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Abstract——Non-isolated DC/DC converter based on modular 
multilevel converter （（MMC）） technology is expected to play an 
important role in future DC transmission grids. This paper 
presents a phasor analytical model for this new family of con‐
verters which is suitable for a range of studies like DC grid 
power flow or DC/DC parametric design. The 30th-order phasor 
model is derived in 3 coordinate frames: zero sequence (DC), 
fundamental frequency (dq), and double frequency (d2q2). The 
second-harmonic current suppression control is included as an 
option. Additionally, an estimation of the required control sig‐
nals is presented, and a closed-loop model is developed which 
facilitates direct calculation of all variables and fast parametric 
studies. The accuracy of the proposed models is verified against 
a detailed PSCAD model for a wide range of parameters. The 
studies illustrate the importance of the second-harmonic compo‐
nents on the model accuracy. Finally, the impact of the convert‐
er parameters on the performance is studied, and a basic eigen‐
value stability analysis is given.

Index Terms——High-voltage direct current (HVDC) transmis‐
sion, modular multilevel converter (MMC), non-isolated DC/DC 
converter, phasor modelling.

I. INTRODUCTION

THE first high-voltage direct current (HVDC) transmis‐
sion grid has been implemented in China recently, as a 

significant advance of point-to-point HVDC transmission 
[1]. DC transmission grids enable reliable, flexible, and se‐
cure integration of multiple large renewable energy sources 
with national transmission systems [1], [2].

DC/DC converters are expected to play a significant role 
in future DC transmission grids [3]. CIGRE has studied DC/
DC converters in the first working group on the feasibility 
of DC grids [4], and then on power flow controllers in the 
analysis of DC grid control [5]. Recently, CIGRE WG B4.76 
has published its report on DC/DC converters [6]. In gener‐
al, these converters enable power trading between two DC 
systems with different (or equal) voltage levels with addition‐

al attractive features like bidirectional power flow control, DC 
fault isolation, and stabilization and elimination of interopera‐
bility issues [2]. There are two main families of DC/DC con‐
verters: ① isolated converter based on two-stage DC/AC/DC 
conversion which is known from low-power applications; and 
② the new non-isolated converter which uses single-stage con‐
version with less semiconductors and lower costs [7].

The operating principle of non-isolated MMC DC/DC con‐
verter (NIMDC) has been presented in [8], and a comprehen‐
sive overview of it for medium-voltage DC (MVDC) and 
HVDC applications is given in [9]. CIGRE WG B4.76 pro‐
poses a 600 MW 320 kV/250 kV NIMDC test case [6], [10] 
and the studies conclude that the components and ratings 
will be comparable to a similar MMC AC/DC converter. 
These results raise expectations that the NIMDC potentially 
offers a very cost-effective method of interchanging the pow‐
er between two HVDC systems and is more attractive than 
using the isolated DC/DC converter in many applications.

Phasor converter models belong to the family of average 
models and have been applied to a range of converter topolo‐
gies such as MMC AC/DC converters [11]. Phasor-domain 
converter models use dq components of all variables assum‐
ing that the frequency is constant. If the system dynamics 
are considered, dynamic phasor models are obtained, while 
neglecting the dynamics will lead to steady-state phasor mod‐
els [12]. The focus of this paper is on the steady-state pha‐
sor models which are suitable for a wide range of power sys‐
tem studies in steady state as well as converter parametric 
studies related to design and control.

A steady-state phasor-domain NIMDC model is developed 
in [13] and used for converter design as well as developing 
control methods in [14]. However, the model in [13] is overly 
simplified, and its accuracy has not been evaluated. It is only 
based on DC and fundamental-frequency components without 
considering the second harmonic or the interactions between 
coordinate frames. And it assumes identical parameters for up‐
per and lower arms. The application area of this model is very 
limited. Reference [15] presents a linearized small-signal state-
space model which is similarly oversimplified and has not 
been tested for accuracy. The shortcomings of these models 
will be demonstrated, and a systematic accurate modelling ap‐
proach will be presented and verified in this paper.

Based on literature review, there is a need for an accurate 
analytical model for NIMDC, which would facilitate fast de‐
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sign and parametric studies of component stress/selection 
and performance. The optimal design of NIMDC is challeng‐
ing because of numerous internal parameters such as operat‐
ing frequency, arm inductances, and cell capacitances, which 
is unlike that of common MMC AC/DC converter and dif‐
fers between upper and lower arms.

It is known that electromagnetic topology (EMT) time-do‐
main simulation of DC/DC converters is difficult since high‐
er operating frequency implies very small simulation steps, 
and may cause simulation accuracy or instability issues [16]. 
An analytical model facilitates faster parametric studies and 
provides better insight into design principles. Additionally, 
phasor model can be used for fast power flow studies, which 
may involve numerous converters in future large DC grids.

This paper contributes with an accurate phasor model for 
NIMDC by considering the DC, fundamental-frequency, and 
second-harmonic components of the key variables of the con‐
verter (arm sum voltage, arm voltage, and arm current) for 
upper and lower arms. The model is developed in 3 coordi‐
nate frames and the interactions among them are considered. 
The analytical model is validated against detailed PSCAD 
model using several realistic GW-size test systems. The im‐
portance of key modelling principles to the model accuracy 
is highlighted. The use of this model will finally be illustrat‐
ed on a study of parametric design.

II. NIMDC

A. Converter Structure

Figure 1 shows the structure of a unipolar three-phase NIM‐
DC [2], and another symmetrical converter would be needed 
for bipolar topology, where V1 and V2 are the DC voltages at 
high voltage (HV) and low voltage (LV) sides, respectively.
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Fig. 1.　Structure of a unipolar three-phase NIMDC.

This topology has substantially different upper (denoted 
by subscript U) and lower (denoted by subscript L) arms (in 
terms of cell topology, parameters, and control), because the 

contribution of upper and lower arms in the amount of pow‐
er transfer is different and depends on the voltage step ratio 
[10]. This implies that different values for the cell capacitors 
and arm inductors should be selected to keep the arm volt‐
age ripple almost the same, and to have almost the same lim‐
it for the AC currents of the arms under normal operating 
conditions and the currents rise in case of DC fault. Each low‐
er arm includes N half-bridge cells. Upper arms also have N 
half-bridge cells, and a number of half-bridge cells should be 
of full-bridge type to provide fault blocking capability [10].

B. Operating Principle

The operating principles are described in [8], and only a 
brief summary is provided here. The number of phase-legs 
can be p ³ 2 for HVDC applications, which depends on the 
required rating of NIMDC power or current.

The voltage and current of each arm are composed of a 
DC component and an AC component. Upper arms have DC 
components of voltage and current approximately equal to 
V1 -V2 and lower-arm DC current I1 /p, respectively, while 
the lower-arm DC voltage is V2 and the lower-arm DC cur‐
rent is (I1 - I2 )/p, where I1 and I2 are the DC currents at HV 
and LV sides, respectively. Because of different DC power 
on upper and lower arms, it is necessary to introduce power 
balancing using AC power at fundamental frequency ω. Under 
a balanced operating condition, the AC component of the volt‐
age or current among the p phase-legs has identical amplitude 
with the phase angles displaced by 2π/p. As a consequence of 
non-linear nature of MMC-arm voltage control, a second har‐
monic will appear on the arm voltages and currents.

C. Time-domain Dynamic Equations

The dynamic equations of the NIMDC are studied in [8] 
and only a summary is given here. The basic dynamic equa‐
tions for arm currents iarmU and iarmL, arm sum voltages vå

armU 
and vå

armL, and arm voltages varmU and varmL are:
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diarmU( )t
dt

=
-LyL

LZ

varmU( )t -
L2

LZ

varmL( )t -
LyL RarmU

LZ

iarmU( )t -

L2 RarmL

LZ

iarmL( )t +
1
LZ

( )LyLV1 - LarmLV2

diarmL( )t
dt

=-
L2

LZ

varmU( )t -
LyU

LZ

varmL( )t -
L2 RarmU
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iarmU( )t -

LyU RarmL

LZ

iarmL( )t +
1
LZ

( )L2V1 + LarmUV2

(1)
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dvå
armU( )t
dt

=
1

CarmU

mU( )t iarmU( )t

dvå
armL( )t
dt

=
1

CarmL

mL( )t iarmL( )t
(2)

ì
í
î

ïï

ïï

varmU( )t =mU( )t vå
armU( )t

varmL( )t =mL( )t vå
armL( )t (3)

where LarmU and LarmL are the upper- and lower-arm induc‐
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tances, respectively; L2 is the output filter; CarmU and CarmL 
are the upper- and lower-arm equivalent capacitances, respec‐
tively; RarmU and RarmL are the upper- and lower-arm equiva‐
lent resistances, respectively; and mU and mL are the upper- 
and lower-arm control signals, respectively. And some new 
parameters are introduced as: 

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

Lz = L2( )LarmU + LarmL + LarmU LarmL

LyU = L2 + LarmU

LyL = L2 + LarmL

CarmU =
CsmU

N

CarmL =
CsmL

N

(4)

where CsmU and CsmL are the upper- and lower-arm cell capaci‐
tances, respectively; and N is the number of submodules (SM) 
in arm.

III. NIMDC PHASOR EQUATIONS IN DQ FRAME 

The aim of this parametric analytical model is to obtain 
all the NIMDC steady-state variables (voltages and currents), 
which are dependent on converter parameters, operating con‐
ditions, and control signals. The time-domain equations (1)-
(3) are converted to phasor domain, which is contrary to con‐
ventional phasor modelling where only fundamental frequen‐
cy (50 Hz) terms are considered. Modelling this converter re‐
quires 3 coordinate frames: zero-sequence (DC), fundamen‐
tal frequency (dq), and second harmonic (d2q2). It is worth 
noting that the fundamental frequency here is a design pa‐
rameter and is usually in the range of several hundred hertz 
[10]. A challenge is to represent non-linear terms in (2) and 
(3) since each variable contains multiple components from 
different coordinate frames. Phasor modelling of NIMDC in‐
cludes the following steps.

Step 1: express each of the variables from (1)-(3) in the 3 
coordinate frames which will have 5 (1 in DC, 2 in dq, and 
2 in d2q2) components in general case.

Step 2: replace each of the variables (considering all com‐
ponents) in (1) - (3) and perform multiplications. When vari‐
ables from different coordinate frames are multiplied, it is 
necessary to consider rules for dq frame modelling [2], [11].

Step 3: separate each of the variables in (1)-(3) in zero-se‐
quence, fundamental-frequency, and second-harmonic frames.

Although the converter shown in Fig. 1 is a three-phase 
NIMDC, the proposed modelling method can be applied to a 
p-phase NIMDC as long as the p-phase system is symmetri‐
cal and balanced to enable the transformation to an orthogo‐
nal coordinate system [17], [18].

A. Assumptions for Variables

It is assumed that all NIMDC parameters and variables are 
symmetrical and balanced. The control signals are assumed to 
have zero-sequence and fundamental frequency components 
only:

ì

í

î

ïïïï

ïïïï

mU( )t =MU0 +MU cos ( )ωt = ( )MU0
0
+ ( )MU

d

mL( )t =ML0 +ML cos ( )ωt + ϕmL
= ( )ML0

0
+ ( )MLd

d
+ ( )MLq

q

(5)

where MU and ML are the control signals for the NIMDC 
without second-harmonic current suppression control (SHC‐
SC); ϕmL

 is the phase shift; the subscript 0 denotes the zero-

sequence component; and the subscripts d and q denote the 
two components in the coordinate frame rotating at the fun‐
damental frequency ω= 2πf (determined by the converter op‐
erating frequency f ). The fundamental-frequency component 
of the upper-arm control signal is aligned with the d-axis of 

dq coordinate frame, i. e., ϕmU
= 0, and therefore, ( )MU

q
= 0 

and ( )MUd
d
= ( )MU

d
.

The upper- and lower-arm currents are assumed to have 
the components in 3 frames as zero sequence, fundamental 
frequency, and second harmonic:

ì

í

î

ïïïï

ïïïï

iarmU( )t = ( )IU0
0
+ ( )IUd

d
+ ( )IUq

q
+ ( )IUd2

d2
+ ( )IUq2

q2

iarmL( )t = ( )IL0
0
+ ( )ILd

d
+ ( )ILq

q
+ ( )ILd2

d2
+ ( )ILq2

q2

(6)

where IU and IL are the upper- and lower-arm currents, re‐
spectively. The subscripts d2 and q2 denote the two compo‐
nents in the coordinate frame rotating at the second-harmon‐
ic 2ω. The multiplication terms in (2) and (3) generate high‐
er harmonics. However, only second-harmonic terms are con‐
sidered in this paper because of their significant importance 
on the model accuracy as verified in Section V, and the high‐
er harmonics are neglected.

The time-domain expression will be omitted for brevity, 
but it can be derived for each variable as in (5).

The upper- and lower-arm sum voltages are also assumed 
to have zero-sequence, fundamental-frequency, and second-
harmonic components, and presented as below:
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Ud d
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(7)

Similarly, the upper- and lower-arm voltages are:

ì

í

î
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ïïïï

varmU( )t = ( )VU0
0
+ ( )VUd

d
+ ( )VUq

q
+ ( )VUd2
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+ ( )VUq2

q2

varmL( )t = ( )VL0
0
+ ( )VLd

d
+ ( )VLq

q
+ ( )VLd2

d2
+ ( )VLq2
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(8)

B. Zero-sequence Model

Considering only zero-sequence terms for all arm voltages 
and currents (the first component of (6) and (8)), equating 
the differential terms to zero and using the second sub-equa‐
tion of (4), the zero-sequence expression of (1) is:

ì
í
î

ïïVU0 =V1 -V2 -RarmU IU0

VL0 =V2 -RarmL IL0

  (9)
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Using the dq modelling algebra ((43) in [11]), the zero-se‐
quence expression of (2) can be obtained in a similar manner 
as:
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( )dvå
armU( )t
dt

0

= ( )mU( )t iarmU( )t
0
Þ 0 =MU0 IU0 +

MU IUd

2

( )dvå
armL( )t
dt

0

= ( )mL( )t iarmL( )t
0
Þ

                     0 =ML0 IL0 +
MLd ILd

2
+

MLq ILq

2
(10)

It is observed that the upper-arm equation can be derived 
from the lower-arm one by replacing the subscript U with L 
and considering MUq = 0 and MUd = MU. From now on, only 
lower-arm equations are derived for brevity.

It is also observed that the variables from two coordinate 
frames are presented in the above equation, due to the inter‐
action between the zero-sequence and fundamental-frequen‐
cy coordinate frames. If a simple modelling is adopted as in 
[13], only the first term is considered and the accuracy is re‐
duced.

The zero-sequence expression of the lower-arm equation 
of (3) is obtained similarly as:

(varmL(t ) )
0
= (mL(t ) vå

armL(t ) )
0
ÞVL0 =ML0V

å
L0 +

MLdV
å
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2
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MLqV
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Lq

2
(11)

C. Fundamental-frequency Model

Using the dq algebra for differential equation ((45) in 
[11]), the differential terms of the lower arm of (1) can be 
expressed in dq frame as:

( diarmL( )t
dt )

dq

= ( - kωILq )
d
+ (kωILd )

q
(12)

where k = 1 for the fundamental frequency, and k = 2 for the 
second harmonic.

The fundamental frequency expression of (1) is then ob‐
tained by replacing (12) in the left side of (1), and by con‐
sidering only the fundamental-frequency components of the 
arm voltages and currents as:
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The fundamental frequency expression of (2) and (3) can 
be expressed similarly as:
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Each of the above equations will lead to two equations 
(one along each of the dq axes).

D. Second-harmonic Model

The two equations in (1) are expressed in the second-har‐
monic frame using (12) with k = 2 for the left side and by 
considering only the second harmonic of the arm voltages 
and currents at the right side as:
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The second-harmonic expression of (2) and (3) can be giv‐
en similarly as:
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E. SHCSC

The second-harmonic arm current can be eliminated by us‐
ing feedback proportional integral (PI) control of Id2 and Iq2, 
which is similar to conventional AC/DC MMC [11]. SHCSC 
is considered as optional in this paper because the second-
harmonic currents in NIMDC are low. The equations below 
show model modification when SHCSC is used. The modula‐
tion indices will include the second-harmonic terms as:
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where ϕmU2
 and ϕmL2

 are the phase shifts of the second-har‐

monic component of the upper-arm and lower-arm control 
signals, respectively.

It is assumed that the SHCSC suppresses perfectly the sec‐
ond-harmonic components of the arm currents, i. e., IUd2 =
IUq2 = ILd2 = ILq2 = 0. Replacing this assumption in (16) yields 
VUd2 = VUq2 = VLd2 = VLq2 = 0. Equation (11) will be rewritten as:
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Equations (14) and (15) are rewritten as:
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The second-harmonic arm sum voltages in (17) are rewrit‐
ten as:

( - 2ωCarmLV
å

Lq2 )
d2
+ (2ωCarmLV

å
Ld2 )

q2
=

( MLd ILd

2
-

MLq ILq

2
+MLd2 IL0 )

d2

+

( MLq ILd

2
+

MLd ILq

2
+MLq2 IL0 )

q2

(23)

By similarly rewriting (18) and considering VUd2 = VUq2 =
VLd2 = VLq2 = 0, the required d2q2 components of the lower- 
arm modulation signals can be obtained as:

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

MLd2 =
-MLdV

å
Ld

2V å
L0

+
MLqV

å
Lq

2V å
L0

-
ML0V

å
Ld2

V å
L0

MLq2 =
-MLqV

å
Ld

2V å
L0

-
MLdV

å
Lq

2V å
L0

-
ML0V

å
Lq2

V å
L0

(24)

IV. NIMDC PHASOR MODEL 

A. Non-linear Open-loop Model

Equations (9)-(18) in the 3 coordinate frames can be com‐
bined to obtain a single-phasor model as (25), which con‐
tains multiple non-linear terms caused by the multiplication 
with the control signals in matrix form.

Ax = u +Bv (25)

where x is the vector of variables; u is the vector of all non‐
linear terms; and v is the vector of external signals (distur‐
bances). The model is expanded (including both the upper- 
and lower-arm equations) and presented in matrix form in 
Appendix A. The matrix form of the model with SHCSC 
can be presented in a similar way.

B. Controller Model

The NIMDC without SHCSC has 5 control signals, which 
are MU0, MUd, ML0, MLd, and MLq, as shown in (5). There are 
numerous options for control strategy, and a generic control 
is assumed, as shown in Fig. 2 [10].

The zero-sequence signals MU0 and ML0 are employed to 
regulate arm sum voltages, which ensures energy balancing 
in the converter arms. The inner current control is used to 
improve system response and to limit the current in case of 
disturbances. The DC power flow Pdc is regulated at the ref‐
erence DC power Pdc,ref by using the phase shift ϕmL

 between 

the control signals of the lower and upper arms.
One good approach to selecting the magnitude of fundamen‐

tal-frequency component control (MU and ML) is to maximize 
the AC voltage (MU0 + MU £ 1), in order to minimize the losses:

ì

í

î

ï

ïï
ï
ï

ï

ï

ï
ïï
ï

ï

MU =ML =min ( )MU0ML0

MLd =ML cos ϕmL

MLq =ML sin ϕmL

MUd =MU

(26)

∑
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VU0,ref
PI

∑
VU0

PI+
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I1

MU0

∑
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+ +

+� �

�

VL0,ref
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∑
VL0

I2

ML0

+

Pdc

ϕmL

Fig. 2.　Block diagram of NIMDC control.
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C. Estimation of Control Signals

The control signals can be determined using numerical it‐
erative methods, which are time-consuming. To avoid itera‐
tions, this paper shows that for this converter, it is possible 
to obtain accurate explicit linear model by estimating the 
control signals. This estimation can be achieved if the fol‐
lowing assumptions are made.

1) Ripples of upper- and lower-arm sum voltages are usu‐
ally small and can be ignored, i.e., dq and d2q2 components 
are zero and vå

armU(t ) »V å
U0 =V å

U0ref v
å
armL(t ) »V å

L0 =V å
L0ref.

2) VUq » 0 since fundamental voltage follows the control 
signal which is aligned with the coordinate frame.

3) The phase angle of lower-arm control signal ϕmL
 is ap‐

proximated by an average of phase angles of the upper- and 
lower-arm voltages.

From (11) and considering the assumption 1, the zero-se‐
quence components of the arm voltage are estimated as VU0 »
MU0V

å
U0ref VU0 »MU0V

å
L0ref and by replacing these estimations 

in (9), the zero-sequence components of the control signals 
are approximated as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

MU0 »
V1 -V2 -RarmU IU0

V å
U0ref

ML0 »
V2 -RarmL IL0

V å
L0ref

(27)

where IU0 = I1 /3; and IL0 =(I1 - I2 )/3.
The arm DC power must be equal to the arm AC power 

in one cycle to maintain power balance. This condition for 
the upper arm of converter considering assumption 2 yields:

(V1 -V2 ) I1

3
» 0.5VUd IUd (28)

VUd and IUd can be respectively estimated from (15) and 
the first equation of (13) by considering assumptions 1 and 
2 and assuming the lossless converter as:

ì

í

î

ïïïï

ïïïï

VUd »MUV å
U0ref

IUd »
-L2

ωLZ

VLq

(29)

By replacing (29) in (28) and considering P = Pdcref = V1 I1, 
VLq is approximated as:

VLq »
-2ωLZ

L2 MUV å
U0ref

(V1 -V2 ) Pdcref

3V1
(30)

Using (30) and assumption 3, and considering that the am‐
plitude of the upper- and lower-arm fundamental voltages 
are the same, i. e., VL »VU »VUd »MUV å

U0ref, the phase angle 
of the lower-arm control signal is then estimated as:

ϕmL
» 0.5 arcsin ( VLq

VL ) » 0.5 arcsin ( -2ωLZ( )V1 -V2 Pdcref

3L2V1( )MUV å
U0ref

2 )
(31)

Using (26), (27), and (31), the 5 control signals can be de‐
termined.

D. Structure of Closed-loop Linear Model

By replacing the estimated control signals in (25), a 
closed-loop phasor model is obtained. The closed-loop mod‐
el can then be linearized and presented as ACL x = Bv, where 
the matrices can be obtained using linearization; and ACL is 
the matrix of the closed-loop linear phasor model .

Figure 3 shows the proposed phasor model structure. The 
model calculates explicitly all the NIMDC zero-sequence, 
fundamental-frequency, and second-harmonic variables for 
upper and lower arms.

V. PHASOR MODEL VERIFICATION 

A. PSCAD Test Model

The PSCAD test model of the system includes a 3-phase 
NIMDC connected to a DC source at each side, following 
CIGRE B4.76 approach [6]. Each arm valve is represented 
using an improved average non-linear MMC model which 
has been verified for a wide range of operating conditions in 
[19]. The time step of PSCAD simulation is reduced to 1 µs 
to increase the accuracy.

The proposed phasor model is verified against the PSCAD 
model using 3 test cases given in Table I. The test cases are 
purposely developed with widely different voltage ratios, rat‐
ings (parameters), operating frequencies, and power flows to 
examine model robustness. The upper- and lower-arm capaci‐
tance and inductance of NIMDC and the inductances of L2 are 
selected to keep the voltage ripple of cell capacitance around 
±5% at the rated power. The reference arm sum voltages are 
V Σ

U0ref = V Σ
L0ref = V1 = 320 kV, and the number of cells is se‐

lected as NU = NL = 160 for all test cases to keep the cell rat‐
ed voltage of 2 kV. The equivalent upper- and lower-arm resis‐
tances are 1.44 Ω and 0.96 Ω, respectively, for all test cases.

B. Verification of Open-loop Model

The quantitative comparison results for all 30 variables of 
the model for test case 1 are given in Table II. All the zero-
sequence, fundamental-frequency, and second-harmonic dq 

∑
5

5

5

5

5

5

NIMDC 
parameters 

(Table I)

Control signal
 estimation ((26),
 (27), and (31))

MU0, ML0

MLd, MLq

MU
NIMDC phasor

 model ((25) and

 (A1)-(A23))

VarmU
∑VarmL

VarmU
VarmL
IarmU
IarmL

V1,V2

Fig. 3.　Proposed phasor model structure.

TABLE I
NIMDC PARAMETERS FOR 3 TEST CASES

Case

1

2

3

Prated

(MW)

600

600

300

Pdc,ref
(p.u.)

1

-0.5

0.2

Vdc

(kV)

V1 = 320,
V2 = 250

V1 = 320,
V2 = 160

V1=320,

V2=80

Frequency 
(Hz)

150

200

300

Csm (µF)

CsmU =2400,
CsmL =13200

CsmU =6800,
CsmL =6800

CsmU =8400,
CsmL =2050

Larm (mH)

LarmU = 11,
LarmL = 11

LarmU = 8,
LarmL = 8

LarmU=7,

LarmL=5

L2 
(mH)

80

60

40
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variables show good matching, which implies that modelling 
up to the second harmonic gives very high accuracy, and 
higher harmonics would not be required.

The norm-2 error for each variable x,  ex , is calculated as:

 ex =
 xPSCAD - xModel

 xPSCAD

´ 100% (32)

where x =[x0, xd, xq, xd2, xq2 ]. It is observed that the norm-2 
errors are well below 0.5% for all variables。

Figure 4 shows the steady-state upper-arm sum voltage 
and arm current of PSCAD, and the reconstructed signals 
from the model output for test case 1 while Fig. 5 shows the 
steady-state error of upper-arm sum voltage and arm current. 
The reconstructed signals are generated based on (6) and (7), 
and the verification results for test case 1 are given in Table 
II. It is observed that the errors are very low.

   The verification results for test case 2 are provided in Ta‐
ble III. This illustrates that the model is accurate with differ‐
ent voltage ratios, operating frequencies, valve parameters, 
and power flows. The results also show that the magnitude 
of second harmonic is generally small compared with the 
conventional MMC AC/DC converter (around 2.5% of the 
fundamental frequency for test case 1, 30% for test case 2, 
and 8% for test case 3), and NIMDC may or may not need 
SHCSC.

C. Verification of Closed-loop Model

Table IV shows the estimated control signal, using (26), 
(27), and (31) for test case 1 against those in the benchmark 
PSCAD model (obtained using the PI controllers of Fig. 2), 
and Table V gives the verification results of the closed-loop 
model with estimated control signals for test case 1.

It is observed that the control signal estimations are rea‐
sonably good, while the errors of the closed-loop model are 

TABLE II
VERIFICATION RESULT FOR TEST CASE 1

Variable

V Σ
armU

V Σ
armL

VarmU

VarmL

IarmU

IarmL

Type

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

Magnitude of different components

Zero 
sequence

320.000

320.000

320.000

320.000

69.100

69.100

250.200

250.200

0.629

0.628

-0.165

-0.164

d

1.417

1.319

-8.360

-8.430

70.400

70.300

-75.000

-75.100

-1.239

-1.238

-1.374

-1.374

q

9.110

9.120

13.320

13.310

2.490

2.490

25.300

25.300

0.077

0.072

-0.823

-0.828

d2

0.504

0.502

0.526

0.525

0.270

0.253

1.002

1.002

0.004

0.003

0.018

0.017

q2

4.810

4.770

-1.170

-1.154

2.040

2.020

-2.570

-2.520

0.030

0.030

0.032

0.032

Norm-
2 error 

(%)

0.035

0.024

0.060

0.034

0.413

0.317

TABLE III
VERIFICATION RESULT FOR TEST CASE 2

Variable

V Σ
armU

V Σ
armL

VarmU

VarmL

IarmU

IarmL

Type

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

Magnitude of different components

Zero 
se‐

quence

320.000

319.900

320.000

320.000

160.500

160.400

159.700

159.700

-0.310

-0.310

0.323

0.324

d

12.340

12.330

-8.880

-8.830

167.100

167.000

-164.600

-164.500

0.609

0.610

0.693

0.694

q

-2.600

-2.610

-3.460

-3.460

-1.593

-1.613

-12.470

-12.470

1.232

1.230

-0.831

-0.832

d2

3.930

3.860

2.830

2.790

5.120

4.980

3.770

3.520

-0.025

-0.024

-0.035

-0.033

q2

-1.324

-1.320

1.905

1.896

-1.295

-1.301

1.970

1.938

0.221

0.212

0.217

0.208

Norm-
2 error 

(%)

0.048

0.022

0.089

0.121

0.663

0.860
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Fig. 5.　Steady-state error of upper-arm sum voltage and arm current.
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armU and arm current iarmU.
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higher because of the assumptions in the control signal esti‐
mation. However, the accuracy is still adequate for most 
practical studies.

D. Impact of Second Harmonic on Model Accuracy

A simplified model is obtained by equating the second-or‐
der harmonic of the variables (d2 and q2 components of 
V Σ

arm, Varm, and Iarm) in vectors x and u, and matrix A in (A1) 
and (A2) to zero, which reduces the number of variables 
from 30 to 18.

The accuracy of this reduced-order open-loop model for 
test case 3 is compared with that for both the PSCAD and 
full-order models, and the verification results are shown in 
Table VI.

It is observed that the simplified model errors are much 
higher for almost all variables. This implies that the second 
harmonic has significant impact on the model accuracy, and 
the reduced phasor modelling with only two coordinate 
frames (0 and dq) [12] may not be accurate enough for 
many applications. This is in agreement with conclusions 
from [2] that second harmonic affects power flow. Such a re‐
duced model might be beneficial only in specific cases 
where processing resources are limited, and a lower accura‐
cy is acceptable.

E. Verification of Phasor Model with SHCSC

The phasor model with SHCSC is also verified, and the 
verification results for test case 1 are given in Table VII. It 
is observed that the matching in test case 1 is better than in 

the case without SHCSC. Table VIII shows that the magni‐
tude of the second-harmonic control signals is small and the 
matching with PSCAD model is excellent. It is also conclud‐
ed that d2q2 coordinate frame modelling should be used 
even when SHCSC is employed, since arm sum voltages 
contain second harmonic and there is a coupling with dq 
frame and power flow, as shown in Table VII.

TABLE VI
VERIFICATION OF REDUCED- AND FULL-ORDER PHASOR MODELS (TEST 

CASE 3)

Vari‐
able

V Σ
armU

V Σ
armL

VarmU

VarmL

IarmU

IarmL

Type

PSCAD

Full-order

Reduced-
order

PSCAD

Full-order

Reduced-
order

PSCAD

Full-order

Reduced-
order

PSCAD

Full-order

Reduced-
order

PSCAD

Full-order

Reduced-
order

PSCAD

Full-order

Reduced-
order

Magnitude of different components

Zero 
sequence

320.000

320.000

320.000

320.000

319.700

319.900

239.900

239.900

239.900

80.200

80.200

80.200

0.063

0.063

0.061

-0.182

-0.181

-0.177

d

3.270

3.260

3.290

-6.420

-6.410

-6.060

82.500

82.500

82.500

-81.500

-81.500

-81.200

-0.375

-0.374

-0.366

-0.407

-0.405

-0.396

q

2.670

2.670

2.620

2.310

2.290

2.240

2.040

2.030

1.960

6.840

6.680

6.540

0.424

0.424

0.435

-0.589

-0.588

-0.576

d2

0.429

0.425

1.678

1.665

0.731

0.726

1.250

1.191

-0.001

-0.001

0.003

0.003

q2

0.238

0.241

-1.190

-1.172

0.512

0.514

-0.660

-0.636

0.043

0.041

0.045

0.044

Norm-
2 error 

(%)

0.007

0.154

0.090

0.654

0.006

0.354

0.155

1.281

0.329

7.910

0.376

6.540

TABLE IV
ESTIMATED CONTROL SIGNAL FOR TEST CASE 1

Type

PSCAD

Phasor model

MU0

0.2155

0.2159

ML0

0.7780

0.7818

MU

0.2188

0.2188

MLd

-0.2139

-0.2114

MLq

0.0463

0.0442

TABLE V
VERIFICATION RESULTS OF CLOSED-LOOP MODEL WITH ESTIMATED 

CONTROL SIGNAL FOR TEST CASE 1

Variable

V Σ
armU

V Σ
armL

VarmU

VarmL

IarmU

IarmL

Type

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

Magnitude of different components

Zero 
sequence

320.000

319.400

320.000

318.500

69.100

69.100

250.200

250.100

0.629

0.596

-0.165

-0.156

d

1.417

1.528

-8.360

-8.190

70.400

69.400

-75.000

-73.800

-1.239

-1.192

-1.374

-1.321

q

9.110

9.090

13.320

12.880

2.490

2.450

25.300

24.200

0.077

0.085

-0.823

-0.800

d2

0.504

0.553

0.526

0.518

0.270

0.285

1.002

0.985

0.004

0.002

0.018

0.015

q2

4.810

4.540

-1.170

-1.090

2.040

1.961

-2.570

-2.390

0.030

0.030

0.032

0.032

Norm-
2 error 

(%)

0.199

0.490

1.052

0.606

4.170

3.570

TABLE VII
VERIFICATION OF PHASOR MODEL WITH SHCSC (TEST CASE 1)

Variable

V Σ
armU

V Σ
armL

VarmU

VarmL

IarmU

IarmL

Type

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

PSCAD

Model

Magnitude of different components

Zero 
sequence

320.000

320.000

320.000

320.000

69.100

69.100

250.200

250.200

0.629

0.630

-0.164

-0.165

d

1.443

1.390

-8.400

-8.440

70.300

70.300

-74.900

-75.000

-1.238

-1.240

-1.377

-1.376

q

9.140

9.160

13.330

13.330

2.510

2.500

25.300

25.300

0.076

0.073

-0.823

-0.826

d2

0.136

0.140

0.355

0.354

0.009

0

-0.010

0

0

0

0

0

q2

4.840

4.810

-1.081

-1.072

-0.036

0

-0.037

0

0

0

0

0

Norm-
2 error 

(%)

0.020

0.014

0.043

0.023

0.255

0.179
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VI. DEMONSTRATION OF PHASOR MODEL APPLICATIONS 

A. Impact of NIMDC Parameters on Ripple

The proposed phasor model can be used to study the im‐
pact of the NIMDC parameters on the performance and for 
the converter design purposes.

Figure 6 shows the voltage ripple of capacitors versus the 
lower-arm cell capacitance for three different arm inductanc‐
es while all other parameters are kept constant as in the test 
case 1. It shows that both upper- and lower-arm cell voltage 
ripples decrease nonlinearly by increasing the lower-arm ca‐
pacitance even though upper-arm capacitance is constant 
(CsmU = 2400 µF). It also shows that the arm inductance af‐
fects the voltage ripples in a complex and non-linear man‐
ner. Such multidimensional design problems are challenging 
on time-domain simulators.

The voltage ripple is considered as the sum of fundamen‐
tal frequency and second harmonic on the arm sum voltage 
as below:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

DV å
armU = ( )V å

Ud

2
+ ( )V å

Uq

2

+ ( )V å
Ud2

2
+ ( )V å

Uq2

2

DV å
armL = ( )V å

Ld

2
+ ( )V å

Lq

2

+ ( )V å
Ld2

2
+ ( )V å

Lq2

2

(33)

B. Eigenvalue Stability Analysis

The stability of the NIMDC for test case 1 has been anal‐
ysed using the eigenvalues of ACL. With the design parame‐

ters, all the eigenvalues are in the left half plane, implying 
that the system is stable with the dominant eigenvalues of 
-0.2362 ± j0.0555.

The system eigenvalues move toward the right half plane 
(the instability region) by decreasing the main parameters of 
each converter, i. e., Larm, L2, CarmU, CarmL, and the operating 
frequency. Comparing the phasor and PSCAD models, Table 
IX shows the minimum value for each NIMDC parameter of 
stable operating for test case 1 and summarizes the theoreti‐
cal stability limit for each parameter while other parameters 
are kept unchanged. There is no theoretical limit for L2 
based on the model.

It is observed that the stability limits based on the phasor 
model are more optimistic than the corresponding limits in 
PSCAD. Since phasor model is valid only in steady state, 
the PSCAD results indicate the dynamic stability limits. It 
should be noted that phasor models are not usually suitable 
for stability analysis.

VII. CONCLUSION 

The accurate 30th-order open-loop phasor model for high-
power NIMDC is proposed. It is concluded that the model 
should consider the converter variables in zero sequence, the 
rotating dq frame at the fundamental frequency, and the 
d2q2 frame at double the fundamental frequency. The model 
is convenient for power flow studies, as it includes the exter‐
nal DC voltages and the control signals as the external in‐
puts. It is demonstrated that d2q2 coordinate frame is impor‐
tant, since there is a significant coupling among the zero-se‐
quence, fundamental frequency, and second-harmonic vari‐
ables in the non-linear model. A linearized closed-loop pha‐
sor model is also developed by estimating the control signals 
which is suitable for linear system studies. A thorough verifi‐
cation of the proposed model against benchmark PSCAD 
model is performed for 3 test cases with different voltage 
step ratios, power flows, and operating frequencies, and the 
observed accuracy is found to be very good. As a demonstra‐
tion of the proposed model, the study of lower-arm cell ca‐
pacitance demonstrates significant cross coupling between 
the upper- and lower-arms variables including harmonics. In 
addition, the model is used to determine eigenvalues and to 
perform basic stability analysis.

APPENDIX A 

The vectors and matrices of the proposed NIMDC phasor 
model (25) are as below:
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Fig. 6.　Upper- and lower-arm sum voltage ripples versus lower-arm SM 
capacitance (test case 1).

TABLE IX
THE MINIMUM VALUE FOR EACH NIMDC PARAMETER OF STABLE 

OPERATING FOR TEST CASE 1

Type

Model

PSCAD

Larm (mH)

5

7

L2 (mH)

2

CarmU (µF)

485

1100

CarmL (µF)

5600

6850

Frequency (Hz)

102

121

TABLE VIII
VERIFICATION OF SECOND-HARMONIC CONTROL SIGNALS FOR TEST CASE 1 

WITH SHCSC

Type

PSCAD

Model

MUd2

-0.0006

-0.0006

MUq2

-0.0064

-0.0064

MLd2

-0.0027

-0.0027

MLq2

0.0078

0.0077
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v =[V1 V2 ]T (A16)
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