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Abstract——With an increase in the electrification of end-use 
sectors, various resources on the demand side provide great 
flexibility potential for system operation, which also leads to 
problems such as the strong randomness of power consumption 
behavior, the low utilization rate of flexible resources, and diffi‐
culties in cost recovery. With the core idea of “access over own‐
ership”, the concept of the sharing economy has gained substan‐
tial popularity in the local energy market in recent years. Thus, 
we provide an overview of the potential market design for the 
sharing economy in local energy markets (LEMs) and conduct 
a detailed review of research related to local energy sharing, en‐
abling technologies, and potential practices. This paper can pro‐
vide a useful reference and insights for the activation of de‐
mand-side flexibility potential. Hopefully, this paper can also 
provide novel insights into the development and further integra‐
tion of the sharing economy in LEMs.

Index Terms——Energy sharing, flexibility potential, local ener‐
gy market, information and communication technology, sharing 
economy.

I. INTRODUCTION

TO cope with a series of social and environmental prob‐
lems such as environmental pollution and the green‐

house effect caused by the increasing consumption of fossil 

energy, the world is currently undergoing a major energy 
transformation, which is also leading to profound changes in 
the production, structure, and consumption mode of the ener‐
gy system [1]-[3]. In September 2020, China clearly indicat‐
ed at the United Nations General Assembly that its carbon 
emissions would reach a peak by 2030 and that the country 
would achieve carbon neutrality by 2060, which is also 
called “dual carbon” target. In March 2021, the future devel‐
opment direction of building a new power system with vari‐
able renewable energy as the main body was further pro‐
posed. Driven by the “dual carbon” target, the integration of 
a high proportion of variable renewable energy will become 
the basic feature and development form of the future power 
system [4]-[6].

The integration of a high proportion of renewable energy 
poses new challenges to the flexible operation of power sys‐
tems. However, in sharp contrast to the current rapid devel‐
opment of variable renewable energy, the flexibility construc‐
tion of China’s power system is still insufficient [7]-[9]. Al‐
though in recent years, with the development of distributed 
energy, multi-type energy storage, and demand-side response 
technology, the development of flexibility technology in all 
links of power systems has achieved remarkable results, pro‐
viding an effective solution to improving flexibility. Howev‐
er, the wide application of certain technology depends on its 
cost competitiveness, and needs to be supported by a reason‐
able market mechanism. The urgent problem faced by flexi‐
ble resources is the insufficient utilization rate, which leads 
to difficulties in cost recovery [10]-[12].

In recent years, the emerging sharing economy has provid‐
ed a new paradigm for solving such problems. With the core 
idea of “access over ownership”, energy sharing, which al‐
lows users to trade directly and form a reasonable shared 
market price through competition, is expected to achieve the 
effect of matching supply and demand nearby [13]. In the en‐
ergy sector, the concept of “energy sharing” was first pro‐
posed by an American energy economist, Jeremy Rifkin, in 
his book “The Third Industrial Revolution” [14]. He holds 
the view that Internet technology will be combined with re‐
newable energy and that energy mining, distribution, and uti‐
lization will change from the traditional centralized mode to 
an intelligent distributed mode, turning the global power 
grid into an energy sharing network. This will be a new in‐
dustrial revolution brought by the combination of energy and 
communication technology, and it will cause foundational 
changes in the human business model and social develop‐
ment mode [15]-[17]. In essence, due to the complementari‐
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ty of distributed resources and energy supply and demand 
among different individuals, the sharing economy has strong 
application potential in local energy markets (LEMs) [18] -
[20]. In recent years, a large number of transactive energy 
projects based on the sharing economy have been launched. 
For example, the Pacific Northwest National Laboratory has 
implemented a transactive-based project for peak shaving by 
sharing idle resources on the demand side, and several com‐
panies in the United States have been investing in non-wire 
alternative projects, which enable DER owners to share idle 
capacity to defer generation and transmission expansion 
[21]-[23].

The concept and business model of the sharing economy 
will bring new challenges and opportunities for LEMs [24]. 
Therefore, in this paper, we provide an overview of the po‐
tential market design for the sharing economy in LEMs and 
conduct a systematic review of research and practice related 
to local energy sharing. We provide a useful reference and 
insights for demand-side flexibility potential, and hopefully, 
some novel insights into the development and further integra‐
tion of the sharing economy in LEMs.

To provide an overview of existing research on the local 
sharing economy, a bibliometric analysis was conducted on 
July 1, 2022 using a well-established and acknowledged da‐
tabase, Web of Science (WoS). The query for WoS was as 
follows: TS= ((sharing economy OR energy sharing) AND 
(local energy market OR peer to peer (P2P) OR transactive 
energy)). The number of publications since 2005 retrieved 
from WoS is shown in Fig. 1, and 1928 publications were 
found. As shown in the figure, relevant literature on the shar‐
ing economy in the field of energy was less published be‐
fore 2011 and has increased rapidly since 2016. This result 
is in line with reality. In recent years, the development of 
the Internet, communication, and other technologies has pro‐
vided more possibilities for further application of the sharing 
economy in the energy sector, which has also spawned more 
journal publications.

Here, we also conduct a brief review of several review ar‐
ticles related to local energy sharing. In [25], the potential 
market design related to grid integration of prosumers is dis‐
cussed and evaluated, which sheds light on the flexibility po‐
tential activation on the demand side. In [26], different mar‐
ket structures for P2P trading are compared from the per‐
spective of decentralization degree and topology of market 
design. In [27], four business models for energy sharing, i.e., 
possessed resource sharing, underused resources utilization, 

idle resources exchange, and resource ability exploitation are 
summarized. In [28], a systematic classification in local ener‐
gy sharing in terms of market participants, market clearing 
model as well as potential market design is conducted. In 
[29], the sharing economy is defined and compared from the 
perspective of sustainability for academics, policy-makers, 
entrepreneurs, and consumers interested in the sharing econo‐
my for its sustainability potential. Reference [30] analyzes 
the principles and perspectives of the sharing economy in 
the electricity market and pays special attention to the assess‐
ment of sustainability perspectives based on its economic, so‐
cial, and environmental pillars.

Digital platforms are the key characteristic of the sharing 
economy. They provide accurate real-time measurement of 
surplus capacity and enable the connection between potential 
users of an asset and owners. Reference [31] points out that 
a platform intermediary must offer inherent value beyond 
the simple mediation process for the two sides of the mar‐
ket. The P2P concept has been strongly applied under the 
principles of the sharing economy. In [32], an overview of 
the use of game-theoretic approaches for P2P energy trading 
as a feasible and effective means of energy management is 
provided. From the perspective of demand response, the 
state-of-the-art of integrated demand response (IDR) in multi‐
ple energy systems is reviewed for the first time, and value 
analysis of IDR is introduced in [33]. In [34], a business 
model for energy storage based on the principles of the shar‐
ing economy is developed, and some key influencing factors 
in local energy sharing mechanism design are investigated in 
[35]. Further, digital platforms for local energy sharing as 
well as existing transactive energy projects are compared in 
[36] and [37], respectively. In [38], a security and privacy 
analysis of the sharing economy in the electricity market has 
been conducted, highlighting privacy risks, specifying securi‐
ty and privacy requirements, and suggesting potential mecha‐
nisms to achieve these requirements.

The aforementioned review papers provide useful insights 
into the sharing economy in energy sectors from a special as‐
pect, and it has been widely stated that the sharing economy 
promotes sustainable consumption. We can also observe that 
different expressions for local energy sharing are adopted 
such as transactive energy, P2P trading, prosumer market, 
etc. Actually, the expression of the above differences belongs 
to the scope of local energy sharing. The reason behind the 
diversity of expression lies in the different emphasis of dif‐
ferent studies. In addition, with the further increase in the 
electrification of end-use sectors, the application of the shar‐
ing economy in LEMs is still an emerging research field. 
This paper attempts to provide a systematic review of cur‐
rent research and identify the contributions that energy shar‐
ing can make to future sustainable development. The topics 
discussed in this paper and the existing review papers relat‐
ed to local energy sharing are compared in Table I.

The concept of the sharing economy has been integrated 
into the rapidly ongoing energy market transformation and 
advocated as a promising solution to facilitating the accom‐
modation of renewable energy. 
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However, few studies have summarized the applications 
and enabling technologies of the sharing economy in LEMs. 
Thus, this paper attempts to provide a systematic review of 
current research and identify the contributions that local ener‐
gy sharing can make to future sustainable development. The 
contributions of this paper are as follows.

1) The correlation between the sharing economy and 
LEMs is analyzed, and the framework and key elements of 
the sharing economy in LEMs, i.e., individual elements, re‐
source elements, technological elements, and environmental 
elements, are proposed.

2) A comprehensive literature review of current research 
on the mechanism design of local energy sharing is provid‐
ed, and the enabling technologies for local energy sharing 
are discussed to identify the challenges of sharing economy 
application in the future market.

3) From the “energy sharing +” perspective, we elaborate 
on the further application of the sharing economy in energy 
fields such as data transactions, decarbonization, and new in‐
frastructure construction in the energy sector.

The remainder of the paper is organized as follows. Sec‐
tion II presents the concept of the sharing economy in 
LEMs. Section III reviews current research on energy shar‐
ing mechanism design. Section IV presents enabling technol‐
ogies and business models for local energy sharing, and Sec‐
tion V provides a discussion and the open research topics for 
local energy sharing. Section VI draws the conclusions.

II. CONCEPT OF SHARING ECONOMY IN LEMS 

A. Sharing Economy Development

The sharing economy has been developing rapidly in re‐
cent years. It reshapes conventional business models that 
have a clear distinction between companies and customers 

by directly connecting products with consumers. In the tradi‐
tional economy, consumers own too many things that they 
do not need or do not use frequently, leading to an enor‐
mous waste of resources. For example, according to the Wall 
Street Journal, Americans spend over $1.2 trillion annually 
on nonessential goods. Therefore, there are a growing num‐
ber of people who are attracted to the sharing economy for 
personal, economic, and environmental reasons.

The concept of the sharing economy originated from col‐
laborative consumption theory jointly proposed by Marcus 
Felson and Joe L. Spaeth in 1978. This theory describes a 
new way of life consumption, i.e., multiple individuals con‐
sume economic goods or services together in joint actions 
[39]. However, limited by factors such as technology and 
consumption concepts, the development speed of the sharing 
economy has been very slow. With the gradual maturity of 
mobile Internet technologies such as cloud computing and 
online payment, internet platforms can integrate distributed 
offline resources, eliminate the barriers in time and space be‐
tween the supply side and the demand side, and inject new 
vitality into the sharing economy. In 2010, [40] proposed the 
concept and development model of collaborative consump‐
tion in the internet era, introducing a brief definition of the 
traditional application of the sharing economy. Reference 
[41] studied the promoting effect of online platforms on user-
generated content, sharing, and collaboration. In 2014, [42] 
reviewed and compared the characteristics of the traditional 
sharing economy and the internet-based sharing economy. In 
2016, [43] argued that the internet-based sharing economy is 
an activity for the sharing of various goods and services in a 
peer-to-peer manner through community-based online ser‐
vice coordination.

At present, the definition of the sharing economy is still 
controversial in academia, but scholars have basically 
reached a consensus on some aspects. First, the sharing econ‐
omy is a new development form of the modern economy. 
Many problems in economic development have been diffi‐
cult to solve for a long time, mainly due to the influence of 
profit-seeking and information asymmetry. The emergence of 
the sharing economy has greatly changed the reality of infor‐
mation asymmetry and is an innovation in the economic 
field. Second, the sharing economy is the optimal solution to 
resource allocation. Driven by Internet trading platforms, 
massive, scattered, and diversified resources and demand in‐
formation can be integrated, enabling quick matching be‐
tween supply and demand. Third, the sharing economy is a 
concept of sustainable consumption and development. The 
sharing economy advocates the reuse of items, conforming 
to the concept of “heavy use, light possession”. The sharing 
economy has affected many businesses including hospitality, 
transportation (cars, bikes, boats, etc.), babysitting, home/gar‐
den tool businesses, and the financial sector. These success‐
ful cases provide important value for the application of the 
sharing economy in the energy sector.

B. Key Elements of Local Energy Sharing

For the sake of simplicity and clarity, this paper summariz‐
es the sharing economy as a business model in which a user 

TABLE I
TOPICS DISCUSSED IN THIS PAPER AND EXISTING REVIEW PAPERS RELATED 

TO LOCAL ENERGY SHARING

Literature

This paper

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

Individual & re‐
source elements

√
√
√
√
√
√

√
√
√
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design

√
√
√
√
√
√
√

√

√

Applica‐
tion

√
√
√
√
√
√
√
√
√

√
√

√

Technol‐
ogy

√

√

√

√

Pilot 
project

√

√

√
√

√
√
√
√

716



WU et al.: SHARING ECONOMY IN LOCAL ENERGY MARKETS

shares individual idle resources with others and is paid, with 
others being able to take advantage of the shared resources 
to improve social welfare. Actually, LEM can be considered 
as a kind of practical application of sharing economy in the 
energy sector, which is referred to local energy sharing.

The following four elements, i. e., individual, resource, 
technological, and environmental elements of the sharing 
economy itself have been given specific meanings in local 
energy sharing, which is also the correlation between the 
sharing economy and LEMs.

1) Individual elements: individual elements mainly include 
the energy supply side and demand side involved in local en‐
ergy sharing. The supply side wants to share its idle resourc‐
es, while the demand side wants to obtain the right to use 
energy or resources at a lower cost. In practice, the roles of 
buyers and sellers will change at any time in the process of 
local energy sharing; in other words, individuals are both the 
starting point and the ending point.

2) Resource elements: there are distributed energy resourc‐
es (DERs) in the LEM. Making full use of these idle re‐
sources can help overcome the reliability, flexibility, and sus‐
tainability challenges of energy systems. On the other hand, 
the potential complementarity of different resource and ener‐
gy combinations also lays the foundation for the sharing 
economy. The application of the sharing economy in LEMs 
can effectively promote the collaborative consumption of 
idle resources and improve energy efficiency.

3) Technological elements: the application of the sharing 
economy in LEMs requires the support of key technologies, 
and the innovative development of relevant technologies is 
of great significance for the deep integration of the sharing 
economy and energy market in the future. The main en‐
abling technologies of the sharing economy in energy mar‐
kets include energy conversion technology, blockchain tech‐
nology, and communication-related technology. For example, 
the development of energy conversion technologies such as 
power-to-heat (P2H) and power-to-gas (P2G), has brought 
more joint production and consumption and has expanded 
the scope and diversity of market participants in local ener‐
gy sharing.

4) Environmental elements: the environmental elements of 
local energy sharing mainly refer to policies and social cul‐
ture, among which policies refer to the support of relevant 
energy policies, laws, and regulations for local energy shar‐
ing, while social culture refers to a common understanding 
formed by different market members through long-term accu‐
mulation and evolution such as the energy consumption out‐
look and values. The in-depth application of the sharing 
economy in LEMs requires not only support at the policy 
level but also improvement in the general acceptance of ener‐
gy sharing in society.

In practice, from the perspective of specific industrial en‐
ergy sharing projects, individual and resource elements main‐
ly refer to the main participants and matching methods of 
the sharing economy, which also indicates the complementa‐
ry potential of different prosumers in local energy sharing. 
While the technological elements and environmental ele‐
ments refer to specific enabling technology, e.g., blockchain 

and edge computing technology, and support policy for local 
energy sharing.

It is believed that the sharing economy based decentral‐
ized structure for LEMs will replace the traditional hierarchi‐
cal structure in the future. A well-designed market mecha‐
nism should at least satisfy the conditions of individual ratio‐
nality, incentive compatibility and budget balance and ulti‐
mately realize the maximization of social welfare. In LEMs, 
a well-designed incentive mechanism is needed to effective‐
ly stimulate true generator set quotes, promote the active re‐
sponse of distributed energy sources, and comprehensively 
promote the healthy development of the energy market.

C. Framework of Sharing Economy in LEMs

The core of the application of the sharing economy in 
LEMs is the sharing of idle resources among different mar‐
ket entities. Based on the above elements of energy sharing 
and the related roles between them, the key elements of shar‐
ing economy in LEMs can be specifically expressed as a tri-
level framework, as shown in Fig. 2.

1) The bottom level is related to the above individual/re‐
source elements, mainly dynamic matching of idle resources 
including the analysis of the complementary characteristics 
of different entities and collaborative optimization opera‐
tions. In general, the sharing entities in LEMs mainly in‐
clude residential users, distributed resources of different ener‐
gy types, distributed energy storage, and other flexible re‐
sources. Actually, the individual and resource elements in lo‐
cal energy sharing provide the foundation of mechanism de‐
sign.

2) The middle level is related to the technological ele‐
ments. The application of the sharing economy requires the 
support of key technologies, and the innovative development 
of relevant technologies is of great significance for the deep 
integration of the sharing economy and LEM. In this paper, 
energy conversion technology, blockchain technology, and 
communication-related technology are discussed as the main 
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enabling technologies for local energy sharing.
3) The top level refers to the environmental elements, 

which is related to the current policy and other external ele‐
ments such as social culture. In practice, further develop‐
ment in the energy system and the process of decarboniza‐
tion will create new opportunities and challenges from the 
perspective of “energy sharing +”, e.g., energy sharing + data, 
energy sharing + decarbonization, and energy sharing + new in‐
frastructure.

In this paper, the research contents corresponding to the 
above tri-level framework will be further discussed in Sec‐
tions III, IV, and V, respectively.

III. LOCAL ENERGY SHARING MECHANISM DESIGN 

In general, a well-designed local energy sharing mecha‐
nism is supposed to stratify the following principles: ① the 
dynamic spatial matching of energy demand and supply can 
be achieved; ② the mechanism can achieve fairly distribu‐
tion of social welfare in local energy sharing; and ③ the 
mechanism is easily implemented and understood with vari‐
ous participants [17]. Based on the above principles, the ap‐
plication of the sharing economy in LEMs mainly has two 
forms: ① aggregator-based local energy sharing; and ② plat‐
form-based local energy sharing. In this section, we intro‐
duce the research on energy sharing mechanism design 
based on these two aspects.

A. Aggregator-based Local Energy Sharing

In LEMs, multiple market members can form an alliance, 
and the aggregator is responsible for the energy management 
of each market member in the alliance and determines a rea‐
sonable cooperative surplus profit-sharing mechanism. A lo‐
cal energy sharing model with general aggregator based on 
Nash bargaining theory can be formulated as follows:

max
Xπ

f NB = ( )-rA0 + rA -∑
i = 1

N

π i ∏
i = 1

N

(cU0
i - cU

i + π i )
αi (1)

XÎ φ φS (2)

-rA0 + rA -∑
i = 1

N

π i ³ 0 (3)

cU0
i - cU

i + π i ³ 0    "i (4)

where X and π are decision variables that represent the oper‐
ation and settlement results of local energy sharing, respec‐
tively; φ and φS are the feasible regions of market members 
and the aggregation, respectively; cU0

i  and cU
i  are the opera‐

tion costs of market members before and after energy shar‐
ing, respectively; rA0 and rA are the expected revenues of 
the aggregator before and after energy sharing, respectively; 
and αi is the market power of market member i (i = 12N) 
in Nash bargaining.

The core of the above local energy sharing is how to iden‐
tify the contributions of different market members in the co‐
operation and to design the corresponding profit-sharing 
mechanism to ensure the stability of the alliance. In [44], a 
profit-sharing mechanism is designed based on cooperative 
game theory to incentivize flexible ramp service provision 

from multiple microgrid operators. In [45], an energy shar‐
ing scheme and profit-sharing mechanism considering the 
participation of DER aggregation in capacity markets are 
proposed. The contribution of different market members is 
identified by the sharing contribution rate. In [46], an effi‐
cient cost allocation method is proposed for storage sharing 
in LEMs based on cooperative game theory.

The above studies are inspiring and provide a solid techni‐
cal foundation for profit-sharing mechanism design in local 
energy sharing. However, in aggregator-based local energy 
sharing, market participants are supposed to disclose their en‐
ergy information to aggregators for information asymmetry 
elimination, which may also lead to possible privacy prob‐
lems [47]-[49]. To address the aforementioned privacy prob‐
lem, there are many studies focusing on the decentralized so‐
lution method in local energy sharing, e.g., optimality condi‐
tion decomposition (OCD) and Lagrangian relaxation (LR) 
[50]. In [51], a decentralized framework is proposed for ener‐
gy trading among different interconnected microgrids to min‐
imize information exchange in local energy sharing. In [52], 
an architecture and the corresponding supporting algorithms 
are designed for privacy preservation in local energy shar‐
ing, in which market participants do not need to disclose de‐
tailed information about their preferences to aggregators. In 
[53], a distributed optimization program is implemented in 
an agent-based model in LEMs to protect the information 
privacy of different market participants. The above distribut‐
ed solution needs to converge to the market equilibrium and 
obtain the clearing results through distributed iteration pro‐
cess [54]-[56]. However, the iterative solution is inconsistent 
with the actual market transaction process, and it is difficult 
to accurately quantify the underlying economic intuition as 
well as utility function of participants in local energy sharing.

In general, an energy sharing mechanism based on a coop‐
erative game can maximize the overall welfare of partici‐
pants, but for complex systems, especially considering infor‐
mation asymmetry and user privacy protection, how to de‐
sign an effective redistribution scheme urgently needs to be 
solved.

B. Platform-based Local Energy Sharing

With the gradual expansion of the scope of energy sharing 
and the increase in market participants, aggregator-based lo‐
cal energy sharing will face many limitations. Therefore, 
many studies have focused on the platform-based energy 
sharing model. That is, the LEM members can submit decla‐
ration information based on their idle resource characteristics 
through platform-organized transactions, and idle resources 
can be shared among different market members. In theory, 
platform-based local energy sharing can be understood as a 
tri-level framework, as shown in Fig. 3.

The top level represents the platform trading scheme de‐
sign, which aims to promote energy sharing on the demand 
side through reasonable platform transaction mechanism de‐
sign such as transaction variety design and the pricing mech‐
anism. The middle level represents the energy decision-mak‐
ing process, where market participants submit application in‐
formation to the platform based on the corresponding plat‐
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form design and their own resource combination. The bot‐
tom level represents the market clearing, and the platform 
operator determines the transaction result of the energy shar‐
ing declaration based on all the declaration information of 
market members. In practice, such energy sharing can also 
be understood as an iterative optimization process of plat‐
form design. The top-level platform designer will adjust the 
platform trading and pricing mechanism based on the energy 
sharing situation to promote sharing in the LEM as much as 
possible. Actually, the framework shown in Fig. 3 can be 
considered as non-cooperative game-based local energy shar‐
ing. According to the difference of interaction between plat‐
form operators and participants in different local energy shar‐
ing modes, [27] further divides the non-cooperative game-
based local energy sharing into Stackelberg game [57], bilat‐
eral Nash game [58], and multi-leader multi-follower game 
[59], etc.

As mentioned above, the core of the platform-based local 
energy sharing is to make trade-offs between the interests of 
different energy sharing participants, i. e., how to design ef‐
fective profit-sharing mechanism for cooperation surplus ac‐
cording to the actual contribution of each participant. It is 
considered that the network constraints in the local energy 
system affect the feasibility of energy sharing among market 
members in different locations without changing the nature 
of mechanism design. As a result of this, some studies focus 
more on the design of trading mechanisms and the evalua‐
tion of energy sharing benefits, and the network constraints 
are ignored [60]-[62].

With the further integration of various DERs at the distri‐
bution level, some studies have also focused on a network-
aware pricing mechanism for local energy sharing to guide 
market members to share their idle resources. In essence, the 
network on which the energy system depends also provides 
a natural platform for the application of the sharing econo‐
my. Distribution locational marginal pricing (DLMP) can be 
an effective solution to reflecting the spatial value difference 
of DERs in different locations. Since line losses can be sub‐
stantial in distribution networks with lower voltages, the 
core of DLMP is to reflect the contribution of different dis‐
tributed energy resources to line losses, which may shed 
light on the local energy sharing between participants in dif‐

ferent locations [63]. There have been some studies focusing 
on the DLMP-based pricing mechanism in local energy shar‐
ing [64], [65]. In [66], a DLMP-based pricing mechanism is 
designed to facilitate peer-to-peer energy trading, and the de‐
signed pricing scheme was able to enhance the economic 
benefits compared with the traditional local energy sharing 
framework. In [67], the implementation of a dynamic operat‐
ing envelope is explored to depict the operational and techni‐
cal limits of DERs at the distribution level. In this way, the 
various sharing values of different DERs in local energy 
sharing can be identified [68]. As for the third level, which 
refers to the market clearing process in local energy sharing, 
[28] compares different market clearing methods in local en‐
ergy trading as well as the optimization objective in clearing 
process.

With the deepening integration of the sharing economy 
and the LEM, there will be competition from multiple plat‐
forms, and such competition appeared in other sharing fields 
such as transportation and housing. In [68], the impacts and 
the role of the pricing mechanism in platform competition 
have been investigated. It is further pointed out in [68] that 
under the sharing economy, service providers may choose 
whether to provide services or assets based on their own 
needs and the price of leased assets. Therefore, the supply-
demand relationship of energy sharing in the platform is un‐
certain. That is, how to achieve efficient matching based on 
the preferences of platform users is the key to platform oper‐
ations. In [69], the concept of creating shared value is pro‐
posed, and this concept can be integrated into the sharing 
platform to support the matching process. Reference [70] in‐
dicates that the price may not exert an influence on the stick‐
iness of sharing platform users, while the intrinsic value of 
appropriability resources is of significant importance.

IV. ENABLING TECHNOLOGIES AND BUSINESS MODELS 

The application of the sharing economy requires the sup‐
port of key technologies, and the innovative development of 
relevant technologies is of great significance for the deep in‐
tegration of the sharing economy and energy market in the 
future. The main enabling technologies of the sharing econo‐
my in energy markets, including energy conversion technolo‐
gy, blockchain technology, and communication-related tech‐
nology, are summarized in this section. Actually, different en‐
abling technologies correspond to different local energy shar‐
ing processes, which are presented in Fig. 4.

Local energy sharing

Potential participants Dynamic matching Transaction/settlement

Energy conversion
technology

Blockchain technology

Expansion Availability Credibility

Information and
communication

technology

Fig. 4.　Relation between different enabling technologies and different local 
energy sharing processes in local energy sharing.

A. Energy Conversion Technology

An efficient and highly liquid multi-energy market cou‐
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making process
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market

clearing 
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Market behavior function of participants

Maximize expected utilities of platform operator

Minimize individual cost
s.t.  Energy portfolio and
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User i energy sharing 

User 1 … …

Energy decision-making 
behavior

Energy decision-making
behavior

Price signal

s.t.  Operating constraints and
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Social 
welfare
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Fig. 3.　Tri-level framework of platform-based local energy sharing.
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pling transaction is the mechanism basis for the multi-energy 
system to realize energy sharing, and energy conversion tech‐
nology is the necessary condition for the multi-energy sys‐
tem to realize energy sharing. In recent years, the develop‐
ment of energy conversion technology, e. g., P2H and P2G, 
has expanded the scope of energy sharing as well as the di‐
versity of market participants in the sharing economy 
[71]-[73].

In terms of energy conversion in the natural gas-electricity 
coupling system, the emergence of P2G technology has 
changed the coupling between electricity and natural gas sys‐
tems from traditional one-way conversion through natural 
gas generators to two-way conversion. P2G technology is ad‐
vocated as an appealing way to provide additional flexibility 
and facilitate energy sharing in the natural gas-electricity 
coupling system. Recently, P2G has received increasing at‐
tention and developed rapidly due to cost reduction, im‐
proved P2G efficiency, and increased penetration of renew‐
able energy and hydrogen consumption [74]-[76].

P2G technology mainly includes two categories. The first 
one is power-to-hydrogen technology, which uses a water 
electrolysis system to split water into oxygen and hydrogen. 
Currently, the two main commercially available water elec‐
trolysis technologies are proton exchange membrane electrol‐
ysis cells (PEMECs) and alkaline electrolysis cells (AECs). 
The second one is power-to-methane technology, in which 
water is first decomposed into oxygen and hydrogen through 
an electrolytic reaction, and then hydrogen and carbon diox‐
ide are combined to form methane [77]. Although the reac‐
tion efficiency of electricity-hydrogen technology is relative‐
ly high, currently there lacks effective large-scale long-dis‐
tance transmission means for hydrogen. The injection of hy‐
drogen into an existing natural gas pipeline will cause hydro‐
gen embrittlement and penetration in the pipeline. Relying 
on the existing natural gas pipeline and storage device, meth‐
ane can realize large-scale energy storage and long-distance 
transportation. P2G technology can make use of its large-ca‐
pacity storage performance to convert surplus renewable en‐
ergy generation into natural gas, which is stored in the natu‐
ral gas pipeline and then converted from gas to electricity 
for power supply when the power system is short of power 
[78]. With the development of large-scale new energy, pow‐
er-to-gas technology provides technical support for improv‐
ing the utilization of new energy and energy sharing in the 
natural gas-electricity coupling system.

For the integrated heat and power system, although the tra‐
ditional combined heat and power unit can establish the con‐
nection between the electric heating systems, it is limited by 
its technical characteristics, and the operation flexibility is 
low. With the gradual maturity of energy conversion technol‐
ogies such as electric boilers and heat pumps, their applica‐
tion in cogeneration units helps to weaken the thermoelectric 
coupling characteristics and reduce the mutual restriction of 
energy supply in heat and power systems, which has shown 
good characteristics in practice in some countries [79]. In ad‐
dition, some studies consider the thermal inertia of buildings 
in district integrated heat and power system, which further 
extends the scope of energy sharing [80]-[82].

In general, energy conversion technology enables the 
closed-loop flow of energy between different energy sys‐
tems, which fundamentally expands the scope of energy shar‐
ing and the diversity of users involved in energy sharing. 
With the help of energy conversion technology, the mutual 
conversion of different energy sources on the supply side al‐
so enables users to choose different forms of energy to 
achieve the same goal. This kind of multi-energy comple‐
mentarity on the supply side fundamentally strengthens the 
integration of the sharing economy in the energy market.

B. Blockchain Technology

A blockchain network is a point-to-point network. The en‐
tire network has no centralized hardware or management or‐
ganization, nor does it have a central server or a central rout‐
er. Each node in the network has equal status and can act as 
a client and a server at the same time. In a blockchain sys‐
tem, each node saves all the data in the entire blockchain. 
Therefore, the data of each node are jointly owned, man‐
aged, and supervised by all participants. The blockchain uses 
a decentralized collaboration mechanism to track and ana‐
lyze the behavior of participants through credit, evidence, 
and transaction records to ensure that all transactions and da‐
ta are credible [83]. The core advantage of blockchain is that 
due to its transparency and decentralization, it ensures that 
different entities can trust each other, thereby greatly reduc‐
ing the cost of reshaping or maintaining trust. As a result, 
blockchain technology can be further extended to the areas 
other than currency, the economy, and markets. Reference 
[84] has designed a reputation recording system based on 
blockchain technology that can be used in multiple networks 
in response to the security vulnerabilities in the current repu‐
tation system.

Notably, the potential application areas of blockchain in‐
clude the energy sharing mechanism. It can promote the co‐
ordination of multiple forms of energy and the participating 
entities, promote the further integration of information and 
physical systems, and realize the diversification and low cost 
of transactions [85]. Power grid enterprises, financial institu‐
tions, new energy generators, green energy service providers, 
and power users are regarded as a node access blockchain 
network. Blockchain can provide users with a low-cost, 
open, and transparent power resource market trading plat‐
form to participate in energy sharing [86]. Participants can 
make two-way choices on this platform. Whenever users de‐
cide to participate in energy sharing, smart contracts pre-de‐
ployed on blockchain systems can support transactions and 
settlements between users participating in local energy shar‐
ing. At the same time, the rate of contribution of each user’s 
participation in the sharing of energy to the entire energy 
system is open and transparent, and can be reasonably mea‐
sured and certified to inspire users and distributed energy 
sources to participate in the operation of energy sharing. 
Many scholars have focused on existing transaction scenari‐
os to redesign the network architecture of blockchain tech‐
nology in power transactions and the multichain integration 
of a smart electricity transaction payment blockchain. The 
transaction structure of [87] and [88] is a two-layer model. 
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The first layer is the peer-to-peer network supported by the 
multiagent system, which builds an alliance of agents or 
manufacturers to realize pricing negotiation. The second lay‐
er is a transaction settlement mechanism based on block‐
chain. Reference [89] designed a domain-based model. Busi‐
ness domains include automatic demand response, energy 
custody, ancillary services, and energy efficiency analysis; 
operation domains include ledger issuance, targeted mainte‐
nance, contract maintenance, and configuration updates; in‐
formation domains include the peer-to-peer network proto‐
col, equity certification, and the dissemination mechanism; 
and asset domains include power generation assets, energy 
storage assets, load assets and financial assets.

Before blockchain technology is widely used in various 
application scenarios, including the energy sharing industry, 
there are still a series of problems that urgently need to be 
solved. ① The scope of application of existing theories and 
projects is still limited to a small community. How to realize 
regional-level energy sharing transactions is the primary is‐
sue that should be considered in current technology develop‐
ment and application research. ② The online local energy 
sharing system may be subject to numerous network attacks 
during the development and application process. How to ef‐
fectively prevent data from being tampered with from the 
branch network and from the source and ensure the authen‐
ticity of data with the support of blockchain technology is 
an important task of application research. ③ Although block‐
chain technology can provide effective support for P2P trad‐
ing, effective local energy sharing still needs to rely on reli‐
able market supervision. Market participants will lack a 
sense of security and their enthusiasm for participation will 
be reduced without reliable market supervision. This is also 
the key to further deepening the application of blockchain in 
local energy sharing.

C. Information and Communication Technology

The promotion of the energy sharing mechanism needs to 
realize the information interconnection between devices at 
the distribution network level. The increasing number of 
DERs on the user side places a high demand on the capacity 
of the communication system [90]. Energy sharing should 
consider different needs and interactions of users. Massive 
control signal exchanges need to be completed in a relative‐
ly short time, which sets the requirements for a low delay of 
communication. 5G communication can economically and ef‐
ficiently enable the distribution of power grids to achieve in‐
formation interconnection. Compared with 4G communica‐
tion, 5G communication exhibits a large leap in bandwidth 
and the time delay as well as other advantages, which en‐
ables efficient local energy sharing [91]-[93].

With the enhancement of the coupling of the power grid 
information physical system, the construction of large-scale 
communication base stations (BSs) has become the develop‐
ment trend of the future. From the perspective of energy con‐
sumption, the power consumption of communication BSs ac‐
counts for approximately 70%-80% of the power consump‐
tion of communication system according to statistics [94]. It 
is estimated that in 2025, the deployment density of BSs 

will exceed 13 million, which is 10 times the existing scale, 
and the corresponding energy consumption will reach 200 
billion kWh [95]. With the increasing number of BSs, the en‐
ergy consumption of BSs, which cannot be ignored, will ex‐
ert a great influence on the power distribution and voltage 
fluctuation of the distribution network. Therefore, the supply-
demand interaction between the 5G communication network 
and the active distribution network has been deeply dis‐
cussed.

BSs are the main intermediary between the communica‐
tion network and the power network. The communication 
network is an important transfer point of wireless informa‐
tion transmission. A power network is the main communica‐
tion device that consumes electricity. There is a coupling of 
energy and information between the communication system 
and the power system. On the one hand, the communication 
network requires an energy supply from the distribution net‐
work. The operation strategy of the communication system 
may change the power flows in distribution lines. On the 
other hand, communication systems effectively guarantee the 
precise control of power networks. However, the interference 
and noise between different BSs may lead to bit errors, re‐
sulting in the failure of energy sharing transactions. To illus‐
trate the interaction mechanism, a tri-layer framework is pro‐
posed in [96], in which a number of microgrids aggregate 
demand-side energy and a communication BS, and the im‐
pact of communication reliability on energy sharing in active 
distribution networks is also studied.

V. DISCUSSION AND OPEN RESEARCH TOPICS

Although the application of the sharing economy in the en‐
ergy sector has attracted extensive attention from both aca‐
demia and industry, further development in the energy sys‐
tem and the process of decarbonization will create new op‐
portunities and challenges. In this section, we discuss the 
key challenges in mechanism design in local energy sharing. 
Besides, several open research issues related to local energy 
sharing are highlighted, i. e., energy sharing + data, energy 
sharing + decarbonization, and energy sharing + new infra‐
structure from the “energy sharing +” perspective.

A. Energy Sharing +Data

The application and development of information process‐
ing technologies such as big data and artificial intelligence 
provide a broader space for the construction of new power 
systems. Data have become an important asset in local ener‐
gy sharing, which are also regarded as the key driving force 
for the upgrading of inherent assets and the development of 
emerging businesses. Most existing studies assume a sym‐
metric information environment in local energy sharing 
mechanism design. The core of these studies is how to re‐
veal the real needs of different participants through effective 
mechanism design, promote the sharing of idle resources, 
and activate the flexibility potential of the system. In the pro‐
cess of local energy sharing, the information among different 
participants is symmetrical, i. e., only their own information 
is known by each participant or all information is shared; 
but in fact, information symmetry is more common in prac‐
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tice, which is actually one of the important ways to reflect 
the value of data as an asset in local energy sharing.

With the improvement of digital programs in the energy 
field, the energy big data center will become the hub of data 
sharing and exchange in the future. In view of the “dual car‐
bon” target and the trend of the clean and low-carbon trans‐
formation of energy systems, energy big data center is sup‐
posed to play an important role in giving full play to the val‐
ue of energy big data, supporting the modernization of gov‐
ernment governance, promoting the energy transformation, 
and helping the high-quality development of the energy in‐
dustry.

Energy big data centers can widely interconnect various 
energy entities such as oil, water, gas, and electricity on a 
larger scale and promote the cross-border integration, shar‐
ing and application of various energy data. First, they pro‐
mote the convergence of energy data. Driven by the govern‐
ment, energy big data centers will gradually gather all kinds 
of energy data, make energy data visible and accessible, pro‐
mote the transformation from “business data” to “data busi‐
ness”, and stimulate the vitality of data decision-making and 
data innovation. Second, they promote energy data sharing 
[97]. Relying on government guidance and matchmaking, we 
will help break through the data barriers between energy en‐
terprises, achieve an efficient flow and the full sharing of da‐
ta resources, promote cross-border data integration, and high‐
light the value of energy data. Even with the promotion of 
policies, the information privacy issues involved in energy 
and data sharing are still a matter of widespread concern. In 
existing research, data protection technology represented by 
federal learning has been regarded as the key to solving data 
islands and promoting energy data sharing, and the general 
information privacy framework based on data encryption is 
shown in Fig. 5 [98]-[100].

B. Energy Sharing +Decarbonization

Currently, the existing studies related to local energy shar‐
ing mainly focus on the electric power sector. Actually, with 
the help of energy conversion technology and energy market 
construction, efficient local energy sharing can accelerate the 
integration of oil, coal, natural gas, electricity, and other en‐
ergy resources and promote sustainable energy development 
and facilitate the decarbonization of the energy system. It is 
inevitable to investigate local energy sharing in multi-energy 
sector, which can contribute to realize the efficient dynamic 

matching, collaborative management, interactive response, 
and mutual assistance between different energy subsystems, 
and effectively improve the energy efficiency while meeting 
diversified energy consumptions.

In practice, local energy sharing is able to build an inte‐
grated innovation platform through data technology and ener‐
gy technology, and directly supports the intelligent energy 
supply and personalized energy consumption. Besides, local 
energy sharing can analyze the characteristics of energy con‐
sumption, characteristics of carbon emission, and trends of 
different market members, provide more “dual carbon” data 
innovative products, and help environmental governance, the 
docking of carbon emission supply and demand, and the im‐
provement in the energy efficiency of key enterprises.

Overall, local energy sharing is widely connected with 
multiple entities in the upstream and downstream of the ener‐
gy industry chain, radiating many industries, promoting the 
construction of an energy internet ecosystem, and stimulat‐
ing the value creation vitality of the energy industry. Local 
energy sharing can meet the personalized and diversified en‐
ergy needs of users, improve the efficiency of terminal pow‐
er consumption, and accelerate the decarbonization process 
of the energy system by implementing user portraits and 
grasping the needs of different market entities.

C. Energy Sharing +New Infrastructure

The existing work in local energy sharing mostly focuses 
on how to reduce the operating costs of market participants 
or the overall system through the matching of supply and de‐
mand of idle resources, especially with the support of differ‐
ent interactive energy facilities such as distributed energy, us‐
er-side energy storage, and electric vehicles. With the devel‐
opment of energy digitalization, the new infrastructure is ex‐
pected to provide a new way for the application of sharing 
economy in the LEM. Specifically, new infrastructure main‐
ly includes seven fields: 5G BS construction, ultra high-volt‐
age (UHV) projects, intercity high-speed railway and urban 
rail transit, new energy vehicle charging piles, big data cen‐
ters, artificial intelligence, and the industrial Internet, involv‐
ing many industrial chains. It is an infrastructure system that 
provides services such as digital transformation, intelligent 
upgrading, and integrated innovation.

With the help of new infrastructure, energy enterprises can 
absorb the scientific and technological power brought by the 
digital era, fully release the connection, integration, and 
shared value of the industrial internet, promote the transfor‐
mation of industries while promoting the transformation of 
enterprises, and comply with the development pace of the 
new era. Energy enterprises rely on technology, manage‐
ment, and business model innovation to improve the level of 
refined operation and lean management, effectively carry out 
the long-term layout of integration with the digital economy 
and the real economy, and realize the mutual promotion of 
scientific and technological innovation and industrial upgrad‐
ing.

Local energy sharing provides more “blue oceans” for fu‐
ture energy business. Just as 4G has promoted the develop‐
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Fig. 5.　Information privacy framework based on data encryption.
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ment of the consumer internet and brought changes in retail, 
catering, travel, and other aspects, the 5G era will combine 
energy infrastructure with digital infrastructure, which will 
inevitably lead to more new businesses in the energy indus‐
try. For example, the “photovoltaic + 5G communication BS” 
mode, which combines distributed photovoltaic with 5G and 
energy storage, can configure energy storage batteries 
through the communication BS network to form an enor‐
mous distributed energy storage system to realize the flexi‐
ble allocation of peak and low power consumption stages. 
The intelligent microgrid-integrated storage and charging sys‐
tem based on the “microgrid + charging piles” can realize en‐
ergy storage service, charging service, and electric vehicle 
detection service at the same time. Through a large number 
of data collection applications and resource integration and 
sharing, the “intelligence” of the energy system will be ef‐
fectively improved.

VI. CONCLUSION

Exploring an efficient local energy sharing paradigm is of 
great significance for coordinating multiple energies, improv‐
ing energy efficiency, and accelerating the construction of a 
clean, low-carbon, safe, and efficient energy system. In this 
paper, we conduct a comprehensive review of the sharing 
economy in LEMs, and the key elements in mechanism de‐
sign as well as enabling technologies for local energy shar‐
ing are analyzed. In addition, the further application of the 
sharing economy in energy fields such as data transactions, 
decarbonization, and the new infrastructure construction of 
the energy sector are elaborated from the “energy sharing +” 
perspective.

The core of the application of the sharing economy in 
LEMs is the sharing of idle resources among different mar‐
ket entities, thus realizing the complementarity of heteroge‐
neous individual energy supply and demand. The market-ori‐
ented development of energy and carbon trading will pro‐
vide a new way for the efficient development of local ener‐
gy sharing. The further integration of sharing economy and 
LEM need to rely on the support of multiple enabling tech‐
nologies. The design of local energy sharing mechanism in 
the future should be developed in the direction of multiple 
energy entities, different information environments, and 
multi-value stream.

With the trend of re-electrification and the improvement 
of digitalization in the whole industry, which will provide 
massive application scenario for local energy sharing and al‐
so represent a new social form, we should further explore 
the optimization and integration role of the sharing economy 
in the allocation of social resources, deeply integrate the 
achievements of energy technology innovation into various 
fields, form a new form of energy industry development, 
and improve the innovation and productivity of the whole so‐
ciety.

Hopefully, this paper will provide readers with a useful 
reference and a clear vision for the further integration of the 
sharing economy in the energy sector.
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