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Abstract—This paper presents a parameter estimation tech-
nique for the hot-spot thermal model of power transformers.
The proposed technique is based on the unscented formulation
of the Kalman filter, jointly considering the state variables and
parameters of the dynamic thermal model. A two-stage estima-
tion technique that takes advantage of different loading condi-
tions is developed, in order to increase the number of parame-
ters which can be identified. Simulation results are presented,
which show that the observable parameters are estimated with
an error of less than 3%. The parameter estimation procedure
is mainly intended for factory testing, allowing the manufactur-
er to enhance the thermal model of power transformers and,
therefore, its customers to increase the lifetime of these assets.
The proposed technique could be additionally considered in
field applications if the necessary temperature measurements
are available.

Index Terms—Parameter estimation, power transformer, un-
scented Kalman filter, thermal model.

1. INTRODUCTION

NCREASING the life span of costly assets is an essential

aspect in the operation and maintenance of power sys-
tems. In this regard, the heating of power transformers due
to power losses is of paramount importance, which explains
the carefully designed cooling systems they have built in,
usually based on heat-carrier fluids such as oil.

In order to anticipate the thermal behavior of an oil-im-
mersed power transformer for given load conditions, dynam-
ic thermal models must be somehow considered. This is the
case of [1], where a hybrid numerical-analytical technique is
proposed, or the bushing thermal model presented in [2] to
calculate the hot-spot temperature.
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Finite-element methods (FEMs) can also be used for trans-
former thermal modeling. Reference [3] includes a 3D mag-
neto-thermal model for the metallic cover (tank) of the trans-
former, while [4] studies the effect of harmonic conditions in
the hot-spot temperature.

Those dynamic thermal models are represented by a sys-
tem of differential-algebraic equations, involving a set of pa-
rameters related to the particular characteristics of the trans-
former under consideration. An accurate knowledge of these
parameters is required to properly calculate the temperature
at different points of the transformer. In this context, parame-
ter estimation techniques can be applied to the dynamic ther-
mal model of the power transformer, such as those used in
[5], where the sensitivity of the estimated parameters in lin-
ear and nonlinear regression models is analyzed. Genetic al-
gorithms are also considered for this purpose in [6].

In this paper, a dynamic state estimator (DSE) based on
Kalman filter (KF) is used for the joint estimation of state
variables and parameters arising in the hot-spot thermal mod-
el of power transformers, as defined in the IEC 60076-7-
2018 [7]. The KF-based DSE has been used in a remarkable
number of studies for state estimation in power systems [8],
[9]. Regarding parameter estimation, two types of implemen-
tations can be distinguished, namely: a joint state and param-
eter estimation [10]-[12], and a dual estimation where two
different estimators are sequentially applied at each time in-
stant [13]. A particular formulation of the KF for nonlinear
systems, the so-called unscented KF (UKF), is considered in
this paper for a joint estimation of the state and parameters.
This estimation technique has been widely used in the stud-
ies related to electric power systems [14]-[16], and its results
have been proven accurate when applied to strongly nonlin-
ear systems such as the fully-regulated synchronous genera-
tor [17].

A preliminary academic work [18] has concluded that it is
impossible to estimate the whole set of parameters arising in
the hot-spot thermal model solely from oil temperature mea-
surements. To overcome this issue, this paper proposes a
two-stage estimation technique, which considers measure-
ments of the hot-spot temperature taken under different load-
ing conditions, increasing in this way the number of observ-
able parameters.

The remainder of this paper is organized as follows. Sec-
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tion II reviews the UKF algorithm. Section III presents the
modeling of hot-spot dynamic thermal model of power trans-
formers. The implementation of the UKF is described in Sec-
tion IV. Section V presents a case study to test the accuracy
of the proposed technique, including a comparison with an
alternative non-linear KF implementation. Finally, the conclu-
sions are presented in Section VI.

II. UKF ALGORITHM

KF implementations require a set of state equations, in-
cluding the dynamic and the measurement equations. In the
case of continuous-time, discrete-measurement non-linear
systems, these equations can be expressed as:

X() = (x(0), u(®))+ w() (M

2t )=g(x(t, ), u(t, ) +v(t,) 2)
where x(7) is the state vector; f(:) is the state function; g(*) is
the measurement function; u(?) is the system input; z(¢,) is
the measurement vector at instant ¢,; and w(¢f) and w(z,) are
the model and measurement noises, which are assumed
Gaussian processes with covariance matrices Q and R, re-
spectively.

Considering a time step A¢, the above equations have the
following discrete counterparts:

X =x  +Hf Qe uy )AL wW,

3)
2 =8(x,u,)+v, C))

Equations (3) and (4) are more appropriate for non-linear
Kalman filtering techniques such as extended KF (EKF),
which simply linearizes the state function f(x(¢),u(?)) in (3),
and the UKF.

Previous experiences on the application of the EKF to the
equations that describe the dynamic behavior of synchronous
machines, and their regulators, have not provided satisfacto-
ry results [17]. Therefore, this paper makes use of the UKF,
whose implementation is based on an iterative process with
two different stages [19].

A. Prediction Stage

At instant &, a cloud of 2L+ 1 vectors, called o-points, is
calculated from the previous estimate or expected value of
the state vector x, , (dimension L) and the covariance ma-
trix of the state estimation error P,_, using the following ex-
pression:

X =%,
st (VAP ) iml2el (g
xit=g — (VL+HP) i=12..L

i+L

where ( (L+AH)P,_, ) is the i™ column of the matrix

V(L+A)P,_; and 4 is a scaling factor calculated from (6)

with a and x being two filter parameters to be tuned.
i=o’(L+x)-L (6)

The o-points are evaluated using (3), yielding 2L+ 1 vec-
tors x;~ from which the a-priori estimations x; and P; are
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obtained as the weighted mean and covariance of those vec-
tors:

ko= SWx ™
P, = z (=X -x )+ 0, (3)

where W, and W, are the i" elements of weighting vectors
W, and W respectlvely, which are calculated as:

A
Voo L+7
A
Wo=177 +1-a*+p )
1
WumlWo= g3 =h22L

where £ is another tunable parameter; and the values of pa-
rameters a, B, and x considered in this paper will be provid-
ed in Section V.

B. Correction Stage

On the basis of the a-priori estimations, a new cloud of
vectors is calculated by means of similar expressions to
those used in the prediction stage for the o-points:

X=X,
e (\/(L+/1)Pk’)‘ =120 o
XD (\/(L+1)P,;) i=1.2,...L

i+L
In this case, the vectors are evaluated through the mea-
surement function g(x,, u,) in (4), yielding

y=g(xu,) i=0,1,..,2L (11)

The a-priori measurement estimation z; is calculated as
the weighted mean of the previous points using the vector
W, defined by (9):

zk_ 2 mi ¥

Then, the covariance matrix of the measurement estima-
tion error P, and the cross-covariance matrix of state and
measurements P_, are obtained using vector W, as:

(12)

P= EW Oy —200r —2) +R, (13)
i=0
21 ) A ) A
Poi= > W (xi =)0 — %) (14)
i=0

By using the a-priori estimations at instant k& from (7) and
(8) and the Kalman gain in (15), the respective a-posteriori
estimations can be obtained from (16) and (17), both of
which are necessary for the next step.

K,=P_ (P;)" (15)
—’27/(:’21;+Kk(zk_21;) (16)
Pk:Pk_Ksz_kKkT (17)
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C. Parameter Estimation

State estimation requires the previous knowledge of the
parameters involved in the dynamic model. However, when
these parameters are not known, estimation techniques such
as UKF can be used for a joint estimation of state variables
and parameters [20]. In this way, an augmented state vector
x[=[x",y"] is adopted, where x contains the state variables
and w includes the model parameters to be identified. Then,
the dynamic model (3) and (4) is replaced by the following
augmented equations.

|:xk:| _ |:xk1+f(xk1, Wi .Uy )At:| .
- k

18
Vi Vi (18)

2 =8(X o U )+ vy (19)
where w, is now the augmented-model noise vector includ-

ing the state variable components, and the parameter compo-
nents.

III. MODELING OF HOT-SPOT DYNAMIC THERMAL MODEL
OF POWER TRANSFORMERS

As stated above, the evolution of the thermal state of a
power transformer can be characterized in many ways, de-
pending on the required accuracy, transformer size, available
sensors, and cooling system. For oil-immersed power trans-
formers, the IEC 60076-7-2018 standard [7] considers a sim-
ple thermal model, based on a single worst-case temperature
(so-called hot-spot temperature), aimed at capturing the im-
pact on transformer life of operation under different ambient
temperatures and load conditions. This hot-spot model is
deemed sufficiently accurate to characterize the operating
temperatures that impact the transformer thermal aging.
Therefore, it can be useful to improve the operation and con-
trol of this important asset, as well as in the planning stages
to define its thermal rating.

In this section, the standard hot-spot model, used as the
reference model for simulation purposes, is first described.
Then, a more compact simplified model that involves a sub-
set of observable parameters is also presented and discussed.
This will be the model actually considered by the KF-based
parameter estimator.

A. Full Hot-spot Model

The dynamic equations adopted in the reference model,
i.e., the model used in the case study below to simulate
noisy measurements, are directly taken from [7].

First, the evolution of the top-oil temperature 6, is charac-
terized through the following expression:

. 1
0,= k7

X

1+K*R
1+R

(20)

o

where 6, is the ambient temperature; K is the transformer
load factor, which is defined as the quotient between the cur-
rent through the transformer and the rated one; Af,, is the
oil temperature rise under rated-load conditions; k,, is a con-
stant of the thermal model; 7, is the oil time constant; x is
the total loss exponent; and R is the ratio between rated-load
and no-load losses. The hot-spot temperature is related to the

top-oil temperature through two intermediate state variables
AG,, and A8,, with different dynamics, which are described
as:

. 1 ,
Aehlz o1 (kZIK}Aghr_Aehl) 21
22%w
. k ,
AO),= % [(ky — DK'AG,—AD), ] (22)

o

where k,, and k,, are the constants of the thermal model; 7,
is the winding time constant; y is the current exponent; and
A8, is the hot-spot temperature rise under rated load condi-
tions.
Finally, the hot-spot temperature 6, can be calculated as:
0,=0,+A0,,— A0, (23)
This hot-spot temperature is located towards the top of the
transformer winding, given that the degradation of the solid

insulation with high temperatures is typically taken as the
main aging factor.

B. Simplified Estimation Model

The whole set of parameters involved in (20)-(22) is not
observable when the temperature measurements discussed in
Section IV (oil and hot-spot temperatures) are regularly cap-
tured during the transformer operation. Therefore, in order to
obtain the values of those parameters, more sophisticated
methods should be considered, involving specific tests for
the thermal properties of the cooling system [21].

In this case, the lack of observability of some model pa-
rameters is caused by the unique way in which those parame-
ters appear in the hot-spot model equations, which prevents
their values to be estimated separately. In particular, the four
parameters k,,, k,, 7,, and 7,, involved in (20)-(22), appear
combined in only three different ways (k, 7, k,7,, and
ky,/t,), so they cannot be estimated independently.

To overcome the observability problem, the alternative ex-
plored in this paper consists of algebraically rearranging the
original full model, by introducing a smaller number of
equivalent parameters, which leads to a more compact and
more linear, yet accurate dynamic model to be handled by
the KF-based parameter estimator. The goal is to transform
the original nonlinear model (20)-(22) into the following dy-
namic model:

C1
0,= 7 [440,-(0,-0,)] (24)

c 1
AOy, = T (C,B-A0,,) (25)

1

c 1
AO,= - (C,B=A0,,) (26)

2

where in addition to the original parameter Ad,,, five modified
parameters 7,, T, T,, C,, C, and two auxiliary parameters A
and B are introduced, which are related to those in the full hot-
spot model as follows: 7, =k 7,; T,=kyt,; T,=1,/ky; C,=
kyAD,; Cy=(ky—DAD,; A=[1+K*R)/(1+R)T; and B=K".

The following remarks are made:

1) The three time constants 7,, T,, and 7, embed four pa-
rameters k,,, k,,, 7,, and 7,. So, the compact model, besides

0’
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being more linear, gets rid of a parameter without losing any
accuracy, as there is no need in practice to determine individ-
ually the four parameters embedded in those time constants.

2) The constants C, and C,, once estimated, allow comput-
ing the two parameters k,, and Ad,,. So, the advantage of us-
ing C, and C, has to do with the enhanced linearity of the
resulting model (products are avoided).

3) As can be noticed, the values of the auxiliary parame-
ters A and B depend on the operating point of the power
transformer. The technique proposed in this paper estimates
the transformed parameters considering different load factors
(K) and then letting the transformer reach the steady-state
thermal conditions for each value of K. This provides differ-
ent estimations of 4 and B, which are in turn used to com-
pute estimates of the original parameters R, x, and y. From
the defining expressions of the auxiliary parameters, it can
be concluded that at least two estimations of A are required
to obtain the original parameters R and x, while a single val-
ue of B would suffice to calculate y.

In a nutshell, if the reduced set of parameters involved in
the model (24)-(26) can be estimated (including at least two
estimations of A), the dynamics of the hot-spot temperature
can be fully characterized according to the standard defini-
tion, but rather using the alternative set of parameters A6,
T, T,T, C,C, R, x, and y, proposed in this paper. Re-
garding the original parameters involved in the hot-spot mod-
el, A, is directly obtained in the estimation process, while
k,, and A@,, can be computed using the estimated values of
the modified parameters C, and C,. Finally, as mentioned be-
fore, R, x, and y are obtained using estimates of 4 and B.

IV. IMPLEMENTATION OF UKF

Early attempts to implement the KF-based estimation, in-
cluding the whole set of modified parameters in the model,
led to convergence problems. To overcome this issue, a two-
stage estimation technique is proposed in this paper.

A. The First Stage: Full-load Conditions

At this stage, the transformer is assumed to serve the rat-
ed load (K=1), starting from no-load conditions (K=0) or
any other intermediate value. In this situation, both parame-
ters A and B are equal to 1, regardless the values of x, y,
and R. Therefore, (24)-(26) can be rewritten as:

1

0,= =110, ~(0,-0,)]

o

27

. 1
AG,, = T(Cl_Aehl) (28)
1

. 1
AGy, = T (C,—A0,,) (29)
2

In this case, the state vector is defined as:

xT=[90 AGy  AO),] (30)

While the parameter vector y reduces to (31), leading to a
total vector size L=9 (rather than 11).

w'=[T, T, C, C, A0, T,]

o

€2))
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Four magnitudes are assumed to be measured or known,
namely: K, 6, 0,, and ,. In the proposed formulation, these
magnitudes are divided into inputs #=[K,6,] and measure-
ments z=[6,,6,] [22]. The input K (load factor) is derived
from the current through the transformer, which causes the
heating in the oil and windings.

The vector z needs to be formulated in terms of the aug-
mented state and input vectors, as in (19). The first compo-
nent of z, i.e., the oil temperature 6, is a trivial case, since
it is directly a state variable. For the hot-spot temperature 6,,
(23) is used.

B. The Second Stage: Intermediate Loads

The goal of the second stage is to estimate the parameters
A and B. For this purpose, two intermediate loading points,
K, and K,, with K,>0 and K,<1 are enforced, both under
steady-state conditions. This provides two different estima-
tions of the synthetic parameters 4 and B, from which the
original parameters R, x, and y can be calculated. Both state
transitions can start from K=0 or any other intermediate val-
ue, as shown in the case study.

In this case, the parameter vector w contains only 4 and
B, as the remaining modified parameters can be set to be
their values estimated at the first stage. The state vector x is
the same as at the first stage, yielding a size L=5 for the
augmented state vector x, at the second stage. Similar con-
siderations as at the first stage can be made regarding the
measurements used in the UKF implementation.

V. CASE STUDY

In this section, the proposed parameter estimation tech-
nique is tested using synthetic measurements obtained from
the full hot-spot model presented in Section III, where the
model parameters are assumed to be perfectly known. In-
deed, it is only in simulation environments that estimation er-
rors can be thoroughly evaluated. Note that the rated power
and voltage of the transformer are irrelevant for our purpos-
es, as the transformer load factor K is in per unit and the
physical characteristics of the apparatus are reflected in the
parameters defining the hot-spot thermal model. In any case,
this paper is mainly focused on three-phase distribution trans-
formers.

A. In-house Estimation of Hot-spot Dynamic Model

It is assumed that the manufacturer performs the required
factory tests (the two stages described before) on a represen-
tative transformer, in order to duly characterize the whole se-
ries of transformers of the same rated power and voltage,
manufactured with the same materials. Those tests involve
oil and hot-spot temperature measurements. For the simula-
tions, the ambient temperature is assumed to evolve as in
Fig. 1 [23]. The time step considered in this work is Ar=1
min.

The parameter values considered for the simulation are
taken from the IEC 60076-7-2018 standard (for distribution
transformers up to 2500 kVA of rated power), which are
summarized in Table I. However, the proposed technique is
suitable for other rated power ranges.
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Starting from no-load conditions (K=0), the transformer
is sequentially subjected to three identical load steps, each
equal to 1/3 of the rated load. The load factor profile, along
with the evolution of the oil and hot-spot temperatures, is
shown in Fig. 2, where 2% error has been artificially added
to the measurements. Since the largest time constant in the
simulated system is in the order of 3 hours, the simulation
time is set to be 9 hours for each load step (K=1/3, K=2/3,
and K=1), i.e., three times the time constant, so as to make
sure that steady-state conditions are reached for each loading
point.

22 ¢

6{] (OC)

10 1 1 1 1 1 1 1 1 J
3 6 9 12 15 18 21 24 27
Time (hour)
Fig. 1. Considered profile for ambient temperature.
TABLE I
PARAMETER VALUES FOR SIMULATION
Parameter Simulation value Parameter Simulation value
A6, 55 °C A, 23 °C
ki, 1 p.u ky, 2 p.u.
T, 180 min ky, 1.5 pu.
R 5 pu. T, 4 min
X 0.8 p.u. y 1.6 p.u.
100 1
—QOil temperature
90 ——Hot-spot temperature
S0l — Load factor
o 33
by &
£ oo 5
5 sof 1 &
=9 / =
g ! 1 8
5] 40 1L O
= — 3 =
. Data for the
30 | first stage
N
20 Data for the second stage -
10 . . . . . H . . 0
0 3 6 9 12 15 18 21 24 27

Time (hour)

Fig. 2. Evolution of load factor and noisy measurements.

As noted in the figure, the information corresponding to
the transition from K=2/3 to K=1 will be used for the first
stage of the proposed technique, while the measurements
from the first two load steps will be used for the second

stage.

The UKF algorithm has been implemented with a=107",
k=0, and =2 according to [24], where the influence of
these scaling parameters is analyzed, while typical values are
considered for the covariance matrices P,, Q, and R. The val-
ues of the modified parameters are initialized randomly, in a
range between +20% and +40% of their simulated values.

The proposed two-stage estimation technique presents a
consistent performance in its ability to properly estimate the
modified model parameters. Figure 3 shows the estimation
results obtained from the first stage of the proposed tech-
nique. The evolution of the estimation error covariance is al-
so included in this figure. For each parameter i, its estimated

value is represented along with a three-o band +3 /P, (gray

areas). The resulting relative errors are summarized in Table
II, from which it is concluded that the maximum relative er-
ror remains under 3%.

100 T
0 60 120 180 240 300 360 420 480 540
Time (min)
—X;; —XA30; - Simulated
Fig. 3. Estimation results obtained from the first stage of proposed tech-
nique.

TABLE 11
RELATIVE ERROR IN PARAMETER ESTIMATION AT THE FIRST STAGE

Value T, (min) T, (min) C,(°C) C,(°C) A@, (°C) T, (min)
Simulated  8.000  180.000 34500 11.500  55.000  180.000
Estimated ~ 8.004 174463 34873 11.612 54528  180.432
Relative 46 2985  1.082 0977 0858 0.240
error (%)
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At the second stage, the value of the load is suddenly
changed, first from K=0 to K=1/3 and then, at r=540 min,
from K=1/3 to K=2/3. The total simulation time is 1080
min in this case. Only the parameters 4 and B are included
in the vector y, while the remaining modified parameters are
given their values estimated at the first stage. Regarding the
KF tuning (initial values for x,, and the matrices P,, Q, and
R), the similar assumptions to those at the first stage are
made.

The estimation results obtained from the auxiliary parame-
ters A and B at the second stage are shown in Fig. 4, where
the deviations x,£3 \/Pil, are also highlighted by the gray ar-
eas.

1.5¢
~ 1.0 ¥
=
S #
<05 /ﬁ
0 A . . . . . .
1.0
0.8} g
0.6}
N
S 0.4L
0.2F
0 120 240 360 480 600 720 840 960 1080
Time (min)
—X;; —X430; - Simulated
Fig. 4. Estimated results obtained from auxiliary parameters 4 and B at

the second stage.

With the estimated values for K=1/3 and K=2/3, the orig-
inal parameters R, x, and y can be calculated using a solver,
yielding the estimated values and the relative errors included
in Table III. In this paper, a MATLAB function is used for
the implementation of the solver.

TABLE III
RELATIVE ERRORS IN PARAMETER ESTIMATION AT THE SECOND STAGE

Value R (p.u.) x (p-u.) vy (pu)
Simulated 5.000 0.800 1.600
Estimated 4.969 0.802 1.575

Relative error (%) 0.602 0.247 1.562

As previously mentioned, two intermediate loads are theo-
retically sufficient to estimate the modified parameters 4 and
B at the second stage of the proposed technique. In order to
check the sensitivity of the results to the use of redundant
(i.e., more than two) load factors, an additional scenario is
simulated with four intermediate loads (K=0.2, 0.4, 0.6, and
0.8). Then, the resulting estimates of 4 and B are introduced
in a least-squares function from MATLAB, in order to ob-
tain new estimations for the original parameters R, x, and y.
As can be observed in Table IV, the resulting relative errors
are similar to those presented in Table III for two intermedi-

ate loads.
TABLE IV
RELATIVE ERRORS AT THE SECOND STAGE WITH FOUR INTERMEDIATE
LOADS
Value R (p.u.) x (p-u.) vy (pu.)
Simulated 5.000 0.800 1.600
Estimated 4.972 0.806 1.579
Relative error (%) 0.560 0.749 1.312

Finally, Table V summarizes the relative errors of the ob-
servable original parameters in the hot-spot model which can
be obtained from the estimated values of the modified pa-
rameters.

TABLE V
RELATIVE ERRORS OF OBSERVABLE ORIGINAL PARAMETERS

Value A0, (°C) ky (pu) AF, (°C) R (pu) x(pu) y(pu)
Simulated ~ 55.000  1.5000  23.000  5.000  0.800  1.600
Estimated  54.528  1.499 23261 4969  0.802  1.575
Relative 0.858  0.053 1135 0.602 0247  0.155
error (%)

In order to assess the performance of the UKF with in-
creasing measurement noise, Table VI includes the maxi-
mum relative error in the parameter estimation for different
noise levels. As expected, the estimates deteriorate with high-
er noise levels, but the maximum relative error still remains
under 8% even for an unrealistic 10% measurement error.

TABLE VI
THE MAXIMUM RELATIVE ERROR IN PARAMETER ESTIMATION FOR
DIFFERENT NOISE LEVELS

Noise level (%) The maximum relative error (%)

2 2.985
5 4.021
10 7.533

B. Comparison with EKF Formulation

The results obtained with the UKF formulation are com-
pared in this subsection with those provided by the EKEF,
which is a popular alternative for non-linear dynamic estima-
tion based on the linearization of the model. Although both
KFs adopt the same simplified model presented in Section
III, the EKF requires the computation of Jacobian matrices
(partial derivatives with respect to the variables in the aug-
mented state vector), as provided in Appendix A.

Similar assumptions are made regarding the test condi-
tions for the case study, with two stages in the estimation
process and the same step changes in the load factor K.
First, Fig. 5 represents the comparison of the estimated val-
ue of C,. In this figure, it is observed that the EKF presents
a remarkably higher estimation error compared with that of
the proposed technique using UKF. The reason for this low-
er accuracy of the EKF formulation relates to the strong non-
linearities arising in the estimation model. Despite the modi-
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fied model proposed in this paper being more linear, it in-
volves the product of some parameters in the augmented
state vector, making the problem in hand still non-linear.
This deteriorates the performance of the EKF (first-order ap-
proximation of the covariance) when compared with that of
the UKF, which approximates the covariance of the estima-
tion error up to the third order [19].

20
— UKF
19 — EKF
18 ----Simulated value

2
o)
11 L L L L L L L L a
0 60 120 180 240 300 360 420 480 540
Time (min)
Fig. 5. Comparison of estimated value of C,.

Table VII compares the relative errors provided by each
tested algorithm (UKF and EKF) for the whole set of modi-
fied parameters. As can be observed, the estimation errors
are unacceptable, particularly regarding parameters 7', T,
and C,.

TABLE VII
COMPARISON OF RELATIVE ERRORS PROVIDED BY UKF AND EKF
ALGORITHMS

Relative error (%)

Parameter

EKF UKF

T, 4.144 0.046
T, 20.585 2.985
C, 1.013 1.082
C, 7.690 0.977
AG,, 0.817 0.858
T, 1.468 0.240
R 1.014 0.602
1.120 0.247

Y 0.534 0.155

In light of these results, it can be concluded that the per-
formance of the proposed UKF-based technique is superior
to that of the EKF-based technique.

C. Impact of Parameter Estimation Errors on Hot-spot Tem-
perature Estimation

Once the parameters of the thermal model have been esti-
mated with the proposed UKF-based technique, it is impor-
tant to assess if the estimation errors of the hot-spot tempera-
ture are acceptable. For this purpose, two separate simula-
tions have been carried out.

1) Simulation using the exact value of the model parame-
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ters, the so-called exact model.

2) Simulation considering the estimated values of the orig-
inal and modified parameters presented in the previous sec-
tion (Tables II and III), namely the estimated model.

In both cases, the total simulation time is one week and
the system inputs (ambient temperature and load factor) are
the same, with a typical evolution for the ambient tempera-
ture, as shown in Fig. 1, and a cyclic variation of the trans-
former load, as shown in Fig. 6 (the daily load profile is
based on [7]). Note that, unlike in the factory tests, no oil
measurements are captured (only the ambient temperature is
used as input).

1.0r . ; . ; ;
0.9}
0.8}
0.7}
0.6}

0.5
0.41
0.3}

0.2}

Load factor (p.u.)

ALl

L L L L

0 24 48 72 96
Time (hour)

0.1}

120 144 168

Fig. 6. Load profile for one-week simulation.

The evolution results of the hot-spot temperatures for both
models and the corresponding error are represented in Fig.
7. In light of this figure, the following remarks can be made.

—_
(=3
(=}
=l

—— Exact model; — Estimated model

®©
(=}
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[N
(]
L

Hot-spot temperature (°C)
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-1 . .
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Fig. 7. Evolution results of hot-spot temperatures and corresponding error.

1) The maximum hot-spot temperature error is lower than
4°C, providing evidence of the accuracy of the estimated
model.

2) In most cases, the hot-spot temperature obtained with
the estimated model is higher than that with the exact model
(safe side).

3) Interestingly, lower errors (even negligible) are ob-
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tained when the transformer load is high and the hot-spot
temperatures reach the highest values. Reciprocally, the peri-
ods of higher estimation errors correspond to the reduced
values of the hot-spot temperature, when the integrity of the
transformer is not jeopardized.

VI. CONCLUSION

In this paper, an UKF is developed, implemented, and test-
ed to estimate the state variables and parameters of the hot-
spot dynamic thermal model of a power transformer. The
non-observability of the parameters involved in the original
thermal model is circumvented by introducing a reduced but
equivalent set of modified parameters.

Additionally, to overcome the convergence problems aris-
ing when the whole set of parameters is simultaneously han-
dled, a two-stage estimation technique is proposed, where
rated load conditions are considered at the first stage in or-
der to reduce the number of parameters to be identified. The
UKF technique requires three measurements from the power
transformer (load factor, oil temperature, and hot-spot tem-
perature), along with the ambient temperature, all of which
are easily available during factory tests.

A case study has been simulated, where the maximum rel-
ative estimation error remains under 3%. It has also shown
that the estimation errors are not significantly affected by
the number of intermediate load factors adopted at the sec-
ond stage of the estimation process. As expected, increasing
levels of measurement errors tend to deteriorate the perfor-
mance of the UKF estimator, but even for unrealistically
high error values (10%), the maximum estimation error is ac-
ceptable in relative terms (7.5%).

In terms of convergence and accuracy, the proposed tech-
nique performs significantly better than the EKF, which suf-
fers from the non-linearity of the model when all parameters
become unknown.

Finally, the impact of the parameter estimation errors on
the accuracy of the hot-spot temperature evolution, during
the transformer field operation, has been assessed through a
simulation spanning a week, using as inputs only the load
factor and the ambient temperature. The results obtained
show that the hot-spot temperature obtained with the estimat-
ed model is sufficiently close to that of the exact model,
with a maximum absolute error lower than 4 °C for reduced
values of the load factor, and approximately 2 °C as the rat-
ed transformer load is approached.

The proposed technique can fill the existing gap in real-time
thermal modeling of power transformers, by allowing manu-
facturers to perform straightforward in-house tests, where the
load conditions can be controlled, which in turn will let their
customers easily monitor the hot-spot temperature during the
field operation, based only on the actual load and ambient
temperature.

APPENDIX A

The implementation of the EKF formulation also involves
two stages of estimation, as those presented for the UKF.
For the first stage, the discrete form of the model dynamic

equations is as follows:

At
go,kzeu,kfl-'r Tikl(Aeur,kfl_90.k71+9a,k—1) (Al)
At
AOy =00y 4+ Ti(cl,k—l —AO k1) (A2)
Lk-1
At
Al =00, + ﬁ(cz,k—l —AbO)p5-1) (A3)
k-1
Tl,k: Tlek—l (A4)
Tz,k:Tz,k-l (AS)
C],k: Cl,k—l (A6)
Cyi= Cz,k—l (A7)
To.k:To,kfl (AS)
Aear, k= A60r,k7 1 (A9)

The EKF uses the Jacobian matrix of the state function at
time k, namely F,, where each element of this matrix is de-
fined as:

0X; 4

Fyl= (A10)

0%, 4y

Using the above definition, the partial derivatives of (Al)-
(A9) must be calculated, yielding the following expressions
for the non-null terms, where the correspondences with the
elements of F, are indicated:

Fll=1- Ti’q (A1)

Fli— At(Aaor.k—l;fkn,/:—lJ'_ea,k—l) (A12)
Flo= TLZI (A13)

F22=]— Tﬁil (A14)

Frio At(cl,k—;f_kAlehl,k—l) (A15)
R (A16)

Fr=1- Ti’q (A17)

Fi— At(Cz,k—;;_kAlghz,k—l) (AL8)
e (A19)

Fii=1 i=4,5,...9 (A20)

Note that the measurement equation (23) is linear, so that
its Jacobian matrix is trivial. Once these Jacobian matrices
are obtained, the iterative algorithm of the EKF is imple-
mented, as described in [25]. Similar derivations (not report-
ed here) are made for the second stage of the estimation
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technique proposed in this paper, with a reduced number of
parameters included in the augmented state vector.
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