF generate 600 particles for esti‐
mation. The numbers of candidate particles and effective par‐
ticles in GPF are set to be 600 and 200, respectively. The 
process noises, RMSEs, and runtime of state estimation 
methods under Gaussian measurement noise are provided in 
Table III. Q = (QV  Qθ ), where QV = 10-4 In ´ n and Qθ = 2.5 ´
10-5 In ´ n are the noise covariance matrices of voltage magni‐
tudes and phase angles, respectively.

1)　Efficiency of AGGD Inverse CDF Sampling
To demonstrate affect of the AGGD sampling method on 

real-time of particle-based filters, i.e., GPF, UPF, and PF, we 
compare the runtime of these methods under Gaussian and 
AGGD process noises. As shown in Table III, these particle-
based filters consume almost the same time under conditions 
of the two process noise assumptions. This indicates that the 
AGGD inverse CDF sampling method has high efficiency to 
avoid extra computational burdens in particle generation.
2)　Accuracy Versus Runtime

The RMSEs and runtime of the benchmarks and the pro‐
posed GPF are shown in Table III. The traditional WLS has 
the best real-time performance but the worst precision, since 
the priori knowledge of system process trends is not consid‐
ered in it. For the seven FASE methods, the particle-based 
filters outperform the EKF, UKF, and CKF in accuracy, 
whereas the reverse is true in runtime. In other words, they 
generate numerous weighted particles to achieve more pre‐
cise approximation to the posterior PDF at the expense of re‐
al time. Furthermore, the particle-based filters outperform 
the GCL-UKF in both accuracy and runtime. The GCL-UKF 

TABLE II
DETAILS OF EIGHT DGS IN MODIFIED IEEE 123-BUS TEST SYSTEM

Node

15

25

35

68

88

98

105

114

DG type

PV

PV

PV

PV

PV

Wind farm

PV

PV

Capacity (MVA)

0.2

0.4

0.6

0.6

0.4

1.0

0.4

0.2

Power output distribution

Beta(4.21.8)

Beta(4.21.8)

Beta(4.01.6)

Beta(4.01.6)

Beta(4.21.8)

Weibull(210) (wind speed)

Beta(4.02.0)

Beta(4.02.0)

TABLE III
PROCESS NOICES, RMSES, AND RUNTIMES OF STATE ESTIMATION 

METHODS UNDER GAUSSIAN MEASUREMENT NOISE

Method

WLS

EKF

CKF

UKF

GCL-UKF

PF

PF

UPF

UPF

GPF

GPF

Process noise

N (0Q)

N (0Q)

N (0Q)

N (0Q)

N (0Q)

AGGD(03QQ)

N (0Q)

AGGD(03QQ)

N (0Q)

AGGD(03QQ)

RMSEV 
(10-3 p.u.)

3.36

3.17

2.30

2.25

2.17

2.08

2.01

1.98

1.94

1.70

1.64

RMSEθ 
(10-3 rad)

4.41

4.30

3.48

3.33

3.26

3.20

3.16

3.14

3.12

3.09

3.06

Runtime (s)

0.72

0.97

1.14

1.03

10.61

2.79

2.80

3.63

3.63

3.26

3.26
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is developed to filter out non-Gaussian noises through the 
time-consuming generalized correntropy loss (GCL) criteri‐
on. In Case 1, however, the GCL criterion may contribute lit‐
tle to the accuracy because of the Gaussian measurement er‐
rors. As a result, the accuracy of GCL-UKF is only 2.80% 
better on average than that of UKF, while the runtime of it 
increases to 10 times that of UKF.

Within the three particle-based filters, the PF has the 
worst estimation accuracy but the shortest runtime, as its pro‐
posal PDF is the readily accessible process noise PDF that 
only contains priori knowledge. The RMSEV and RMSEθ of 
the proposed GPF are 15.5% and 2.0% smaller than those of 
the UPF, respectively, and the runtime of it is 10.2% less 
than that of the UPF. This is inferred that the GPF can con‐
struct a proposal PDF closer to the target PDF in a shorter 
time, to efficiently achieve accurate estimation. However, the 
runtime of particle-based filters cannot satisfy the real-time 
estimation requirement in power systems, i.e., provide an op‐
timal state estimate within 2 s [36]. To cope with it, the par‐
ticle-based filters can be implemented in a distributed man‐
ner to significantly reduce the runtime [27].

D. Case 2

The measurement noise distributions in Case 2 are 
AGGD(01.3QPQP ) and AGGD(01.6QSQS ). Since the 
WLS and the Kalman-based filters are unavailable to non-
Gaussian FASE model, their measurement noise distributions 
are approximated as N (0QP ) and N (0QS ), respectively. 
Other parameters are the same as those in Case 1.
1)　Accuracy Comparison

The RMSEs of state estimation methods under non-Gauss‐
ian measurement noise are provided in Table IV. Compared 
with the overall estimation accuracy in Case 1, those in 
Case 2 are improved due to the smaller measurement errors. 
Specifically, the RMSEV and RMSEθ of the four FASE meth‐
ods applicable to non-Gaussian noise environments, i. e., 
GCL-UKF, PF, UPF, and GPF, are reduced by 3.7% and 
2.5%, 3.0% and 1.9%, 5.7% and 2.9%, 8.4% and 3.2%, re‐
spectively, while those of WLS, EKF, CKF, and UKF are 
1.2% and 0.9%, 1.3% and 1.6%, 1.7% and 1.4%, 1.3% and 
1.0% less, respectively. This indicates that the accuracy of 
FASE methods can be improved (through whether robust op‐
timality criteria or appropriate distribution assumptions). 
Nevertheless, the appropriate distribution assumptions in the 
particle-based filters lead to more accurate estimates than the 
GCL criterion in the GCL-UKF. In addition, the RMSEs of 
GPF are the smallest and decreased the most, which vali‐
dates that the proposed GPF can obtain high-accurate esti‐
mates against non-Gaussian noises.
2)　Effective Particle Number of GPF

The accuracy and runtime of GPF with different effective 
particle numbers are obtained, as shown in Table V, under 
conditions of AGGD(03QQ) process noise and 300 candi‐
date particles. The RMSEs decrease gradually with more ef‐
fective particles, while the runtime increases by about 0.15 s 
for every 50 additional effective particles. Although the large 
number of effective particles sacrifices a little real-time per‐
formance of GPF, it narrows the gap between the proposal 
PDF and the posterior PDF, as shown in Fig. 3. In addition, 

the estimates of GPF with 200 candidate particles and 400 
effective particles have better accuracy but shorter runtime 
than those with 600 candidate particles and 200 effective par‐
ticles (in Table IV). Thus, sufficient effective particles can 
significantly enhance the accuracy of GPF.

TABLE IV
RMSES OF STATE ESTIMATION METHODS UNDER NON-GAUSSIAN 

MEASUREMENT NOISE

Method

WLS

EKF

CKF

UKF

GCL-UKF

PF

PF

UPF

UPF

GPF

GPF

Process noise

N (0Q)

N (0Q)

N (0Q)

N (0Q)

N (0Q)

AGGD(03QQ)

N (0Q)

AGGD(03QQ)

N (0Q)

AGGD(03QQ)

RMSEV (10-3 p.u.)

3.32

3.13

2.26

2.22

2.09

2.00

1.95

1.87

1.83

1.47

1.42

RMSEθ (10-3 rad)

4.37

4.23

3.41

3.30

3.18

3.12

3.10

3.05

3.03

3.00

2.93

TABLE V
RMSES VERSUS RUNTIMES OF GPF WITH DIFFERENT EFFECTIVE PARTICLE 

NUMBERS AND 300 CANDIDATE PARTICLES

K

50

100

150

200

250

300

350

400

RMSEV (10-3 p.u.)

1.71

1.64

1.56

1.51

1.47

1.45

1.42

1.39

RMSEθ (10-3 rad)

3.11

3.07

3.03

2.98

2.96

2.95

2.93

2.92

Runtime (s)

1.38

1.61

1.74

1.96

2.04

2.23

2.30

2.45

Most effective candidate particle

Posterior PDF; Proposal PDF; Effective particle

0.95 1.00 1.05
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Fig. 3.　Effect of effective particle number. (a) K = 10. (b) K = 50. (c) K =
100. (d) K = 500.
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E. Case 3

Using the abnormal measurements, we obtain the RMSEs 
of the benchmarks and the proposed GPF, where the noise 
distribution assumptions and other parameters of each meth‐
od are the same as those in Case 2. Compared with the esti‐
mation errors under normal non-Gaussian measurements, the 
RMSEV values of WLS, EKF, CKF, UKF, GCL-UKF, PF, 
UPF, and GPF, as shown in Table VI, increase by 17.16%, 
14.70%, 10.12%, 9.90%, 7.18%, 11.28%, 8.20%, and 4.20%, 
respectively, and the RMSEθ values increase by 18.10%, 
19.86%, 16.13%, 14.85%, 11.63%, 12.90%, 10.89%, and 
7.17%, respectively. Among these methods, the GPF has the 
smallest increase of estimation errors. Figures 4 and 5 also 
demonstrate the robustness of the proposed GPF in cases of 
SCADA and PMU measurement anomalies. We infer that 
the priori knowledge in the AGGD proposal PDF can resist 
the severe disturbances in measurements.

VI. CONCLUSION

This paper proposes to use a generic distribution assump‐
tion of noise, i. e., AGGD, to formulate the non-Gaussian 
FASE problem. To solve this problem, a novel GPF is pre‐
sented, which improves the typical PF with a near-optimal 
AGGD proposal PDF and the corresponding rapid sampling 
method. Experiments are implemented on a balanced IEEE 

123-bus test system with DGs. The results demonstrate that 
the proposed GPF is the most accurate and robust compared 
with the seven benchmarks, i. e., WLS, EKF, CKF, UKF, 
GCL-UKF, PF, and UPF, under conditions of the measure‐
ments with Gaussian noise, non-Gaussian noise, and outliers. 
Nevertheless, its computation is intense in the cases of large-
scale power systems, and accuracy becomes a little worse 
under abnormal measurements. In future, we will study the 
distributed implementation and the bad data detection of the 
GPF to improve its real-time performance and robustness. 
Another focus of our future studies is the parameter estima‐
tion of AGGD to accurately characterize real non-Gaussian 
noises based on historical data.

APPENDIX A

Appendix A will present the detailed derivation of the 
Gaussian piecewise approximation of AGGD.

Around x0 = ε + μ (ε < 0), Al (x) in (20) is expanded to a sec‐
ond-order Taylor series expansion, i.e.,

Al (x)=Al (ε + μ)+Al′ (ε + μ)(x - ε - μ)+
Al′′ (ε + μ)

2
(x - ε - μ)2 +

R((x - ε - μ)3 )    xÎ[ε + μ - ηε + μ + η) (A1)

where ε determines the Taylor expansion point; η (η > 0ε +
η < 0) controls the expansion scale; Al′ (×) and Al′′ (×) are the 

first derivative and the second derivative of Al (×), respective‐
ly; R((x - ε - μ)3 ) is the third-order Taylor remainder, which 
is equal to zero in the case of α = 2. We ignore the remain‐
der and merge the similar terms in (A1) to obtain:

Al (x)»Bl (ε)x
2 + Ll (ε)x +Cl (ε) (A2)

Bl (ε)=-
1
2
α(α - 1)(-ε)α - 2 β -α

l (A3)

Ll (ε)= α(αμ + αε - μ - 2ε)(-ε)α - 2 β -α
l (A4)

Cl (ε)=
é

ë
êêêê-
ε2 (α - 1)(α - 2)

2
+

ù

û
úúúú

μ2α(1 - α)
2

+ μαε(2 - α) (-ε)α - 2 β -α
l

(A5)

The formula in (A2) can be rewritten as:

TABLE VI
RMSES OF STATE ESTIMATION METHODS UNDER ABNORMAL 

MEASUREMENTS

Method

WLS

EKF

CKF

UKF

GCL-UKF

PF

UPF

GPF

Process noise

N (0Q)

N (0Q)

N (0Q)

N (0Q)

AGGD(03QQ)

AGGD(03QQ)

AGGD(03QQ)

RMSEV (10-3 p.u.)

3.89

3.59

2.52

2.44

2.24

2.17

1.98

1.48

RMSEθ (10-3 rad)

5.16

5.07

3.96

3.79

3.55

3.51

3.36

3.14
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Fig. 4.　Voltage magnitude errors of abnormal SCADA measurements and 
estimates at node 30.
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Fig. 5.　Voltage phase angle errors of abnormal PMU measurements and es‐
timates at node 55.
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Al (x)=-
(x - bl (ε))

2

2cl (ε)
2

+Cl′ (ε) (A6)

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

bl (ε)=-
Ll (ε)

2Bl (ε)

c2
l (ε)=-

1
2Bl (ε)

Cl′ (ε)=Cl (ε)-
L2

l (ε)
4Bl (ε)

(A7)

Substituting (A6) back into (20), we can obtain:

pl (x)»
α 2πc2

l (ε) exp(Cl′ (ε))

(β l + βr )Γ ( )1
α

N (x|bl (ε)c
2
l (ε))=

al (ε)N (x|bl (ε)c
2
l (ε)) (A8)

Accordingly, pl (x) in xÎD(εi
lη

i
l ) is proportional to a 

Gaussian PDF.
The derivation of approximating AGGD under x ³ μ is the 

same as the above. Consequently, the AGGD under condi‐
tion of x ³ μ can be expressed as:

pr (x)»
α 2πc2

r (εi
r ) exp(Cr′ (ε

i
r ))

(β l + βr )Γ ( )1
α

N (x|br (εi
r )c2

r (εi
r ))=

ar (εi
r )N (x|br (εi

r )c2
r (εi

r )) (A9)

xÎ ∪
i = 1

¥

[εi
r + μ - η

i
rε

i
r + μ + η

i
r ) = ∪

i = 1

¥

D(εi
rη

i
r ) (A10)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

br (εi
r )=-

Lr (εi
r )

2Br (εi
r )

c2
r (εi

r )=-
1

2Br (εi
r )

(A11)

Cr′ (ε
i
r )=Cr (εi

r )-
L2

r (εi
r )

4Br (εi
r )

(A12)

Br (εi
r )=-

1
2
α(α - 1)(εi

r )α - 2 β -α
r (A13)

Lr (εi
r )= α(αμ + αεi

r - μ - 2εi
r )(εi

r )α - 2 β -α
r (A14)

Cr (εi
r )= é

ë
êêêê-

1
2

(εi
r )2 (α - 1)(α - 2)+

ù
û
úúúú1

2
μ2α(1 - α)+ μαεi

r (2 - α) (εi
r )α - 2 β -α

r (A15)

where ηi
r > 0; and εi

r - η
i
r ³ 0.
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