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Abstract——This paper proposes a single-ended fault detection 
scheme for long transmission lines using support vector ma‐
chine (SVM) for multi-terminal direct current systems based on 
modular multilevel converter (MMC-MTDC). The scheme over‐
comes existing detection difficulties in the protection of long 
transmission lines resulting from high grounding resistance and 
attenuation, and also avoids the sophisticated process of thresh‐
old value selection. The high-frequency components in the mea‐
sured voltage extracted by a wavelet transform and the ampli‐
tude of the zero-mode set of the positive-sequence voltage are 
the inputs to a trained SVM. The output of the SVM deter‐
mines the fault type. A model of a four-terminal DC power grid 
with overhead transmission lines is built in PSCAD/EMTDC. 
Simulation results of EMTDC confirm that the proposed 
scheme achieves 100% accuracy in detecting short-circuit faults 
with high resistance on long transmission lines. The proposed 
scheme eliminates mal-operation of DC circuit breakers when 
faced with power order changes or AC-side faults. Its robust‐
ness and time delay are also assessed and shown to have no per‐
ceptible effect on the speed and accuracy of the detection 
scheme, thus ensuring its reliability and stability.

Index Terms——Fault detection, short-circuit fault, multi-termi‐
nal direct current systems based on modular multilevel convert‐
er, support vector machine (SVM), wavelet transform.

I. INTRODUCTION 

MULTI-TERMINAL direct current systems based on 
modular multilevel converter (MMC-MTDC) systems 

are a promising option for the future power grids. With their 
advantages of small harmonic contents and by enabling mul‐
tiple power supply and infeed paths, MMC-MTDC systems  

offer economic benefits, the diversity in power generation 
and consumption, and consequentially a decrease in capacity 
investments. An MMC-MTDC system can improve the dy‐
namic performance of the connected AC grid by providing 
emergency power supply in the event of large disturbances, 
which helps prevent blackouts and improve system stability 
[1], [2].

Currently, MMCs based on half-bridge submodules are the 
dominant topologies in MMC-MTDC systems. Despite their 
well-known benefits, these converters do not have fault clear‐
ing capability, as the fault current will not be cut off by 
blocking the converters and the AC grid will continue to 
feed the faulted DC circuit [3]. In addition, overcurrent con‐
cerns caused by faults in MMC-MTDC are aggravated by 
the presence of multiple converters combined with low sys‐
tem impedance. Therefore, fault detection in such systems 
must be completed in a short time period to enable timely 
and effective protection measures. For example, in the four-
terminal Zhangbei grid in China, a detection time of 3 ms or 
less is required [4]. The faulted line must be correctly identi‐
fied to minimize the impact of the fault on the overall sys‐
tem. The design of fault detection schemes that meet the spe‐
cific requirements of MMC-MTDC systems is an urgent 
problem.

Existing literature shows two classes of widely adopted 
fault detection schemes, i. e., the schemes based on the 
boundary conditions provided by DC line reactors and based 
on travelling waves. The former class of schemes use thresh‐
olds of the voltage or current [5], [6], or the calculated pow‐
er [7], which are proven to be effective. However, their de‐
pendability and selectivity depend on line reactors, and they 
face the difficulty in identifying faults with a high resis‐
tance. The latter class of schemes overcome these draw‐
backs. According to the measurement of the initial voltage 
traveling wave, [8] - [11] achieve short-circuit fault detection 
with high resistance utilizing single-ended measurements by 
comparing the multi-resolution morphological gradient, the 
arrival time, differential voltage, and the amplitudes, respec‐
tively. The inherent drawbacks of the latter class of schemes 
are their weak tolerance for measurement error of the wave-
head of the initial travelling wave. Meanwhile, the aforemen‐
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tioned fault detection schemes inevitably require the thresh‐
old value selection, which is indeed difficult in an MTDC 
system, since the system contains multiple converters and 
transmission lines. Circumventing this requires novel meth‐
ods and techniques.

Artificial intelligence (AI) algorithms are powerful tools 
in solving non-linear problems and have been widely used in 
pattern recognition. Various AI algorithms including fuzzy 
systems [12], expert systems [13], rough set theory [14], 
Bayes classifier [15], neural networks (NNs) [16], and sup‐
port vector machines (SVMs) [17] have already been applied 
in fault detection in power systems, among which NN-based 
algorithms are the most widely investigated. Artificial neural 
networks (ANNs) have shown to be effective for fault detec‐
tion in AC power grids in [16], and their performance in 
high-voltage direct current (HVDC) system is also verified 
in [18] with the ability to enable both DC bus and DC line 
protection. In [19] , a comprehensive protection scheme con‐
taining 13 ANNs is proposed for a voltage source converter 
based HVDC (VSC-HVDC) system. However, their compu‐
tation complexity and time delay are unacceptable for MT‐
DC systems, so is the scheme proposed in [20] that relies on 
two ANNs with complex structures for fault detection. A 
one-dimensional convolutional neural network (CNN) is ad‐
opted in [21] for fault identification in a single MMC with 
four submodules. This method requires large amounts of da‐
ta for offline training of CNN. Meanwhile, its reported detec‐
tion time of 1.35 ms fails to meet the stringent requirements 
of complex DC power grids. Fault detection and location in 
MMC-MTDC systems are achieved based on recurrent neu‐
ral network (RNN) in [22]. However, measurements includ‐
ing voltage, current, and power are adopted to ensure the ac‐
curacy of fault detection, not to mention the algorithmic 
complexity of RNN itself.

Compared with NN-based algorithm, SVM adopts the 
principle of structural risk minimization (SRM), which guar‐
antees better performance and accuracy of generalization. 
Additionally, its advantages also lie in solving small-sample, 
nonlinear or high-dimensional pattern recognition problems, 
with the ability to overcome the problems of curse of dimen‐
sionality and over-fitting. Combined with discrete wavelet 
transform (DWT), an SVM-based fault classification scheme 
is applied in an AC power transmission system [23]. Applica‐
tions of SVM in distribution systems and MMCs are present‐
ed in [24] and [25], respectively. However, no research work 
on the application of SVM for fault detection in MMC-MT‐
DC systems is yet reported.

This paper proposes an SVM-based and communication-
less fault detection scheme that features security, speed, se‐
lectivity, and sensitivity. Based on the analysis of the mea‐
sured voltage after fault, its frequency spectrum is obtained 
using fast Fourier transform (FFT). The high-frequency com‐
ponent in the voltage can be used to identify internal and ex‐
ternal faults. After symmetrical component analysis (SCA), 
two features, i. e., the second-level detailed coefficient fur‐
ther extracted by DWT and the zero-mode set of the posi‐
tive-sequence voltage are obtained from the measured volt‐
age. An integrated SVM-based fault detection scheme, which 

has the ability to recognize four different fault types, is pre‐
sented, whose inputs are the two extracted features. Test re‐
sults show the proposed scheme can achieve accurate fault 
detection for the whole length of the protected line, and has 
high sensitivity to the faults with high resistance. It achieves 
100% internal fault detection without misjudgment of non-
operating conditions. The proposed scheme is compared with 
other methods, and its robustness against measurement er‐
rors and time delay of the fault detection process are evaluat‐
ed. It is concluded that the proposed scheme with only volt‐
age measurement can provide fast and accurate fault detec‐
tion in MMC-MTDC systems.

The rest of the papers are organized as follows. Section II 
shows the fault characteristics in MMC-MTDC systems. The 
design of SVM-based fault detection scheme is described in 
Section III. Section IV presents the performance evaluation. 
The robustness, merits, and applicability to larger systems of 
the proposed scheme are discussed in Section V. Section VI 
concludes the paper.

II. FAULT CHARACTERISTICS IN MMC-MTDC SYSTEMS 

A. System Structure

The four-terminal bipolar MMC-HVDC grid considered in 
this paper is shown in Fig. 1, where T1-T4 represent termi‐
nals 1-4, and F1-F3 represent the faults. All MMCs in the 
system have the same number of submodules per arm Nsm 
and the same submodule capacitance Csm. Ldc is the smooth‐
ing reactor, which is installed at both ends of each transmis‐
sion line with the same inductance. System parameters are 
listed in Table I.

AC1 T1 T3L
dc

i1

i13

i34

i24

MMC1 MMC3

F1

F3

F2

Overhead transmission line

220 kV

AC2 T2
i2

220 kV

205.9 km
i3

AC3

500 kV

T4
i4

AC4

500 kV

49.6 km 188.1 km

208.4 km

Measuring point and protection device;

F4

MMC2 MMC4

Fig. 1.　Diagram of four-terminal bipolar MMC-HVDC grid.

TABLE I
PARAMETERS OF MMC-HVDC GRID

Description

Rated DC voltage Udc

Ldc

Arm reactor of MMC Larm

Nsm

Csm

Power rating for MMC1, MMC3

Power rating for MMC2, MMC4

Value

±500 kV

300 mH

100 mH

300

12 mF

1500 MW

3000 MW
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Long-distance overhead transmission lines are represented 
using frequency-dependent distributed-element based long-
distance overhead transmission line models, as shown in Fig. 
2, where r0, l0, g0, and c0 are the line resistance, inductance, 
conductance, and capacitance per unit of length, respective‐
ly; a1-a4 represent the nodes 1-4; G1 and G2 represent the 
ground wires; and C1 and C2 represent the conductors. The 
structure of the frequency-dependent overhead line model 
and the tower model in EMT simulations are shown in Fig. 
2(b). The simulation setup in PSCAD of transmission line is 
listed in Table II.

B. Fault Voltage Analysis

The inception of a short-circuit fault can be emulated by 
imposing an additional voltage source at the fault location 
that has an equal but opposite amplitude to the initial volt‐
age. This inserted source will generate traveling waves that 
propagate to both ends of the transmission line. As shown in 
Fig. 3, V0 is the inserted voltage source; Rf is the grounding 
resistance; and im and in are the currents of terminals m and 
n, respectively. The positive direction of the current is from 
bus to line, as marked in Fig. 3.

According to the superposition theorem, the system with a 
short-circuit fault can be regarded as the addition of the load 
and the fault components. Taking terminal m as an example, 
the initially measured voltage and current after the fault 

are expressed as:

ì
í
î

ïïum (t)= uml + umf

im (t)= iml + imf

(1)

where uml and iml are the load components; and umf and imf are 
the fault components.

The fault travelling wave consists of a series of harmonic-
form frequencies, therefore, the measured voltage at the pro‐
tection point contains high-frequency components [18], [26]. 
However, when the traveling wave propagates from the fault‐
ed point to the adjacent line, its high-frequency components 
will be suppressed by the smoothing reactor installed at the 
terminal of the line. At the same time, since the traveling 
wave will refract and reflect at the end of the transmission 
line, the amplitude of the traveling wave measured by the ad‐
jacent line is further reduced.

Taking the measurement at T1 side on line L13 is as an 
example, three short-circuit fault types, at T1 side on L13, at 
T3 side on L13, and at T1 side on L12 are tested, which are 
marked as F1, F2, and F3, respectively. The voltage wave‐
form and frequency spectra under different fault conditions 
are shown in Fig. 4. It is clearly illustrated that, compared 
with the internal fault, the high-frequency part of the mea‐
sured voltage in the case of an external fault attenuates sig‐
nificantly.

C. SCA

For the DC transmission line, there is inter-coupling be‐
tween the positive- and negative-pole components, which 
brings difficulty in fault analysis. The method of SCA analy‐
sis provides a decoupling approach [27].

Assuming Ap and An are positive- and negative-pole com‐
ponents, respectively, they can be decomposed as:

ì
í
î

ïïAp =Ap1 +Ap0

An =An1 +An0

(2)

i

+
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u
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Fig. 2.　Frequency-dependent distributed-element based long-distance over‐
head transmission line models. (a) Equivalent circuit of one transmission 
line unit. (b) Frequency-dependent overhead transmission line and tower 
model used in EMT simulations.

TABLE II
SIMULATION SETUP IN PSCAD OF TRANSMISSION LINE

Description

Conductor

Ground wire

Ground resistivity

Simulation Setup

Chukar

1/2 high strength steel

100 Ω·m

MMC

�

+
V0

Rf

m n
Ldc… …

Ldc

Traveling wave

im

Measuring point and protection device

F1 in

Fig. 3.　Propagation of traveling waves after a fault.

0.995 1.000 1.005 1.010 1.015 1.020 1.025 1.030
-600
-400
-200

0
200
400
600
800

1000

0 10 20 30 40 50

100
200
300
400
500
600
700

12 14 16 18 20 22 24 26 28 30
0

80

160

240

U
d
c 

(k
V

)

t (s)

(a)

T1 side on L13; T3 side on L13; T1 side on L12

f (kHz)

(b)

A
m

p
li

tu
d
e 

(k
V

)

Fig. 4.　Voltage waveform and frequency spectra under different fault con‐
ditions. (a) Voltage waveform. (b) Voltage frequency spectra.
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where Ap0 and An0 are the zero-mode sets; and Ap1 and An1 
are the line-mode sets. The relationship between zero- and 
line-mode sets is:

ì
í
î

ïïAp1 =-An1

Ap0 =An0

(3)

Keeping the electric power invariant in the transformation 
and combining (2) and (3), Ap0 and Ap1 can be obtained by:

é

ë

ê
êê
ê ù

û

ú
úú
úAp0

Ap1

=
1
2

é
ë
êêêê ù

û
úúúú1 1

1 -1

é

ë

ê
êê
ê ù

û

ú
úú
úAp

An

(4)

A negative-pole-to-ground fault is taken as an example 
and its schematic is illustrated in Fig. 5(a), where ufp and ifp 
are the voltage and current of the positive pole, respectively; 
ufn and ifn are the voltage and current of the negative pole, re‐
spectively; and Rg is the fault resistance.

Before the inception of the fault, ufp =-ufn = Udc /2 is satis‐
fied. Thus, according to (4), the pre-fault conditions of zero-
mode component ufp0 and the line-mode component ufp1 of 
the positive voltage may be written as:

ì

í

î

ïïïï

ïïïï

ufp1 =
Udc

2
ufp0 = 0

(5)

Based on Fig. 5(a), the conditions after the fault are:

ì
í
î

ïïifp = 0

ufn = ifn Rg

(6)

Consequently, the following equations can be obtained 
considering the SCA as:

ì
í
î

ïïifp1 + ifp0 = 0

-ufp1 + ufp0 = (ifp0 - ifp1 )Rg

(7)

The relationship between the line- and zero-mode sets of 
the positive voltage and current can be described as (8), 
which is depicted in Fig. 5(b).

ì

í

î

ïïïï

ïïïï

Udc

2
= ifp1 Z1 + ufp1

-ifp0 Z0 = ufp0

(8)

where Z1 and Z0 are the line- and zero-mode impedances, re‐
spectively, and can be obtained by:

ì
í
î

ïïZ0 = Zs + Zm

Z1 = Zs - Zm

(9)

where Zs and Zm are the self-impedance and the mutual im‐
pedance of the transmission lines, respectively.

Substituting (8) in (7), the line- and zero-mode sets of the 
positive voltage can be obtained as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

ufp0 =
UdcZ0

2(2Rg + Z0 + Z1 )

ufp1 =
Udc (Z0 + 2Rg )

2(2Rg + Z0 + Z1 )

(10)

It is noticeable that the amplitude of ufp1 is greater than 
ufp0 when the short-circuit fault occurs with high resistance. 
Besides, according to [8], the zero-mode set propagates low- 
and high-frequency parts of the signal attenuated much more 
severely compared with the line-mode component.

III. DESIGN OF SVM-BASED FAULT DETECTION SCHEME 

A. Fault Area Identification

Based on the analysis in Section II, the high-frequency 
components in the line-mode set of the positive voltage ufp1 
are suitable for the internal and external fault identifications. 
Here, DWT, which offers excellent time-frequency localiza‐
tion characteristics, is adopted to extract high-frequency com‐
ponents from signals.

Consider a given discretized measured signal x[n]. Its 
DWT is given as:

DWT(mn)=
1

am
0

∑
k

x(k)ψ ( )k - nb0am
0

am
0

(11)

where ψ(t) is the mother wavelet function. The scale and 
translation parameters, i.e., a and b in the continuous wave‐
let transform, are discretized as am

0  and nb0am
0 , respectively. 

Here, a0 > 1 and b0 ≠ 1 are the scale and translation steps, re‐
spectively; and m and n are the integers to guarantee the 
change of ψ(t) in scale and translation, respectively.

As a typical DWT algorithm, multiresolution analysis 
(MRA) is able to decompose a signal into a set of frequency 
bands and is adopted in this paper. Figure 6 demonstrates a 
three-level decomposition of a signal according to MRA. 

After passing through the high-pass filter g[n] and low-
pass filter h[n], the original signal x[n] that is sampled at a 
frequency of fs is decomposed into a detail information d1 
and a coarse approximation a1, which are associated with the 
high-frequency ( fs /2 - fs ) and low-frequency (0 - fs /2) parts 
of the signal, respectively. a1 is further passed through the 
same high-pass and low-pass filters, which generate the sec‐
ond-level DWT detail coefficient d2 ( fs /4 - fs /2), and approxi‐
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d22
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2 2 d3

2 a3

x[n]
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Fig. 6.　Three-level decomposition of a signal according to MRA.
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Fig. 5.　 Analysis of negative-pole-to-ground fault. (a) Negative-pole-to-
ground fault. (b) Sequence-network for negative-pole-to-ground fault.

993



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 3, May 2023

mate coefficient a2(0 - fs /4), respectively. Then, a2 can be de‐
composed repeatedly in a similar manner. The generated de‐
tail and approximate coefficients at the jth level are as fol‐
lows:

ì

í

î

ïïïï

ïïïï

dj [n]=∑
k

h[k - 2n]aj - 1 [k]

aj [n]=∑
k

l[k - 2n]aj - 1 [k]
(12)

The modulus maximum values generated by the wavelet 
transform correspond to the mutation points of the original 
signal. To be specific, the magnitude indicates the strength 
of the signal mutation, and the polarity indicates the muta‐
tion direction [28]. In this paper, the Daubechies-3 (db3) 
wavelet is selected as the mother wavelet function, given 
that it is a compactly supported orthogonal wavelet basis 
with a small vanishing moment and low computation com‐
plexity [29].

In order to obtain enough data to ensure detection accura‐
cy, the sampling frequency is set to be 100 kHz. According‐
ly, the frequency bands after MRA corresponding to the 
first- , second- , and third-level reconstructed signals are 25-
50 kHz, 12.5-25 kHz, and 6.25-12.5 kHz, respectively.

According to Fig. 6, the frequency range corresponding to 
the second-level detail coefficient d2, has good potential to 
distinguish internal and external faults. Meanwhile, com‐
pared with d1, it has better anti-noise interference capabili‐
ties. Hence, the summation of the second-level detail coeffi‐
cient of ufp1, as shown in (13), is selected as the index for 
the internal and external fault identifications.

DIE =∑
n = n0

n0 +N

|| d2 (n) (13)

where n0 is the sampling point when the protection device 
detects the inception of the fault; and N is the total number 
of samples. To guarantee protection speed, a window length 
of 0.5 ms is used in this paper, which yields N = 50.

B. Fault Pole Discrimination

To discriminate the exact fault pole, i.e., positive-pole-to-
ground (P-PTG), negative-pole-to-ground (N-PTG), or pole-
to-pole (PTP), unique signatures from waveforms need to be 
extracted. Using the same method demonstrated in Section 
II-C, the zero-mode set of the positive voltage ufp0 under P-
PTG and PTP fault can be written as:

ufp0 =
ì

í

î

ïïïï

ïïïï

-Z0Udc

2(2Rg + Z0 + Z1 )
     P - PTG

0                                   PTP

(14)

Based on observations from (10) and (14), the amplitudes 
of ufp0 under three different fault conditions, P-PTG, N-PTG, 
and PTP faults, are negative, positive, and zero, respectively. 
Simulation results in Fig. 7 verify the conclusion.

Therefore, these differences can be utilized to discriminate 
the faulty pole, and the summation of ufp0 is adopted to en‐
large the disparity, as shown in (15).

DFT =∑
n = n0

n0 +N

ufp0 (15)

C. SVM Algorithm

The mechanism of SVM is to find an optimal classifica‐
tion hyperplane that meets the classification requirements of 
the training samples.

The goal of the hyperplane is to not only ensure correct 
classification, but also maximize the area at both sides of the 
hyperplane, as shown in Fig. 8, where the red cross and cir‐
cle represent the support vectors.

Given the training samples (x i,  yi ), i = 1, 2,    n,  x ∈Rd, 
yi ∈{-1, 1} and a hyperplane H: wT x + b = 0, where w ∈Rd is 
a d-dimensional weight vector, and b ∈R is the bias term, 
the geometrical margin between the samples to the hyper‐
plane can be written as:

r =
min yi (w

T x i + b)

 w
(16)

To maximize the gap between the two sides of the hyper‐
plane, the geometrical margin should be as great as possible. 
To simplify the analysis, set min yi (w

T x i + b)= 1. Therefore, 
the aim becomes:

max
1

 w
(17)

It is equivalent to:

min
1
2
 w

2
(18)

If all the samples are separated correctly by the hyper‐
plane, the following equation must be met by all samples:
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Fig. 7.　Amplitudes of zero-mode set of positive voltage under three differ‐
ent fault conditions.

x

y

Hyperplane

Margin

Fig. 8.　Schematic diagram of SVM.
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yi (w
T x i + b)³ 1 (19)

Taking the outliers caused by noise or measurement error 
into consideration, an optimal separating hyperplane can be 
found by solving the following quadratic programming prob‐
lem:

ì

í

î

ïïïï

ïïïï

min
ì
í
î

ü
ý
þ

1
2
 w

2 +
C
2∑i = 1

n

ξ 2
i

s.t.  yi (w
T x i + b)³ 1 - ξi     i = 12...n

(20)

where C is the penalty term and is set to be 50; and ξi is the 
slack variable, which can be expressed as:

ξi =max{01 - yi (w
T x i + b)} (21)

Introducing the Lagrange function to solve this convex 
quadratic programming optimization problem yields:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

min L(α)=
1
2

yi yjαiαj( )K(x ix j )+
δij

C
-∑

i = 1

n

αi

s.t.  ∑
i = 1

n

yi αi = 0        αi > 0i = 12...n
(22)

where αi is the Lagrange multiplier; K(·) is the kernel func‐
tion (a linear kernel function is selected in this paper); and 
δij is Kronecker’s delta function in which δij = 1 for i = j and 
δij = 0, otherwise.

Solving the dual problem in (22), the decision function 
for SVM can be obtained by:

f (x)= sgn ( )∑
i = 1

n

α*
i yi K(x ix j ) + b* (23)

where α*
i  and b* are the parameters of the optimal classifica‐

tion hyperplane.

D. Start-up Criterion

To avoid erroneous and frequent protection activities dur‐
ing normal operation, a start-up criterion is designed. Since 
the DC line voltage will decrease dramatically after a fault, 
the trigger criterion utilizing an unusual voltage drop is pro‐
posed as:

ì
í
î

ïïïï

ïïïï

||udcp (t) <Ust

||udcn (t) <Ust

(24)

where udcp and udcn are the positive- and negative-pole voltag‐
es, respectively; and Ust is the start-up threshold value. Ac‐
cording to [30], the most strict voltage limit for normal oper‐
ation is 6%. In this paper, Ust is set to be 450 kV, i.e., 10% 
voltage drop considering some margin.

E. Overall Proposed Fault Detection Scheme

Based on the above analysis, the flowchart of the pro‐
posed scheme is shown in Fig. 9. Once the fault detection 
scheme is triggered by a low DC voltage, line- and zero-
mode sets of the positive voltage ufp1 and ufp0 are extracted 
from the positive- and negative-pole voltage measurements 
on the same terminal through SCA. Two features DIE and 
DFT are then obtained from ufp1 after MRA and ufp0, respec‐
tively. To acquire better classification results, these two fea‐

tures are normalized and then presented as inputs to the 
SVM. The normalization formula used is shown in (25):

x* =
x - xmin

xmax - xmin
(25)

where xmin and xmax are the minimum and maximum values 
of the given data, respectively. Finally, the output of the 
SVM classifier gives the fault type.

IV. PERFORMANCE EVALUATION 

In this section, the effectiveness of the proposed scheme 
is validated in the context of the four-terminal MMC-MTDC 
system shown in Fig. 1. The analysis is carried with the mea‐
surement equipment installed at T1 side on L13 as an exam‐
ple.

A. Fault Recognition Results

528 cases with various fault types, fault resistances, and 
fault locations are generated using PSCAD/EMTDC simula‐
tions, as listed in Table III.
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PTP
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Signal processing

Classification

Normalization Normalization

Start

Measured udcp(t) and udcn(t)

|udcn(t)|<Ust or |udcp(t)|<Ust?
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ufp1 ufp0

Wavelet transform

DIE DFT

P-PTG N-PTG Non-operation

Fig. 9.　Flowchart of proposed scheme.

TABLE III
DATA GENERATED BY PSCAD/EMTDC SIMULATIONS

Faulty line

L13

L12

L34

Fault location

Every 10 km 
on L13

Every 10 km 
on L12

Every 25 km 
on L34

Fault resistance under PTP, 
P-PTG, N-PTG faults (Ω)

0, 100, 200, 300, 400, 500, 
600

0, 100, 200

0, 50, 100

Number of 
samples

420

45

63
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Since the protection devices at T1 side on L13 are used 
for analysis in this paper, short-circuit the faults occurring 
outside L13 are considered as external fault, whereas faults 
on L13 are considered internal under three fault conditions 
of P-PTG, N-PTG, and PTP, to be distinguished. Besides, ex‐
ternal faults with a long distance from the L13 protection in‐
stallation point or large grounding resistance will not cause a 
major, i. e., over 90%, voltage drop on L13, which implies 
that the protection algorithm on L13 will not be triggered.

The 528 samples are divided into a training set and a test‐
ing set for the SVM, as shown in Table IV. For the testing 
set, 30 samples are selected randomly from each of four dif‐
ferent fault types. Hence, a testing set containing 120 sam‐
ples is obtained.

The appropriate SVM structure is obtained according to 
the training data, as shown in Fig. 10. Those support vectors 
used to distinguish different fault types are highlighted by 
pink circles and the black circles represent the data. The clas‐
sification accuracy of the proposed  scheme is verified with 
the testing data set, and its performance is evaluated in Fig. 
11 and Fig. 12.

The proposed scheme can accurately distinguish different 
fault types. For the internal short-circuit fault, the proposed 
scheme can identify the fault inception swiftly for any posi‐
tion along the protected line. Therefore, the proposed 
scheme can realize fault detection of the whole transmission 
line, which is the core deficiency of the traveling wave-
based scheme. Meanwhile, simulation results verify that the 
proposed scheme can identify short-circuit faults grounded 
with large resistance, i.e., 600 Ω (≈ 2 p.u.). This improves the 
fault detection that may occur on current changing based 
fault detection schemes with a short-circuit fault through 

large resistance. At the same time, even if a metallic short-
circuit fault occurs at the beginning of an adjacent line, the 
proposed scheme can correctly recognize it as non-operation, 
thereby avoiding mal-operation of the protection devices.

Besides, as clearly indicated in the confusion matrix in 
Fig. 12, the accuracy of the proposed scheme is 100%, 
which proves its effectiveness to correctly identify and classi‐
fy different fault types in an MTDC system.

B. Response to Power Order Change

In this subsection, the accuracy of the proposed scheme is 
assessed when the system undergoes a transient caused by a 
large power order change. As shown in Fig. 13, the power 
command of T1 is reversed (from 1 p.u. to -1 p.u.) at t = 1 s, 
thus leading to a voltage drop on L13, which triggers the 
failure detection scheme. The measured single-ended voltage 
is then processed by the SCA and DWT, accordingly, obtain‐
ing d2 and ufp0 shown above. Based on the proposed scheme, 
the calculated DIE and DFT are 5.8461 and 0.0086, respective‐
ly. After the normalization, the trained SVM correctly classi‐
fies this working condition as a non-operating category, as 
shown in Fig. 15, which verifies that the proposed scheme 
will not misjudge under routine power order change.
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Fig. 11.　Output of SVM with testing data.
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Fig. 10.　Trained model of SVM with training data.

TABLE IV
DATA FOR TRAINING AND TESTING

Type

Data for training

Data for testing

Number of samples

408

120
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C. Response to AC-side Fault

The accuracy of the classification output of the proposed 
scheme under an AC-side fault, i.e., F4 in Fig. 1 when t = 1 s, 
is discussed in this subsection, which will bring the most se‐
vere impact on the measured signal.

As illustrated in Fig. 14, subsequent to this short-circuit 
fault, the fault detection scheme is triggered for the mea‐
sured DC voltage at the T1 side on L13 drops below the 
start-up threshold value. After obtaining d2 and ufp0, the cal‐
culated DIE and DFT are 1.0068 and -0.1646, respectively. 
The case classification result is shown in Fig. 15, which is 
correctly identified as non-operation category. Hence, no trip 
signal will be sent to DC circuit breakers on L13, avoiding 
any mal-operation.

Based on this observation, even when the most severe 
short-circuit fault occurs at the AC side and causes the most 
serious interference to the measured signal at the DC side, 
the proposed scheme can classify the fault type precisely.

D. Robustness Analysis

In practice, measurement errors will inevitably exist. In or‐
der to verify the effectiveness of the proposed scheme in 
such cases, the maximum voltmeter error of 0.5% [31] with 
a normal distribution is considered. This error is added to 
each measuring point and the classification result of the pro‐

posed scheme under noise is shown in Fig. 16.

The accuracy of the classification result continues to be 
100%. In other words, even if there are measurement errors, 
the proposed scheme can still accurately distinguish the four 
types of fault, which will avoid equipment malfunctions 
caused by the misjudgment of the detection scheme.
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V. DISCUSSION 

A. Time Delay Evaluation

Time delay is vital in assessing a fault detection scheme, 
given that the required fault detection time of a MTDC sys‐
tem is within 3 ms [4]. For the proposed scheme, the time 
delay is mainly composed of four parts: the fault wave prop‐
agation delay, sampling delay, computation delay in feature 
extraction, and the SVM classification delay.

For L13, the maximum propagation delay is about 0.68 ms, 
which only occurs when the short-circuit fault is incepted at 
T3 side on L13, whereas the minimum propagation delay 
when the fault occurs at T1 side on L13 is negligibly small. 
The sampling delay is set to be 0.5 ms, as mentioned in Sec‐
tion III-A to acquire enough data for the later fault detection. 
As for the computation delay, the proposed scheme is writ‐
ten in Python 3.8 and computed on the Intel Core i7 CPU 
with 8.0 GB of RAM. According to the test results, the com‐
putation delays for DWT and SCA are 1.12 ms and 0.241 
ms, respectively. The classification time span for a single 
case in the trained SVM is presented as 0, for the running 
time of the algorithm is less than 1 μs. Based on the above 
analysis, the overall time delay of the proposed scheme is 
within 1.86 ms to 2.54 ms, which meets the requirement for 
a MTDC system, and the maximum value is demonstrated in 
Table V.

TABLE V
TIME DELAY FOR PROPOSED SCHEME

Item

Propagation delay

Sampling delay

Computation delay of DWT

Computation delay of SCA

Classification delay

Overall time delay

The maximum time span

0.68 ms

0.50 ms

1.12 ms

0.24 ms

< 1 μs

2.54 ms

Hybrid DC circuit breakers are widely used in DC power 
grids. Once the short-circuit fault is detected by the pro‐
posed scheme, a trip signal is sent to the corresponding DC 

circuit breaker. The operation time of the hybrid DC circuit 
breaker, i. e., fault current transferred from the transfer 
branch to the energy absorption branch, is 3 ms, with the 
maximum breaking capacity of 15 kA [32]-[34]. Figure 17 il‐
lustrates the fault current waveforms under the most severe 
PTP short-circuit fault for different fault locations.

As shown above, when F1 occurs, the current amplitude 
I13p that the DC circuit breaker needs to cut off is 12.37 kA, 
whereas the current amplitude of F2 is 6.36 kA. The two 
green dots on Fig. 17 further highlight the current ampli‐
tudes at the corresponding breaking time, taking the fault de‐
tection time and the operation time of DC circuit breaker in‐
to consideration. Under these two typical fault conditions, 
one has the shortest fault detection time with the fastest rate 
of rise of the fault current, and the other one has the longest 
fault detection time. Based on the simulation results, both 
the current amplitudes are within the breaking capacity of a 
hybrid DC circuit breaker without the assistance of addition‐
al current limiting devices. Therefore, the feasibility of the 
proposed scheme in practical application is confirmed.

B. Comparison with Existing Detection Schemes

In this subsection, the proposed scheme is compared with 
the existing detection scheme in terms of the maximum 
grounding resistance, the ability to achieve whole line protec‐
tion, and whether a communication channel is required. 
Three typical fault detection schemes are selected, where 
[5], [8], and [18] represent the schemes based on the bound‐
ary conditions, traveling wave, and AI, respectively.

From Table VI, it can be observed that the proposed 
scheme has the greatest short-circuit fault with high resis‐
tance identification ability.

Although the method in [5] is reported to have a smallest 
time delay in recognizing metallic short-circuit faults, the 
communication is inevitable in identifying the fault with re‐
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TABLE VI
COMPARISON WITH OTHER SCHEMES

Scheme

Proposed 
scheme

[5]

[8]

[18]

The maximum 
grounding 

resistance (Ω)

600

0

300

350

Whole line 
protection

Yes

Yes

No (90%)

Yes

The maximum 
detection time 

(ms)

2.540

0.700

2.616

2.180

Communica‐
tion channel 

needed

No

Yes

Yes

No
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Fig. 16.　Classification result of proposed scheme under noise.
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sistance, which undoubtedly will increase the detection time 
significantly. When a short-circuit fault occurs in the dead 
zone of the scheme in [8], backup protection is needed; oth‐
erwise, the DC circuit breaker on only one end will operate, 
since the other end will not perceive the fault inception. The 
ANN-based detection scheme in [24] performs better in fault 
detection. However, its fault identification accuracy for the  
faults with high resistance decreases to only 67.7%. This 
will cause mal-operation of the DC circuit breakers, and 
may adversely affect the security of the entire system. Based 
on the above analysis, the fault detection scheme proposed 
in this paper has clear advantages over the existing ones.

C. Applicability to Larger Systems

From the perspective of the effectiveness of the proposed  
scheme in a large system, only two inputs, DIE and DFT, are 
required for a trained SVM algorithm to determine a fault 
type in operation, as depicted in Fig. 9. This indicates that 
the input data is comprised of only two scalar quantities, no 
matter what the system scale is. In addition, the SVM algo‐
rithm is capable of handling tens or even hundreds of thou‐
sands of cases [35], [36]. For a specific protected DC sys‐
tem, the size of the data required to train a SVM is related 
to the number of lines connected to one DC bus, but not to 
the number of converters in the system, i.e., the system size. 
Besides, as demonstrated in Section IV-A, some external 
faults with a long distance from the protection installation 
point or large grounding resistance will not trigger the pro‐
tection algorithm of the target line, which shrinks the num‐
ber of the training cases.

From the perspective of the accuracy of the proposed  
scheme in a large DC system, the characteristics of the se‐
lected two inputs of the SVM algorithm are independent of 
system structure and scale. As is confirmed by the FFT re‐
sults shown in Fig. 4, the summation of the second-level de‐
tail coefficient after multiresolution analysis of ufp1 and DIE 
is calculated for the internal and external fault identifica‐
tions. Also, the amplitudes of ufp0 have significant difference 
under three different fault conditions, which are negative, 
positive, and zero corresponding to P-PTG, N-PTG, and PTP 
faults, respectively. Thus, the summation of ufp0 and DFT is 
adopted to discriminate the exact fault pole.

Based on the above discussion, there is no direct relation‐
ship between the grid scale and the number of cases re‐
quired in SVM training. It also verifies the effectiveness and 
the accuracy in expanding the proposed scheme to more 
complex DC power grids.

VI. CONCLUSION 

This paper proposes a single-ended fault detection scheme 
using SVM for MTDC systems based on MMC. According 
to the theoretical analysis of the high-frequency component 
in the line-mode set of the positive-pole voltage and the am‐
plitude of the zero-mode set of the positive voltage, these 
two features are selected as the inputs and the SVM-based 
fault detection scheme is proposed. The test results indicate 
that, without complicated threshold value selection and rely‐
ing merely on the single-ended voltage measurement, the 

proposed scheme can classify the four kinds of fault types, i.
e., P-PTG, N-PTG, PTP, and the non-operation condition, 
with 100% accuracy even under faults with grounding resis‐
tances as high as 600 Ω. Besides, the possibility of mal-oper‐
ation of DC circuit breakers when subjected to power order 
changes or AC-side three-phase faults can be avoided, and 
its robustness under the measurement error is verified. The 
time delay of the proposed scheme is proven to meet the re‐
quirements for DC grid protection, and the proposed scheme 
has the advantage of high fault identification accuracy for 
the whole protected line, which are crucial for the safe, fast, 
and stable operation of MTDC system. The limitation of the 
proposed scheme is that its sensitivity and selectivity can on‐
ly be guaranteed for the considered system and based on 
large training data. This implies that the system needs to be 
trained for the specific system in which it is employed. It is 
worth noting that the requirement for retraining is a common 
feature and shortcoming of virtually all fault detection 
scheme based on AI algorithms.
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