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Daily Cycling Load

Dejan P. Jovanović, Gerard F. Ledwich, and Geoffrey R. Walker

Abstract—This paper presents a control strategy for residen‐
tial battery energy storage systems, which is aware of volatile 
electricity markets and uncertain daily cycling loads. The eco‐
nomic benefits of energy trading for prosumers are achieved 
through a novel modification of a conventional model predictive 
control (MPC). The proposed control strategy guarantees an op‐
timal global solution for the applied control action. A new cost 
function is introduced to model the effects of volatility on cus‐
tomer benefits more effectively. Specifically, the newly pre‐
sented cost function models a probabilistic relation between the 
power exchanged with the grid, the net load, and the electricity 
market. The probabilistic calculation of the cost function shows 
the dependence on the mathematical expectation of market 
price and net load. Computational techniques for calculating 
this value are presented. The proposed strategy differs from the 
stochastic and robust MPC in that the cost is calculated across 
the market price and net load variations rather than across 
model constraints and parameter variations.

Index Terms——Optimal control, model predictive control 
(MPC), energy market, nonlinear constrained optimization, rev‐
enue for battery energy storage system, Gaussian mixture mod‐
el, autoregressive integrated moving average model.

I. INTRODUCTION 

THE promising economic benefits of battery energy stor‐
age systems (BESSs) for residential customers [1] offer 

many investment opportunities [2]. Investment assets include 
BESSs and equipment for renewable energy generation. 
Risks associated with these assets are mainly related to how 
well electricity market price spikes are managed [3], [4]. 
Market price spikes are defined as price jumps of extreme 
size due to sudden imbalances in supply and demand [5]. 

The situation is similar to power network generators, which 
generate most of the revenue during market price spikes [3], 
[6]. To take advantage of investment opportunities, a proper 
control strategy is required to evaluate the revenue and net 
income [7]. A control strategy for residential customers re‐
quires that storage volumes, net load characteristics, and mar‐
ket price [8], [9] are all considered and that globally optimal 
decisions are made.

The control strategy often used for a BESS control is mod‐
el predictive control (MPC), which is a cost-minimizing iter‐
ative optimization method over a finite prediction horizon 
[10]. Numerous studies on MPC and its application in BESS 
control have been conducted. In [11], an MPC-based ap‐
proach is proposed to optimize energy costs to the end-user. 
In this approach, a two-stage strategy is developed to sepa‐
rate the BESS control action between the energy deficit and 
excess. The load volatility is suppressed by introducing 
weights assigned to the cost of output error. Through this ap‐
proach, customer benefits are significantly reduced. Inequali‐
ty constraints are not imposed on a BESS. The concept of 
an end-user-driven microgrid is introduced in [12]. In this 
strategy, end-users can consume and share power only with 
the utility grid. A dynamic MPC-based optimization ap‐
proach is used for the optimal power and battery scheduling. 
A constant demand and very low load volatility are as‐
sumed. Reference [13] considers a rule-based MPC control‐
ler in which rules are based on the operating constraints of 
the BESS. The BESS control is defined as an optimal track‐
ing problem, whereas the reference inputs are assumed to 
have a smooth trajectory. The methodology proposed in [14] 
combines an MPC with a Gaussian process based prediction 
for photovoltaic (PV) generation and demand. The study de‐
termines that a shorter MPC horizon provides more accurate 
control. Here, the prediction method outperforms the rule-
based MPC algorithm. In [15], the distributed and decentral‐
ized MPC of a residential BESS is designed, in which the 
load variability is flattened using averaging over the reced‐
ing horizon, and terminal constraints are not considered. A 
mixed-integer multi-time scale stochastic optimization based 
on an MPC is proposed in [16] for home energy manage‐
ment. Here, the cost function is minimized (subject to bud‐
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get and power constraints) such that the indoor temperature 
is maintained at the reference level. The electricity price is 
assumed to be constant, and the load has a low variability.

Electrical energy trading is rapidly changing with the in‐
crease in distributed energy resource (DER) connections. Tra‐
ditional energy consumers are becoming prosumers that both 
consume and generate energy [17]. In essence, the electricity 
generation of DERs is challenging to predict because of the 
stochastic nature of these resources. However, if energy is 
stored in a BESS and exported back to either the grid or oth‐
er energy consumers, the optimal BESS control can achieve 
economic benefits. The volatility of the electricity market 
price and uncertain cycling load mean that finding an opti‐
mal solution for a customer BESS is challenging. Market 
price involves a nonlinear stochastic process that consists of 
the base price and spikes [5]. Therefore, the price character‐
ization is a demanding but vital task [4], as managing mar‐
ket price spikes is critical in mitigating the risks of investing 
in BESSs for residential customers.

In this context, MPC must address the following challeng‐
es. First, the control strategy must be optimal. The conven‐
tional MPC does not guarantee optimality. Furthermore, the 
daily repetitive nature of the net load causes the receding 
one-day-ahead prediction horizon of the MPC to have differ‐
ent levels of cycling load. Consequently, the equality termi‐
nal constraint becomes too challenging to incorporate into 
the optimization process. The final challenge is modelling 
the probabilistic characterization of energy prices and incor‐
porating them into the MPC.

To achieve the optimal economic benefits for customers in 
a volatile electricity market with a daily cycling load, we 
propose a control strategy based on a modified version of a 
conventional MPC. A new cost function is proposed that 
models a probabilistic relation between flow, the net load, 
and the electricity market. We show that this cost function is 
convex and applicable to convex optimization. The numeri‐
cal quantification of the proposed cost function is based on 
calculations of expected values of the market price and net 
load. The variable length horizon is introduced, which en‐
ables the equality terminal constraint to be defined at a time 
of low power. The computational techniques for calculating 
the expected values are proposed for a volatile market price 
and daily cycling load. An innovative application of a mix‐
ture model for calculating the expected value of a volatile 
market price is introduced. The proposed optimization meth‐
od is convex and guarantees a globally optimal solution. Fi‐
nally, because the model of a household equipped with a 
BESS is a linear time-varying switching one (as it depends 
on the energy flow direction), we propose a strategy that di‐
rectly incorporates a switching model in the cost function.

The remainder of this paper is organized as follows. In 
Section II, the BESS modelling is described. Section III de‐
scribes progressive MPC for volatile electricity market price 
and cycling daily load. The calculation of the expected val‐
ues of the market price is addressed in Section IV. The re‐
sults are presented in Section V and the conclusions are giv‐
en in Section VI.

II. BESS MODELLING 

The subsystems that comprise a BESS system include a 
control unit, communication link, and smart meter. The con‐
trol unit regulates the energy stored in the batteries driven 
by a variable local demand and energy price. The communi‐
cation link is assumed, through which the information about 
energy price changes is provided to the control unit in real 
time. A smart meter measures the energy flow between the 
power grid and a household equipped with a BESS. A sim‐
plified block of a household equipped with a BESS is pre‐
sented in Fig. 1, where F(t) is the power exchanged with the 
grid and measured by the smart meter; L(t) is the net load 
power defined as the difference between local demand and 
local generation; and u(t) is the battery power.

The energy capacity of the BESS is given by Ec. The real‐
istic modelling of the battery charging and discharging pro‐
cesses requires realistic values for charging losses α- and dis‐
charging losses α+. The charging process is assumed to be 
less efficient than the discharging process [18], [19]. Based 
on these characteristics, a state space model of a proposed 
grid-connected BESS is given by:

Et + 1 =Et - ᾱutDT (1)

where ᾱ is the loss term; Et and Et + 1 are the instantaneous 
battery energy at time instance t and t + 1, respectively; and 
DT is the time interval. ᾱ is defined as:

ᾱ = {α+ ut > 0
α- ut £ 0

(2)

In this paper, losses in a battery are defined as a function 
of inverter efficiency because mapping all losses to the DC 
side of an inverter is possible [13]. The state of charge 
(SOC) of a battery system is modelled by:

SOCt + 1 = SOCt -
ᾱutDT

Ec
(3)

where SOCt and SOCt + 1 are the SOCs of a battery at time 
instance t and t + 1, respectively.

Complex battery models [19], [20] are not used in this 
study because they do not affect the overall design process.

Constraints are imposed on the control input ut, requiring 
that:

-Pc £ ut £Pc (4)

where Pc is the maximum power rating of the converter.
In addition, the minimum and maximum BESS energy lev‐

els impose constraints on acceptable values of instantaneous 
energy such that the following relations hold:

Eres £Et + 1 £Ec (5)

+

�

L(t) F(t)

u(t)

Grid

=

Household

BESS

AC/DC
 converter

Fig. 1.　Simplified block of a household equipped with a BESS.
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where Eres is the contracted level of energy reserve. Finally, 
the constraint that ensures that the BESS energy level at the 
end of the time horizon has the predefined value Eend as:

EtH
=Eend (6)

where EtH
 is the equality terminal constraint. It follows that 

the underlying model of the system shown in Fig. 1 is a lin‐
ear time-varying switching model because (1) depends on 
the energy flow direction. Subsequently, the control of BESS 
is a time-varying nonlinear control problem. In addition to 
nonlinearity, a control problem of BESS is constrained with 
a set of operational limitations given by (4)-(6).

The flow balance of the system shown in Fig. 1 is disrupt‐
ed by cycling random dynamics of the household net load. 
However, the economic benefits of a household are deter‐
mined by market price. Incorporating these dynamics in the 
control methodology and evaluating the cost across the net 
load variability and market price are essential.

III. PROGRESSIVE MPC FOR VOLATILE ELECTRICITY 
MARKET PRICE AND CYCLING DAILY LOAD 

MPC on the finite horizon [t1tH ] is defined as a convex 
optimization problem by:

ì

í

î

ïïïï

ïïïï

min
u

C(u)

s.t.  φi (u)£ 0    φi:RHR i = 12...l

       ψj (u)= 0    ψj:RHR j = 12...m

(7)

where C(u) is the cost function and uÎRH is the optimiza‐
tion control variable. The functions C(×) and φi (×) are convex, 
whereas the function ψj (×) is affine [6]. Since (1) is the for‐
ward difference approximation of the first derivative, it fol‐
lows that nonlinear constraint (5) is convex [22]. The equali‐
ty constraint (6) is affine for the finite horizon [t1tH ], since 
(1) can be re-written as an affine transformation in the fol‐
lowing form:

Φ(u)=Au + b (8)

where Φ(×) is the cumulative distribution function (CDF) of 
the standard normal distribution; A =-diag[DTDT...DT]H ´H 
is a linear transformation; u =[ᾱu1ᾱu2...ᾱuH ]T; and b =
[Et1

Et2
...EtH

]T. It is worth noting that on the finite horizon 

[t0tH ], EtH
 at a fixed-end horizon time tH can be written as:

EtH
=Et0

-∑
τ = t0

tH - 1

ᾱuτDT (9)

where τ is a discrete-time step at which the total cost is com‐
puted.

With the constraints satisfying the convex optimization 
conditions, it remains to prove that the cost function is also 
convex. Before proving the convex optimization property, 
we first introduce the new cost function and the assumptions 
upon which this function rests.

The total cost of the BESS response to market price over 
time interval tÎ[t0tH ] is modelled as:

Ctot = ∫t0

tH

g(M (t)F(t))dt (10)

where g(M (t)F(t)) is the instantaneous cost, which depends 
on the market price and power exchanged with the power 
grid; and M (t) is the market price.

The framework upon which the integrand g(M (t)F(t)) is 
defined is based on the assumption that flow F(t) cannot in‐
fluence M (t) because of the limited and insufficient energy ca‐
pacity of the household BESS. In addition, because the indi‐
vidual household is not the relevant entity in the bidding pro‐
cess, no mechanism exists for the energy market to influence 
the particular household flow directly. Consequently, the in‐
stantaneous cost definition can be given in the following form:

g(M (t)F(t))=M (t)F(t) (11)

Since the random nature of M (t) and F(t), the total cost 
(10) must be calculated as the expected value. Applying the 
operator of the mathematical expectation to (10), the expect‐
ed total cost is given by:

J =E{Ctot }=Eì
í
î

ü
ý
þ∫t0

tH

g(M (t)F(t))dt (12)

Interchanging the integral with mathematical expectation 
is possible if and only if an integrand g(MF), where M and 
F are random variables, is bounded [23]. This condition is 
satisfied since all variables in g(MF) are constrained by 
their maximum values. After the integral is interchanged 
with mathematical expectation and is approximated with a 
sum, (12) becomes:

J =E{Ctot }=∑
τ = 0

H

E{ }gτ (MF) DT (13)

A computation of total cost is reduced to a computation of 
the expected value of a function gτ (MF) for τ. The battery 
action is assumed to be fixed for each evaluation. By defini‐
tion, the expected value of a function gτ (MF) is given by:

E{ }gτ (MF) = ∬MF
gτ (mf )pMF (mf )dmdf (14)

where pMF (mf ) is the joint probability density function 
(PDF) [5], [24]; and M and F are considered independent in 
terms of the calculation of (14). Consequently, pMF (mf ) is a 
product of two univariate PDFs pM (m) and pF ( f ).

pMF (mf )= pM (m)pF ( f ) (15)

Substituting (11) and (15) into (14) yields the expectation 
in its unfolded form as:

E{ }gτ (MF) = ∫-¥

¥

mpM (m)dm ∫-¥

¥

fpF ( f )df (16)

Previous studies on electricity spot price show that market 
price consists of two components: base price and spikes [5],
[6], [25], [26]. The base price component represents the dai‐
ly fluctuations of the price around the mean level, whereas 
spikes are the price jumps of extreme size due to a sudden 
imbalance of supply and demand [5]. Based on these find‐
ings, the dynamic range of the market price in (16) can be 
given by the following relation M = M̄ M͂. M is represented 
as the union of two clusters M̄ (the base component of the 
market price) and M͂ (the non-predictable market price spike 
component). In [27], it is proven that each cluster can be 
modelled as a random variable. Consequently, M is modeled 
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as a mixture of M̄ and M͂, defined as:

M = M̄IM̄ =M + M͂I
M͂ =M

(17)

where IM̄ =M and I
M͂ =M

 are the latent variables [28] used to 
specify the identity of the mixture component of each obser‐
vation M. Consequently, the market price PDF can be writ‐
ten as:

pM (m)= (1 - γ)pM̄ (m)+ γp
M͂

(m) (18)

where γ is the PDF weight and takes the value 0 < γ < 1. Sub‐
stituting (18) into (16) yields the expected value of the in‐
stantaneous cost as:

E{ }g(MF) = é
ë
êêêê(1 - γ) ∫-¥

¥

mpM̄ (m)dm +

ù
û
úúúú                                          γ ∫

-¥

¥

mp
M͂

(m)dm ∫
-¥

¥

fpF ( f )df (19)

The compact form of (19) is given as:

E{ }gτ (MF) = (E{M̄ }+E{M͂ })E{F} (20)

The result from (20) is of two-fold importance. First, it 
demonstrates that the calculation of the expected cost is re‐
duced to the calculation of the expected values of both the 
energy market price and the power exchanged with the grid. 
Second, it can be used to prove the convexity of the optimi‐
zation problem. When (10) is used in a convex optimization, 
it is required to prove that it is convex. The first step is to 
prove that (11) is convex. The following proof is based on 
the results in [29], where a converse of Jensen’s inequality  
is shown. Assuming the existence of closed convex sets and 
a continuous probabilistic measure, the converse of Jensen’s 
inequality holds [29].

Theorem 1: an instantaneous cost (11) is a convex func‐
tion.

Proof: it follows from (19) that γ determines the ratio be‐
tween M̄ and M͂. Since the market price spike component 
can be considered as rare even with a low probability, it is 
possible to assume that γ 1 - γ and E{M̄ }»E{M }; then 
E{M̄ }+E{M͂ } represents the upper boundary of expected 
market price. Consequently, the following inequality can be 
obtained.

E{gτ (MF)}= ( )E{M̄ }+E{M͂ } E{F}³E{M }E{F} (21)

Since MM̄M͂ÎR, they represent closed convex sets. In 
addition, their PDFs are assumed to be absolutely continu‐
ous. Based on these assumptions as well as the inequality 
(21) and results from [29], it follows that (11) is a convex 
function.

According to the theorem of calculus [22], which states 
that the integral of a convex function is also convex, and 
Theorem 1, it follows that the integral (10) is a convex func‐
tion. Therefore, it follows that the proposed MPC strategy is 
a convex optimization problem that guarantees that every lo‐
cal minimum is a global minimum [22].

To calculate the expected value of flow E{F}, F(t) is a 
function of L(t) and u(t), as shown in Fig. 1. Modelling of 
time dependence in the MPC requires that two time scales 
should be introduced, i. e., time instance t and simulation 

time index k. Consequently, the time-dependent flow balance 
shown in Fig. 1 is given by:

Fk|t = Lk|t - uk|t (22)

where Fk|t is the power flow; Lk|t is the load; and uk|t is the 
battery power and is deterministic since it is a result of the 
MPC algorithm from a previous time instance t - 1 when the 
integral (19) is calculated. Note that Fk|t and Lk|t are random 
variables. A change of the variables in (22) to the expression 
for the expectation E{F} yields:

E{F}= ∫-¥

¥

fk|t pF ( fk|t )dftk = ∫-¥

¥

(lk|t - uk|t )pF (lk|t - uk|t )dfk|t (23)

where fk|t is the realization of Fk|t; and lk|t is the realization of 
Lk|t. Note that the subscript k|t is the conventional MPC syn‐
tax for t and k. Sometimes, the subscript k|t will be omitted.

Based on (22), a relation between the CDFs ΦL (×) and ΦF (×) 
must be modelled. The CDF of a real-valued random vari‐
able X is ΦX (x)=P(X £ x) [30]. Consequently, a relation be‐
tween CDFs is given as:

ΦL (L)=P(L £ l)=P(F + u £ l)=P(F £ l - u)=ΦL (l - u) (24)

From (24), it follows that pL (l)dl = pF (l - u)df, and from 
(22), it follows that dl = df. Consequently, the expected flow 
is:

E{F}= ∫-¥

¥

(lk|t - uk|t )pL (lk|t )dLk|t =

∫-¥

¥

lk|t pL (lk|t )dlkt - uk|t∫-¥

¥

pL (lk|t )dlk|t =Euk|t
{L}- uk|t (25)

where Euk|t
{L} is calculated as:

Euk|t
{L} = ∫-¥

¥

lk|t pL (lk|t )dlk|t (26)

The PDF pL (lk|t ) satisfies the normalization condition ∫
-¥

¥

pL (lk|t )dlk|t = 1.

To compute the expected value (26) with an arbitrary load 
PDF pL (lk|t ), Markov chain Monte Carlo (MCMC) [31] meth‐
ods can be used. However, for computational simplicity, a 
random load is modelled with a Gaussian distribution 
Lk|t N (μk|tσ

2
k|t ), where the mean value μk|t =Euk|t

{L} is the 

average daily load at any time point, and σ 2
k|t is the constant 

load variation.
Since the expectations of the base and spike components 

in (20) are calculated with respect to t and k, their notations 
must be changed to Euk|t

{M̄ } and Euk|t
{M͂ }, respectively, to re‐

flect the time dependence. Furthermore, it follows that  
when k > 1 at time t, the expected values are computed as 

predictions Euk|t
{M̄ }= M̂̄k|t, which are generated by an autore‐

gressive integrated moving average (ARIMA) [32] model. 
For k = 1, the expected value of the base price is equal to the 
observed market price at time instance t, Eu1|t

{M̄ }=Mt. The 

spike expected value Euk|t
{M͂ } is calculated using a mixture 

model [28]. Details of the calculation of the expected values 
are provided in the following section.

In a conventional MPC [10], at each time instance, the 
end of the horizon is shifted toward the future. The resulting 
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control sequence is bounded by a set of constraints, both in‐
equality and equality. One of the limitations of applying 
equality constraints to a conventional MPC for daily cycling 
load control is that the value of the end of the horizon af‐
fects the control sequence. Since the horizon passes through 
intervals with different values of load imbalance, it follows 
that the control sequence will depend on the load value at 
the end of the horizon. However, in the case of a household 
equipped with a BESS, given the cycling nature of the load, 
a different strategy is required. Compared with a convention‐
al MPC, the proposed modified MPC strategy assumes that 
the end of the horizon is fixed and finishes at a time of low 
power. This assumption is justified by the fact that the load 
profile, on average, has a 24-hour recurrent interval. Conse‐
quently, the battery usage is predominantly defined by the 
morning and evening peaks; whereas after the evening peak, 
the battery usage is less demanding. In this manner, the hori‐
zon decreases while progressing toward the end of a recur‐
rent interval. This control strategy is called progressive MPC 
(pMPC) since the horizon duration is variable and finally 
stops at a low demand by battery.

Once the load and market price are predicted, the values 
obtained are used in Algorithm 1 to calculate the pMPC se‐
quence at time instance t on the finite horizon H.

In Step 1, the input values are provided for the length of 
horizon H, the control sequence from the previous time step 
t, and the load PDF parameters μ̂Lk|t

, and corresponding vari‐

ance σ̂Lk|t
. The PDF parameters are used to calculate the ex‐

pected load value Euk|t
{F} in Step 2. In the same step, the ex‐

pected values of the base price Euk|t
{M̄ } and the spike expect‐

ed value Euk|t
{M͂ } are calculated. It should be noted that for 

k = 1, the expected value of the base price is equal to the ob‐
served market price at time instance t: Eu1|t

{M̄ }=Mt. The re‐

maining predicted values are generated by the ARIMA mod‐
el.  Euk|t

{M͂} for each k = 12...H is obtained from mixture 

models described by a tuple of parameters (αnμnσn ), nÎK, 
where αn is the weighting coefficient of a component n; μn 
is the mean value of a component n; σn is the variance of a 
component n; and K is the number of components. As out‐
lined in the introduction, to increase the battery life, penaliz‐
ing the inflow variability is crucial. To achieve this, the ex‐
pected cost function (13) is extended by adding a penalty 
term -λuk|tIuk|t < 0 for inflows, where λ is a weighting factor 

and the negative sign is positive for the penalty term. As a 

result, the control sequence u1|t + 1u2|t + 1...uH|t + 1 is calculat‐
ed. As with the conventional MPC [10], from the sequence 
obtained, only the first control signal u1|t + 1 is used by the 
battery controller.

IV. COMPUTATION OF EXPECTED VALUES OF MARKET PRICE

To calculate the expected values, the concept of the mar‐
ket price as the union of two clusters is discussed in the pre‐
vious section. The first cluster is the base price and repre‐
sents the daily fluctuations of the price near the mean level. 
The second cluster contains the price jumps of extreme size. 
These jumps represent outliers since they differ significantly 
from the base [5]. It follows that removing outliers [33] 
from the historical market price data creates the base price 
dataset, whereas outliers themselves create the market price 
spike dataset [6], [25], [34]. With the knowledge of the total 
number of data samples N and the number of data samples 
that are detected as outliers M, the coefficient γ in (18) is es‐
timated as the ratio γ =M/N.

A. Expectation of Base Price Component

Since the energy price has a component with an approxi‐
mately 24-hour period, daily varying ARIMA parameters (p,
d, q) and a periodic differencing filter are proposed for the 
base energy price prediction model [35]. Once an ARIMA 
prediction is obtained, the expected value used in pMPC be‐

comes Euk|t
{M̄ }= M̂̄k|t. The results of the base price modelling 

are presented in Section V.

B. Expectation of Price Spike Component

Based on the historical data, the market price spike datas‐
et is created as the set of market price outliers. Each time 
slot contains heterogeneous data. To model data within each 
time slot, it is proposed that a mixture of Gaussian distribu‐
tions is modelled [28], each mixture component of which 
has a constant mean value and variance. This type of model 
is defined as:

F(m͂t ;Θ)=∑
n = 1

K

αkΦ ( )m͂t - μn

σn
(27)

where F(m͂t ;Θ) is the parametric CDF of the observation m͂t 
at time instance t; and αk is a mixture weighting coefficient.

The mathematical expectation and variance can be ex‐
pressed as a set of the following equations [28]:

E{M͂ }=∑
n = 1

K

αn μn (28)

Cov{M͂ }=∑
n = 1

K

αn( )σn + μn μ
T
n -E{M͂ }E{M͂ }T (29)

To determine the number of clusters in practice, the Bayes‐
ian information criterion (BIC) [28] is commonly used.

In summary, each time slot is modelled using (27), and 
the corresponding expected value Euk|t

{M͂ } is given by (28). 

Once the expected values are estimated, pMPC is executed. 
It should be noted that, unlike the expected value of base 
price, which updates at each time instance, the expected val‐
ue of market price spike is determined based on historical 

Algorithm 1: pMPC

Step 1: start procedure: pMPC (uk|t )
H
k = 1 and (μ̂Lk|t

σ̂Lk|t
)H

k = 1

Step 2: E{gk|t (MF)}=( )Euk|t
{M̄ }+Euk|t

{M͂ } Euk|t
{F}

Step 3: E{Ctot }=Euk|t
∑
k = 1

H

gk|t (MF)DT - λuk|tIuk|t < 0

Step 4: min
u1|t + 1u2|t + 1...uH|t + 1

E{Ctot }

Step 5: return u1|t + 1

Step 6: end procedure
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data and does not change during operation.

V. RESULTS 

Simulation results are divided into three subsections. The 
first two subsections present the results of a price modelling, 
while the third subsection demonstrates the control strategy 
performance. The data used in this study include market pric‐
es for the summer months (December, January, and Febru‐
ary) in Queensland, Australia, for the period from 2012 to 
2018. Energy prices in this dataset show high volatility and 
accordingly represent a very good test case for the proposed 
control strategy. For load modelling, the data are provided 
by Western Power [36]. One hundred and twenty five select‐
ed houses were monitored from October 2012 to March 
2013. Each of the 125 houses was equipped with a smart 
meter. The dataset provided includes the net load (which 
combines demand and PV generation), PV generation only, 
and total reactive power.

The simulation parameters are summarized in Table I.

A. Expectation Model: ARIMA

To calculate the mathematical expectation of the future 

price Euk|t
{M̄ }= M̂̄k|t, "kÎ(2H), a periodic ARIMA model is 

used as the prediction model. This model integrates the ARI‐
MA parameters (p, d, q) with periodic autoregressive (AR), 
and periodic moving average (MA) models. Model orders 
are (3, 1, 7). The periodicity s is 48 samples (24 hours). 
Based on the number of outliers and total number of sam‐
ples, it follows that the ratio γ = 0.0853, which represents the 
probability that the price derives from an M͂ cluster.

B. Expectation Model: Mixture Model

To model the price volatility, the AEMO historical data 
[36] during the summer months (December, January, and 
February) in Queensland from 2012 to 2018 are used. The 
data are aggregated over a 24-hour period with a 30-min 
sampling interval. Figure 2 shows the price variation for ag‐
gregate data. There are 252 data samples in each time slot. 
The data for each 30-min interval are modelled using a mix‐
ture model (27), which yielded 47 mixture models. Note that 
for Fig. 2, the different colored dots are just the indicators 
for energy price.

Through the BIC, it appears that the number of mixture 
components is approximately the same for each time slot 
and subsequently K = 7. Once the mixture model parameters 
(αkμkσk ) are estimated, the mathematical expectation 

Euk|t
{M͂ }= M̂͂k|t, "kÎ(1H), which includes the market price 

volatility, could be calculated using (28). The calculated ex‐
pected value is multiplied by γ, which is the mixture coeffi‐
cient in (18).

The parameters of estimated mixture model for off-peak 
(10:00 a.m.) and peak (05:30 p.m.) hours are listed in Tables 
II and III, respectively. Some anomalies could be observed 
in the estimated mixture model, particularly for the standard 
deviation and mixture component probabilities. The estimat‐
ed standard deviation is found to be the most sensitive to 
the dataset size. For future research, instead of using the ap‐
proach based on expectation maximization, it is possible to 
use Bayesian-based inference.

C. Battery Control

To illustrate the performance of the proposed control 
strategy, the dynamical behavior of BESS is tested in three 
cases. In the first case, the market price is spike free, where‐
as in the second case, a market price spike of 350 $/MWh  
occurs at 06: 00 p. m. The third case is the controller re‐
sponse for the market price spike occurring at different time 
during the day. Finally, a comparative study is conducted to 
illustrate the advantages of the progressive MPC over the 
conventional MPC. Regarding the net load, from the West‐
ern Power data for a house labeled 31, the daily consump‐
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Fig. 2.　Price variation for aggregate data.

TABLE I
SIMULATION PARAMETERS

Pc (kW)

5

Ec (kWh)

10

Eres (kWh)

2

Eend (kWh)

5

α

0.96

DT (hour)

0.5

λ

1´10-3

TABLE II
PARAMETERS OF ESTIMATED MIXTURE MODEL AT 10:00 A.M.

α

0.2722

0.0078

0.0079

0.5107

0.0118

0.1812

0.0084

μ

31.4

701.1

2230.6

52.9

165.1

61.1

465.1

σ

46.30

200.50

0.09

14.40

415.70

224.30

8789.10

TABLE III
PARAMETERS OF ESTIMATED MIXTURE MODEL AT 05:30 P.M.

α

0.7547

0.0039

0.0039

0.0651

0.0079

0.1206

0.0439

μ

52.3

6625.7

4523.2

323.1

13224.5

132.2

2093.5

σ

156.400

0.001

0.001

22155.100

75350.200

2074.400

32594.400
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tion on November 19, 2012 was used as a test case.
An instantaneous daily market price on December 19, 

2012 and the expected values of the market price are shown 
in Fig. 3, where E{M̄t } is the results of ARIMA-based price 
expectation; E{M͂t } is the the mixture model based expected 
values of the market price spike; and E{M̄t }+ E{M͂t } is the 
total expected market price. Figure 4 shows the Lt, ut, Ft, 
and E ( Lt ) when there is no market price spike, where E(Lt ) 
is the average daily load used as the predicted load values.

The behavior of the battery power over the 24 hours 
changes since the battery dynamic behavior depends on the 
changes to the market price and net load. In the morning, 
the market price is low, and pMPC decides to charge the bat‐
tery. At mid-day, the battery control action is constrained by 
the market price and the PV generation. Since the market 
price at mid-day is in a transition from the low value in the 
morning toward the high value in the afternoon, pMPC has 
a neutral position regarding battery charging/discharging. 
The battery energy when there is no market price spike is 
shown in Fig. 5.

Figure 5 shows that the battery is charged quickly in the 
morning because of the low market price. As mid-day ap‐
proaches, the battery energy charges at a lower rate until it 
is fully charged since the market price begins to increase. 
Because E(M̄t) in Fig. 3 begins to increase, particularly from 
03:30 p.m. to 05:30 p.m., the control action of pMPC begins 
discharging the battery to benefit from the expected value of 
market price spike. Once the expected peak of the market 
price passes after 05:30 p.m., pMPC stops commanding rap‐
id discharging until the predicted market price spike starts, 
indicating a market price drop at 07:30 p.m.. The charging 
process begins again after 09:00 p.m. because the battery en‐

ergy needs to reach the level of the commanded 50% of the 
total energy capacity at midnight.

In the second case, at 06:00 p.m., a market price spike of 
350 $/MWh occurs, as shown in Fig. 6. A comparison of the 
pMPC behaviors at 05: 30 p. m. of these two cases reveals 
that the control actions and system behaviors are identical in 
both cases. Because we could not predict the market price 
spike, the difference between these two cases occurs when a 
market price spike occurs at 06:00 p.m., as shown in Fig. 6.

The immediate response of pMPC is to discharge the bat‐
tery to respond to the market price spike, as shown in Fig. 
7. As a result of battery discharging, the total energy stored 
in the batteries is reduced but remains above the contracted 
reserve, as shown in Fig. 8. For comparison, the dashed line 
in Fig. 8 represents the battery energy when there is no mar‐
ket price spike. The difference between the levels of dis‐
charged energy in the two cases is the area between the 
curves.

Figure 9 shows the household battery energy for multiple 
market price spikes during a day: 06:00 a.m., 04:00 p.m., 
05:00 p.m., 06:00 p.m., and 08:00 p.m. with the same value 
of 350 $/MWh. Daily revenues for market price spike occur‐
ring at different time instances are summarized in Table IV.

Based on the comparison of the effects of a spike on the 
BESS, it follows that the proposed control strategy provides 
this type of response in which, regardless of the spike occur‐
rence, the constraints are always satisfied. In other words, 
the battery energy neither exceeds the maximum capacity 
nor falls below the contracted reserve. In addition, at the end 
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Fig. 4.　Lt, ut, Ft, and E(Lt) when there is no market price spike.
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Fig. 5.　Battery energy when there is no market price spike.
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of the prediction horizon, the battery energy is always 50% 
of the total energy capacity.

The advantages of the progressive and conventional MPC-
predicted control sequences are illustrated in Figs. 10 and 
11, respectively. Note that the analysis focuses on the dynam‐
ic characteristics of u1|t and complete prediction uk|t on the 
variable horizon kÎ(1H). Other colored dots in Figs. 10 
and 11 present just a hint of different dynamics of control 
signal for different length of horizon, so that the notations 
are not provided. The comparison of the proposed and con‐

ventional MPC methods reveals a couple of significant dif‐
ferences. Unlike in the fixed-length horizon case, the equali‐
ty terminal constraint on the variable-length horizon could 
be achieved for a daily cycling load. Toward the end of a 
day at H = 48 hours, the proposed control strategy enables 
the correction of BESS energy level to ensure that EtH

=Eend. 

By contrast, when approaching the end of a day, a conven‐
tional MPC reduces the control signal to zero, making it im‐
possible to control the BESS energy level at the end of the 
day. The most notable difference is related to the optimality 
of the solution. Unlike a conventional MPC, the proposed 
control strategy achieves high power levels during charging 
and discharging in the fully charged BESS. The importance 
of the global optimality property of the proposed control 
strategy is reflected in the execution time of the program. Al‐
though the algorithm is implemented in MATLAB, we ob‐
serve a significant difference in the computational time. The 
proposed control strategy is executed for approximately 21 s, 
whereas the conventional MPC requires approximately 145 s.

The results illustrate the fundamental characteristics of the 
proposed method. It remains to be demonstrated how the 
proposed method performs better than the conventional MPC 
method. For this purpose, 200 realizations, each with a 24-
hour duration, are used for the evaluation. Each of these real‐
izations for market price and net load is tested for both 
cMPC and pMPC. Total daily income is calculated, where 
histograms of total daily income for cMPC and pMPC are 
given in Fig. 12, where the orange and green lines are the 
probability density curves of cMPC and pMPC, respectively. 
It can be observed that pMPC (μpMPC = 11.57) has a substan‐
tially higher income as compared with that of cMPC (μcMPC =
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Fig. 7.　Lt, ut, Ft, and E(Lt) for an immediate response of pMPC.
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TABLE IV
DAILY REVENUE FOR MARKET PRICE SPIKE OCCURRING AT DIFFERENT 

TIME INSTANCES

Time instance

06:00 a.m.

04:00 p.m.

06:00 p.m.

08:00 p.m.

Revenue

69.1

71.7

59.3

55.1
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Fig. 10.　Progressive MPC-predicted control sequence.
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1.38). The estimated standard deviation is similar for the two 
cases with σpMPC = 1.76 and σcMPC = 1.93.

VI. CONCLUSION 

The investment in BESSs for residential customers may 
provide significant economic benefits. This is valid only if 
the applied control strategy is capable of managing associat‐
ed volatility. Since the market price and daily cycling net 
load contribute the most to unpredictable behavior, this pa‐
per models and quantifies their probabilistic nature by mathe‐
matical expectation. The expected market price consists of 
the predicted base price and the expected value of market 
price spikes. Using a mixture model to compute the expect‐
ed value of market price spikes is shown to be a simple and 
effective approach. The proposed control strategy is based 
on a new convex cost function that depends on the expected 
values of the market price and daily cycling net load. The 
cost function is optimized on the variable-length horizon to 
accommodate the repetitive behavior of the customer net 
load. The use of variable horizon length enables the equality 
terminal condition to be defined, which is one of the require‐
ments of global optimality with the proposed methodology. 
The proposed approach is tested on real market and custom‐
er load data. The approach demonstrates superior perfor‐
mance, generating a significantly higher income compared 
with the conventional MPC. This performance is a result of 
including the expected value of market price spikes in the 
cost function as well as the variable-length horizon.

The future work will focus on developing a control strate‐
gy for customer battery storage in the case of neighborhood 
energy trading. This will require an extension of the probabi‐
listic model as well as a broader application of data-driven 
methods for probability density modelling.
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