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Strategic Peer-to-peer Energy Trading Framework 
Considering Distribution Network Constraints

Yanbo Jia, Can Wan, and Biao Li

Abstract——With the development of smart home energy man‐
agement technology, prosumers are endowed with increased ini‐
tiative in peer-to-peer (P2P) transactions, bringing new poten‐
tial for cost savings. In this study, a novel strategic P2P energy 
trading framework is proposed considering the impact of net‐
work constraints on personal transaction strategies. Prosumers 
can estimate the allowed power injection before engaging in the 
P2P energy trading, which is solved in a distributed manner 
based on the sharing form alternating direction method of mul‐
tipliers (ADMM) algorithm. To quantify the network usage cost 
for each prosumer and promote local transactions among pro‐
sumers at the same bus, a modified continuous double auction 
(CDA) matching algorithm is proposed including a transaction 
fee. An adaptive aggressiveness-based bidding strategy is gener‐
ated considering the risk of uncertainty in real-time energy de‐
livery amount under the limitations of the distribution network. 
The proposed strategic P2P energy trading framework is tested 
with the IEEE 37-bus distribution network and it is effective in 
creating profits for prosumers and supporting distribution net‐
work operations.

Index Terms——Bidding strategy, continuous double auction 
(CDA), distribution network, distributed algorithm, peer-to-
peer (P2P) transaction.

I. INTRODUCTION 

WITH the increasing concerns related to fossil-fuel en‐
ergy shortage, climate change, and environmental is‐

sues, developing renewable energy and improving energy us‐
age efficiency have become common strategies for countries 
to accelerate their energy transition and achieve sustainable 
energy development. With the advancements in the technolo‐
gies related to renewable energy integration, distributed re‐
newable energy has become critical for energy transition.

Considering the advantages of economy and flexibility, 
distributed energy resources (DERs) can meet the demands 
of local consumers, which reduces the electricity production 

and transmission losses. In addition, the smart home energy 
management systems (HEMSs) have rapidly developed in re‐
cent years and are considered as an essential technology for 
successful demand-side management. Smart prosumers are 
becoming more flexible by monitoring and arranging various 
home appliances using HEMS, reducing electricity bills [1], 
and improving their energy utilization efficiency [2]. The 
boosting flexibility on the demand side transforms the tradi‐
tional passive consumers into active providers with the capa‐
bility of offering energy services to the upstream grid [3], 
[4]. The emergence of numerous prosumers requires a new 
electricity market structure, i. e., a prosumer-centric market 
structure, to coordinate the distributed renewable generation 
management with the decision-making process of self-inter‐
ested prosumers. In contrast to demand-reduction or demand-
response programs, where prosumers passively react to price 
signals, prosumers in prosumer-centric markets can actively 
offer energy services or strategically bid for energy prod‐
ucts [5].

Among various prosumer-centric market structures, the 
peer-to-peer (P2P) market inspired by the sharing economy 
concept is considered an efficient platform to operate hetero‐
geneous DERs, where prosumers can bid and directly trade 
electricity and services [6]. Current studies on P2P energy 
trading models can be roughly divided into two categories: 
① one based on economic dispatch [7]-[9]; and ② the other 
one based on multilateral and bilateral negotiation [10], [11]. 
Typically, the impact of a distribution network is considered 
by incentive price signals before trading [8], [11]. Because 
the economic dispatch based distributed energy trading is es‐
sentially an optimization problem, the distribution network 
constraints can be directly included in the social-welfare 
maximization problem [12]. In addition, the distribution net‐
work constraints could be included by a third-party valida‐
tions after P2P energy trading [13]. However, to the best of 
our knowledge, the impact of the network constraints on the 
strategic bidding behavior of prosumers has not yet been dis‐
cussed.

A two-stage bidding strategy for P2P energy trading is pro‐
posed in [14] to facilitate the local consumption of DERs 
and increase the social welfare. In the first stage, the ideal 
energy transaction amount is obtained using forecasting in‐
formation. In the second stage, all P2P market participants 
can decide their trading prices individually through a simulta‐
neous game-theoretic approach. Whereas, the two-stage bid‐
ding strategy is essentially a data-driven approach in which 
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the restraints of the physical network are ignored. Prosumers 
are formulated as zero-intelligence plus traders using an 
adaptive mechanism in [13], which can imitate human trad‐
ers in stock markets.

The P2P transaction results of prosumers are restrained by 
the power injection limitations due to the distribution net‐
work constraints during real-time power delivery. This devia‐
tion between the actual amount of energy delivered and the 
P2P transaction volume exposes prosumers to deviation as‐
sessment and return risk. To handle the uncertainty in the de‐
livered energy, a price signal is given by the distribution sys‐
tem operator using the probabilistic distribution locational 
marginal price (DLMP) in [15] to reflect the network condi‐
tions and instruct the energy usage arrangements of prosum‐
ers. This type of incentive-compatible price signal helps re‐
duce the risk of violating the network constraints by incentiv‐
izing prosumers to use local flexibility. However, the price 
signal indicating the network usage conditions is still a type 
of indirect soft constraint compared with the power injection 
limits.

In the traditional electricity market environment, the opera‐
tion and network usage costs comprise a critical part of elec‐
tricity bills [16]. Since prosumers can directly trade with 
each other in P2P markets, there would be no extra pay‐
ments to cover the operation and loss costs of distribution 
networks. To quantify the usage cost of distribution net‐
works, network utilization fees measured by power transfer 
distance are formulated as a social welfare maximization 
problem based on P2P energy trading in [17], which is 
solved in a decentralized manner to optimize the P2P energy 
transaction amount. However, no price signal is released in 
this P2P energy trading process, and the prosumer’s indepen‐
dent and selfish decision-making is ignored. Network usage 
charges are defined in [6] on the basis of DLMP compo‐
nents using the second-order cone AC optimal power flow 
(OPF) model. A third-party utility is assumed to calculate 
the DLMP by collecting the power injections into the bus 
for trades, which may face difficulties in deriving a subopti‐
mal or infeasible solution. Continuous double auction (CDA) 
is generally used to exploit the dynamics of the free market 
to efficiently balance the demand and supply with decentral‐
ization features [18]. It is considered a concise and efficient 
way to implement P2P transactions owing to the advantage 
of robustness and move towards Pareto efficiency.

In this study, a novel strategic P2P energy trading frame‐
work is proposed considering the impact of distribution net‐
work constraints on the individual decision-making process. 
Prosumers are capable of estimating the allowed power injec‐
tion before the local P2P energy trading in a distributed man‐
ner to autonomously generate their bidding strategy for the 
transaction price and volume. A modified CDA matching al‐
gorithm is proposed to account for the network usage and en‐
courage local transactions at the same bus. In contrast to 
general CDAs, with time and price priorities considered, 
each bidding order is signed with a location stamp to high‐
light the impact of the location priority. Considering the risk 
of the amount of real-time energy delivered under distribu‐
tion network constraints, a risk-perceived bidding strategy is 

developed based on an aggressive adaptive (AA) strategy. 
The main contributions of this study are summarized as fol‐
lows.

1) A novel strategic P2P energy trading framework is pro‐
posed considering the impact of the distribution network on 
the P2P bidding strategies of prosumers.

2) A modified CDA matching algorithm is proposed to ac‐
count for the network usage and facilitate local P2P transac‐
tions at the same bus.

3) An adaptive risk-perceived bidding strategy is devel‐
oped by estimating the power injected into the bus, which is 
limited by the distribution network constraints and the uncer‐
tainty in the actual amount of power delivered.

II. SYSTEM MODEL 

A. Prosumer Model

Prosumers denoted as P: ={12M } are classified ac‐
cording to: ① whether they have renewable energy genera‐
tion; and ② whether they have elastic loads. Generally, an 
operation day is divided into several time slots, which are 
denoted as T: ={12T}.
1)　Renewable Energy Generation

The photovoltaic (PV) generation for prosumer iÎP dur‐
ing time slot tÎT is denoted as pg

it. Each prosumer with PV 
generation is assumed to be equipped with a reactive power 
compensation device. Thus, a prosumer with PV generation 
that can provide reactive power is limited by:

-
q g

it
£ qg

it £ q̄g
it (1)

where 
-
q g

it
 and q̄g

it are the lower and upper bounds of reac‐

tive power that prosumer i can provide during time slot t, re‐
spectively.
2)　Power Demand

Each prosumer has both elastic demand and inelastic de‐
mand. Using pd

it to represent the power demand of prosumer 
i during time slot t, the elastic demand is considered to be 
time-shiftable [19], which is subjected to:

-
p d

it
£ pd

it £ p̄d
it    tÎTiÎP (2)

∑
tÎT

pd
it ³E d

i     iÎP (3)

where 
-
p d

it
 is the lower bound of the power demand including 

the inelastic demand and a basic requirement of the elastic 
demand; p̄d

it is the upper bound of the power demand indicat‐
ing the maximum power limit; and E d

i  is the total basic ener‐
gy demand of prosumer i over all operation periods tÎT. 
Because the demand schedule determined by the original en‐
ergy consumption habits of prosumers is their most preferred 
power consumption, any deviation from this original demand 
schedule, denoted as pp

i : ={pp
i1 p

p
i2  pp

iT }, will incur an 
extra discomfort cost. A quadratic penalty C d

it is utilized to 
quantify the discomfort cost of the demand deviation:

C d
it = αi (pd

it - pp
it )

2 (4)

where the coefficient αi denotes the willingness of prosumer 
i to adjust its power consumption.
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B. Distribution Network Model

P2P energy trading is organized in a radial distribution net‐
work, which is described using a branch flow model in this 
paper. The distribution network is denoted as D: = (N E), 
where N is the set of buses; and E is the set of lines. In the 
radial distribution network, each bus nÎN, except the root 
bus labeled by 0, has a unique ancestor bus denoted as An 
and a set of children buses denoted as Cn. Hence, each line 
pointing from bus n to its ancestor bus An can be uniquely 
labeled by the index n, indicating the set of lines E: =
{1 2  N}. The branch flow model of the distribution net‐
work D is given by [20]:

pnt =Pnt - ∑
mÎCn

(Pmt - rmlmt )     nÎN tÎT (5)

qnt =Qnt - ∑
mÎCn

(Qmt - xmlmt )     nÎN tÎT (6)

vnt = vAnt
+ 2(rn Pnt + xnQnt )- (r 2

n + x2
n )lnt    nÎE tÎT (7)

lnt = (P 2
nt +Q2

nt )/vnt    nÎN tÎT (8)

where zn = rn + jxn is the complex impedance of line nÎE; 
pnt and qnt are the active and reactive power injected into 
bus n during time slot t, respectively; Pnt and Qnt are the ac‐
tive and reactive power flow through line n during time slot 
t, respectively; and lnt and vnt are the squares of the magni‐
tudes of the current flow through line n and the voltage at 
bus n during time slot t, respectively.

The constraint in (8) is convexified using the second-order 
cone relaxation [21] as:

||(2Pnt2Qntvnt - lnt )||2 £ lnt + vnt    nÎNtÎT (9)

C. P2P Energy Trading Framework

Generally, P2P energy trading mechanisms consider the 
network constraints by inspection and correction after P2P 
trading, which validates the P2P transactions in the distribu‐
tion network by a local distribution system operator (LD‐
SO). To the best of our knowledge, no existing studies have 
considered the impact of the network constraints on the stra‐
tegic bidding process of prosumers in a P2P market. In this 
study, a strategic P2P energy trading framework for distribu‐
tion networks is proposed considering distribution network 
constraints in the bidding process before P2P transactions.

The proposed P2P energy trading framework can be divid‐
ed into three stages. In the bidding stage, prosumers gener‐
ate bids locally in a distributed manner before engaging in 
the P2P market. In this stage, prosumers first estimate their 
competitive equilibrium price ρ̂ using the historical price in‐
formation disclosed by the P2P market. Then, the competi‐
tive equilibrium price and network state information from 
the buses are used to estimate the instructive bidding amount 
ê of the prosumers in a distributed manner by communica‐
tion with the buses, as detailed in Section III. Simultaneous‐
ly, the target bidding prices ρtg are generated using ρ̂. Pro‐
sumers generate their bids according to adaptive bidding 
rules. Specifically, the strategic bidding process is presented 
in Section IV. In the transaction stage, prosumers interact 
with each other in the P2P market using a modified CDA al‐

gorithm with a unit transaction fee to reach deals and obtain 
new price information. Finally, in the settlement stage, the 
LDSO verifies and settles the contracts in the P2P market. 
In this framework, there are numerous interactions and com‐
munications among players including prosumers, buses, and 
the LDSO in the three stages. Let ψ b

nt and ψ s
nt be the retail 

price for buying energy from the LDSO at bus n and the 
feed-in tariff for selling energy to the LDSO at bus n, respec‐
tively. The entire P2P energy trading framework is shown in 
Fig. 1.

III. ESTIMATION OF DISTRIBUTED TARGET TRANSACTION 
AMOUNT UNDER NETWORK CONSTRAINTS 

A. Estimation of Target Transaction Amount

In previous studies, the P2P energy trading amount of pro‐
sumers is either treated as a surplus after direct self-con‐
sumption or passively scheduled by a local system operator. 
Because distribution network constraints are included, there 
may be potential deviations between the preferred load 
schedule of the prosumers and the allowed power injection 
of a distribution network. Considering the potential cost of 
the demand deviations, the prosumer wants to know the 
amount of the highest cost-saving transaction bounded by 
the power injection limits of the distribution network before 
P2P energy trading, which is defined as the target transac‐
tion amount êit for prosumer i during time slot t. For the 
LDSO, it is expected that the P2P transaction results will not 
pose a security risk to the operation of the distribution net‐
work. Hence, the estimation of the target  transaction 
amount is formulated as a social welfare maximization prob‐
lem, which is solved in a distributed manner based on the 
sharing form of the alternating direction method of multipli‐
ers (ADMM) method [22].

Each prosumer i has a preferred power consumption pp
it 

during time slot t. Because any deviation from this amount 
will incur a discomfort cost, prosumers will trade as they 
prefer in the P2P market if there is no extra incentive or re‐
striction. Once the distribution network constraints are violat‐
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Fig. 1.　Entire P2P energy trading framework.
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ed, prosumers have to adjust their power demand and coun‐
ter-trade with the LDSO to hedge against demand adjust‐
ments and ensure the execution of P2P contracts at a price 
less than the P2P transaction price. Before bidding in the 
P2P energy transaction market, the prosumer has to estimate 
the allowed P2P transaction amount in the distribution net‐
work and the potential revised trading cost. Let Dpi =
{Dpi1 Dpi2  DpiT } be the estimated power demand devia‐
tion, where Dpit = pd

it - pp
it. Then, the target bidding amount 

in the P2P market can be derived using êit = |pg
it - pd

it|. The 
potential cost associated with the revised trading process of 
prosumer i consists of a discomfort cost C d

it and a counter-
trade cost C R

it:

C R
it (Dpit )= (ψ b

nt - ρ̂)×max(Dpit0)+ (ρ̂ -ψ s
nt )×max(-Dpit0)

(10)

where ρ̂ can be estimated by prosumers according to the his‐
torical transaction price information before strategic bidding:

ρ̂ = ∑
k = τ -K - 1

τ

σk ρ
his
k (11)

where the weight coefficient σk satisfies ∑
k = τ -K - 1

τ

σk = 1 and 

σk - 1 = ησk; and ρhis
k : ={ρhis

τ -K + 1 ρ
his
τ -K + 2  ρhis

τ } denotes the his‐
torical prices of the most recent K transactions, K is treated 
as a window of historical transactions, and τ is the index of 
the latest transaction.

The objective of LDSO is to minimize the entire opera‐
tional cost for the security operation of the distribution net‐
work D. The optimal solution is the recommended consump‐
tion for flexible prosumers, from which an estimate of the 
target bidding amount in the P2P market can be derived. 
Therefore, the problem of estimating the target transaction 
for prosumers is formulated as a typical OPF problem with 
the variables of the prosumers for each distribution network 
bus:

min
pd

it

 ∑
tÎT
∑
iÎP

(C d
it (αip

d
it )+C R

it (pd
it )) (12)

s.t.

(2) and (3)    iÎPtÎT (13)

(5)-(7) and (9)    nÎNtÎT (14)

-v nt £ vnt £ v̄nt    nÎNtÎT (15)

-
q

nt
£ qnt £ q̄nt    nÎNtÎT (16)

-l nt £ lnt £
-
l nt    nÎNtÎT (17)

pnt =∑
iÎ δn

(pg
it - pd

it )     nÎNtÎT (18)

where the constraints in (15)-(17) are the security operation 
bounds of the distribution network; 

-
(×) and 

-
(×) denote the up‐

per and lower bounds of variables, respectively; and δn de‐
notes the set of prosumers connected to bus n.

B. Distributed Implementation

The solution to the problem of estimating the target bid‐
ing amount in a centralized network requires the LDSO to 
collect all of the bus data and a massive amount of private 

information such as the discomfort coefficients and preferred 
demands of the prosumers, causing difficulties in informa‐
tion processing and data security. Moreover, the estimate of 
the target bidding amount is considered as a portion of the 
strategic behavior of the prosumer in the P2P market, which 
is an individual decision. This practical significance also re‐
quires the estimation problem for êit to be solved in a dis‐
tributed manner, which means that prosumers can locally es‐
timate the target bidding amount and only communicate with 
neighboring buses.

To handle the multiperiod constraints in (3) and solve the 
problem independently in parallel during each time slot, a 
Lagrange relaxation [23] is utilized to incorporate the multi‐
period constraints in (3) into the objective function in (12):

min
pd

it

é

ë

ê
êê
ê ù

û

ú
úú
ú∑

tÎT
∑
iÎP

( )C d
it (αip

d
it )+C R

it (pd
it ) +∑

iÎP
π i( )E d

i -∑
tÎT

pd
it

(19)

where π ={π i ³ 0|iÎP} denotes the Lagrange multipliers of 
the constraints in (3). The problem satisfies the strong duali‐
ty because the objective is convex and Slater’s condition 
holds. The Lagrange duality problem of the multiperiod OPF 
problem is defined as:

max
π

é

ë
ê
êê
ê ù

û
ú
úú
úmin

pd
it

∑
iÎP
∑
tÎT

( )C d
it (αip

d
it )+C R

it (pd
it )- π i pd

it +∑
iÎP
π i E d

i

 (20)

The inner problem of the Lagrange duality problem is tem‐
porally decoupled and can be solved during each single peri‐
od in parallel. Let p̂d

t [h]={ p̂d
1t p̂

d
2t  p̂d

Mt } be the optimal 
solution of the OPF problem during time slot t in the hth iter‐
ation given the Lagrange multipliers π[h]. The iteration pro‐
cess of π is given by:

π[h + 1]=max ( )π[h]+ θ ( )E d
i -∑

tÎT
pd

it 0 (21)

where θ(×)> 0 is the step size of an iteration.
The sharing form of the ADMM proposed in our previous 

work [24] is utilized to solve the problem of estimating the 
target amount in a distributed manner. Because the inner 
problem can be solved during each single period in parallel, 
the subscript t denoting the time index is dropped for sim‐
plicity in the following. Let f (pd

i )=C d
i (αip

d
i )+C R

i (pd
i )-

π i pd
i  be the objective of single-period problem, which can be 

reformulated in standard matrix form as:

min
pd

i

∑
iÎP

f (pd
i ) (22)

s.t. ∑
mÎGn

Gnm ym
n = 0    nÎN (23)

pd
i ÎΩi    iÎP (24)

xnÎXn    nÎN (25)

-pd
i - xi + pg

i = 0    iÎ δnnÎN (26)

xn = ym
n     nÎGmnÎN (27)

where xn ={pn qn Pn Qn ln vn } is the set of bus variables 
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of bus n; ym
n  is the duplicate of the bus variables xn at bus m; 

Gn =AnCn{n} is the set of neighboring buses of bus n;  
constraint (23) is the standard matrix form of the equality 
constraints (5)-(7); Ωi ={

-
p d

it
£ pd

it £ p̄d
it } denotes the lower and 

upper bounds of the flexible demand pd
it; Xn is the feasible 

region of the bus variables limited by the inequality con‐
straints in (9) and (15) - (17); and xi is the duplicate of the 
prosumer variable pd

it at the connected bus n(i).
The scaled augmented Lagrangian of the estimate problem 

of the target bidding amount (22)-(27) is given by:

L(λ1λ2 )=∑
iÎP

f (pd
i )+∑

iÎP

λ1

2
|| - pd

i - xi + pg
i + μi||

2
2 +

∑
mÎN
∑

nÎGm

λ2

2
||xn - ym

n +ω
m
n ||2

2 (28)

where μi and ωm
n  are the scaled Lagrangian multipliers of 

constraints (26) and (27), respectively; and λ1 > 0 and λ2 > 0 
denote the step sizes.

The equations for iteration in the sharing form ADMM al‐
gorithm are:

pd
i [k + 1]= arg min

pd
i ÎΩi

é

ë

ê
êê
ê f (pd

i )+
λ1

2







-pd

i -
xn [k]+ bn [k]- cn [k]

κn

+

ù

û

ú
úú
ú
ú
ú


pd

i [k]+ μn [k]
2

2

(29)

yn [k + 1]= arg min
ynÎYn

é

ë

ê
êê
ê ù

û

ú
úú
ú∑

mÎGn

λ2

2
||xn [k]- ym

n +ω
m
n [k]||2

2 (30)

xn [k + 1]= arg min
xnÎXn

é

ë

ê
êê
êλ1κn

2






 




xn + bn [k + 1]- cn

κn

- μn [k]

2

2

+

ù

û

ú
úú
ú∑

mÎGn

λ2

2
||xn - ym

n [k + 1]+ωm
n [k]||2

2 (31)

μn [k + 1]=
μn [k]+ (-bn [k + 1]- xn [k + 1]+ cn )

κn
(32)

ωn
m [k + 1]=ωn

m [k]+ xm [k + 1]- yn
m [k + 1] (33)

where bn =∑
iÎ δn

pd
i ; cn =∑

iÎ δn

pg
i  is the sum of the prosumer vari‐

ables calculated at bus n receiving information from the con‐
nected prosumer iÎ δn; and κn is the size of the prosumer 
set δn.

IV. MODIFIED CDA-BASED STRATEGIC P2P ENERGY 
TRADING 

In contrast to general merchandise, power transmission is 
transient and balanced in real time. That is, the P2P energy 
exchange network differs from the power delivery path in a 
distribution network. The locations of prosumers can indi‐
cate the usage of the distribution network in P2P energy trad‐
ing. In P2P energy trading, prosumers interact and trade di‐
rectly with each other, leaving the responsibility for retain‐
ing operational security to the LDSO. Considering this, loca‐
tion stamps and transaction fees are included in the CDA 
process to trace responsibility and quantify the expense of 
maintaining security operations during the P2P energy trading.

A. Modified CDAs

In this model, the P2P market is opened at τ st ahead of 
each energy delivery time slot and closed at τ cl ahead of 
each energy delivery time slot. Then, the P2P market open‐
ing period before energy delivery at t is represented as (t -
τ stt - τ cl ), which can be divided into numerous transaction 
rounds. In each transaction round, prosumers can continuous‐
ly bid until all bidding amounts reach a deal. During each 
bidding round ι, a prosumer can submit an order with the 
bidding side (buyer or seller), price, amount, time stamp (en‐
try round ιen), and location stamp (connected bus), which can 
be denoted as Ob (bρbpbιennb ) for buyers and 
Os (sρspsιenns ) for sellers. Each prosumer is allowed to 
bid only once in each bidding round. The arrived bids in 
each round ι are cleared by the following rules.

1) In each bidding round, all arrived bids or offers are 
queued in an order book Ob or Os according to price in de‐
scending or ascending order. The buying and selling orders 
with the highest and lowest bidding prices are defined as an 
outstanding bid and offer, denoted as Obots and Osots, respec‐
tively.

2) A unit transaction fee ϕ =[ϕ1 ϕ2  ϕN ] for transac‐
tions among prosumers at different buses is introduced to 
quantify the usage of distribution network and the contribu‐
tion to security operations. For tthe transactions at the same 
bus, ϕ = 0. The details of matching algorithm for modified 
MDA, including the transaction fee, are presented in Algo‐
rithm 1 and a schematic of matching process is shown in 
Fig. 2.

3) For each outstanding prosumer, if all of its bids are 
cleared, the order will be removed from the order book. If 
there remains unmatched amount, the order will remain in 
the order book as outstanding.

4) The clearing process is finished when there is no order 
in the order book or the outstanding bidding price is lower 
than the outstanding offering price, i. e., ρbots < ρsots. If the 
bidding amount is not cleared in the current matching round, 
prosumers can update the bidding price in the next bidding 
round.

5) The unit transaction fee ϕ i for each bus is determined 
by the LDSO according to the distance over which electrici‐
ty is transmitted or using historical data as the feed-in tariff 
to cover operation and maintenance costs.

The matching process prioritizes the prices and transac‐
tions at the same bus. For each outstanding buyer (seller) 
with a bidding (offering) price ρbots (ρsots ), the potential trans‐
action price matrix can be expressed as:

ρclr =
1
2

((ρots )T +[ρots    ρ̂]T ±Fϕ) (34)

where ρclr =[ρclr ρclr ]; ρots =[ρsots ρbots ], ρsots(ρbots) is the 
highest offering (lowest bidding) price of a seller (buyer) for 
the same bus with the outstanding buyer (seller) in the order 
book; and FÎR1 ´N is defined as the transaction fee inci‐
dence matrix of the outstanding prosumer, in which each col‐
umn corresponds to a bus. If the outstanding buyer b is not 
at the same bus as the outstanding seller s, F(n(b))=F(n(s))=
1.
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B. Risk-perceived Bidding Strategy

In the P2P energy trading market, prosumers are assumed 
to be rational and selfish, trying to maximize their own utili‐
ty. Each prosumer engages in the P2P market to reduce their 
costs rather than directly obtain energy from the upstream 
grid. Generally, the limit price of prosumer i at bus n during 
time slot t is the retail price of the upstream grid ψ b

nt for 
buyers and the feed-in-tariff ψ s

nt for sellers, which prevent 
unreasonably low offers and high bids. The proposed strate‐
gic bidding process is based on an AA strategy [18], which 
is designed for general merchandise. In contrast to general 
commodities, electricity needs to be balanced in real time, 
which means that prosumers have to purchase or sell a cer‐
tain amount of energy to meet their deficiency or surplus in 
a certain period. Combining the real-time balancing charac‐

teristic, the proposed strategic bidding process is concerned 
with both the bidding price and amount.
1)　Definition

For each P2P market participant, a trade-off always exists 
between the profit margins and the transaction opportunities. 
In other words, if a prosumer wants to earn more revenue 
from the P2P market, it has to bid at a price less than the 
evaluated competitive equilibrium price, which will converse‐
ly decrease the chance of transaction. If a prosumer wants a 
greater chance of trading, it has to bid a price better than the 
competitive equilibrium price estimate, which compresses 
the profit margins. This degree of trade-off is utilized in the 
bidding strategy of the prosumer, indicating a forecast of the 
market situation. In [18], the degree of trade-off between 
profit margins and transaction opportunities is quantified by 
an aggressiveness coefficient; thus, prosumers risking their 
profits for a greater chance to reach a deal are defined as ag‐
gressive traders. By contrast, prosumers who risk their trans‐
action chance for more profits are passive traders.

The target bidding price ρ tg
i  for prosumer i is defined as 

its belived most competitive price, which is influenced by 
the limit price, the current degree of aggressiveness ag, and 
an intrinsic parameter represented by ε. It is assumed that 
the transaction prices converge to the competitive equilibri‐
um price ρ̂. In this model, all prosumers are intramarginal 
traders. Therefore, the target bidding price ρ tg

i  is related to 
the aggressiveness ag

i  of prosumer i, which is expressed as:

ρ tg
i =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

ρ̂ ( )1 -
e-ag

i -θ - 1
e-θ - 1

               ag
i Î[-10)iÎB

ρ̂ + (ρ lim
i - ρ̂) ( )eag

i θ - 1
eθ - 1

    ag
i Î(01]iÎB

(35)

ρ tg
i =

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

ρ̂ + (ψ b
nt - ρ̂) ( )e-ag

i -θ - 1
e-θ - 1

              ag
i Î[-10)iÎ S

ρ lim
i + (ρ̂ - ρ lim

i ) ( )1 -
eag

i θ - 1
eθ - 1

    ag
i Î(01]iÎ S

(36)

where B and S are the sets of buyers and sellers, respective‐
ly; the limit prices are ρ lim

i =ψ b
nt for buyer iÎB and ρ lim

i =ψ s
nt 

for seller iÎ S; θ is the magnitude of the gradient of ρ tg
i  with 

a rate of change of ag
i ; and -θ is calculated to ensure a 

smooth curve.
2)　Risk-perceived Bidding Amount

In the AA strategy, a prosumer is passive or active in a 
single bidding round according to their aggressiveness. As 
the transaction amount of P2P energy market is not a unit of 
energy, prosumers can have different levels of aggressive‐
ness towards different units of energy. In the proposed bid‐
ding process, each prosumer has both an aggressive part (ag >
0), in which the prosumer wants to trade as much as possi‐
ble and a passive part (ag < 0) to pursue higher profits. The 
target trading amount êit derived from (12) - (18) represents 
the amount at which the prosumers can minimize their esti‐
mated deviation cost. If the bidding amount of the prosumer 
is less than the target amount, i. e., pb < êit, an energy defi‐
ciency êit - pb will be bought from the upstream grid at the 

Algorithm 1: matching algorithm for modified CDA

Intended transaction price
1: if ρbots ³ ρsots

2:  if nbots = nsots

3:  Clearing price ρclr =
ρbots + ρsots

2
4:  Clearing amount pclr =min(pbotspsots )
5:  else

6:  For buyer ρclr
1b =

ρbots + ρsots

2
+
ϕnbots + ϕnsots

2

7:  For seller ρclr
1s =

ρbots + ρsots

2
-
ϕnbots + ϕnsots

2
8:  end if
9:  Find n̂s = nbots with the lowest offering price in Os

10:  Potential clearing price ρclr
2b = ρ

clr
2s =

ρ̂s + ρbots

2
11:   Find n̂b = nsots with the highest bidding price in Ob

12:  Potential clearing price ρclr
3b = ρ

clr
3s =

ρ̂b + ρsots

2
13: end if
Matching process
14: if ρclr

1b £ ρ
clr
2b and ρclr

1s ³ ρ
clr
3s

15:    Obots is matched with Osots

16: else if ρclr
1b > ρ

clr
2b and ρclr

1s ³ ρ
clr
3s

17:   Obots is first matched with Ôs, and the remaining are matched          
           with Osost

18: else if ρclr
1b £ ρ

clr
2b and ρclr

1s < ρ
clr
3s

19:    Osots is first matched with Ôb, and the remaining are matched with  
           Obots

20: else
21:    Obots and Osots are matched with Ôb and Ôs

22: end if
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Fig. 2.　Schematic of matching process in each transaction round of modi‐
fied CDA.
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limit price with no extra profits. If pb > êit, there may be po‐
tential deviation costs. Prosumers want the P2P transaction 
amount to be as much as the target amount, which indicates 
that the aggressive bidding part agÎ(01) for prosumers is ex‐
actly the target transaction amount êit. The passive bidding 
part agÎ(-10) is defined as the bidding surplus that is more 
than the target transaction amount pps = pb - êit.

Obviously, there is a high probability that the transaction 
of the passive bidding part causes constraint violations dur‐
ing the operation of actual distribution network. Once a vio‐
lation occurs, the actual amount of power delivered will be 
reduced from the P2P transaction amount by the LDSO solv‐
ing an OPF problem. Therefore, each prosumer faces the 
risk arising from the uncertainty in the actual amount of 
power delivered pD

i  due to the security operation constraints 
of the distribution network. Prosumers will bid more than 
the target transaction amount only when the profits for the 
passive bidding part pps

i = pb
i - êi can cover the risk of the un‐

certainty in the cost arising from the actual curtailment in 
the power delivered. The condition on any actual power de‐
livered is given by pD

i , and the loss function considering the 
uncertainty in the demand adjustment of the LDSO after P2P 
energy trading is given by:

C loss
i (pps

i p
D
i ρ

tg
i )=

ì
í
î

ïï(ρ tg
i -ψ

s
n )DpD

i + αi (DpD
i )2 - (ψ b

n - ρ
tg
i )pD

i     iÎB
(ψ b

n - ρ
tg
i )DpD

i + αi (DpD
i )2 - (ρ tg

i -ψ
s
n )pD

i     iÎ S (37)

where DpD
i = pps

i - pD
i  denotes the actual curtailment in the de‐

livery power from the bidding amount of passive part. Once 
the probability distributions of pD

i  are known, the prosumers 
can derive the parameterized mean of C loss

i (pps
i p

D
i ρ

tg
i ), de‐

noted as E loss
i (pps

i ρ
tg
i ).

To simplify the expression, let aloss = αi, bloss =ψ s
n - 2αi p

ps
i -

ψ b
n, closs = αi (pps

i )2 +Dρ tg
i pps

i , and Dρ tg
i = ρ

tg
i -ψ

s
n for buyers, and 

Dρ tg
i =ψ

b
n - ρ

tg
i  for sellers. Then, the potential deviation cost 

C loss
i  can be transformed into a quadratic function of the un‐

certainty variable pD
i :

C loss
i = aloss (pD

i )2 + bloss pD
i + closs (38)

For the passive bidding part, prosumers risk their allowed 
delivery power to pursue higher profits. Let Ri be the risk 
preference of the prosumer, and it could be more risky to 
pursue high revenue or be risk-aversion. Then, the return-
risk utility function of prosumer i is expressed in a linear 
form as:

Ui =E(C loss
i )-Ri ×CVaRβ (C loss

i ) (39)

where βÎ(01) is the confidence level of the conditional val‐
ue at risk (CVaR).

According to the definition and translation-equivariant, 
positively homogeneous, and convex properties of the CVaR, 
given any passive bidding part pps

i  and target price ρ tg
i , the 

CVaR of the loss function satisifies:

CVaRβ (C loss
i )£CVaRβ (aloss (pD

i )2 )+ bloss ×CVaRβ (pD
i )+ closs

(40)

Using Ri to denote the risk preference coefficient of pro‐
sumer i, the right-hand side of inequality in (40) can be uti‐

lized as a conservative estimation to calculate the return-risk 
utility:

Ui =E(C loss
i )-Ri (CVaRβ (aloss (pD

i )2 )+ bloss ×CVaRβ (pD
i )+ closs )

(41)

Given the probability distribution of pD
i , the return-risk 

utility is a function of the passive bidding amount pps
i  and 

target bidding price ρ tg
i .

3)　Adaptive Bidding Strategy of Aggressiveness
An important feature of human traders is that they can 

learn from historical data. For a better description of the per‐
formance of individual traders, the aggressiveness ag

i  is used 
to reflect the learning and adaptive processes of prosumer i 
from the market situation. Each time the market environment 
changes, prosumers will update their own aggressiveness ag

i  
using the released market information. Changes in the mar‐
ket environment, including new submitted bids/offers and 
new transactions, will influence the aggressiveness ag

i . Using 
δrel and δabs to represent the relative increase and the abso‐
lute increase, respectively, the increase is expressed as δ± =
ξ[(1 ± δrel )âg

i ± δ
abs ], where âg

i  is the aggressiveness that could 
derive a price equal to the newly generated price, i.e., a new‐
ly arrived bid/offer or new transaction price. For the aggres‐
sive part, the upper bound of the aggressiveness is āg

i = 1, 
and the upper bound of the passive part is calculated from 
the return-risk utility. The lower bounds are -a

g
i = 0 and -a

g
i =

-1 for the aggressive and passive parts, respectively. The 
bidding strategy provides a bidding rule for prosumers to de‐
termine whether to bid and the bidding price in the multicri‐
teria decision analysis (MCDA). Prosumers have no histori‐
cal data to estimate the competitive equilibrium price in the 
first bidding round, and the target bidding prices of the pro‐
sumers in the first bidding round are unknown. Therefore, 
the bidding price [18] is generated by:

ρb =
ì
í
î

ïï
ïï

ρbots + η(min(ψ b
n(i)tρ

sots + )- ρbots )    ι = 1

ρbots + η(ρ tg
i - ρ

bots )                              ι > 1
(42)

ρs =
ì
í
î

ïï
ïï

ρsots + η(max(ψ s
n(i)tρ

bots - )- ρsots )    ι = 1

ρsots + η(ρ tg
i - ρ

sots )                               ι > 1
(43)

where 0 < η < 1 denotes the approaching rate of the bidding 
price towards the target price; and ρsots + and ρbots - are given 
by:

ρsots + = (1 + δrel )ρsots + δabs (44)

ρbots - = (1 - δrel )ρbots - δabs (45)

The details of the adaptive process of the aggressiveness 
and bidding rules are presented in Algorithm 2.

V. CASE STUDY 

A. System Configuration

The proposed strategic P2P energy-trading framework is 
tested using an IEEE 37-bus distribution network with 500 
prosumers in total, where each bus is connected with numer‐
ous prosumers. Hourly residential load data and rooftop PV 
generation data are obtained from real data from East China.
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The retail price from the upstream grid is set to be 
ψ b

nt = 0.12 $/kWh, the feed-in tariff is given as ψ s
nt = 0.04 $/

kWh from the data released by the U.S. Energy Information 
Administration (EIA) [25], and the competitive equilibrium 
price is initialized to ρ̂ = 0.08 $/kWh. It is assumed that the 

amount of real-time power delivery pD
i  follows a normal dis‐

tribution. The convege tolerances of the sharing form AD‐
MM algorithm is set to be ϵabs = 10-7 and ϵ rel = 10-4. Other 
configuration simulation parameters are set as listed in Ta‐
ble I.

B. Market Efficiency of Strategic P2P Energy Trading

The zero-intelligence (ZI) strategy considers that traders 
generate their bids or offers following an independent, identi‐
cal, and uniform distribution over the entire feasible range of 
trading prices [26], which does not use variable market infor‐
mation. Therefore, this section compares the proposed AA-
based strategic P2P energy trading strategy with the ZI strate‐
gy to illustrate the validity of the bidding strategy. For a spe‐
cific analysis, partial P2P energy trading results at t = 14 
without a voltage violation and t = 13 with a voltage regula‐
tion are shown in Figs. 3 and 4, respectively, where the or‐
ange vertical bars denote the price gaps between the bidding 
prices of the buyers and the offering prices of the sellers; 
and the given numbers denote the prosumer No.. The P2P 
trading finishes in 3-14 rounds with 512 transactions at 
t = 14 and in 2-9 rounds with 587 transactions at t = 13. It 
can be observed that at t = 14, consumer 494 has transactions 
with three different producers, among which the transaction 
with producer 67 consists of passive and aggressive parts of 
2.09 kW and 1.58 kW, respectively. Prosumers cannot reach 
a deal in the P2P market, and they will trade with the up‐
stream grid at retail prices or feed-in tariffs. At t = 14, 438 
out of 500 prosumers have completed transactions in the pro‐
posed strategic P2P energy trading market, indicating that 
the transaction rate is approximately 87.6%. However, the 
transaction rate is only about 43.8% using a ZI strategy, as 
indicated by the results in Table II.

TABLE I
CONFIGURATION OF SIMULATION PARAMETERS

Item

αi

θ

η

Value

500

2
1
3

Item

β

-v

λ1

Value

0.95
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1

Item

Ri

v̄

λ2
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0.5
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1
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Fig. 3.　Strategic P2P energy trading results at t = 14.

Algorithm 2: bidding process of consumer c

Adaptive process of aggressiveness
for buyers iÎB:
1: if bidding price ρb is newly submitted and ρtg

i < ρ
b

2: ag
i = ag

i + δ
+

3: else if the transaction occurs at price ρclr

4: if ρtg
i > ρ

clr

5:  ag
i = ag

i + δ
-

6: else
7:  ag

i = ag
i + δ

+

8: end if
9: end if
for sellers iÎ S:
10: if offering price ρs is newly submitted and ρtg

i > ρ
s

11: ag
i = ag

i + δ
+

12: else if the transaction occurs at price ρclr

13: if ρtg
i > ρclr

14:  ag
i = ag

i + δ
+

15: else
16:  ag

i = ag
i + δ

-

17: end if
18: end if
19: if ag

i > āg
i

20: Set ag to the upper bound ag
i = āg

i

21: else
22: Set ag to the lower bound ag

i = -a
g
i

23: end if
Bidding rules
for buyers iÎB:
24: if ψ b

n(i)t < ρ
bots

25: Buyer submits no bid
26: else if ρsots £ ρtg

i

27:   Submit ρb = ρsots

28: else
29:   Submit a bid according to the function in (42)
30: end if
for sellers iÎ S:
31: if ψ s

n(i)t > ρ
sots

32: Seller submits no offer
33: else if ρbots ³ ρtg

i

34:   Submit ρs = ρbots

35: else
36:   Submit a bid according to the function in (43)
37: end if
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An overall cost reduction of approximately 27.4% can be 
achieved using the proposed AA-based strategic P2P energy 
trading strategy compared with the ZI strategy. In addition, 
for individual participants, a cost reduction for the buyer and 
a profit increase for the seller can be observed, indicating 
the market efficiency of the proposed strategic P2P energy 
trading strategy.

C. Support for Distribution Network Operation

As shown in Fig. 5(a), there exists a potential voltage vio‐
lation in the distribution network if prosumers arrange their 
demand as preferred according to pp. Using the proposed dis‐
tributed estimation of target amount, the voltage can be limit‐
ed within the allowable range by incentivizing prosumers to 
shift their flexible demand, as demonstrated in Fig. 5(b). Fig‐
ure 6 shows the flexible demand regulation at t = 13 (with 
voltage regulation) and t = 14 (without voltage regulation). It 
can be observed that during periods with a potential voltage 
violation, i.e., t = 13, prosumers reduce their demand to sup‐
port the secure operation of the distribution network. The 
amount of demand regulation differs according to the loca‐
tions of prosumers. That is, for prosumers at buses with volt‐
age violations, i.e., prosumers 427-485 at buses 33, 34, and 
35, the amounts of demand regulation are larger than others.

D. Convergence Analysis of Distributed Estimation of Target 
Transaction Amount

The algorithm is implemented in MATLAB 2018 on a desk‐
top computer equipped with an Intel Core i7-7700 running at 
3.60 GHz and 8 GB of random-access memory (RAM). 

As shown in Fig. 7, the problem of estimating the target 
transaction amount can converge to the optimal value within 
2523 and 5285 iterations at t = 13 and t = 14, respectively, in‐
dicating good convergence of the distributed algorithm. It is 
noted that it takes longer calculation time at t = 13 than 
t = 14 because the demand is regulated to avoid voltage viola‐
tions at t = 13, although the number of iterations to conver‐
gence is less than that at t = 14.
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Fig. 4.　Strategic P2P energy trading results at t = 13.
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Fig. 5.　Bus voltage without and with estimation of target amount. (a) With‐
out target amount estimation. (b) With target amount estimation.

TABLE II
MARKET EFFICIENCY COMPARISON AT t = 14

Strategy

Upstream 
grid

AA-based 
strategy

ZI strategy

Seller 
engaged 

P2P

0

245

118

Buyer 
engaged 

P2P

0

193

101

Transaction 
rate (%)

0

87.6

43.8

Overall 
cost ($)

212.60

56.89

72.50

Cost for 
buyer 
460 (¢)

64.13

46.61

52.06

Profit 
for seller 

80 (¢)

14.13

25.84

23.95
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Fig. 6.　Flexible demand regulation at t = 13 and t = 14.
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VI. CONCLUSION 

The operational constraints of a distribution network may 
influence the individual decision-making process of prosum‐
ers in a P2P energy market owing to the potential deviations 
and penalty costs. Therefore, a strategic P2P energy trading 

framework for distribution networks is proposed to include 
the constraints of a distribution network in the bidding deci‐
sion-making of prosumers. The P2P energy trading process 
consists of three stages: the estimation of the target energy 
trading amount in the distribution network before a transac‐
tion, the risk-averse adaptive P2P energy transaction, and the 
verification and settlement by the LDSO after the transac‐
tion. Case studies show that the proposed strategic P2P ener‐
gy trading framework can dramatically decrease the overall 
power usage cost and proactively support the optimization of 
the distribution network.
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