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Abstract——This paper proposes a branch-independence-based 
reliability assessment approach for transmission systems. The 
approach consists of branch decoupling and state-space parti‐
tion techniques. By integrating an impact-increment-based reli‐
ability index calculation model and the proposed branch decou‐
pling technique, a proportion of sampled contingency states no 
longer need to be analyzed using the time-consuming optimal 
power flow (OPF) algorithm. In this way, the technique speeds 
up the calculation of reliability indices. Since first-order contin‐
gency states have a high probability of being sampled, we pro‐
pose a state-space partition technique to replace first-order con‐
tingency state simulation with first-order contingency state enu‐
meration. Consequently, the calculation of reliability indices is 
further accelerated by avoiding a large amount of repetitive OPF 
analyses during simulation process without affecting reliability in‐
dex accuracy. The validity and applicability of our approach are 
verified using the IEEE 118-bus and IEEE 145-bus systems. Nu‐
merical results indicate that the proposed approach can improve 
computational efficiency without decreasing accuracy.

Index Terms——Branch decoupling, impact increment, optimal 
power flow (OPF), reliability assessment, state-space partition, 
transmission system.

I. INTRODUCTION 

RELIABILITY assessment is essential for transmission 
system planning. The reliability indices can be accurate‐

ly calculated with consideration of the probabilities and im‐
pacts, i.e., severities, of all states. However, the impact of a 
contingency state needs to be calculated using the optimal 
power flow (OPF) algorithm, which is a time-consuming pro‐
cess. In addition, the number of contingency states can be 
enormous, as it increases exponentially with the system 
scale. Therefore, the OPF analysis can only be performed 

for a portion of contingency states, which may introduce re‐
markable reliability index errors. It is a long-term goal and a 
great challenge for researchers to obtain accurate reliability 
indices with high computational efficiency.

Many reliability assessment methods have been developed 
in recent decades. According to different state selection tech‐
niques and reliability index formulations, the reliability as‐
sessment methods for transmission systems are generally cat‐
egorized into state enumeration (SE) method and Monte Car‐
lo simulation (MCS) method. The traditional SE method enu‐
merates contingency states up to a given order (usually the 
second or third), computes the corresponding probability and 
impact for each enumerated state, and calculates the reliabili‐
ty indices by accumulating the product of the probability and 
impact [1], [2]. The SE method may not yield accurate reliabil‐
ity indices due to the omission of higher-order states, especial‐
ly when evaluating large-scale or low-reliability power sys‐
tems. Although some techniques such as fast sorting [3], [4], 
contingency screening [5] - [7], and contingency ranking [8] 
have been developed to address this problem, SE method is 
more suitable for small-scale or high-reliability systems.

MCS method can be divided into sequential MCS and 
non-sequential MCS depending on whether chronological 
characteristics are considered. Compared with sequential 
MCS, non-sequential MCS has a much smaller computation‐
al burden, making it be used more widely. This paper only 
focuses on non-sequential MCS. The traditional non-sequen‐
tial MCS extracts individual states from the state space 
based on component availability, calculates the impact of 
each sampled contingency state, and iteratively updates the 
average impact of all sampled states to obtain reliability indi‐
ces until the given stopping criterion is satisfied [9]. The 
method converges if the stopping criterion is strict enough. 
In this case, the reliability indices obtained are accurate and 
credible. The statistical characteristic makes MCS method 
more suitable for evaluating large-scale systems. However, 
in the case of significant simulation variance, a considerable 
amount of OPF analyses must be performed to make the 
method converge, leading to the inefficient computation of 
reliability indices. To address this issue, some techniques 
such as state-space pruning [10], [11], importance sampling 
[12], subset simulation [13], and cross-entropy [14], [15] 
have been developed to improve sampling efficiency, i.e., to 
reduce the sample size required for convergence. Moreover, 
some state classification techniques [16]-[18] have been de‐
veloped to classify a proportion of contingency states into 
failed states, i.e., loss of load states, and success states by a 
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small amount of computation. During the simulation, success 
states no longer require the OPF analysis, thus improving 
the computational efficiency.

The above techniques do not exploit the connection be‐
tween state impacts to improve the accuracy and computa‐
tional efficiency of reliability indices. In [19], an impact-in‐
crement-based reliability index calculation model has been 
proposed and combined with the SE method to perform the 
reliability assessment for integrated energy systems. This 
model can increase the contribution of lower-order states to 
the reliability indices by transferring partial impacts of high‐
er-order states to those of the corresponding lower-order 
ones. In this way, the reliability indices obtained by state 
enumeration are more accurate. In [20], an incremental reli‐
ability assessment approach has been proposed to efficiently 
calculate the reliability enhancement, i.e., the incremental re‐
liability indices, brought by the planned scheme to the exist‐
ing system. The approach takes advantage of the impact cor‐
relation between the added components and existing compo‐
nents to separate the incremental reliability indices from the 
entire reliability indices and reduce the set of states that may 
have a contribution to the incremental reliability indices. In 
this way, the reliability enhancement brought by the planned 
scheme can be quickly quantified. However, for this ap‐
proach, the planned scheme is limited to add branches to the 
existing system. Moreover, the load level of the planned sys‐
tem must be the same as that of the existing system. The 
two constraints narrow the applicability of this approach. In 
[21], a contingency set partition based impact transfer ap‐
proach has been developed to improve the sampling efficien‐
cy. With this approach, lower-order states are separated from 
sample space, which prevents these high probability states 
from being repeatedly sampled. Based on this separation, the 
differences between non-zero impacts and zero impacts of 
higher-order states are reduced by impact transfer, which low‐
ers the higher-order simulation variance and further improves 
the sampling efficiency.

For modern power system planning, the accuracy or effi‐
ciency improvement brought by existing techniques is not 
enough. As modern power systems become more and more 
complex, the computational burden of OPF increases. Be‐
sides, in optimal planning, the reliability assessment needs to 
be done repetitively. In extreme natural disasters, the system 
reliability information needs to be updated quickly. Therefore, 
a higher computational efficiency is required for reliability as‐
sessment while ensuring the accuracy of reliability indices.

Based on the impact-increment-based reliability index cal‐
culation model in [19], this paper proposes a branch-indepen‐
dence-based reliability assessment (BIRA) approach to fur‐
ther improve the computational efficiency of transmission re‐
liability assessment. The BIRA approach consists of branch 
decoupling (BD) and state-space partition (SSP) techniques. 
The BD technique takes advantage of the weak power flow 
coupling between certain branches to reduce the number of 
OPF analyses. If the outage branches of a branch outage 
state can be decoupled into two independent branch sets, 
this state does not need to be analyzed with OPF. The 
branch outage state refers to a contingency state where no 
generation unit fails. Since the first-order states have a high 

probability of being sampled and cannot be handled by BD 
technique, these states are separated from sample space by 
SSP technique to further improve the computational efficien‐
cy. With the SSP technique, the simulation of the first-order 
states is replaced by the enumeration of the first-order states. 
This avoids repetitive OPF analyses of the first-order states. 
In addition, a new reliability index formulation is derived 
considering the adaptation to SSP technique.

The rest of this paper is organized as follows. Section II 
introduces the impact-increment-based reliability index calcu‐
lation model. The BIRA approach is proposed in Section III. 
Case studies are presented in Section IV, and conclusions are 
drawn in Section V.

II. IMPACT-INCREMENT-BASED RELIABILITY INDEX 
CALCULATION MODEL 

Compared with the traditional reliability index calculation 
model, the impact-increment-based reliability index calcula‐
tion model transforms state impact into modified impact in‐
crement. The transformation increases the contribution of 
lower-order states to the reliability index. Let R represent the 
reliability index. This model is expressed as:

R =E ( Is|sÎ S ) =E (DI ′s |sÎ S ) =∑
sÎ S

PsDI ′s (1)

where S is the state space of the evaluated system; s is a 
state denoted by the set of corresponding outage compo‐
nents, when s =Æ, it is the normal state, otherwise, it is a 
contingency state; Ps is the state probability; Is is the state 
impact, which is obtained by OPF analysis; and DI ′s is the 
modified impact increment, which can be expressed as:

DI ′s =
DIs∏

jÎC - s

aj
(2)

where aj is the availability of component j; C is the set of 
all components in the system; C - s is the set of components 
excluding the outage components corresponding to state s; 
and DIs is the impact increment, which can be expressed as:

DIs =∑
k = 1

ns

( - 1) ns - k∑
uÎΩk

s

Iu (3)

where ns is the number of outage components corresponding 
to state s; u is a lower-order state corresponding to state s; 
and Ωk

s is a set of kth-order states corresponding to state s, 
which can be expressed as:

Ωk
s = {v|vÌ sCard ( v) = k} (4)

where v is a lower-order state corresponding to state s; 
Card ( v) is the cardinality of v.

It should be noted that this model must be combined with 
a state selection method such as SE or MCS to complete reli‐
ability assessment. The IISE method represents the combina‐
tion of SE method and this model. Similarly, the IIMCS meth‐
od represents the combination of MCS method and this model.

III. BIRA APPROACH 

A. BD Technique

Based on the impact-increment-based reliability index cal‐
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culation model, the BD technique takes advantage of branch 
relations to reduce the number of OPF analyses required by 
the IIMCS method. The cooperation mechanism of the BD 
technique and IIMCS method is illustrated in Fig. 1. The 
IIMCS method consists of three basic steps, i.e., state selec‐
tion, state analysis, and reliability index calculation. Before 
embedding BD technique, the IIMCS method must perform 
the OPF analysis for each sampled contingency state to ob‐
tain the state impact. After embedding the BD technique, a 
proportion of the sampled contingency states are screened 
out. The OPF analyses of these states can be avoided. The 
BD technique estimates the relations (including dependence 
or independence) between all branches and records the 
branch relations in a matrix. Thereafter, the relations be‐
tween the outage branches of a sampled contingency state 

are obtained from the matrix. It is important to note that the 
BD technique can only handle the contingency state with the 
outage order higher than 1. Finally, the BD technique deter‐
mines whether the outage branches of the state can be decou‐
pled according to the branch relations. If the outage branch‐
es can be decoupled into two independent branch sets, the 
modified impact increment of this state can be obtained di‐
rectly. Otherwise, the state should be analyzed with the OPF 
algorithm. The BD technique significantly reduces the com‐
putation effort of reliability assessment by reducing the num‐
ber of OPF analyses. In the following, we first propose the 
definition of branch relations and two theorems as the theo‐
retical foundation of the BD technique. After that, branch re‐
lation estimation and branch decoupling determination are in‐
troduced.

The definition of branch relations is proposed as follows. 
The outage of a branch (including line or transformer) set 
changes power flow distribution. If two branch sets have no 
common branch, and their outages cannot affect the power 
flow on the same branch, these branch sets are independent. 
Conversely, if their outages affect the power flow on the 
same branch, these two branch sets are dependent. In other 
words, branch independence is that there is no power flow 
coupling between two branch sets. In practical utilization, if 
the power flow coupling between two branch sets is weak 

enough, these branch sets are considered independent.
An example system in Fig. 2 is used to illustrate the defi‐

nition of relations between branches. The generation unit is 
considered to be 100% available and have adequate power. 
The transmission lines are considered to have sufficient 
transmission capacity. According to the network structure, 
the outage of Line 1 affects only the power flow on Line 1 
and accordingly causes a load curtailment of 5 MW on Bus 
1. The outage of Line 2 affects the power flow on Line 2 
and Line 3. The corresponding load curtailments on Bus 2 

Start

Estimate the relations between all branches and
record the relations in a matrix

Is the number of outage

branches greater than 1?

Calculate the impact of the contingency state by

performing an OPF analysis or obtain the impact

of the normal state directly 

Can the outage branches

be decoupled?

Sample the next state

Sample a system state based on reliability data

Obtain the relations between the
outage branches from the matrix

Output reliability indices

Input power flow data and reliability data

Obtain the modified impact increment

of this contingency state directly

Calculate the modified impact increment

based on the state impact

Substitute all obtained modified impact increments

into (1) to calculate reliability indices

Do the reliability indices meet

stopping criterion?

End

N

Y

N

N

Y

Y

Fig. 1.　Cooperation mechanism of BD technique and IIMCS method.
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and Bus 3 are 6 MW and 8 MW, respectively. The outage of 
Line 3 affects the power flow on Line 2 and Line 3. The cor‐
responding load curtailment on Bus 3 is 8 MW. Therefore, 
the outages of branch sets {1} and {23} cannot affect the 
power flow of the same branch. The outages of branch sets 
{2} and {3} can affect the power flow of the same branch. 
According to the definition of branch relations, branch sets 
{1} and {23} are independent; while branch sets {2} and {3} 
are dependent.

According to Fig. 2, we can obtain:
I{ }1 + I{ }23 = 5 + 14 = 19 = I{ }123 (5)

I{ }2 + I{ }3 = 14 + 8 ¹ 14 = I{ }23 (6)

where I{ }·  is the outage impact of branch set {·}. In other 

words, if all branches in branch set {·} are out of service, the 
outage impact is I{ }· . In the rest of this paper, the outage im‐

pact of a branch set is simply referred to as the impact of a 
branch set. Besides, since the outage of a branch set corre‐
sponds to the occurrence of a specific contingency state, this 
branch set can be used to represent the contingency state. 
Thus, the impact of this branch set is equivalent to the state 
impact.

According to (5) and (6), we can suppose that the impacts 
of two independent branch sets have superposition property. 
An impact superposition theorem is proposed as follows. Let 
A and B represent two branch sets. Let IA and IB represent 
the impacts of A and B, respectively. If A and B are indepen‐
dent, the sum of IA and IB can be expressed as:

IA + IB = IAB (7)

where IAB is the impact caused by the simultaneous failure 
of A and B.

The impact superposition theorem is confirmed by the ex‐
planation that outage branches no longer have power trans‐
mission capacity. If the load on outage branches cannot be 
transferred, or if some branches are overloaded due to load 
transfer, the system must reduce the load. The load curtail‐
ment is the branch outage impact. Suppose A is branch set 
{ij}, and the outage of A changes the power flow on branch‐
es i, j, k, l. Let Pmk and Pml represent the maximum transmis‐
sion capacities of k and l, respectively. Let Pi0, Pj0, Pk0, Pl0 
represent the original power flows, i.e., the power flows be‐
fore A fails, on branches i, j, k, l, respectively. IA can be con‐
sidered as a function of the original power flow, which is ex‐
pressed as:

IA = f ( Pi0Pj0Pk0Pl0PmkPml ) (8)

In (8), Pmk and Pml can be considered as constants; and 
Pi0, Pj0, Pk0, and Pl0 depend on the state of the system before 
A fails. Since B and A are independent, the outages of B can‐
not affect the inputs of f (·). That is, the outage of B cannot 
affect IA. Similarly, the outage of A cannot affect IB. In this 
case, the sum of IA and IB is equal to IAB.

Based on the impact-increment-based reliability index cal‐
culation model and impact superposition theorem, we can 
propose an impact increment theorem (the corresponding 
proof process is presented in Appendix A): if A and B are in‐
dependent, the impact increment of AB is 0.

According to the impact increment theorem, if the outage 
branches of a branch outage state can be decoupled into two 
independent branch sets, the impact increment of this state is 
0. According to (2), when the impact increment is 0, the 
modified impact-increment is 0. That is, the modified impact-
increment of this contingency state can be obtained directly 
without using OPF analysis.

The example system in Fig. 2 can be used to showcase 
the benefit of the impact increment theorem. Let R3 repre‐
sent the reliability index of the system. It can be expressed 
as:
R3 =P{ }1 I{ }1 +P{ }2 I{ }2 +P{ }3 I{ }3 +P{ }12 I{ }12 +P{ }13 I{ }13 +P{ }23 I{ }23 +

P{ }123 I{ }123 =P{ }1 DI ′{ }1 +P{ }2 DI ′{ }2 +P{ }3 DI ′{ }3 +P{ }12 DI ′{ }12 +
P{ }13 DI ′{ }13 +P{ }23 DI ′{ }23 +P{ }123 DI ′{ }123 (9)

where P{ }·  is the outage probability of branch set {·}; and 

DI ′{ }·  is the modified impact increment of branch set {·}. The 

right side of the first equal sign is the traditional calculation 
model. The right side of the second equal sign is the impact-
increment-based reliability index calculation model. Since 
{1} is independent of {2}, {3}, and {23}, respectively, we 
can directly obtain the modified impact increments DI ′{ }12 , 

DI ′{ }13 , and DI ′{ }123 . In this way, the impact-increment-based 

reliability index calculation model can be simplified as:
R3 =P{ }1 DI ′{ }1 +P{ }2 DI ′{ }2 +P{ }3 DI ′{ }3 +P{ }23 DI ′{ }23 (10)

Equation (10) has fewer terms compared with the models 
in (9). Therefore, the number of OPF analyses in transmis‐
sion reliability assessment can be reduced.

To determine whether outage branches can be decoupled, 
we need to obtain branch relations. Branch relations can be 
estimated by calculating power flow variation ratios. Accord‐
ing to the definition, if there is a branch k (k can be the 
same branch as i or j), and the power flow variation ratios 
on branch k satisfy (11), then branches i and j are dependent.

min
ì
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where Pki and Pkj are the power flows on branch k when 
branches i and j fail, respectively. If no branch can satisfy 
(11), branches i and j are independent. Inequality (11) can 
be used as the estimation criteria of branch relations. The 
number on the right side of (11) is the branch-independence 
threshold. Due to the network structure of the transmission 
system, when a branch fails, the power flow variation ratios 

Line 1

6 MW

5 MW 8 MW

G

Line 2
Line 3

Bus 1

Bus 2

Bus 3

Fig. 2.　 Example system for illustrating definition of relations between 
branches.
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on the other branches are usually greater than 0, which 
means that there is power flow coupling between most 
branches. In large-scale transmission systems, most of the 
coupling strengths, i. e., the power flow variation ratios, are 
less than 5%. Since two branches with a coupling strength 
less than 5% can approximately satisfy the impact superposi‐
tion property, we can consider that the coupling is weak 
enough, and the corresponding modified impact increment is 
0. Accordingly, we can replace 0 in (11) with the more ap‐
propriate threshold, i.e., 5%, to obtain higher efficiency with‐
out affecting accuracy.

Based on the above analysis, the relations between all 
branches in the system can be obtained and recorded in a 
matrix, namely the system independence matrix. The system 
independence matrix is a symmetric matrix containing only 
0 and 1. The order of the matrix is equal to the number of 
branches in the system. Let mij represent the element of the 
ith row and jth column of the matrix. If branch i and branch j 
are independent, mij and mji are equal to 0; otherwise, mij 
and mji are equal to 1. The matrix establishment, i.e., branch 
relation estimation, contains the following steps.

Step 1: input the original power flow data and the branch-
independence threshold λ. Initialize two nb-order square ma‐
trices M1 and M2 with all elements of 0, where nb is the 
number of branches in the system. Initialize two counters ic =

0 and jc = 0.
Step 2: set ic = ic + 1. Let branch ic out of service and cal‐

culate the updated power flow of all branches by performing 
a DC power flow analysis. Compute the power flow varia‐
tion ratios of all branches and replace the ith

c  row of M1 with 
the vector of the power flow variation ratios.

Step 3: if ic < nb, go back to Step 2; otherwise, go to 
Step 4.

Step 4: set the elements in M1 larger than λ to be 1, and 
the rest to be 0.

Step 5: set jc = jc + 1. Set kc = jc.
Step 6: set kc = kc + 1. Add the k th

c  row vector of M1 to the 
jth

c  row vector. If the sum vector contains the elements great‐
er than 1, mjckc

 and mkc jc
 in M2 are set to be 1.

Step 7: if kc < nb, go back to Step 6; otherwise, go to 
Step 8.

Step 8: if jc < nb, go back to Step 5; otherwise, stop the 
process. The obtained matrix M2 is the system independent 
matrix.

After obtaining the system independence matrix, we can 
determine whether the outage branches of a contingency 
state can be decoupled. The determination of branch decou‐
pling based on a contingency state example is illustrated in 
Fig. 3.

Let {ijklmn} represent the contingency state example, 
where i, j, k, l, m, and n are the outage branches of this 
state. The elements in the specific positions of the system in‐
dependence matrix correspond to the relations between the 
outage branches. For instance, the element of the ith row and 
jth column of the system independence matrix is 1, indicating 
that branches i and j are dependent. The relations between 
the outage branches are recorded in a new matrix, namely 
the state independence matrix. The diagonal elements of this 
matrix are set to be 0. The contingency state corresponds to 
an undirected graph. The outage branches are regarded as 
the vertices of the graph. If two branches are independent, 
there is no edge between the corresponding two vertices. 
Conversely, if two branches are dependent, there is an edge 
between the corresponding two vertices. From the graph, we 
can find that there is no power flow coupling between 
{ijmn} and {kl}. That is, {ijmn} and {kl} are indepen‐
dent. Therefore, the fact that the outage branches of this 
state can be decoupled is equivalent to the fact that the undi‐
rected graph is disconnected. The connectivity of an undirect‐

ed graph can be determined by analyzing the corresponding 
state independence matrix. The process is as follows. First, 
the state independence matrix is established based on the sys‐
tem independence matrix. The state independence matrix is a 
symmetric matrix containing only 0 and 1. The order of the 
matrix is equal to the outage order of the contingency state. 
Let dij represent the element of the ith row and jth column of 
the matrix. If branch i and branch j are independent, dij and 
dji are equal to 0; otherwise, dij and dji are equal to 1. The di‐
agonal elements of this matrix are set to be 0. The state inde‐
pendence matrix is actually the adjacency matrix of the undi‐
rected graph. Thereafter, the state independence matrix, i. e., 
the adjacency matrix, is transformed into the reachable ma‐
trix using Floyd algorithm. If all the elements in the reach‐
able matrix are 1, the undirected graph is connected; other‐
wise, the undirected graph is disconnected.

According to the estimation of branch relations and the de‐
termination of branch decoupling, the BD technique requires 
nb times DC power flow analyses and ms times Floyd analy‐
ses during the simulation, where ms is the number of sam‐
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Fig. 3.　Illustration of determination of branch decoupling based on a contingency state example.
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pled contingency states. In contrast, the benefit of BD tech‐
nique far outweighs its cost, which can be explained from 
two aspects. First, the BD technique avoids a large number 
of OPF analyses by taking advantage of the weak coupling 
between some branches. And the number of DC power flow 
analyses required by BD technique is only equal to the num‐
ber of branches. Therefore, the number of reduced OPF anal‐
yses is much greater than that of increased DC power flow 
analyses. Second, the Floyd analysis is not time-consuming.

It should be noted that the BD technique cannot handle 
the first-order states. Therefore, if the sample space contains 
the first-order states, it is inevitable to repeatedly perform 
OPF analysis on the first-order states during the simulation, 
which puts a burden on the computation.

B. SSP Technique

To further improve the computational efficiency, the SSP 
technique is developed to separate lower-order states from 
the sample space. The normal state and first-order states are 
considered as the the lower-order states. The remaining 
states are the higher-order states. In general, the number of 
lower-order states is much smaller compared with higher-or‐
der states. The cumulative probability of lower-order states 
is higher than that of higher-order states. With the SSP tech‐
nique, all lower-order states are enumerated, and the higher-
order states are sampled.

The SSP technique can reduce the number of OPF analy‐
ses further, which can be explained from two aspects. First, 
since first-order states are no longer sampled, a higher pro‐
portion of sampled contingency states can satisfy the impact-
increment theorem. The modified impact increments of these 
states can be obtained directly. Second, separating lower-or‐
der states from the sample space can greatly reduce the sam‐
ple size needed for convergence, thus cutting down the num‐
ber of sampled contingency states. The sample size reduc‐
tion is confirmed by the sample size reduction theorem, 
which is proposed as follows. Let N0 represent the sample 
size required by IIMCS to meet a given stopping criterion. 
Let N represent the sample size required to meet the same 
stopping criterion under the condition that lower-order states 
are separated from the sample space. We can obtain:

N0

N
³

1
1 -PL

(12)

where PL is the cumulative probability of all lower-order 
states.

According to (12), the lower bound of the sample size re‐
duction is increased with the increase of PL. The value of PL 
depends on the component unavailability and system scale. 
In general, the order of magnitude of the branch unavailabili‐
ty is -3. If a transmission system has 200 components and 
the component unavailability is 0.005, PL will be 0.7358. 
For 300 components with the same unavailability, PL will be 
0.5574. Therefore, the lower-order states have a relatively 
high cumulative probability. The effect of the sample size re‐
duction is significant.

To make the reliability index accuracy not affected by the 
separation of the lower-order states, the SSP technique takes 
into account the contributions of the lower-order states on re‐

liability indices by adding enumeration calculation. Due to 
the tiny number of the lower-order states, the amount of enu‐
meration computation added by the SSP technique is much 
smaller than the amount of simulation computation reduced 
by the SSP technique. Therefore, the SSP technique can sig‐
nificantly improve computational efficiency.

Another advantage of SSP technique is its complementari‐
ty with BD technique. With the system scale decreases, the 
cumulative probability of the lower-order states increases, 
and the branch coupling becomes stronger, which weakens 
the OPF reduction capacity of BD. In comparison, the in‐
crease of the cumulative probability of lower-order states en‐
hances the OPF reduction capacity of SSP technique. The 
complementary nature of BD and SSP makes BIRA well 
suited for systems with different scales.

C. Reliability Index Formulation

To accommodate the SSP technique, a new reliability in‐
dex formulation is deduced based on (1). Since the SSP tech‐
nique combines the lower-order state enumeration and high‐
er-order state simulation, this new formulation can be ex‐
pressed as a superposition of the formulations of these two 
parts. The formulation of each part is a conditional expecta‐
tion multiplied by the corresponding probability weight. The 
new formulation of reliability index R can be expressed as:

R =E (DI ′s |sÎ S ) =PL E (DI ′s |sÎ SL ) +
(1 -PL ) E (DI ′s |sÎ SH ) =PL RL + ( )1 -PL RH (13)

where SH is the higher-order subspace; SL is the lower-order 
subspace; 1 -PL is the cumulative probability of the higher-
order states, i. e., the probability weight of the higher-order 
subspace; and RL and RH are the conditional expectations 
based on SL and SH, respectively. PL, RL, and RH are given 
by:

PL =∑
sÎ SL

Ps (14)

RL =E (DI ′s |sÎ SL ) = 1
PL
∑
sÎ SL

PsDI ′s (15)

RH =E (DI ′s |sÎ SH ) = 1
1 -PL

∑
sÎ SH

PsDI ′s »
1
N∑i = 1

N

DI ′s(i)    s(i)Î SH

(16)

where s(i) is the ith sample of state s, which is sampled based 
on the conditional probability Ps /(1 -PL ).

By substituting (15) and (16) into (13), we can obtain:

R =PL RL + ( )1 -PL RH »∑
sÎ SL

PsDI ′s +

( )1 -PL

1
N∑i = 1

N

DI ′s(i)    s(i)Î SH (17)

The approximate equal sign in (17) indicates that the re‐
sults obtained by BIRA are the estimated values of the true 
reliability indices. The estimated values are accurate and 
credible when a strict stopping criterion is satisfied.

D. Process of Reliability Index Computation Using BIRA

The BIRA consists of the state selection technique, i. e., 
the SSP technique, the state screening technique, i.e., the BD 
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technique, the state analysis algorithm, i. e., the OPF algo‐
rithm, and the new reliability index formulation. The process 
of reliability index computation using BIRA is illustrated in 
Fig. 4, where βEENS and βEENScon are the variation coefficient 
of the expected energy not supplied (EENS) estimator and 
the given stopping threshold, respectively.

IV. CASE STUDY 

The validity and applicability of BIRA are verified based 
on IEEE 118-bus and IEEE 145-bus test systems in Matpow‐
er 7.1. In contrast to the reliability assessment of the com‐
posite generation and transmission system, the reliability as‐
sessment of the transmission system focuses on the influence 
of branch outages on power adequacy [1]. Therefore, we sup‐
pose that the generation units of the test systems are 100% 
reliable. All branches have the same availability, i.e., the av‐
erage of the branch availability of the IEEE reliability test 
system [22].

Our case studies focus on the two most concerned reliabil‐
ity indices, namely EENS and probability of load curtail‐
ments (PLC). During the simulation process, when βEENS is 

less than a given stopping threshold, the simulation should 
be stopped. The stopping thresholds of the simulation meth‐
ods (including MCS, IIMCS, and BIRA) are all set to be 
0.05, and the independence threshold of BIRA is set to be 
5%. The results obtained under a very strict stopping thresh‐
old, i.e., βEENScon = 0.01, are considered as the benchmarks. If 
the relative error between the result of a method and the cor‐
responding benchmark is less than 5%, we consider the re‐
sult to be precise. In the following case studies, we first de‐
termine whether the methods can satisfy the accuracy re‐
quirement. After that, the methods that cannot meet the accu‐
racy requirement are excluded and the computational effi‐
ciency of the remaining methods is compared.

A. Case Study on IEEE 118-bus Test System

Table I illustrates the accuracy of annualized reliability in‐
dices obtained by different methods in IEEE 118-bus test 
system, where (1) and (2) represent the enumeration order. 
The annualized reliability indices are calculated based on the 
peak load level. With the same enumeration order, the reli‐
ability index accuracy of IISE is much higher than that of 
SE. This is because IISE transfers partial impacts of the 
higher-order states to the corresponding lower-order ones, 
which increases the contributions of the enumerated states to 
reliability indices. The EENS error of IISE(2) is 9.56%. 
With the increase of enumeration order, this error will be 
less than 5%. However, more than one million OPF analyses 
are required by IISE(3). Therefore, it is impractical for the 
enumeration methods to obtain accurate solutions. In con‐
trast, the simulation methods (including MCS, IIMCS, and 
BIRA) can satisfy the accuracy requirement with an accept‐
able amount of computation. The differences between their 
reliability index errors are due to the randomness of statis‐
tics.

Table II illustrates the accuracy of annual reliability indi‐
ces obtained by different methods in IEEE 118-bus test sys‐
tem. The annual indices are calculated based on an 8-level 
load model. The load model is created from the 8736-hour 
load duration curve [24]. The 30% peak load is used as the 
lowest level. The load increment for the later levels is 10% 
peak load. By comparing Table I and Table II, we can find 
that the enumeration methods, i.e., SE and IISE, are more ac‐
curate in calculating annual indices than in calculating annu‐

N

Simulation

process Sample a state s in higher-order subspace SH

End

Establish the reachability matrix of s

Are all elements in

the matrix equal to 1?

Y

N

Y

Set

ΔIs' = 0

Sample the

next state

Start

Input data and establish the system

independence matrix

Create the lower-order subspace SL

Enumerate a contingency state s in SL

Calculate the state impact Is using OPF

Y

Calculate PL and RL

Enumeration

process

Enumerate

the next

state

N

Calculate the state impact Is using OPF

Calculate the modified impact increment ΔIs'

Are all s in SL checked?

Calculate the modified impact increment ΔIs'

Calculate or update βEENS

βEENS < βEENS, con?

Compute R = PLRL + (1 � PL)RH

Fig. 4.　Process of reliability index computation using BIRA.

TABLE I
ACCURACY OF ANNUALIZED RELIABILITY INDICES OBTAINED BY DIFFERENT 

METHODS IN IEEE 118-BUS TEST SYSTEM

Method

Benchmark

SE(1)

SE(2)

IISE(1)

IISE(2)

MCS

IIMCS

BIRA

EENS 
(MWh/year)

967.66

245.87

580.59

820.23

875.13

936.11

990.49

989.05

EENS 
error (%)

74.59

40.00

15.24

9.56

3.26

2.36

2.21

PLC 
(%)

0.69

0.18

0.38

0.64

0.68

0.69

0.69

0.69

PLC 
error (%)

73.91

44.93

7.25

1.45

0

0

0

βEENScon

0.01

0.05

0.05

0.05
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alized indices. This is because the system with the 8-level 
load model is more reliable than that with peak load. In con‐
trast, the accuracy of the sampling methods is not affected 
by the system reliability.

Table III illustrates the computational efficiency of differ‐
ent methods based on annualized reliability index calculation 
in IEEE 118-bus test system. The computational efficiency is 
quantified by CPU time. Compared with MCS, the computa‐
tional efficiency of IIMCS is improved by 27.53%. This is 
because IIMCS reduces the sample size by lowering simula‐
tion variance. The sample size reduction can cut down the 
number of OPF analyses. Compared with IIMCS, the compu‐
tational efficiency of BIRA is 73.83 times higher. This is be‐
cause BIRA avoids repetitive OPF analyses of the first-order 
states and omits the OPF analyses of a part of the higher-or‐
der states. The BIRA is composed of the BD and SSP tech‐

niques. To fully demonstrate the effect of BD and SSP tech‐
niques, we implement the two techniques separately. The 
BD in the table represents the method after the SSP tech‐
nique is disabled. This method is essentially the combination 
of BD technique and IIMCS method. By comparing BD 
method with IIMCS method, we can find that the BD meth‐
od has an approximately equal sample size but fewer OPF 
analyses. This is because, by implementing BD technique, 
the OPF analyses of a proportion of sampled contingency 
states can be omitted. Since branch decoupling determination 
is not time-consuming, the CPU time cost by BD technique 
is branch relation estimation time. The branch relation esti‐
mation time is only 3 s. The simulation time saved by BD 
technique is 521 s. Therefore, the time saved by BD tech‐
nique is much larger than the time cost by BD technique. 
The SSP in the table represents the method after the BD 
technique is disabled. This method is essentially the combi‐
nation of the SSP technique and IIMCS method. Compared 
with IIMCS, the SSP method has a much smaller sample 
size and number of OPF analyses. This is because replacing 
lower-order simulation with lower-order enumeration can sig‐
nificantly reduce the sample size and the number of OPF 
analyses. The simulation time saved by SSP technique is 
2102 s. The enumeration time cost by SSP technique is only 
7 s. Therefore, the time saved by SSP technique is much 
larger than the time cost by SSP technique. Compared with 
BD technique, the effect of SSP technique is more signifi‐
cant. This is because the cumulative probability of the lower-
order states of the IEEE 118-bus test system is relatively 
high. According to the sample size reduction theorem, the 
sample size reduction and the cumulative probability are pos‐
itively correlated.

Table IV illustrates the computational efficiency of differ‐
ent methods based on annual reliability index calculation in 
IEEE 118-bus test system. It can be observed that the effi‐
ciency of the simulation methods in calculating annual indi‐
ces is lower than that in calculating annualized indices. This 
is because the sampling efficiency of MCS usually decreases 
with the improvement of system reliability. For MCS, 
IIMCS, and SSP, the number of OPF analyses is higher than 
that of sampled contingency states. This is because, for each 
sampled contingency state, it is necessary to obtain the state 
impact at each load level. If the state impact with peak load 
is not 0, the state should be further analyzed using OPF at 
the lower load level.

The BIRA method involves two preset parameters, i. e., 
the stopping threshold βEENScon and branch-independence 

threshold λ. The value of βEENScon determines whether the 
method converges when the simulation stops. The conver‐
gence contains two meanings, i. e., credibility and accuracy. 
Due to the randomness of statistics, the reliability assess‐
ment under a non-strict threshold still has the probability of 
obtaining accurate results. However, if the evaluation is re‐
peated several times under this threshold, the results may be 
dramatically different, making the results lack credibility. To 
fully illustrate the effect of βEENScon on the convergence of BI‐
RA, we select different βEENScon and perform ten times evalua‐
tions under each βEENScon. The convergence process can be de‐
scribed by the distributions of reliability index errors. Figure 5 
illustrates the distributions of reliability index errors corre‐
sponding to different βEENScon in IEEE 118-bus test system.

TABLE II
ACCURACY OF ANNUAL RELIABILITY INDICES OBTAINED BY DIFFERENT 

METHODS IN IEEE 118-BUS TEST SYSTEM

Method

Benchmark

SE(1)

SE(2)

IISE(1)

IISE(2)

MCS

IIMCS

BIRA

EENS 
(MWh/year)

460.89

199.35

357.14

360.20

430.64

448.15

446.49

450.65

EENS 
error (%)

56.75

22.51

21.85

6.56

2.76

3.12

2.23

PLC 
(%)

0.38

0.19

0.32

0.33

0.38

0.38

0.38

0.38

PLC 
error (%)

50.00

18.75

13.16

0

0

0

0

βEENScon

0.01

0.05

0.05

0.05

TABLE III
COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS BASED ON ANNUALIZED RELIABILITY INDEX CALCULATION IN IEEE 118-BUS TEST SYSTEM

Method

MCS

IIMCS

BD

SSP

BIRA

Sample size

163687

130825

131986

3605

3610

Number of sampled 
contingency states

73100

58622

58910

3605

3610

Number of 
OPF analyses

73100

58622

45197

3791

651

CPU time (s)

Branch decoupling

3

3

Enumeration

7

7

Simulation

2863

2245

1724

143

20

Total

2863

2245

1727

150

30
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According to the distribution of EENS error in Fig. 5(a), 
the fluctuation of EENS error decreases with the decrease of 
βEENScon. Therefore, we can consider that the evaluation credi‐
bility increases with the decrease of βEENScon. Besides, with 
the decrease of βEENScon, the overall trend of EENS error is 
downward. The phenomenon can be verified by the down‐
ward trend of the average value. Therefore, with the de‐
crease of βEENScon, the evaluation accuracy is improved. Ac‐
cording to the above analysis, with the decrease of βEENScon, 
the convergence degree is improved. It should be empha‐
sized that with the decrease of βEENScon, the computational 
burden increases. We should choose an appropriate stopping 
threshold to balance the convergence degree and computa‐
tional efficiency. The comparison between Fig. 5(a) and Fig. 
5(b) shows that the convergence speed of BIRA when calcu‐
lating PLC is faster than that when calculating EENS. This 
is because, with the same sample size, the variation coeffi‐
cient of the PLC estimator is less than that of the EENS esti‐
mator.

The branch-independence threshold λ determines the 
branch relation accuracy and further affects reliability index 
accuracy and computational efficiency. To eliminate the dis‐
turbance of statistical randomness, we only enumerate the 
second-order states and calculate the second-order EENS 
with different λ. The second-order EENS refers to the contri‐
bution of the second-order states to the entire EENS. When 
λ is equal to 0, no contingency states are screened out. 
Therefore, the EENS obtained with λ = 0 and the correspond‐
ing CPU time can be used as the benchmarks. Figure 6 illus‐
trates the effects of λ on the second-order EENS error and 
computational efficiency in IEEE 118-bus test system. There 
is a positive correlation between λ and the computational ef‐
ficiency. Similarly, λ and the EENS error are also positively 
correlated. When λ is set to be 5%, there is no error in 
EENS and the efficiency improvement is significant. In this 
case, we can get accurate reliability indices with high com‐
putational efficiency. As λ continues to increase, we can get 
higher computational efficiency at the cost of lower accura‐
cy. However, when λ > 10%, the EENS error increases expo‐
nentially as CPU time decreases. Therefore, to balance accu‐
racy and efficiency, the threshold should not be larger than 
10%.

B. Case Study on IEEE 145-bus Test System

Table V illustrates the accuracy of annualized reliability in‐
dices obtained by different methods in IEEE 145-bus test 
system. The SE and IISE cannot meet the accuracy require‐
ment. Besides, the reliability index errors of IEEE 145-bus 
test system are larger than those of IEEE 118-bus test sys‐
tem. This is because, with the increase of system scale, enu‐
meration methods are more difficult to meet the accuracy re‐
quirement. In contrast, the simulation methods can meet the 
accuracy requirement with acceptable calculation time.

TABLE IV
COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS BASED ON ANNUAL RELIABILITY INDEX CALCULATION IN IEEE 118-BUS TEST SYSTEM

Method

MCS

IIMCS

BD

SSP

BIRA

Sample size

263162

294907

293378

5276

5212

Number of sampled 
contingency states

118120

131980

131509

5276

5212

Number of 
OPF analyses

123585

138503

106802

6131

1245

CPU time (s)

Branch decoupling

3

3

Enumeration

7

7

Simulation

5566

6051

4405

224

41

Total

5566

6051

4408

231

51

0.03 0.04 0.05 0.06 0.07

βEENS, con

0

5

10

0

5

10

15

E
E

N
S

 e
rr

o
r 

(%
)

EENS error
Average value curve

PLC error
Average value curve

P
L

C
 e

rr
o

r 
(%

)

0.03 0.04 0.05 0.06 0.07

βEENS, con

(a)

(b)

Fig. 5.　Distribution of reliability index errors corresponding to different 
βEENScon in IEEE 118-bus test system. (a) Distribution of EENS error corre‐
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to different βEENScon.
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Table VI illustrates the computational efficiency of differ‐
ent methods based on annualized reliability index calculation 

in IEEE 145-bus test system. As an improved MCS method, 
the computational efficiency of IIMCS is 8.33% lower than 
that of MCS. This is because the effect of IIMCS depends 
on the state impact distribution of the evaluated system. 
IIMCS cannot reduce the simulation variance of the IEEE 
145-bus test system. BIRA still performs well in computa‐
tional efficiency. The computational efficiency of BIRA is 
32.53 times higher than that of IIMCS. By comparing Table 
II and Table IV, we can find that the effect of BD technique 
becomes stronger. While for the SSP technique, the effect be‐
comes weaker. This is because, with the increase of system 
scale, the branch coupling becomes weaker, which enhances 
the OPF reduction capacity of BD technique. Besides, with 
the increase of system scale, the cumulative probability of 
lower-order states decreases, which lowers the OPF reduc‐
tion capacity of SSP technique. The complementary nature 
of BD and SSP techniques makes BIRA well suited for the 
systems with different scales.

V. CONCLUSION 

This paper proposes a BIRA approach for transmission 
systems that consists of the BD and SSP techniques. The 
BD technique takes advantage of branch relations to screen 
out a proportion of sampled contingency states. The OPF 
analyses of these states can be omitted. Since BD technique 
cannot handle the first-order states, and the effect of BD 
technique decreases with the decrease of system scale, the 
SSP technique has been developed to compensate for the 
shortcomings of BD technique. The SSP technique can avoid 
repeated OPF analyses of the first-order states. In addition, 
with the decrease of system scale, the effect of SSP tech‐
nique is enhanced. The good applicability of BIRA is 
achieved by the complementarity of BD and SSP techniques. 
The case studies on two different test systems have verified 
the validity and applicability of our approach.

APPENDIX A 

According to mathematical induction, (3) can be further 
expressed as:

DIs =∑
k = 1

ns

( - 1) ns - k∑
uÎΩk

s

Iu = Is -∑
k = 1

ns - 1∑
uÎΩk

s

DIu (A1)

In this paper, we use a set of outage branches to represent 
the corresponding branch outage state. If two branch sets are 
independent, the corresponding states are independent. Let 

no represent the outage order of AB. When no = 2, accord‐
ing to (3) and the impact superposition theorem, we can ob‐
tain:

IAB - IA - IB =DIAB = 0 (A2)

where DIAB is the impact increment of AB.
Suppose that in the case of 2 < no £ k, DIAB is still equal 

to 0. Let i represent a branch and A {i} is independent of 
B. We can deduce that DIA { }i B is equal to 0. The deriva‐

tion process is as follows:

DIA { }i B = IA { }i B -∑
k = 1

n ∑
uÎΩk

A { }i B

DIu = IA { }i B -

(∑k = 1

n1 ∑
uÎΩk

A { }i

DIu +∑
k = 1

n2 ∑
uÎΩk

B

DIu ) = IA { }i + IB -

(DIA { }i +∑
k = 1

n1 - 1 ∑
uÎΩk

A { }i

DIu ) - (DIB +∑
k = 1

n2 - 1∑
uÎΩk

B

DIu ) =
( IA { }i -∑

k = 1

n1 - 1 ∑
uÎΩk

A { }i

DIu ) - (DIA { }i +DIB ) +

( IB -∑
k = 1

n2 - 1∑
uÎΩk

B

DIu ) =DIA { }i - (DIA { }i +DIB ) +DIB = 0

(A3)

TABLE V
ACCURACY OF ANNUALIZED RELIABILITY INDICES OBTAINED BY DIFFERENT 

METHODS IN IEEE 145-BUS TEST SYSTEM

Method

Benchmark

SE(1)

SE(2)

IISE(1)

IISE(2)

MCS

IIMCS

BIRA

EENS 
(MWh/year)

7531.70

1500.78

4064.70

6322.86

6700.95

7698.15

7376.53

7422.18

EENS 
error (%)

80.07

46.03

16.05

11.03

2.21

2.06

1.45

PLC 
(%)

1.03

0.20

0.56

0.95

1.01

1.02

1.03

1.03

PLC 
error (%)

79.61

45.63

8.05

1.94

0.90

0

0

βEENScon

0.01

0.05

0.05

0.05

TABLE VI
COMPUTATIONAL EFFICIENCY OF DIFFERENT METHODS BASED ON ANNUALIZED RELIABILITY INDEX CALCULATION IN IEEE 145-BUS TEST SYSTEM

Method

MCS

IIMCS

BD

SSP

BIRA

Sample size

59140

64091

63585

8058

7998

Number of sampled 
contingency states

46730

50622

50225

8058

7998

Number of 
OPF analyses

46730

50622

18580

8511

1143

CPU time (s)

Branch decoupling

4

4

Enumeration

11

11

Simulation

1021

1106

493

185

19

Total

1021

1106

497

196

34
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where n1 is the outage order of A {i}; and n2 is the outage 
order of B.

According to (A3), when no = k + 1, DIAB is equal to 0. 
The impact increment theorem is proven.
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