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A Branch-independence-based Reliability
Assessment Approach for Transmission Systems

Shuonan Hou, Pei Zhang, Wei Zhang, Qian Xiao, and Xiaonan Liu

Abstract—This paper proposes a branch-independence-based
reliability assessment approach for transmission systems. The
approach consists of branch decoupling and state-space parti-
tion techniques. By integrating an impact-increment-based reli-
ability index calculation model and the proposed branch decou-
pling technique, a proportion of sampled contingency states no
longer need to be analyzed using the time-consuming optimal
power flow (OPF) algorithm. In this way, the technique speeds
up the calculation of reliability indices. Since first-order contin-
gency states have a high probability of being sampled, we pro-
pose a state-space partition technique to replace first-order con-
tingency state simulation with first-order contingency state enu-
meration. Consequently, the calculation of reliability indices is
further accelerated by avoiding a large amount of repetitive OPF
analyses during simulation process without affecting reliability in-
dex accuracy. The validity and applicability of our approach are
verified using the IEEE 118-bus and IEEE 145-bus systems. Nu-
merical results indicate that the proposed approach can improve
computational efficiency without decreasing accuracy.

Index Terms—Branch decoupling, impact increment, optimal
power flow (OPF), reliability assessment, state-space partition,
transmission system.

1. INTRODUCTION

ELIABILITY assessment is essential for transmission

system planning. The reliability indices can be accurate-
ly calculated with consideration of the probabilities and im-
pacts, i.e., severities, of all states. However, the impact of a
contingency state needs to be calculated using the optimal
power flow (OPF) algorithm, which is a time-consuming pro-
cess. In addition, the number of contingency states can be
enormous, as it increases exponentially with the system
scale. Therefore, the OPF analysis can only be performed
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for a portion of contingency states, which may introduce re-
markable reliability index errors. It is a long-term goal and a
great challenge for researchers to obtain accurate reliability
indices with high computational efficiency.

Many reliability assessment methods have been developed
in recent decades. According to different state selection tech-
niques and reliability index formulations, the reliability as-
sessment methods for transmission systems are generally cat-
egorized into state enumeration (SE) method and Monte Car-
lo simulation (MCS) method. The traditional SE method enu-
merates contingency states up to a given order (usually the
second or third), computes the corresponding probability and
impact for each enumerated state, and calculates the reliabili-
ty indices by accumulating the product of the probability and
impact [1], [2]. The SE method may not yield accurate reliabil-
ity indices due to the omission of higher-order states, especial-
ly when evaluating large-scale or low-reliability power sys-
tems. Although some techniques such as fast sorting [3], [4],
contingency screening [5]-[7], and contingency ranking [8]
have been developed to address this problem, SE method is
more suitable for small-scale or high-reliability systems.

MCS method can be divided into sequential MCS and
non-sequential MCS depending on whether chronological
characteristics are considered. Compared with sequential
MCS, non-sequential MCS has a much smaller computation-
al burden, making it be used more widely. This paper only
focuses on non-sequential MCS. The traditional non-sequen-
tial MCS extracts individual states from the state space
based on component availability, calculates the impact of
each sampled contingency state, and iteratively updates the
average impact of all sampled states to obtain reliability indi-
ces until the given stopping criterion is satisfied [9]. The
method converges if the stopping criterion is strict enough.
In this case, the reliability indices obtained are accurate and
credible. The statistical characteristic makes MCS method
more suitable for evaluating large-scale systems. However,
in the case of significant simulation variance, a considerable
amount of OPF analyses must be performed to make the
method converge, leading to the inefficient computation of
reliability indices. To address this issue, some techniques
such as state-space pruning [10], [11], importance sampling
[12], subset simulation [13], and cross-entropy [14], [15]
have been developed to improve sampling efficiency, i.e., to
reduce the sample size required for convergence. Moreover,
some state classification techniques [16]-[18] have been de-
veloped to classify a proportion of contingency states into
failed states, i.e., loss of load states, and success states by a
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small amount of computation. During the simulation, success
states no longer require the OPF analysis, thus improving
the computational efficiency.

The above techniques do not exploit the connection be-
tween state impacts to improve the accuracy and computa-
tional efficiency of reliability indices. In [19], an impact-in-
crement-based reliability index calculation model has been
proposed and combined with the SE method to perform the
reliability assessment for integrated energy systems. This
model can increase the contribution of lower-order states to
the reliability indices by transferring partial impacts of high-
er-order states to those of the corresponding lower-order
ones. In this way, the reliability indices obtained by state
enumeration are more accurate. In [20], an incremental reli-
ability assessment approach has been proposed to efficiently
calculate the reliability enhancement, i.e., the incremental re-
liability indices, brought by the planned scheme to the exist-
ing system. The approach takes advantage of the impact cor-
relation between the added components and existing compo-
nents to separate the incremental reliability indices from the
entire reliability indices and reduce the set of states that may
have a contribution to the incremental reliability indices. In
this way, the reliability enhancement brought by the planned
scheme can be quickly quantified. However, for this ap-
proach, the planned scheme is limited to add branches to the
existing system. Moreover, the load level of the planned sys-
tem must be the same as that of the existing system. The
two constraints narrow the applicability of this approach. In
[21], a contingency set partition based impact transfer ap-
proach has been developed to improve the sampling efficien-
cy. With this approach, lower-order states are separated from
sample space, which prevents these high probability states
from being repeatedly sampled. Based on this separation, the
differences between non-zero impacts and zero impacts of
higher-order states are reduced by impact transfer, which low-
ers the higher-order simulation variance and further improves
the sampling efficiency.

For modern power system planning, the accuracy or effi-
ciency improvement brought by existing techniques is not
enough. As modern power systems become more and more
complex, the computational burden of OPF increases. Be-
sides, in optimal planning, the reliability assessment needs to
be done repetitively. In extreme natural disasters, the system
reliability information needs to be updated quickly. Therefore,
a higher computational efficiency is required for reliability as-
sessment while ensuring the accuracy of reliability indices.

Based on the impact-increment-based reliability index cal-
culation model in [19], this paper proposes a branch-indepen-
dence-based reliability assessment (BIRA) approach to fur-
ther improve the computational efficiency of transmission re-
liability assessment. The BIRA approach consists of branch
decoupling (BD) and state-space partition (SSP) techniques.
The BD technique takes advantage of the weak power flow
coupling between certain branches to reduce the number of
OPF analyses. If the outage branches of a branch outage
state can be decoupled into two independent branch sets,
this state does not need to be analyzed with OPFE. The
branch outage state refers to a contingency state where no
generation unit fails. Since the first-order states have a high
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probability of being sampled and cannot be handled by BD
technique, these states are separated from sample space by
SSP technique to further improve the computational efficien-
cy. With the SSP technique, the simulation of the first-order
states is replaced by the enumeration of the first-order states.
This avoids repetitive OPF analyses of the first-order states.
In addition, a new reliability index formulation is derived
considering the adaptation to SSP technique.

The rest of this paper is organized as follows. Section II
introduces the impact-increment-based reliability index calcu-
lation model. The BIRA approach is proposed in Section III.
Case studies are presented in Section IV, and conclusions are
drawn in Section V.

II. IMPACT-INCREMENT-BASED RELIABILITY INDEX
CALCULATION MODEL

Compared with the traditional reliability index calculation
model, the impact-increment-based reliability index calcula-
tion model transforms state impact into modified impact in-
crement. The transformation increases the contribution of
lower-order states to the reliability index. Let R represent the
reliability index. This model is expressed as:

R=E(I)seS)=E(ALllseS)= > PAI 1)
ses

where S is the state space of the evaluated system; s is a
state denoted by the set of corresponding outage compo-
nents, when s=¢J, it is the normal state, otherwise, it is a
contingency state; P, is the state probability; 7, is the state
impact, which is obtained by OPF analysis; and Al is the
modified impact increment, which can be expressed as:

Al A,
" @
jeC-s ’

where a; is the availability of component j; C is the set of
all components in the system; C—s is the set of components
excluding the outage components corresponding to state s;
and A/ is the impact increment, which can be expressed as:

AlL= z( 1S,

"
ueQ

3)

where n, is the number of outage components corresponding
to state s; u is a lower-order state corresponding to state s;
and Q' is a set of k"-order states corresponding to state s,
which can be expressed as:
Q= {vlves, Card (v) =k} 4)
where v is a lower-order state corresponding to state s;
Card (v) is the cardinality of v.
It should be noted that this model must be combined with
a state selection method such as SE or MCS to complete reli-
ability assessment. The IISE method represents the combina-

tion of SE method and this model. Similarly, the [IMCS meth-
od represents the combination of MCS method and this model.

III. BIRA APPROACH

A. BD Technique
Based on the impact-increment-based reliability index cal-
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culation model, the BD technique takes advantage of branch
relations to reduce the number of OPF analyses required by
the IIMCS method. The cooperation mechanism of the BD
technique and IIMCS method is illustrated in Fig. 1. The
IIMCS method consists of three basic steps, i.e., state selec-
tion, state analysis, and reliability index calculation. Before
embedding BD technique, the IIMCS method must perform
the OPF analysis for each sampled contingency state to ob-
tain the state impact. After embedding the BD technique, a
proportion of the sampled contingency states are screened
out. The OPF analyses of these states can be avoided. The
BD technique estimates the relations (including dependence
or independence) between all branches and records the
branch relations in a matrix. Thereafter, the relations be-
tween the outage branches of a sampled contingency state
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are obtained from the matrix. It is important to note that the
BD technique can only handle the contingency state with the
outage order higher than 1. Finally, the BD technique deter-
mines whether the outage branches of the state can be decou-
pled according to the branch relations. If the outage branch-
es can be decoupled into two independent branch sets, the
modified impact increment of this state can be obtained di-
rectly. Otherwise, the state should be analyzed with the OPF
algorithm. The BD technique significantly reduces the com-
putation effort of reliability assessment by reducing the num-
ber of OPF analyses. In the following, we first propose the
definition of branch relations and two theorems as the theo-
retical foundation of the BD technique. After that, branch re-
lation estimation and branch decoupling determination are in-
troduced.

‘ Input power flow data and reliability data ‘

!

Estimate the relations between all branches and
record the relations in a matrix

T
v

‘ Sample a system state based on reliability data

Is the number of outage
branches greater than 1?

Obtain the relations between the

¢N

outage branches from the matrix

Calculate the impact of the contingency state by
performing an OPF analysis or obtain the impact
of the normal state directly

Sample the next state

!

Can the outage branches
be decoupled?

Calculate the modified impact increment
based on the state impact

|

v

Obtain the modified impact increment
of this contingency state directly

Substitute all obtained modified impact increments
into (1) to calculate reliability indices

Do the reliability indices meet

stopping criterion?

Output reliability indices

Fig. 1. Cooperation mechanism of BD technique and IIMCS method.

The definition of branch relations is proposed as follows.
The outage of a branch (including line or transformer) set
changes power flow distribution. If two branch sets have no
common branch, and their outages cannot affect the power
flow on the same branch, these branch sets are independent.
Conversely, if their outages affect the power flow on the
same branch, these two branch sets are dependent. In other
words, branch independence is that there is no power flow
coupling between two branch sets. In practical utilization, if
the power flow coupling between two branch sets is weak

End

enough, these branch sets are considered independent.

An example system in Fig. 2 is used to illustrate the defi-
nition of relations between branches. The generation unit is
considered to be 100% available and have adequate power.
The transmission lines are considered to have sufficient
transmission capacity. According to the network structure,
the outage of Line | affects only the power flow on Line 1
and accordingly causes a load curtailment of 5 MW on Bus
1. The outage of Line 2 affects the power flow on Line 2
and Line 3. The corresponding load curtailments on Bus 2
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and Bus 3 are 6 MW and 8 MW, respectively. The outage of
Line 3 affects the power flow on Line 2 and Line 3. The cor-
responding load curtailment on Bus 3 is 8 MW. Therefore,
the outages of branch sets {1} and {2,3} cannot affect the
power flow of the same branch. The outages of branch sets
{2} and {3} can affect the power flow of the same branch.
According to the definition of branch relations, branch sets
{1} and {2,3} are independent; while branch sets {2} and {3}

are dependent.

Line 2 Line 3
Bus 1 Bus 3
Bus 2
5 MW l 8§ MW
6 MW
Fig. 2. Example system for illustrating definition of relations between
branches.

According to Fig. 2, we can obtain:

Im+1{2_3}=5+14:19:1{ (5)

(6)

where 7, is the outage impact of branch set {-}. In other

1,2,3}

1

2}

+I{3}= 14+8+ 14=I{2.3}

words, if all branches in branch set {-} are out of service, the
outage impact is /,,. In the rest of this paper, the outage im-

pact of a branch set is simply referred to as the impact of a
branch set. Besides, since the outage of a branch set corre-
sponds to the occurrence of a specific contingency state, this
branch set can be used to represent the contingency state.
Thus, the impact of this branch set is equivalent to the state
impact.

According to (5) and (6), we can suppose that the impacts
of two independent branch sets have superposition property.
An impact superposition theorem is proposed as follows. Let
A and B represent two branch sets. Let /, and /, represent
the impacts of 4 and B, respectively. If 4 and B are indepen-
dent, the sum of /, and /, can be expressed as:

1A+IB:IAUB (7)
where /,,, is the impact caused by the simultaneous failure
of 4 and B.

The impact superposition theorem is confirmed by the ex-
planation that outage branches no longer have power trans-
mission capacity. If the load on outage branches cannot be
transferred, or if some branches are overloaded due to load
transfer, the system must reduce the load. The load curtail-
ment is the branch outage impact. Suppose 4 is branch set
{i, J }, and the outage of 4 changes the power flow on branch-
es i, j, k, I. Let P, and P,, represent the maximum transmis-
sion capacities of k and /, respectively. Let Py, Py, P, Py
represent the original power flows, i.e., the power flows be-
fore A fails, on branches i, j, k, I, respectively. /, can be con-
sidered as a function of the original power flow, which is ex-
pressed as:
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In (8), P,, and P,, can be considered as constants; and
P, Py, Py, and P, depend on the state of the system before
A fails. Since B and 4 are independent, the outages of B can-
not affect the inputs of f(-). That is, the outage of B cannot
affect /,. Similarly, the outage of 4 cannot affect /,. In this
case, the sum of /, and /; is equal to /.

Based on the impact-increment-based reliability index cal-
culation model and impact superposition theorem, we can
propose an impact increment theorem (the corresponding
proof process is presented in Appendix A): if 4 and B are in-
dependent, the impact increment of 4 U B is 0.

According to the impact increment theorem, if the outage
branches of a branch outage state can be decoupled into two
independent branch sets, the impact increment of this state is
0. According to (2), when the impact increment is 0, the
modified impact-increment is 0. That is, the modified impact-
increment of this contingency state can be obtained directly
without using OPF analysis.

The example system in Fig. 2 can be used to showcase
the benefit of the impact increment theorem. Let R, repre-
sent the reliability index of the system. It can be expressed
as:

IA:f(PiO’PjO7PkO’PZO’Pmk’Pml)

Ry=Py Ly + Pyl + Pyl + Py Iy o+ Pyl 5+ Py D 5+
_ ' ’ ’ '
Priosdiag =LAyt P Al + Py AL+ Py o ALy o+
’ ’ ’
Py yALL + Py G AL G+ Py AL 9

where P, is the outage probability of branch set {-}; and
All, is the modified impact increment of branch set {-}. The
right side of the first equal sign is the traditional calculation
model. The right side of the second equal sign is the impact-
increment-based reliability index calculation model. Since
{1} is independent of {2}, {3}, and {2 3}, respectively, we
can directly obtain the modified impact increments A7) ,,
Al and Al

{'1‘3}’ 1,2,3}"

reliability index calculation model can be simplified as:
_ ' ' ’ ’

Ry =Py ALy + Py Al + Py Al + Py y AL 5

In this way, the impact-increment-based

(10)

Equation (10) has fewer terms compared with the models
in (9). Therefore, the number of OPF analyses in transmis-
sion reliability assessment can be reduced.

To determine whether outage branches can be decoupled,
we need to obtain branch relations. Branch relations can be
estimated by calculating power flow variation ratios. Accord-
ing to the definition, if there is a branch k (k can be the
same branch as i or j), and the power flow variation ratios
on branch £ satisfy (11), then branches i and j are dependent.

PkO_Pki PkO_ij
PkO PkO

min >0 (11)

b}

where P,; and P, are the power flows on branch k when
branches i and j fail, respectively. If no branch can satisfy
(11), branches i and j are independent. Inequality (11) can
be used as the estimation criteria of branch relations. The
number on the right side of (11) is the branch-independence
threshold. Due to the network structure of the transmission
system, when a branch fails, the power flow variation ratios
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on the other branches are usually greater than 0, which
means that there is power flow coupling between most
branches. In large-scale transmission systems, most of the
coupling strengths, i.e., the power flow variation ratios, are
less than 5%. Since two branches with a coupling strength
less than 5% can approximately satisfy the impact superposi-
tion property, we can consider that the coupling is weak
enough, and the corresponding modified impact increment is
0. Accordingly, we can replace 0 in (11) with the more ap-
propriate threshold, i.e., 5%, to obtain higher efficiency with-
out affecting accuracy.

Based on the above analysis, the relations between all
branches in the system can be obtained and recorded in a
matrix, namely the system independence matrix. The system
independence matrix is a symmetric matrix containing only
0 and 1. The order of the matrix is equal to the number of
branches in the system. Let m, represent the element of the
i" row and ;" column of the matrix. If branch i and branch ;j
are independent, m,; and m; are equal to 0; otherwise, m,
and mj; are equal to 1. The matrix establishment, i.e., branch
relation estimation, contains the following steps.

Step I: input the original power flow data and the branch-
independence threshold A. Initialize two n,-order square ma-
trices M, and M, with all elements of 0, where n, is the
number of branches in the system. Initialize two counters i =
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0 and j =0.

Step 2: set i,=i,+1. Let branch i, out of service and cal-
culate the updated power flow of all branches by performing
a DC power flow analysis. Compute the power flow varia-
tion ratios of all branches and replace the i row of M, with
the vector of the power flow variation ratios.

Step 3: if i.<n,, go back to Step 2; otherwise, go to
Step 4.

Step 4: set the elements in M, larger than 1 to be 1, and
the rest to be 0.

Step 5: setj.=j +1. Set k,=j..

Step 6: set k,=k,+1. Add the k" row vector of M, to the
J™ row vector. If the sum vector contains the elements great-
er than 1, m; , and m, ; in M, are set to be 1.

Step 7: if k.<n,, go back to Step 6; otherwise, go to
Step 8.

Step 8: if j.<n,, go back to Step 5; otherwise, stop the
process. The obtained matrix M, is the system independent
matrix.

After obtaining the system independence matrix, we can
determine whether the outage branches of a contingency
state can be decoupled. The determination of branch decou-
pling based on a contingency state example is illustrated in
Fig. 3.

i J kIl mn
i 1 1.000O0 010000
il 11000 1 Establishthestate || o o0 0 0 1 Establish the e o e Determine the

independence corresponding connectivity of L.

k{.. 001 100 matrix 000 1 0 O yndirected graph the graph .7, m, n}
/... 001 1 00 .. |'~~"""7777777~ 001 00 O """~ """77777° P N >ooTTTTToo
m.. 0000 11 000001 {k, Iy
n 010011 010010 o Q Q

System independence matrix State independence matrix

Fig. 3.

Let { i,j, k1, m,n} represent the contingency state example,
where i, j, k, [, m, and n are the outage branches of this
state. The elements in the specific positions of the system in-
dependence matrix correspond to the relations between the
outage branches. For instance, the element of the i" row and
J™ column of the system independence matrix is 1, indicating
that branches i and j are dependent. The relations between
the outage branches are recorded in a new matrix, namely
the state independence matrix. The diagonal elements of this
matrix are set to be 0. The contingency state corresponds to
an undirected graph. The outage branches are regarded as
the vertices of the graph. If two branches are independent,
there is no edge between the corresponding two vertices.
Conversely, if two branches are dependent, there is an edge
between the corresponding two vertices. From the graph, we
can find that there is no power flow coupling between
{i,jym,n} and {k,1}. That is, {i,j,m,n} and {k [} are indepen-
dent. Therefore, the fact that the outage branches of this
state can be decoupled is equivalent to the fact that the undi-
rected graph is disconnected. The connectivity of an undirect-

Two independent

Undirected graph sets of branches

Illustration of determination of branch decoupling based on a contingency state example.

ed graph can be determined by analyzing the corresponding
state independence matrix. The process is as follows. First,
the state independence matrix is established based on the sys-
tem independence matrix. The state independence matrix is a
symmetric matrix containing only 0 and 1. The order of the
matrix is equal to the outage order of the contingency state.
Let d,; represent the element of the i row and ;" column of
the matrix. If branch i and branch j are independent, d; and
d;; are equal to 0; otherwise, d; and d;; are equal to 1. The di-
agonal elements of this matrix are set to be 0. The state inde-
pendence matrix is actually the adjacency matrix of the undi-
rected graph. Thereafter, the state independence matrix, i.e.,
the adjacency matrix, is transformed into the reachable ma-
trix using Floyd algorithm. If all the elements in the reach-
able matrix are 1, the undirected graph is connected; other-
wise, the undirected graph is disconnected.

According to the estimation of branch relations and the de-
termination of branch decoupling, the BD technique requires
n, times DC power flow analyses and m, times Floyd analy-
ses during the simulation, where m, is the number of sam-
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pled contingency states. In contrast, the benefit of BD tech-
nique far outweighs its cost, which can be explained from
two aspects. First, the BD technique avoids a large number
of OPF analyses by taking advantage of the weak coupling
between some branches. And the number of DC power flow
analyses required by BD technique is only equal to the num-
ber of branches. Therefore, the number of reduced OPF anal-
yses is much greater than that of increased DC power flow
analyses. Second, the Floyd analysis is not time-consuming.

It should be noted that the BD technique cannot handle
the first-order states. Therefore, if the sample space contains
the first-order states, it is inevitable to repeatedly perform
OPF analysis on the first-order states during the simulation,
which puts a burden on the computation.

B. SSP Technique

To further improve the computational efficiency, the SSP
technique is developed to separate lower-order states from
the sample space. The normal state and first-order states are
considered as the the lower-order states. The remaining
states are the higher-order states. In general, the number of
lower-order states is much smaller compared with higher-or-
der states. The cumulative probability of lower-order states
is higher than that of higher-order states. With the SSP tech-
nique, all lower-order states are enumerated, and the higher-
order states are sampled.

The SSP technique can reduce the number of OPF analy-
ses further, which can be explained from two aspects. First,
since first-order states are no longer sampled, a higher pro-
portion of sampled contingency states can satisfy the impact-
increment theorem. The modified impact increments of these
states can be obtained directly. Second, separating lower-or-
der states from the sample space can greatly reduce the sam-
ple size needed for convergence, thus cutting down the num-
ber of sampled contingency states. The sample size reduc-
tion is confirmed by the sample size reduction theorem,
which is proposed as follows. Let N, represent the sample
size required by IIMCS to meet a given stopping criterion.
Let N represent the sample size required to meet the same
stopping criterion under the condition that lower-order states
are separated from the sample space. We can obtain:

N, 1

N “1-P,

(12)

where P, is the cumulative probability of all lower-order
states.

According to (12), the lower bound of the sample size re-
duction is increased with the increase of P,. The value of P,
depends on the component unavailability and system scale.
In general, the order of magnitude of the branch unavailabili-
ty is —3. If a transmission system has 200 components and
the component unavailability is 0.005, P, will be 0.7358.
For 300 components with the same unavailability, P, will be
0.5574. Therefore, the lower-order states have a relatively
high cumulative probability. The effect of the sample size re-
duction is significant.

To make the reliability index accuracy not affected by the
separation of the lower-order states, the SSP technique takes
into account the contributions of the lower-order states on re-
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liability indices by adding enumeration calculation. Due to
the tiny number of the lower-order states, the amount of enu-
meration computation added by the SSP technique is much
smaller than the amount of simulation computation reduced
by the SSP technique. Therefore, the SSP technique can sig-
nificantly improve computational efficiency.

Another advantage of SSP technique is its complementari-
ty with BD technique. With the system scale decreases, the
cumulative probability of the lower-order states increases,
and the branch coupling becomes stronger, which weakens
the OPF reduction capacity of BD. In comparison, the in-
crease of the cumulative probability of lower-order states en-
hances the OPF reduction capacity of SSP technique. The
complementary nature of BD and SSP makes BIRA well
suited for systems with different scales.

C. Reliability Index Formulation

To accommodate the SSP technique, a new reliability in-
dex formulation is deduced based on (1). Since the SSP tech-
nique combines the lower-order state enumeration and high-
er-order state simulation, this new formulation can be ex-
pressed as a superposition of the formulations of these two
parts. The formulation of each part is a conditional expecta-
tion multiplied by the corresponding probability weight. The
new formulation of reliability index R can be expressed as:

R=E(AlllseS)=P,E(Al'lseS,)+
(1-P,) E(ALls€5S,)=P,R,+(1-P,)R, (13)
where S, is the higher-order subspace; S, is the lower-order
subspace; 1—P, is the cumulative probability of the higher-
order states, i.e., the probability weight of the higher-order

subspace; and R, and R, are the conditional expectations
based on S; and S, respectively. P;, R;, and R, are given

by:
P 2P (149
1
R,=E(Allls€S,)= p 2Pl (15)
' 1 1<, .
RH:E(AIS ‘S € SH) = l—PL zPsMsz NEAIS(I') S(I)ESH
seSy, i=1

(16)
where s(i) is the i" sample of state s, which is sampled based
on the conditional probability P /(1 —P,).

By substituting (15) and (16) into (13), we can obtain:

R=P,R,+(1-P, )Ry~ D P AL+

s€s,
(I—PL)%ZAA&) (17)

s@e Sy,

The approximate equal sign in (17) indicates that the re-
sults obtained by BIRA are the estimated values of the true
reliability indices. The estimated values are accurate and
credible when a strict stopping criterion is satisfied.

D. Process of Reliability Index Computation Using BIRA

The BIRA consists of the state selection technique, i.e.,
the SSP technique, the state screening technique, i.e., the BD
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technique, the state analysis algorithm, i.e., the OPF algo-
rithm, and the new reliability index formulation. The process
of reliability index computation using BIRA is illustrated in
Fig. 4, where By and fBppys .. are the variation coefficient
of the expected energy not supplied (EENS) estimator and
the given stopping threshold, respectively.

Enumeration Input data and establish the system

process independence matrix
i
| Create the lower-order subspace S, |
T
]
| Enumerate a contingency state s in S, |
i
the next - ; ;
state | Calculate the modified impact increment A/{

| Calculate the state impact /, using OPF | |

i
|
|
|
|
|
|
|
|
|
|
|
|
|
|
!
|
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|
|
|
|
|
|
|
|
|
|
|
|
|
|
I
|

Simulation
process

| Sample a state s in higher-order subspace S, |

v
| Establish the reachability matrix of s |

Are all elements in
the matrix equal to 1?

N

Set |

i | Sample the
. |ar=o

Calculate the state impact /, using OPF e e

’ | Calculate the modified impact increment A/{
T

!

| Calculate or update Bzpys |

Y

Fig. 4. Process of reliability index computation using BIRA.

IV. CASE STUDY

The validity and applicability of BIRA are verified based
on IEEE 118-bus and IEEE 145-bus test systems in Matpow-
er 7.1. In contrast to the reliability assessment of the com-
posite generation and transmission system, the reliability as-
sessment of the transmission system focuses on the influence
of branch outages on power adequacy [1]. Therefore, we sup-
pose that the generation units of the test systems are 100%
reliable. All branches have the same availability, i.e., the av-
erage of the branch availability of the IEEE reliability test
system [22].

Our case studies focus on the two most concerned reliabil-
ity indices, namely EENS and probability of load curtail-
ments (PLC). During the simulation process, when S, is
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less than a given stopping threshold, the simulation should
be stopped. The stopping thresholds of the simulation meth-
ods (including MCS, IIMCS, and BIRA) are all set to be
0.05, and the independence threshold of BIRA is set to be
5%. The results obtained under a very strict stopping thresh-
old, i.e., Brpyscon=0.01, are considered as the benchmarks. If
the relative error between the result of a method and the cor-
responding benchmark is less than 5%, we consider the re-
sult to be precise. In the following case studies, we first de-
termine whether the methods can satisfy the accuracy re-
quirement. After that, the methods that cannot meet the accu-
racy requirement are excluded and the computational effi-
ciency of the remaining methods is compared.

A. Case Study on IEEE 118-bus Test System

Table I illustrates the accuracy of annualized reliability in-
dices obtained by different methods in IEEE 118-bus test
system, where (1) and (2) represent the enumeration order.
The annualized reliability indices are calculated based on the
peak load level. With the same enumeration order, the reli-
ability index accuracy of IISE is much higher than that of
SE. This is because IISE transfers partial impacts of the
higher-order states to the corresponding lower-order ones,
which increases the contributions of the enumerated states to
reliability indices. The EENS error of IISE(2) is 9.56%.
With the increase of enumeration order, this error will be
less than 5%. However, more than one million OPF analyses
are required by IISE(3). Therefore, it is impractical for the
enumeration methods to obtain accurate solutions. In con-
trast, the simulation methods (including MCS, IIMCS, and
BIRA) can satisfy the accuracy requirement with an accept-
able amount of computation. The differences between their
reliability index errors are due to the randomness of statis-
tics.

TABLE I
ACCURACY OF ANNUALIZED RELIABILITY INDICES OBTAINED BY DIFFERENT
METHODS IN IEEE 118-BUS TEST SYSTEM

Method EENS EENS PLC PLC Bronsoon

(MWh/year) error (%) (%) error (%) :

Benchmark 967.66 0.69 0.01
SE(1) 245.87 74.59 0.18 73.91
SE(2) 580.59 40.00 0.38 44.93
TISE(1) 820.23 15.24 0.64 7.25
IISE(2) 875.13 9.56 0.68 1.45

MCS 936.11 3.26 0.69 0.05

1IMCS 990.49 2.36 0.69 0.05

BIRA 989.05 2.21 0.69 0.05

Table II illustrates the accuracy of annual reliability indi-
ces obtained by different methods in IEEE 118-bus test sys-
tem. The annual indices are calculated based on an 8-level
load model. The load model is created from the 8736-hour
load duration curve [24]. The 30% peak load is used as the
lowest level. The load increment for the later levels is 10%
peak load. By comparing Table 1 and Table II, we can find
that the enumeration methods, i.e., SE and IISE, are more ac-
curate in calculating annual indices than in calculating annu-
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alized indices. This is because the system with the 8-level
load model is more reliable than that with peak load. In con-
trast, the accuracy of the sampling methods is not affected
by the system reliability.

TABLE 11
ACCURACY OF ANNUAL RELIABILITY INDICES OBTAINED BY DIFFERENT
METHODS IN IEEE 118-BUS TEST SYSTEM

EENS EENS PLC PLC

Method  \rwhiyear) error (%) (%) error (%) Poenscon
Benchmark 460.89 0.38 0.01
SE(1) 199.35 56.75 0.19 50.00
SE(2) 357.14 2251 0.32 18.75
IISE(1) 360.20 21.85 0.33 13.16
IISE(2) 430.64 6.56 0.38 0
MCS 448.15 2.76 0.38 0 0.05
IIMCS 446.49 3.12 0.38 0 0.05
BIRA 450.65 2.23 0.38 0 0.05

Table III illustrates the computational efficiency of differ-
ent methods based on annualized reliability index calculation
in IEEE 118-bus test system. The computational efficiency is
quantified by CPU time. Compared with MCS, the computa-
tional efficiency of IIMCS is improved by 27.53%. This is
because IIMCS reduces the sample size by lowering simula-
tion variance. The sample size reduction can cut down the
number of OPF analyses. Compared with IIMCS, the compu-
tational efficiency of BIRA is 73.83 times higher. This is be-
cause BIRA avoids repetitive OPF analyses of the first-order
states and omits the OPF analyses of a part of the higher-or-
der states. The BIRA is composed of the BD and SSP tech-

niques. To fully demonstrate the effect of BD and SSP tech-
niques, we implement the two techniques separately. The
BD in the table represents the method after the SSP tech-
nique is disabled. This method is essentially the combination
of BD technique and IIMCS method. By comparing BD
method with IIMCS method, we can find that the BD meth-
od has an approximately equal sample size but fewer OPF
analyses. This is because, by implementing BD technique,
the OPF analyses of a proportion of sampled contingency
states can be omitted. Since branch decoupling determination
is not time-consuming, the CPU time cost by BD technique
is branch relation estimation time. The branch relation esti-
mation time is only 3 s. The simulation time saved by BD
technique is 521 s. Therefore, the time saved by BD tech-
nique is much larger than the time cost by BD technique.
The SSP in the table represents the method after the BD
technique is disabled. This method is essentially the combi-
nation of the SSP technique and IIMCS method. Compared
with IIMCS, the SSP method has a much smaller sample
size and number of OPF analyses. This is because replacing
lower-order simulation with lower-order enumeration can sig-
nificantly reduce the sample size and the number of OPF
analyses. The simulation time saved by SSP technique is
2102 s. The enumeration time cost by SSP technique is only
7 s. Therefore, the time saved by SSP technique is much
larger than the time cost by SSP technique. Compared with
BD technique, the effect of SSP technique is more signifi-
cant. This is because the cumulative probability of the lower-
order states of the IEEE 118-bus test system is relatively
high. According to the sample size reduction theorem, the
sample size reduction and the cumulative probability are pos-
itively correlated.

TABLE III
COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS BASED ON ANNUALIZED RELIABILITY INDEX CALCULATION IN IEEE 118-BUS TEST SYSTEM

. Number of sampled Number of CPU time (s)

Method Sample size . - - - -
contingency states  OPF analyses  Branch decoupling ~ Enumeration Simulation Total
MCS 163687 73100 73100 2863 2863
IIMCS 130825 58622 58622 2245 2245
BD 131986 58910 45197 3 1724 1727
SSP 3605 3605 3791 143 150
BIRA 3610 3610 651 3 7 20 30

Table IV illustrates the computational efficiency of differ-
ent methods based on annual reliability index calculation in
IEEE 118-bus test system. It can be observed that the effi-
ciency of the simulation methods in calculating annual indi-
ces is lower than that in calculating annualized indices. This
is because the sampling efficiency of MCS usually decreases
with the improvement of system reliability. For MCS,
IIMCS, and SSP, the number of OPF analyses is higher than
that of sampled contingency states. This is because, for each
sampled contingency state, it is necessary to obtain the state
impact at each load level. If the state impact with peak load
is not 0, the state should be further analyzed using OPF at
the lower load level.

The BIRA method involves two preset parameters, i.e.,
the stopping threshold f;\., and branch-independence

threshold A. The value of S, determines whether the
method converges when the simulation stops. The conver-
gence contains two meanings, i.e., credibility and accuracy.
Due to the randomness of statistics, the reliability assess-
ment under a non-strict threshold still has the probability of
obtaining accurate results. However, if the evaluation is re-
peated several times under this threshold, the results may be
dramatically different, making the results lack credibility. To
fully illustrate the effect of £, ., on the convergence of BI-
RA, we select different 4\ .., and perform ten times evalua-
tions under each ;... The convergence process can be de-
scribed by the distributions of reliability index errors. Figure 5
illustrates the distributions of reliability index errors corre-
sponding to different ;s ., in IEEE 118-bus test system.
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TABLE IV
COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS BASED ON ANNUAL RELIABILITY INDEX CALCULATION IN IEEE 118-BUS TEST SYSTEM

Number of sampled Number of

CPU time (s)

Method Sample size . - - - -

contingency states ~ OPF analyses  Branch decoupling Enumeration Simulation Total
MCS 263162 118120 123585 5566 5566
1IMCS 294907 131980 138503 6051 6051
BD 293378 131509 106802 3 4405 4408
SSP 5276 5276 6131 7 224 231
BIRA 5212 5212 1245 3 7 41 51

15¢ The branch-independence threshold A determines the

= EENS error branch relation accuracy and further affects reliability index

S 10l — Average value curveg accuracy and computational efficiency. To eliminate the dis-

x5 turbance of statistical randomness, we only enumerate the

5 second-order states and calculate the second-order EENS

Z sl with different A. The second-order EENS refers to the contri-

& bution of the second-order states to the entire EENS. When

A is equal to 0, no contingency states are screened out.

0 ; ‘ . Therefore, the EENS obtained with A=0 and the correspond-

0.03 0.04 0.05 0.06 0.07 ing CPU time can be used as the benchmarks. Figure 6 illus-

Brens. con trates the effects of A on the second-order EENS error and

@ computational efficiency in IEEE 118-bus test system. There

10 s PLC error is a positive correlation between A and the computational ef-
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Fig. 5. Distribution of reliability index errors corresponding to different
Brevs.con in IEEE 118-bus test system. (a) Distribution of EENS error corre-
sponding to different S\, (b) Distribution of PLC error corresponding
to different £\ o

o 1
0.04 0.07

According to the distribution of EENS error in Fig. 5(a),
the fluctuation of EENS error decreases with the decrease of
Brens.conr Therefore, we can consider that the evaluation credi-
bility increases with the decrease of ., Besides, with
the decrease of ;v ... the overall trend of EENS error is
downward. The phenomenon can be verified by the down-
ward trend of the average value. Therefore, with the de-
crease of f ;s the evaluation accuracy is improved. Ac-
cording to the above analysis, with the decrease of B\ com
the convergence degree is improved. It should be empha-
sized that with the decrease of f;ys.,,» the computational
burden increases. We should choose an appropriate stopping
threshold to balance the convergence degree and computa-
tional efficiency. The comparison between Fig. 5(a) and Fig.
5(b) shows that the convergence speed of BIRA when calcu-
lating PLC is faster than that when calculating EENS. This
is because, with the same sample size, the variation coeffi-
cient of the PLC estimator is less than that of the EENS esti-
mator.

ficiency. Similarly, 4 and the EENS error are also positively
correlated. When 1 is set to be 5%, there is no error in
EENS and the efficiency improvement is significant. In this
case, we can get accurate reliability indices with high com-
putational efficiency. As A continues to increase, we can get
higher computational efficiency at the cost of lower accura-
cy. However, when 4> 10%, the EENS error increases expo-
nentially as CPU time decreases. Therefore, to balance accu-
racy and efficiency, the threshold should not be larger than
10%.
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Fig. 6. Effects of 1 on second-order EENS error and computational effi-
ciency in IEEE 118-bus test system.

B. Case Study on IEEE 145-bus Test System

Table V illustrates the accuracy of annualized reliability in-
dices obtained by different methods in IEEE 145-bus test
system. The SE and IISE cannot meet the accuracy require-
ment. Besides, the reliability index errors of IEEE 145-bus
test system are larger than those of IEEE 118-bus test sys-
tem. This is because, with the increase of system scale, enu-
meration methods are more difficult to meet the accuracy re-
quirement. In contrast, the simulation methods can meet the
accuracy requirement with acceptable calculation time.
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TABLE V
ACCURACY OF ANNUALIZED RELIABILITY INDICES OBTAINED BY DIFFERENT
METHODS IN IEEE 145-BUS TEST SYSTEM

EENS EENS PLC PLC

Method (MWh/year) error (%) (%) error (%) Prees.con
Benchmark 7531.70 1.03 0.01
SE(1) 1500.78 80.07 0.20 79.61
SE(2) 4064.70 46.03 0.56 45.63
1ISE(1) 6322.86 16.05 0.95 8.05
1ISE(2) 6700.95 11.03 1.01 1.94
MCS 7698.15 2.21 1.02 0.90 0.05
IMCS 7376.53 2.06 1.03 0 0.05
BIRA 7422.18 1.45 1.03 0 0.05

Table VI illustrates the computational efficiency of differ-
ent methods based on annualized reliability index calculation

in IEEE 145-bus test system. As an improved MCS method,
the computational efficiency of IIMCS is 8.33% lower than
that of MCS. This is because the effect of IIMCS depends
on the state impact distribution of the evaluated system.
IIMCS cannot reduce the simulation variance of the IEEE
145-bus test system. BIRA still performs well in computa-
tional efficiency. The computational efficiency of BIRA is
32.53 times higher than that of IIMCS. By comparing Table
IT and Table IV, we can find that the effect of BD technique
becomes stronger. While for the SSP technique, the effect be-
comes weaker. This is because, with the increase of system
scale, the branch coupling becomes weaker, which enhances
the OPF reduction capacity of BD technique. Besides, with
the increase of system scale, the cumulative probability of
lower-order states decreases, which lowers the OPF reduc-
tion capacity of SSP technique. The complementary nature
of BD and SSP techniques makes BIRA well suited for the
systems with different scales.

TABLE VI
COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS BASED ON ANNUALIZED RELIABILITY INDEX CALCULATION IN IEEE 145-BUS TEST SYSTEM

Number of sampled Number of

CPU time (s)

Method Sample size . - - - -
contingency states  OPF analyses  Branch decoupling Enumeration Simulation Total
MCS 59140 46730 46730 1021 1021
1IMCS 64091 50622 50622 1106 1106
BD 63585 50225 18580 4 493 497
SSP 8058 8058 8511 11 185 196
BIRA 7998 7998 1143 4 11 19 34

V. CONCLUSION

This paper proposes a BIRA approach for transmission
systems that consists of the BD and SSP techniques. The
BD technique takes advantage of branch relations to screen
out a proportion of sampled contingency states. The OPF
analyses of these states can be omitted. Since BD technique
cannot handle the first-order states, and the effect of BD
technique decreases with the decrease of system scale, the
SSP technique has been developed to compensate for the
shortcomings of BD technique. The SSP technique can avoid
repeated OPF analyses of the first-order states. In addition,
with the decrease of system scale, the effect of SSP tech-
nique is enhanced. The good applicability of BIRA is
achieved by the complementarity of BD and SSP techniques.
The case studies on two different test systems have verified
the validity and applicability of our approach.

APPENDIX A

According to mathematical induction, (3) can be further
expressed as:

A= }:—1

In this paper, we use a set of outage branches to represent
the corresponding branch outage state. If two branch sets are
independent, the corresponding states are independent. Let

ng—1

le—zzM

ue!)" k= ue.Ok

(A1)

n, represent the outage order of 4UB. When n,=2, accord-
ing to (3) and the impact superposition theorem, we can ob-
tain:

1

AUB

—1,—I,=Al

=0 (A2)
where Al , is the impact increment of AU B.

Suppose that in the case of 2<n,<k, Al , is still equal
to 0. Let i represent a branch and AU {i} is independent of

B. We can deduce that Al is equal to 0. The deriva-

tion process is as follows:

n
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where 7, is the outage order of AU {i}; and #n, is the outage
order of B.

According to (A3), when n,=k+1, Al is equal to 0.
The impact increment theorem is proven.
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