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Model Predictive Control Strategy for
Residential Battery Energy Storage System in
Volatile Electricity Market with Uncertain
Daily Cycling Load

Dejan P. Jovanovié¢, Gerard F. Ledwich, and Geoffrey R. Walker

Abstract—This paper presents a control strategy for residen-
tial battery energy storage systems, which is aware of volatile
electricity markets and uncertain daily cycling loads. The eco-
nomic benefits of energy trading for prosumers are achieved
through a novel modification of a conventional model predictive
control (MPC). The proposed control strategy guarantees an op-
timal global solution for the applied control action. A new cost
function is introduced to model the effects of volatility on cus-
tomer benefits more effectively. Specifically, the newly pre-
sented cost function models a probabilistic relation between the
power exchanged with the grid, the net load, and the electricity
market. The probabilistic calculation of the cost function shows
the dependence on the mathematical expectation of market
price and net load. Computational techniques for calculating
this value are presented. The proposed strategy differs from the
stochastic and robust MPC in that the cost is calculated across
the market price and net load variations rather than across
model constraints and parameter variations.

Index Terms—Optimal control, model predictive control
(MPC), energy market, nonlinear constrained optimization, rev-
enue for battery energy storage system, Gaussian mixture mod-
el, autoregressive integrated moving average model.

1. INTRODUCTION

HE promising economic benefits of battery energy stor-

age systems (BESSs) for residential customers [1] offer
many investment opportunities [2]. Investment assets include
BESSs and equipment for renewable energy generation.
Risks associated with these assets are mainly related to how
well electricity market price spikes are managed [3], [4].
Market price spikes are defined as price jumps of extreme
size due to sudden imbalances in supply and demand [5].
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The situation is similar to power network generators, which
generate most of the revenue during market price spikes [3],
[6]. To take advantage of investment opportunities, a proper
control strategy is required to evaluate the revenue and net
income [7]. A control strategy for residential customers re-
quires that storage volumes, net load characteristics, and mar-
ket price [8], [9] are all considered and that globally optimal
decisions are made.

The control strategy often used for a BESS control is mod-
el predictive control (MPC), which is a cost-minimizing iter-
ative optimization method over a finite prediction horizon
[10]. Numerous studies on MPC and its application in BESS
control have been conducted. In [11], an MPC-based ap-
proach is proposed to optimize energy costs to the end-user.
In this approach, a two-stage strategy is developed to sepa-
rate the BESS control action between the energy deficit and
excess. The load wolatility is suppressed by introducing
weights assigned to the cost of output error. Through this ap-
proach, customer benefits are significantly reduced. Inequali-
ty constraints are not imposed on a BESS. The concept of
an end-user-driven microgrid is introduced in [12]. In this
strategy, end-users can consume and share power only with
the utility grid. A dynamic MPC-based optimization ap-
proach is used for the optimal power and battery scheduling.
A constant demand and very low load volatility are as-
sumed. Reference [13] considers a rule-based MPC control-
ler in which rules are based on the operating constraints of
the BESS. The BESS control is defined as an optimal track-
ing problem, whereas the reference inputs are assumed to
have a smooth trajectory. The methodology proposed in [14]
combines an MPC with a Gaussian process based prediction
for photovoltaic (PV) generation and demand. The study de-
termines that a shorter MPC horizon provides more accurate
control. Here, the prediction method outperforms the rule-
based MPC algorithm. In [15], the distributed and decentral-
ized MPC of a residential BESS is designed, in which the
load variability is flattened using averaging over the reced-
ing horizon, and terminal constraints are not considered. A
mixed-integer multi-time scale stochastic optimization based
on an MPC is proposed in [16] for home energy manage-
ment. Here, the cost function is minimized (subject to bud-
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get and power constraints) such that the indoor temperature
is maintained at the reference level. The electricity price is
assumed to be constant, and the load has a low variability.

Electrical energy trading is rapidly changing with the in-
crease in distributed energy resource (DER) connections. Tra-
ditional energy consumers are becoming prosumers that both
consume and generate energy [17]. In essence, the electricity
generation of DERs is challenging to predict because of the
stochastic nature of these resources. However, if energy is
stored in a BESS and exported back to either the grid or oth-
er energy consumers, the optimal BESS control can achieve
economic benefits. The volatility of the electricity market
price and uncertain cycling load mean that finding an opti-
mal solution for a customer BESS is challenging. Market
price involves a nonlinear stochastic process that consists of
the base price and spikes [5]. Therefore, the price character-
ization is a demanding but vital task [4], as managing mar-
ket price spikes is critical in mitigating the risks of investing
in BESSs for residential customers.

In this context, MPC must address the following challeng-
es. First, the control strategy must be optimal. The conven-
tional MPC does not guarantee optimality. Furthermore, the
daily repetitive nature of the net load causes the receding
one-day-ahead prediction horizon of the MPC to have differ-
ent levels of cycling load. Consequently, the equality termi-
nal constraint becomes too challenging to incorporate into
the optimization process. The final challenge is modelling
the probabilistic characterization of energy prices and incor-
porating them into the MPC.

To achieve the optimal economic benefits for customers in
a volatile electricity market with a daily cycling load, we
propose a control strategy based on a modified version of a
conventional MPC. A new cost function is proposed that
models a probabilistic relation between flow, the net load,
and the electricity market. We show that this cost function is
convex and applicable to convex optimization. The numeri-
cal quantification of the proposed cost function is based on
calculations of expected values of the market price and net
load. The variable length horizon is introduced, which en-
ables the equality terminal constraint to be defined at a time
of low power. The computational techniques for calculating
the expected values are proposed for a volatile market price
and daily cycling load. An innovative application of a mix-
ture model for calculating the expected value of a volatile
market price is introduced. The proposed optimization meth-
od is convex and guarantees a globally optimal solution. Fi-
nally, because the model of a household equipped with a
BESS is a linear time-varying switching one (as it depends
on the energy flow direction), we propose a strategy that di-
rectly incorporates a switching model in the cost function.

The remainder of this paper is organized as follows. In
Section II, the BESS modelling is described. Section III de-
scribes progressive MPC for volatile electricity market price
and cycling daily load. The calculation of the expected val-
ues of the market price is addressed in Section IV. The re-
sults are presented in Section V and the conclusions are giv-
en in Section VI.
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II. BESS MODELLING

The subsystems that comprise a BESS system include a
control unit, communication link, and smart meter. The con-
trol unit regulates the energy stored in the batteries driven
by a variable local demand and energy price. The communi-
cation link is assumed, through which the information about
energy price changes is provided to the control unit in real
time. A smart meter measures the energy flow between the
power grid and a household equipped with a BESS. A sim-
plified block of a household equipped with a BESS is pre-
sented in Fig. 1, where F(¢) is the power exchanged with the
grid and measured by the smart meter; L(¢) is the net load
power defined as the difference between local demand and
local generation; and u(¢) is the battery power.

A L(D) F(#y  Grid
©
Household AC/DC ®
BESS converter u
1+ =
T_ U

Fig. 1. Simplified block of a household equipped with a BESS.

The energy capacity of the BESS is given by E,. The real-
istic modelling of the battery charging and discharging pro-
cesses requires realistic values for charging losses o~ and dis-
charging losses o'. The charging process is assumed to be
less efficient than the discharging process [18], [19]. Based
on these characteristics, a state space model of a proposed
grid-connected BESS is given by:

E, =E,—au AT 1
where a is the loss term; E, and E,,, are the instantaneous

battery energy at time instance ¢ and ¢+ 1, respectively; and
AT is the time interval. a is defined as:

t+1

o u>0

a=q _ 2

a u,<0
In this paper, losses in a battery are defined as a function
of inverter efficiency because mapping all losses to the DC
side of an inverter is possible [13]. The state of charge
(SOC) of a battery system is modelled by:
ou, AT
- 3)

c

soC,,,=S0C,-

t+1

where SOC, and SOC, ., are the SOCs of a battery at time
instance ¢ and ¢ + 1, respectively.

Complex battery models [19], [20] are not used in this
study because they do not affect the overall design process.

Constraints are imposed on the control input u, requiring
that:

—P.<u,<P,

where P, is the maximum power rating of the converter.

In addition, the minimum and maximum BESS energy lev-
els impose constraints on acceptable values of instantaneous
energy such that the following relations hold:

E~ <Et+] SEC

res —

4)

©)
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where E,, is the contracted level of energy reserve. Finally,
the constraint that ensures that the BESS energy level at the
end of the time horizon has the predefined value £, as:

E),‘H = Eend (6)

where E, is the equality terminal constraint. It follows that

the underlying model of the system shown in Fig. 1 is a lin-
ear time-varying switching model because (1) depends on
the energy flow direction. Subsequently, the control of BESS
is a time-varying nonlinear control problem. In addition to
nonlinearity, a control problem of BESS is constrained with
a set of operational limitations given by (4)-(6).

The flow balance of the system shown in Fig. 1 is disrupt-
ed by cycling random dynamics of the household net load.
However, the economic benefits of a household are deter-
mined by market price. Incorporating these dynamics in the
control methodology and evaluating the cost across the net
load variability and market price are essential.

III. PROGRESSIVE MPC FOR VOLATILE ELECTRICITY
MARKET PRICE AND CYCLING DAILY LOAD

MPC on the finite horizon [¢,,7,] is defined as a convex
optimization problem by:
muin C(u)
st p,@<0 ¢;R"'>R,i=1,2..,1
w, (w)=0 t//j:RHH R, j=1,2,...,m

()

where C(u) is the cost function and u € R” is the optimiza-
tion control variable. The functions C(-) and ¢,(-) are convex,
whereas the function y; () is affine [6]. Since (1) is the for-
ward difference approximation of the first derivative, it fol-
lows that nonlinear constraint (5) is convex [22]. The equali-
ty constraint (6) is affine for the finite horizon [¢,,¢,], since
(1) can be re-written as an affine transformation in the fol-
lowing form:

Du)=Au+b (8)

where @(-) is the cumulative distribution function (CDF) of
the standard normal distribution; 4 =—diag[AT, AT, ..., AT,
is a linear transformation; u=[au,,du,,....au,]"; and b=
[E,I,Elj,...,E 1. It is worth noting that on the finite horizon

’II
[t,-1,]), E, at a fixed-end horizon time ¢,, can be written as:
H
Ty

E, =E, — > auAT

=1,

)

where 7 is a discrete-time step at which the total cost is com-
puted.

With the constraints satisfying the convex optimization
conditions, it remains to prove that the cost function is also
convex. Before proving the convex optimization property,
we first introduce the new cost function and the assumptions
upon which this function rests.

The total cost of the BESS response to market price over
time interval ¢ €[t,, ] is modelled as:

Cou= [ M0 FO)r (10)
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where g(M(t), F(?)) is the instantaneous cost, which depends
on the market price and power exchanged with the power
grid; and M (¢) is the market price.

The framework upon which the integrand g(M(¢), F(?)) is
defined is based on the assumption that flow F(f) cannot in-
fluence M (¢) because of the limited and insufficient energy ca-
pacity of the household BESS. In addition, because the indi-
vidual household is not the relevant entity in the bidding pro-
cess, no mechanism exists for the energy market to influence
the particular household flow directly. Consequently, the in-
stantaneous cost definition can be given in the following form:

gM @), F(6)=M O F () (11)

Since the random nature of M(¢) and F(¢), the total cost

(10) must be calculated as the expected value. Applying the

operator of the mathematical expectation to (10), the expect-
ed total cost is given by:

JzE{Cm,}:E“

Ty

(12)

fy

g(M (1), F(1))dz }

Interchanging the integral with mathematical expectation
is possible if and only if an integrand g(M, F'), where M and
F are random variables, is bounded [23]. This condition is
satisfied since all variables in g(M,F) are constrained by
their maximum values. After the integral is interchanged
with mathematical expectation and is approximated with a
sum, (12) becomes:

J=Fi(C, }= S B{g, (M F)|AT (13)

A computation of total cost is reduced to a computation of
the expected value of a function g, (M, F) for z. The battery
action is assumed to be fixed for each evaluation. By defini-
tion, the expected value of a function g, (M, F) is given by:

B{g. M) = [ g.(nf)prmp)mdf  (14)

where p,, .(m.f) is the joint probability density function
(PDF) [5], [24]; and M and F are considered independent in
terms of the calculation of (14). Consequently, p,, -(m.f) is a
product of two univariate PDFs p,,(m) and p,(f).

Pur(m,f)=py (m)p(f) (15)

Substituting (11) and (15) into (14) yields the expectation
in its unfolded form as:

Blg. M) = [ mpymdm [ o (N (16)

Previous studies on electricity spot price show that market
price consists of two components: base price and spikes [5],
[6], [25], [26]. The base price component represents the dai-
ly fluctuations of the price around the mean level, whereas
spikes are the price jumps of extreme size due to a sudden
imbalance of supply and demand [5]. Based on these find-
ings, the dynamic range of the market price in (16) can be
given by the following relation M=MUM. M is represented
as the union of two clusters M (the base component of the
market price) and M (the non-predictable market price spike
component). In [27], it is proven that each cluster can be
modelled as a random variable. Consequently, M is modeled
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as a mixture of M and M, defined as:

M=MI,_,+MI, (17)
where [, , and I. —are the latent variables [28] used to
specify the identity of the mixture component of each obser-
vation M. Consequently, the market price PDF can be writ-
ten as:

pum)=1—=y)p;(m)+yp(m) (18)
where y is the PDF weight and takes the value 0 <y<1. Sub-

stituting (18) into (16) yields the expected value of the in-
stantaneous cost as:

aletm}=[a-p [ mp oman+

. mpM(m)dm} [ etrar (9)
The compact form of (19) is given as:
E{g,(M.F)} =(B{M}+E{M )E{F} (20)

The result from (20) is of two-fold importance. First, it
demonstrates that the calculation of the expected cost is re-
duced to the calculation of the expected values of both the
energy market price and the power exchanged with the grid.
Second, it can be used to prove the convexity of the optimi-
zation problem. When (10) is used in a convex optimization,
it is required to prove that it is convex. The first step is to
prove that (11) is convex. The following proof is based on
the results in [29], where a converse of Jensen’s inequality
is shown. Assuming the existence of closed convex sets and
a continuous probabilistic measure, the converse of Jensen’s
inequality holds [29].

Theorem 1: an instantaneous cost (11) is a convex func-
tion.

Proof: it follows from (19) that y determines the ratio be-
tween M and M. Since the market price spike component
can be considered as rare even with a low probability, it is
possible to assume that y<<1-y and E{M}~E{M}; then
E{M}+E{M} represents the upper boundary of expected
market price. Consequently, the following inequality can be
obtained.

E{g,(M.F)}= (E{M}+E{M})E{F}>E{M}E{F} (1)

Since M,M,M € R, they represent closed convex sets. In
addition, their PDFs are assumed to be absolutely continu-
ous. Based on these assumptions as well as the inequality
(21) and results from [29], it follows that (11) is a convex
function.

According to the theorem of calculus [22], which states
that the integral of a convex function is also convex, and
Theorem 1, it follows that the integral (10) is a convex func-
tion. Therefore, it follows that the proposed MPC strategy is
a convex optimization problem that guarantees that every lo-
cal minimum is a global minimum [22].

To calculate the expected value of flow E{F}, F(f) is a
function of L(f) and u(f), as shown in Fig. 1. Modelling of
time dependence in the MPC requires that two time scales
should be introduced, i.e., time instance ¢ and simulation
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time index k. Consequently, the time-dependent flow balance
shown in Fig. 1 is given by:

Fk|t:Lk\t_ Uy, (22)
where F, is the power flow; L, is the load; and uy, is the
battery power and is deterministic since it is a result of the
MPC algorithm from a previous time instance t—1 when the
integral (19) is calculated. Note that F,, and L,, are random
variables. A change of the variables in (22) to the expression
for the expectation E{F} yields:

BUFY= [ fupr Gt [ Gy ue)pe =)y, (23)

where f, is the realization of F; and /, is the realization of
Ly, Note that the subscript klz is the conventional MPC syn-
tax for # and k. Sometimes, the subscript 4|t will be omitted.

Based on (22), a relation between the CDFs @, (-) and @ (")
must be modelled. The CDF of a real-valued random vari-
able X is @, (x)=P(X<x) [30]. Consequently, a relation be-
tween CDFs is given as:

O, (L)y=P(L<D)=P(F+u<)=P(F<l-u)=®,(I-u) (24)

From (24), it follows that p, ()d/=p.(—u)df, and from
(22), it follows that d/=df. Consequently, the expected flow
is:

E{F}= fﬁm (lk\t_uk\t )L (lk\t )dep:
Jm lk\sz (lk\t )dlk,t - uk|rjiw PL (lk\t )dlk\t = Euk‘r{L}_ Uy (25)

where Euk" {L} is calculated as:

Euk‘,{L} = Jm lk|rpL (lk\t )dlk\t (26)

The PDF p,(/,,) satisfies the normalization condition

0

| pta=1.

To compute the expected value (26) with an arbitrary load
PDF p, (I,,), Markov chain Monte Carlo (MCMC) [31] meth-
ods can be used. However, for computational simplicity, a
random load is modelled with a Gaussian distribution
Ly ~N (- 07,), where the mean value p,,=E, {L} is the

average daily load at any time point, and a,jt is the constant
load variation.

Since the expectations of the base and spike components
in (20) are calculated with respect to ¢ and £, their notations
must be changed to ]EM {M} and Euw {M}, respectively, to re-
flect the time dependence. Furthermore, it follows that
when k>1 at time ¢, the expected values are computed as
predictions B, {M}=M,, which are generated by an autore-
gressive integrated moving average (ARIMA) [32] model.

For k=1, the expected value of the base price is equal to the
observed market price at time instance ¢, E"m {M}=M, The

spike expected value ]E«uk‘[ {M} is calculated using a mixture

model [28]. Details of the calculation of the expected values
are provided in the following section.

In a conventional MPC [10], at each time instance, the
end of the horizon is shifted toward the future. The resulting
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control sequence is bounded by a set of constraints, both in-
equality and equality. One of the limitations of applying
equality constraints to a conventional MPC for daily cycling
load control is that the value of the end of the horizon af-
fects the control sequence. Since the horizon passes through
intervals with different values of load imbalance, it follows
that the control sequence will depend on the load value at
the end of the horizon. However, in the case of a household
equipped with a BESS, given the cycling nature of the load,
a different strategy is required. Compared with a convention-
al MPC, the proposed modified MPC strategy assumes that
the end of the horizon is fixed and finishes at a time of low
power. This assumption is justified by the fact that the load
profile, on average, has a 24-hour recurrent interval. Conse-
quently, the battery usage is predominantly defined by the
morning and evening peaks; whereas after the evening peak,
the battery usage is less demanding. In this manner, the hori-
zon decreases while progressing toward the end of a recur-
rent interval. This control strategy is called progressive MPC
(pMPC) since the horizon duration is variable and finally
stops at a low demand by battery.

Once the load and market price are predicted, the values
obtained are used in Algorithm 1 to calculate the pMPC se-
quence at time instance ¢ on the finite horizon H.

Algorithm 1: pMPC

Step 1: start procedure: pMPC (u, )i, and (4, .6, )i,
Step 2: E{g,{‘,(M,F)}:(EM {]\7[}+E%{M})]E”M{F}

Step 3: B(C,, }:Euégﬂ, (M. F)AT—Ju I,
E{C, }

min
Hijea 1 Mafes 1o Yt

Step 5: return u,,, |
Step 6: end procedure

Step 4:

In Step 1, the input values are provided for the length of
horizon H, the control sequence from the previous time step
t, and the load PDF parameters /QLM, and corresponding vari-

ance &Lm' The PDF parameters are used to calculate the ex-
pected load value E, {F} in Step 2. In the same step, the ex-
pected values of the base price Euk“ {M} and the spike expect-
ed value va {M} are calculated. It should be noted that for

k=1, the expected value of the base price is equal to the ob-
served market price at time instance f: E“w {M}=M,. The re-

maining predicted values are generated by the ARIMA mod-
el. E“w {M} for each k=1,2,...,H is obtained from mixture

models described by a tuple of parameters (a,.u,.0,), n € K,
where a, is the weighting coefficient of a component n; u,
is the mean value of a component #n; ¢, is the variance of a
component n; and K is the number of components. As out-
lined in the introduction, to increase the battery life, penaliz-
ing the inflow variability is crucial. To achieve this, the ex-
pected cost function (13) is extended by adding a penalty
term —iuk‘,ﬂumo for inflows, where 1 is a weighting factor

and the negative sign is positive for the penalty term. As a
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result, the control sequence u,,, .ty ;... iy, is calculat-
ed. As with the conventional MPC [10], from the sequence
obtained, only the first control signal u,,,, is used by the
battery controller.

IV. COMPUTATION OF EXPECTED VALUES OF MARKET PRICE

To calculate the expected values, the concept of the mar-
ket price as the union of two clusters is discussed in the pre-
vious section. The first cluster is the base price and repre-
sents the daily fluctuations of the price near the mean level.
The second cluster contains the price jumps of extreme size.
These jumps represent outliers since they differ significantly
from the base [5]. It follows that removing outliers [33]
from the historical market price data creates the base price
dataset, whereas outliers themselves create the market price
spike dataset [6], [25], [34]. With the knowledge of the total
number of data samples N and the number of data samples
that are detected as outliers M, the coefficient y in (18) is es-
timated as the ratio y=M/N.

A. Expectation of Base Price Component

Since the energy price has a component with an approxi-
mately 24-hour period, daily varying ARIMA parameters (p,
d,q) and a periodic differencing filter are proposed for the
base energy price prediction model [35]. Once an ARIMA
prediction is obtained, the expected value used in pMPC be-

comes E, {M}=M,,. The results of the base price modelling

are presented in Section V.

B. Expectation of Price Spike Component

Based on the historical data, the market price spike datas-
et is created as the set of market price outliers. Each time
slot contains heterogeneous data. To model data within each
time slot, it is proposed that a mixture of Gaussian distribu-
tions is modelled [28], each mixture component of which
has a constant mean value and variance. This type of model
is defined as:

mt_lun

@7

K
F(ii,; ©)= Zak(.b(
n=1 n
where F(ni,; ©) is the parametric CDF of the observation i,
at time instance #; and «, is a mixture weighting coefficient.
The mathematical expectation and variance can be ex-
pressed as a set of the following equations [28]:

E{M}=>a,u, (28)
Covibly= S, (o, +u,u) ~BULEN (29)

To determine the number of clusters in practice, the Bayes-
ian information criterion (BIC) [28] is commonly used.

In summary, each time slot is modelled using (27), and
the corresponding expected value E”w {]\;I } is given by (28).

Once the expected values are estimated, pMPC is executed.
It should be noted that, unlike the expected value of base
price, which updates at each time instance, the expected val-
ue of market price spike is determined based on historical
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data and does not change during operation.

V. RESULTS

Simulation results are divided into three subsections. The
first two subsections present the results of a price modelling,
while the third subsection demonstrates the control strategy
performance. The data used in this study include market pric-
es for the summer months (December, January, and Febru-
ary) in Queensland, Australia, for the period from 2012 to
2018. Energy prices in this dataset show high volatility and
accordingly represent a very good test case for the proposed
control strategy. For load modelling, the data are provided
by Western Power [36]. One hundred and twenty five select-
ed houses were monitored from October 2012 to March
2013. Each of the 125 houses was equipped with a smart
meter. The dataset provided includes the net load (which
combines demand and PV generation), PV generation only,
and total reactive power.

The simulation parameters are summarized in Table 1.

TABLE I
SIMULATION PARAMETERS

P (kW) E,(kWh) E, (kWh) E,,(kWh) a AT (hour) A

res

5 10 2 5 0.96 0.5 1x1073

A. Expectation Model: ARIMA
To calculate the mathematical expectation of the future
price B, {M}=M,, Vke(2.H), a periodic ARIMA model is

used as the prediction model. This model integrates the ARI-
MA parameters (p, d,q) with periodic autoregressive (AR),
and periodic moving average (MA) models. Model orders
are (3,1,7). The periodicity s is 48 samples (24 hours).
Based on the number of outliers and total number of sam-
ples, it follows that the ratio y=0.0853, which represents the
probability that the price derives from an M cluster.

B. Expectation Model: Mixture Model

To model the price volatility, the AEMO historical data
[36] during the summer months (December, January, and
February) in Queensland from 2012 to 2018 are used. The
data are aggregated over a 24-hour period with a 30-min
sampling interval. Figure 2 shows the price variation for ag-
gregate data. There are 252 data samples in each time slot.
The data for each 30-min interval are modelled using a mix-
ture model (27), which yielded 47 mixture models. Note that
for Fig. 2, the different colored dots are just the indicators
for energy price.

Through the BIC, it appears that the number of mixture
components is approximately the same for each time slot
and subsequently K=7. Once the mixture model parameters
(o4, 44,0,) are estimated, the mathematical expectation

]E”M{A;[ }:A;[k‘,, Vke(l,H), which includes the market price
volatility, could be calculated using (28). The calculated ex-

pected value is multiplied by p, which is the mixture coeffi-
cient in (18).
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Fig. 2. Price variation for aggregate data.

The parameters of estimated mixture model for off-peak
(10:00 a.m.) and peak (05:30 p.m.) hours are listed in Tables
I and III, respectively. Some anomalies could be observed
in the estimated mixture model, particularly for the standard
deviation and mixture component probabilities. The estimat-
ed standard deviation is found to be the most sensitive to
the dataset size. For future research, instead of using the ap-
proach based on expectation maximization, it is possible to
use Bayesian-based inference.

TABLE 11
PARAMETERS OF ESTIMATED MIXTURE MODEL AT 10:00 A.M.

o iz 4
0.2722 314 46.30
0.0078 701.1 200.50
0.0079 2230.6 0.09
0.5107 529 14.40
0.0118 165.1 415.70
0.1812 61.1 224.30
0.0084 465.1 8789.10

TABLE III

PARAMETERS OF ESTIMATED MIXTURE MODEL AT 05:30 P.M.

a u a
0.7547 52.3 156.400
0.0039 6625.7 0.001
0.0039 4523.2 0.001
0.0651 323.1 22155.100
0.0079 13224.5 75350.200
0.1206 132.2 2074.400
0.0439 2093.5 32594.400

C. Battery Control

To illustrate the performance of the proposed control
strategy, the dynamical behavior of BESS is tested in three
cases. In the first case, the market price is spike free, where-
as in the second case, a market price spike of 350 $/MWh
occurs at 06:00 p.m. The third case is the controller re-
sponse for the market price spike occurring at different time
during the day. Finally, a comparative study is conducted to
illustrate the advantages of the progressive MPC over the
conventional MPC. Regarding the net load, from the West-
ern Power data for a house labeled 31, the daily consump-
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tion on November 19, 2012 was used as a test case.

An instantaneous daily market price on December 19,
2012 and the expected values of the market price are shown
in Fig. 3, where E{M,} is the results of ARIMA-based price
expectation; E{M,} is the the mixture model based expected
values of the market price spike; and E{M,}+E {M,} is the
total expected market price. Figure 4 shows the L, u, F,
and £ (L,) when there is no market price spike, where E(L,)
is the average daily load used as the predicted load values.
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Fig. 3. Instantaneous daily market price.
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Fig. 4. L, u, F, and E(L,) when there is no market price spike.

The behavior of the battery power over the 24 hours
changes since the battery dynamic behavior depends on the
changes to the market price and net load. In the morning,
the market price is low, and pMPC decides to charge the bat-
tery. At mid-day, the battery control action is constrained by
the market price and the PV generation. Since the market
price at mid-day is in a transition from the low value in the
morning toward the high value in the afternoon, pMPC has
a neutral position regarding battery charging/discharging.
The battery energy when there is no market price spike is
shown in Fig. 5.

Figure 5 shows that the battery is charged quickly in the
morning because of the low market price. As mid-day ap-
proaches, the battery energy charges at a lower rate until it
is fully charged since the market price begins to increase.
Because E(M,) in Fig. 3 begins to increase, particularly from
03:30 p.m. to 05:30 p.m., the control action of pMPC begins
discharging the battery to benefit from the expected value of
market price spike. Once the expected peak of the market
price passes after 05:30 p.m., pMPC stops commanding rap-
id discharging until the predicted market price spike starts,
indicating a market price drop at 07:30 p.m.. The charging
process begins again after 09:00 p.m. because the battery en-
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ergy needs to reach the level of the commanded 50% of the
total energy capacity at midnight.

10
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Fig. 5. Battery energy when there is no market price spike.

In the second case, at 06:00 p.m., a market price spike of
350 $/MWh occurs, as shown in Fig. 6. A comparison of the
pMPC behaviors at 05:30 p.m. of these two cases reveals
that the control actions and system behaviors are identical in
both cases. Because we could not predict the market price
spike, the difference between these two cases occurs when a
market price spike occurs at 06:00 p.m., as shown in Fig. 6.
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Fig. 6. Instantaneous daily market price with a market price spike and ex-

pected values of market price.

The immediate response of pMPC is to discharge the bat-
tery to respond to the market price spike, as shown in Fig.
7. As a result of battery discharging, the total energy stored
in the batteries is reduced but remains above the contracted
reserve, as shown in Fig. 8. For comparison, the dashed line
in Fig. 8 represents the battery energy when there is no mar-
ket price spike. The difference between the levels of dis-
charged energy in the two cases is the area between the
curves.

Figure 9 shows the household battery energy for multiple
market price spikes during a day: 06:00 a.m., 04:00 p.m.,
05:00 p.m., 06:00 p.m., and 08:00 p.m. with the same value
of 350 $/MWh. Daily revenues for market price spike occur-
ring at different time instances are summarized in Table I'V.

Based on the comparison of the effects of a spike on the
BESS, it follows that the proposed control strategy provides
this type of response in which, regardless of the spike occur-
rence, the constraints are always satisfied. In other words,
the battery energy neither exceeds the maximum capacity
nor falls below the contracted reserve. In addition, at the end
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of the prediction horizon, the battery energy is always 50%
of the total energy capacity.
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Fig. 7. L, u, F, and E(L,) for an immediate response of pMPC.
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Fig. 8. Battery energy when there is a market price spike.
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Fig. 9. Household battery energy for multiple market price spikes.

TABLE IV
DAILY REVENUE FOR MARKET PRICE SPIKE OCCURRING AT DIFFERENT
TIME INSTANCES

Time instance Revenue
06:00 a.m. 69.1
04:00 p.m. 71.7
06:00 p.m. 59.3
08:00 p.m. 55.1

The advantages of the progressive and conventional MPC-
predicted control sequences are illustrated in Figs. 10 and
11, respectively. Note that the analysis focuses on the dynam-
ic characteristics of u,, and complete prediction u,, on the
variable horizon k e(l,H). Other colored dots in Figs. 10
and 11 present just a hint of different dynamics of control
signal for different length of horizon, so that the notations
are not provided. The comparison of the proposed and con-
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ventional MPC methods reveals a couple of significant dif-
ferences. Unlike in the fixed-length horizon case, the equali-
ty terminal constraint on the variable-length horizon could
be achieved for a daily cycling load. Toward the end of a
day at H=48 hours, the proposed control strategy enables
the correction of BESS energy level to ensure that £, =E,,,;.

By contrast, when approaching the end of a day, a conven-
tional MPC reduces the control signal to zero, making it im-
possible to control the BESS energy level at the end of the
day. The most notable difference is related to the optimality
of the solution. Unlike a conventional MPC, the proposed
control strategy achieves high power levels during charging
and discharging in the fully charged BESS. The importance
of the global optimality property of the proposed control
strategy is reflected in the execution time of the program. Al-
though the algorithm is implemented in MATLAB, we ob-
serve a significant difference in the computational time. The
proposed control strategy is executed for approximately 21 s,
whereas the conventional MPC requires approximately 145 s.
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Fig. 10. Progressive MPC-predicted control sequence.
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Fig. 11. Conventional MPC-predicted control sequence.

The results illustrate the fundamental characteristics of the
proposed method. It remains to be demonstrated how the
proposed method performs better than the conventional MPC
method. For this purpose, 200 realizations, each with a 24-
hour duration, are used for the evaluation. Each of these real-
izations for market price and net load is tested for both
c¢cMPC and pMPC. Total daily income is calculated, where
histograms of total daily income for cMPC and pMPC are
given in Fig. 12, where the orange and green lines are the
probability density curves of cMPC and pMPC, respectively.
It can be observed that pMPC (u,,,5-=11.57) has a substan-
tially higher income as compared with that of cMPC (u,)pc=
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1.38). The estimated standard deviation is similar for the two
cases with o,,,,-=1.76 and 7= 1.93.
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Fig. 12. Total daily income for cMPC and pMPC.

VI. CONCLUSION

The investment in BESSs for residential customers may
provide significant economic benefits. This is valid only if
the applied control strategy is capable of managing associat-
ed volatility. Since the market price and daily cycling net
load contribute the most to unpredictable behavior, this pa-
per models and quantifies their probabilistic nature by mathe-
matical expectation. The expected market price consists of
the predicted base price and the expected value of market
price spikes. Using a mixture model to compute the expect-
ed value of market price spikes is shown to be a simple and
effective approach. The proposed control strategy is based
on a new convex cost function that depends on the expected
values of the market price and daily cycling net load. The
cost function is optimized on the variable-length horizon to
accommodate the repetitive behavior of the customer net
load. The use of variable horizon length enables the equality
terminal condition to be defined, which is one of the require-
ments of global optimality with the proposed methodology.
The proposed approach is tested on real market and custom-
er load data. The approach demonstrates superior perfor-
mance, generating a significantly higher income compared
with the conventional MPC. This performance is a result of
including the expected value of market price spikes in the
cost function as well as the variable-length horizon.

The future work will focus on developing a control strate-
gy for customer battery storage in the case of neighborhood
energy trading. This will require an extension of the probabi-
listic model as well as a broader application of data-driven
methods for probability density modelling.
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