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Abstract——The distribution of measurement noise is usually as‐
sumed to be Gaussian in the optimal phasor measurement unit 
(PMU) placement (OPP) problem. However, this is not always 
accurate in practice. This paper proposes a new OPP method 
for smart grids in which the effects of conventional measure‐
ments, limited channels of PMUs, zero-injection buses (ZIBs), 
single PMU loss contingency, state estimation error (SEE), and 
the maximum SEE variance (MSEEV) are considered. The SEE 
and MSEEV are both obtained using a robust t-distribution 
maximum likelihood estimator (MLE) because t-distribution is 
more flexible for modeling both Gaussian and non-Gaussian 
noises. The A- and G-optimal experimental criteria are utilized 
to form the SEE and MSEEV constraints. This allows the opti‐
mization problem to be converted into a linear objective func‐
tion subject to linear matrix inequality observability con‐
straints. The performance of the proposed OPP method is veri‐
fied by the simulations of the IEEE 14-bus, 30-bus, and 118-bus 
systems as well as the 211-bus practical distribution system in 
China.

Index Terms——Phasor measurement unit (PMU), smart grids, 
optimal placement, state estimation (SE).

I. INTRODUCTION 

STATE estimation (SE) is essential in smart grids because 
it can provide real-time SE variables to the control cen‐

ter of the power system to achieve high operational reliabili‐
ty and safety [1], [2]. The data used for SE are normally ob‐
tained from a supervisory control and data acquisition (SCA‐

DA) system. In the last decade, phasor measurement units 
(PMUs), which use a global positioning system (GPS) signal 
in a power system, have been developed. This has resulted 
in the availability of measurements with higher accuracies 
[3], [4]. Therefore, the accuracy of SE variables can be fur‐
ther improved if more PMUs are installed to increase the 
number of accurate measurements in smart grids [5].

However, PMU installation costs remain high, making it 
infeasible to install PMUs on all buses in a power system 
[6]. Therefore, optimal PMU placement (OPP) has become a 
requirement and a subject of active research. The objective 
of the traditional OPP problem is to minimize the number of 
PMUs while making the entire power system completely ob‐
servable [7]. However, it has been proven that the minimum 
number of installed PMUs will not be translated into the 
lowest cost for synchrophasor deployment [8] - [11]. For ex‐
ample, the formulation of the OPP problem needs to consid‐
er the numbers of devices and substations that must be up‐
graded to support these devices simultaneously [10]. More‐
over, many OPP methods that use different objective func‐
tions and practical constraints have been proposed for trans‐
mission systems [12]-[15] and distribution systems [7], [16]-
[19]. For example, a multi-objective OPP method that simul‐
taneously considers the small-signal stability of the power 
system, the probability of system observability, and the total 
cost of PMUs is proposed in [12]. The OPP problem for the 
co-optimal placement of PMUs and their communication in‐
frastructure for the minimization of the propagation delay in 
a monitoring system is presented in [20]. The optimal PMU 
communication link placement problem that investigates the 
placement of PMUs and communication links for full observ‐
ability in a power system is presented in [13]. The OPP 
problem considering the channel limits (CLs) and PMU loss 
contingency is presented in [14]. An efficient method for the 
placement of traditional nonsynchronized measurements and 
synchronized measurements using a Boolean semidefinite 
programming (SDP) approach and the number of available 
channels is considered in [21]. An OPP problem that consid‐
ers both the communication infrastructure and the installa‐
tion cost of PMUs is presented in [22]. An OPP framework 
that considers both the installation cost of PMUs and the ob‐
servability that incorporates network vulnerabilities as the ob‐
jective is discussed in [23]. The effects of zero-injection bus‐
es (ZIBs) on the optimization problem for reducing the num‐
ber of PMUs are considered in [16]. In all of the proposed 
methods, the OPP solution plays an essential role in the de‐
sign of the wide-area measurement system (WAMS) and ulti‐
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mately influences the SE accuracy of the power system. A 
WAMS is widely applied in smart grids [5]. Therefore, OPP 
and SE should work together. However, in the above OPP 
methods, the state estimation error (SEE) is not integrated in‐
to the optimization problem and is therefore an unknown 
quantity.

Since the same OPP problem may have multiple solutions 
and these solutions have the same system observability re‐
dundancy index, [24] takes the trace of the SEE variance as 
a new index so that the final solution can be obtained. The 
OPP problem of minimizing the mean squared error by in‐
corporating various constraints such as ZIBs, the contingen‐
cy of the measurement loss, and the limitations of communi‐
cation channels is investigated in [25]. A measurement allo‐
cation method for the distribution system, in which the maxi‐
mum SEE variance (MSEEV) is taken as the minimum ob‐
jective function, is proposed in [7]. On the basis of the opti‐
mal experimental criteria, four indices related to the SEE 
variance matrix are utilized in [26], and a meter selection 
method is presented to choose certain measurements from a 
set of candidate measurements. A formulation of the OPP 
problem for minimizing the uncertainty in SE in distribution 
networks is reported in [18]. A shortcoming of the above 
methods is that the considered SEE is based on the weighted 
least-squares (WLS) estimator, and the measurement noise is 
assumed to be Gaussian. However, [27] and [28] find that 
the distribution of PMU measurement noise is non-Gaussian. 
Therefore, the previous work in [29], [30] introduces an opti‐
mal PMU selection method, in which the measurement noise 
is considered as non-Gaussian and the maximum likelihood 

estimator (MLE) is applied. However, this method is one 
kind of PMU selection methods and is based on the assump‐
tion that a sufficient number of PMUs are installed in the 
monitoring system. In addition, the objective function ap‐
plied in [29] is time-consuming and cannot be guaranteed to 
obtain the minimum sum of variances. Moreover, the effects 
of the PMU CLs, ZIBs, PMU loss contingency, and MSEEV 
are not considered. The approximate solution method present‐
ed in [26], [29] cannot easily obtain OPP solutions, particu‐
larly when the dimension of the optimization problem is 
large. Even though [14] proposes an efficient algorithm to 
obtain the minimum number of PMUs, where various con‐
straints such as PMU CLs, ZIBs, and PMU loss contingency 
are considered, it does not consider the SEE and MSEEV in 
the OPP problem.

This paper presents a new OPP method for smart grids, 
where PMU CLs, ZIBs, single PMU loss contingency, SCA‐
DA measurements, SEE, and MSEEV are considered. Con‐
sidering that the A- and G-optimal experimental criteria are 
based on the gain matrix of the WLS method and that the 
WLS estimator is usually based on the assumption of Gauss‐
ian noise, an approximate matrix is derived to represent the 
gain matrix of a robust estimator. The form of the approxi‐
mate matrix is similar to the gain matrix of the WLS meth‐
od so that the derived approximate matrix can still be ap‐
plied in the above experimental design criteria. A compari‐
son of representative OPP methods and the proposed OPP 
method is summarized in Table I, where √ and  ́ represent 
the method with and without this scenario capability, respec‐
tively.

The main contributions of this study are summarized as 
follows.

1) A new OPP method considering PMU CLs, ZIBs, sin‐
gle PMU loss contingency, SCADA measurements, SEE, and 
MSEEV is proposed.

2) The considered SEE and MSEEV constraints are calcu‐
lated on the basis of the t-distribution model and are formu‐
lated as linear matrix inequality observability constraints.

3) The proposed OPP method is also useful for designing 
or upgrading WAMSs.

For simplicity, only the MLE is considered in the optimi‐
zation problem. However, the proposed OPP method can al‐
so be based on other robust estimators presented in 
[31], [32].

The remainder of this paper is structured as follows. The 

SE problem is formulated in Section II. A new OPP method 
that considers multiple constraints is presented in Section 
III. The performance of the proposed OPP method is evaluat‐
ed in Section IV. Finally, the conclusions are presented in 
Section V.

II. SE PROBLEM FORMULATION 

Rectangular coordinates are used to present the measure‐
ments and system states. The linear measurement model is 
given by (1) if PMUs are used [31].

z =Hx + ϵ (1)

where z =[z1z2zm ]T is the measurement vector that in‐
cludes the bus voltage phasors and branch current phasors 
[33]; x =[E re

1 E
re
2 E re

n/2E
im
1 E im

2 E im
n/2 ]T is the vector of 

TABLE I
COMPARISON OF REPRESENTATIVE OPP METHODS AND PROPOSED METHOD

Method

[7]

[26]

[19]

[29]

[30]

Proposed method

SCADA 
measurement

√
√
√
√
´

√

Robust 
estimator

´

´

´

√
√
√

SEE & 
Gaussian noise

´

√
√
´

´

√

MSEEV & 
Gaussian noise

√
√
´

´

´

√

SEE & 
non-Gaussian noise

´

´

´

√
√
√

MSEEV & 
non-Gaussian noise

´

´

´

√
√
√

ZIB

´

´

´

´

´

√

CL

´

´

´

´

´

√

Single PMU 
loss contingency

´

´

´

´

´

√
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the system state variables consisting of the real and imagi‐
nary parts of the bus voltage phasors; H =[H T

1 H
T
2 H T

m ]T 
is the measurement matrix with the dimension of m ´ n, 
which is calculated according to the topology of the power 
system and the locations of PMUs; and ϵ =[ϵ1ϵ2ϵm ]T is 
the noise vector. The measurement residual e is formulated as:

e = z -Hx̂ (2)

where x̂ is the estimated state vector; and e =[e1e2em ]T.
The well-known WLS, a non-robust estimator, is based on 

the assumption of Gaussian measurement noise. Considering 
that the distribution of the PMU measurement noise is non-
Gaussian [27], the SEE presented in this paper is calculated us‐
ing the MLE presented in [34]. The t-distribution is given as:

fi (ϵi )=
Γ ( )vi + 1

2

viπ ξiΓ ( )vi

2
(1 + |ϵi|

2

ξ 2
i vi ) -

vi + 1
2

(3)

where Γ(×) is the Gamma function; ξi is the scale parameter; 
and vi is the shape parameter. A t-distribution with a “heavy 
tail” is suitable for characterizing Gaussian or non-Gaussian 
noise [34], [35].

The MLE can be implemented by minimizing [34]:

J =-∑
i = 1

m

ln( fi (ei )) (4)

Differentiating J with respect to x̂ yields (5), since 
¶ei ¶x̂ =-H T

i .

Ψ=
¶J
¶ei

¶ei

¶x̂
=-∑

i=1

m ¶ln( fi (ei ))
¶ei

1
ei

ei

¶ei

¶x̂
=-∑

i=1

m

Wi ei H
T
i =-H TWe

(5)

where W =  diag (W1W2Wm ) is a diagonal matrix, in 
which Wi is given as:

Wi =
¶lnfi (ei )
¶ei

1
ei

=
vi + 1

ξ 2
i vi + e2

i
(6)

Setting Ψ = 0, the estimate from the MLE is given as:

x̂ = (H TWH)-1 H TWz (7)

Using (2), the iteration form (8) is used to obtain a more 
precise estimate.

x̂k = x̂k - 1 + (H TW k - 1 H)-1 H TW k - 1ek - 1 (8)

where k is the iteration step. Iteration stops when x̂k - x̂k - 1 is 
less than a predetermined value.

III. PROPOSED OPP METHOD 

On the basis of the optimization problem in [30], the ob‐
jective of the proposed OPP method is to obtain the mini‐
mum number of PMUs while considering the PMU CLs, ZI‐
Bs, single PMU loss contingency, SCADA measurements, 
SEE, and MSEEV.

A. Preliminaries of Proposed OPP Method

According to spectral graph theory, V ={12b} repre‐
sents the set of buses of the entire power system, and b = |V| 
is the number of buses. If the PMU CLs are not considered, 
the decision vector for PMU placement is given as:

p =[p1 p2  pb ]TÎRb ´ 1 (9)

where pj is a binary variable given as:

pj = {1    one PMU is placed at bus j

0    otherwise
(10)

In order to discuss numerical observability, a new mea‐
surement matrix is defined as:

H̄ =[H̄ T
1 H̄ T

2  H̄ T
b ]T (11)

where H̄j is the measurement submatrix associated with a 
PMU installed at bus j.

By selecting the WLS method with the Gaussian noise as‐
sumption, the SEE variance matrix can be represented 
by [32]:

ΦW = (∑jÎV

H̄ T
j R̄-1

j H̄ j ) -1

(12)

where R̄j = σ
2
j  is the element of a diagonal matrix R̄, and σj 

is the standard deviation of the jth Gaussian measurement 
noise. The premise of (12) is that there are a sufficient num‐
ber of PMUs installed on certain buses, which makes the en‐
tire power system observable, and ∑

jÎV

H̄ T
j R̄-1

j H̄ j has full 

rank ( )∑
jÎV

H̄ T
j R̄-1

j H̄ j 0 .

When other robust estimators are applied in the case of 
non-Gaussian measurement noise, ΦW can no longer be used 
to calculate the SEE variance matrix. Thus, we define (13) 
to further derive the SEE and MSEEV of the robust estima‐
tors in the case of non-Gaussian noise.

ΦR = (∑jÎV

H̄ T
j Π̄ j H̄ j ) -1

(13)

where Π̄j is a diagonal matrix under non-Gaussian measure‐
ment noise.

The influence function (IF) can be further used to derive 
the SEE variance matrix of an estimator [30], [36], [37]:

ΦV = (∫-¥¥ ¶Ψ(ϵ)
¶x̂

dF(ϵ)) -1∫
-¥

¥

Ψ(ϵ)(Ψ(ϵ))TdF(ϵ)×

((∫-¥¥ ¶Ψ(ϵ)
¶x̂

dF(ϵ)) -1 ) T

(14)

where F(ϵ) is the joint distribution; and dF(ϵ) is given as:

dF(ϵ)= f1 (ϵ1 ) f2 (ϵ2 )× × fm (ϵm )dϵ1dϵ2 × × dϵm (15)

From the differentiation in (5), (14) can be expressed as:

ΦV = (H̄ TŪH̄)-1 (H̄ T S̄H̄)((H̄ TŪH̄)-1 )T =

( H̄ T∫
-¥

¥ ¶Wϵ
¶ϵ

dF(ϵ)H̄ ) -1( H̄ T∫
-¥

¥

WϵϵTW TdF(ϵ)H̄ ) ×
(( H̄ T∫

-¥

¥ ¶Wϵ
¶ϵ

dF(ϵ)H̄ ) -1 ) T

(16)

where Ū and S̄ are the diagonal matrices, which are given as 
(17) and (18), and and their elements are formulated as (19) 
and (20), respectively.
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Ū = ∫
-¥

¥ ¶Wϵ
¶ϵ

dF(ϵ) (17)

S̄ = ∫
-¥

¥

WϵϵTW TdF(ϵ) (18)

Ūi = ∫
-¥

¥ (vi + 1)(ξi
2vi - ϵ

2
i )

(ξi
2vi + ϵ

2
i )2

fi (ϵi )dϵi (19)

S̄i = ∫
-¥

¥ (vi + 1)2ϵ 2
i

(ξi
2vi + ϵ

2
i )2

fi (ϵi )dϵi (20)

B. Link Between MLE and WLS

Considering that (13) and (16) are symmetric matrices, 
(13) is used to approximate (16). Therefore, the structure of 
the approximate gain matrix is identical to that of the gain 
matrix of the WLS method:

(H̄ T Π̄H̄)-1 » (H̄ TŪH̄)-1 (H̄ T S̄H̄)((H̄ TŪH̄)-1 )T (21)

where Π̄ is an approximate matrix.
According to [35], the t-distribution in (3) with vi®¥ 

and ξi = σi reduces to a Gaussian distribution. Equations (19) 
and (20) then become

Ūi = lim
vi®¥ξi = σi

∫
-¥

+¥ (vi + 1)(ξ 2
i vi - ϵ

2
i )

(ξ 2
i vi + ϵ

2
i )2

fi (ϵi )dϵi = R̄-1
i (22)

S̄i = lim
vi®¥ξi = σi

∫
-¥

¥ (vi + 1)2ϵ 2
i

(ξ 2
i vi + ϵ

2
i )2

fi (ϵi )dϵi = R̄-1
i (23)

where R̄i = σ
2
i .

In this case, (21) can be rewritten as:

ΦR′= (H̄ T R̄-1 H̄)-1 (H̄ T R̄-1 H̄)((H̄ T R̄-1 H̄)-1 )T = (H̄ T R̄-1 H̄)-1

(24)

This demonstrates that the utilized t-distribution-based 
MLE can also be used to represent the WLS estimator under 
the assumption of Gaussian noise.

C. OPP Problem Considering PMU CLs, ZIBs, Single PMU 
Loss Contingency, SEE, and MSEEV

A key contribution of this study is linking OPP and SE of 
the power system. The SEE and MSEEV constraints can be 
represented as linear matrix inequality constraints using A- 
and G-optimal experimental criteria. Note that the A-optimal 
experimental criterion is equivalent to minimizing the mean 
of the norm of the squared error when estimating the state 
variables, and the associated objective is to minimize the av‐
erage variance [26]:

JA (p)=  trace (∑jÎV

pj H̄ T
j Π̄ j H̄ j ) -1

(25)

where  trace (·) is the trace or sum of the diagonal elements 
of the matrix. The SEE is expressed by 

 trace (∑jÎV

pj H̄ T
j Π̄ j H̄ j ) -1

 given in (25). The error variance 

matrix (∑jÎV

pj H̄ T
j Π̄ j H̄ j ) -1

 represents the corresponding SE 

accuracy and provides a quantitative measure of how infor‐
mative the placement of the b PMUs is. Each PMU j is char‐

acterized by its measurement submatrix H̄j. The G-optimal 
experimental criterion is equivalent to minimizing the largest 
diagonal entry of the error variance matrix [7]:

JG (p)= max
r = 12n

é

ë

ê
êê
ê
ê
ê(∑jÎV

pj H̄ T
j Π̄ j H̄ j ) -1ù

û

ú
úú
ú
ú
ú

r

(26)

Note that the A-optimal experimental criterion minimizes 
the total variance of the state estimates, and the G-optimal 
experimental criterion minimizes the worst possible variance 
among state estimates. In this study, the total variance of the 
state estimates and the worst possible variance are consid‐
ered in the optimization problem. The MSEEV is expressed 

by the maximum element of the matrix (∑jÎV

pj H̄ T
j Π̄ j H̄ j ) -1

 

in (26).
According to [26], [30], defining χ =[χ1χ2χn ]T, in 

which χr is the largest diagonal element of the matrix 
é

ë

ê
êê
ê
ê
ê(∑jÎV

pj H̄ T
j Π̄ j H̄ j ) -1ù

û

ú
úú
ú
ú
ú

r

, there exists

χr - eT
r (∑jÎV

pj H̄ T
j Π̄ j H̄ j ) -1

er ³ 0    r = 12n  (27)

where er is the placement decision vector with 1 for the rth 
entry and 0 for the remaining elements. Thus, (27) can be re‐
written as (28) to represent the matrix ∑

jÎV

pj H̄ T
j Π̄ j H̄ j, which 

has full rank [38].

é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

ú∑
jÎV

pj H̄ T
j Π̄ j H̄ j er

eT
r χr

 0    r = 12n (28)

Note that the premise of (25) and (26) is to make the ma‐
trix ∑

jÎV

pj H̄ T
j Π̄ j H̄ j full rank.

In addition, voltage channels are always available, and the 
number of branch current channels is limited according to 
[14]. We define dj and ι as the number of branches connect‐
ed to bus j and the number of available PMU channels, re‐
spectively. We define Cj as the set of all possible combina‐
tions of dj!/ι!/(dj - ι)! at bus j. The vector [qj0qj1...qjdj

]T is 

the placement decision subvector related to the voltage pha‐
sor and branch current phasor measurements connected to 
bus j. Therefore, the new placement decision vector consider‐
ing the CLs is given as:

q =[q10    q11        q1d1
        qb0    qb1        qbdb

]T
(29)

where qj0 is the decision variable associated with the volt‐
age phasor at bus j; and qjg (g ³ 1) is the decision variable 
that is related to the branch current phasor measurements 
and is a binary variable given as follows:

qjg =
ì

í

î

ïïïï

ïïïï

1    if qj0 = 1 and the g th channel of PMU

        placed at bus j is available

0    otherwise

(30)

The dimension of the new PMU placement decision vec‐
tor q is given as:
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λ = b + d1 + d2 + + db (31)

The placement decision vector p without considering CLs 
is expressed as to (32) because the decision vector related to 
the current phasor measurements is set as qjg = qj0 by de‐
fault if the PMU CLs are not considered.

p =[p1 p2  pb ]T =[q10 q20  qb0 ]T (32)

According to (29) and (32), it is clear that the dimension 
of the problem given in (33) is larger than that presented in 
[30]. The ZIBs, single PMU loss contingency, and existing 
SCADA measurements are widely considered in OPP prob‐
lems [14], [39], [40]. The single PMU loss contingency 
means that any PMU may be lost. Thus, V -{ j} represents 
the set of remaining PMUs after the PMU installed at bus j 
is not available and jÎV. On the basis of [30], the OPP 
problem considering the PMU CLs, ZIBs, single PMU loss 
contingency, SEE, and MSEEV is formulated as a mixed-in‐
teger SDP (MISDP) problem:

min∑
jÎV
∑
lÎCj

qjl (33)

s.t.

 Φr 0    r = 12n (34)

Cj = dj!/ι!/(dj - ι)! (35)

∑
r = 1

n

χr £ δt (36)

max
r = 12n

χr £ δm (37)

qjlÎ{01}    "jÎV"lÎCj (38)

where δt and δm are the predetermined SEE and MSEEV tol‐
erances, respectively. Note that the improper placement of 
PMUs would lead to a large SEE. The main motivation of 
this study is to link the PMU placement problem and SE ac‐
curacy and to find the OPP solution where the SEE is within 
a certain range. The proposed OPP problem is formulated ac‐
cording to [7], [14], [19], [26]. However, the MISDP prob‐
lem presented in this paper is based on non-Gaussian noise 
and the MLE, whereas the MISDP model introduced in  [7], 
[14], [19], [26] is formulated on the basis of Gaussian noise 
and the WLS estimator. Moreover, the proposed method 
links OPP and SEE of the power system; then, the SEE and 
MSEEV are taken as two key constraints that are not consid‐
ered in [7], [14], [19], [26].

The measurement matrix H̄jl is a subset of H̄j due to the 
PMU CLs. The matrix Φr in (34) is given as:

Φr =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úΓ̄ + ∑
iÎV -{ j}

∑
lÎCj

qil H̄
T
il Π̄ il H̄ il er

eT
r χr

(39)

Γ̄ = H͂ Tϒ͂H͂ + Ĥ Tϒ̂Ĥ (40)

The terms H͂ Tϒ͂H͂ and Ĥ Tϒ̂Ĥ represent the effects of the 
ZIBs and pre-existing conventional measurements, respec‐
tively. For the optimization problem given in (33), in addi‐
tion to the SEE and MSEEV constraints, the additional ef‐
fects of the SCADA measurements (ϒ̂) and ZIBs (ϒ͂) are 
considered. Note that PMU measurements are typically ob‐

tained at 30 or 60 samples per second, whereas the SCADA 
system can only obtain nonsynchronized measurements once 
every 2-4 s [37], [41] - [43]. The state estimates are usually 
updated slowly, once every few minutes [41] or several sec‐
onds (larger than the sampling period of the SCADA sys‐
tem), to reduce the computational complexity required to im‐
plement static SE. The variations in the system state vari‐
ables within several consecutive measurement scans are neg‐
ligible [44], and it can be assumed that the system state vari‐
ables are constant during this interval [41]. Thus, the time 
stamp is not sensitive to static SE. The proposed OPP meth‐
od is based on a static SE model and does not require time-
stamping.

Different values of ϒ̂, ϒ͂, and Π̄ would also lead to differ‐
ent solutions. According to [14], [32], [45], the conventional 
measurements utilized in this study include the injected pow‐
er and power flow. Consider a π-model for the grid branch 
connecting buses i and j. The series admittance of branch ij 
is defined as gij + jyij. The shunt admittance at bus i is de‐
fined as gsij + jysij. Ni represents the set of buses connected to 
bus i. ϵPi

, ϵQi
 and ϵPij

, ϵQij
 represent the injected power and 

power flow measurement noises, respectively. The conven‐
tional measurements of the real and reactive power (or zero) 
injected at bus i can be written in a rectangular form as fol‐
lows:

Pi = ((E re
i )2 + (E im

i )2 )∑
jÎNi

(gsij + gij )+

E re
i ∑

jÎNi

(-gij E
re
j + yij E

im
j )-E im

i ∑
jÎNi

(yij E
re
j + gij E

im
j )+ ϵPi (41)

Qi =-((E re
i )2 + (E im

i )2 )∑
jÎNi

(ysij + yij )+

E re
i ∑

jÎNi

(yij E
re
j + gij E

im
j )+E im

i ∑
jÎNi

(-gij E
re
j + yij E

im
j )+ ϵQi (42)

Note that for ZIB i, Pi =Qi = 0. When the impact of ZIBs 
on SE is considered, the zero-injection power measurements 
and the corresponding linearized measurement matrix H͂ de‐
rived from (41) and (42) should be included in (8). The mea‐
surements of the real and reactive power flows from bus i to 
bus j are given as:

Pij = (gsij + gij )((E
re
i )2 + (E im

i )2 )+
E re

i (-gij E
re
j + yij E

im
j )-E im

j (yij E
re
j + gij E

im
j )+ ϵPij

(43)

Qij =-(ysij + yij )((E
re
i )2 + (E im

i )2 )+
E re

i (yij E
re
j + gij E

im
j )+E im

j (-gij E
re
j + yij E

im
j )+ ϵQij

(44)

Therefore, the elements of the Jacobian matrices H͂ and Ĥ 
corresponding to measurements of the real and reactive in‐
jected power (or power flows) can be derived according to 
(41)-(44). More details can be found in [14].

D. Solution Method

Even though [26] and [29] provide a convex relaxation 
method to solve the MISDP problem, this method is not suit‐
able for solving the proposed OPP problem given in (33). 
The main reasons are that many constraints are considered 
and the dimension of the PMU placement decision vector is 
increased. Following the method presented in [26], the meth‐
ods for selecting the w largest elements of the suboptimal 
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placement solution p* to be 1 cannot guarantee that a subop‐
timal solution of (33) can be obtained. This means that the 
suboptimal placement solution p* is challenging to determine 
at the first step and the following approximate optimization 
step cannot be carried out. In this paper, the solutions of the 
proposed OPP problem can be obtained by directly using 
YALMIP with a CUTSDP solver [46] in MATLAB.

The procedure for solving the proposed OPP problem sub‐
ject to different constraints is shown in Fig. 1. Note that the 
PMU installation costs include the specific cost of the PMU 
devices and other costs such as the cost of the communica‐
tion infrastructure [6].

The primary objective of the OPP problem is to minimize 
the number of PMUs while ensuring system observability 
[7], [12]-[14], [16], [17], [20], [29]. Therefore, the proposed 
OPP method considers constraints such as the PMU CLs, ZI‐
Bs, PMU loss contingency, SEE, and MSEEV while finding 
the PMU placement solution with the minimum number of 
PMUs. The method proposed in this paper is based on the 
non-Gaussian noise and the MLE and considers multiple con‐
straints. The solution of (33) is useful for monitoring the sys‐
tem design to achieve a certain level of accuracy.

IV. SIMULATION RESULTS 

In this section, the performance of the proposed OPP 
method for different cases is evaluated in the IEEE 14-bus, 
30-bus, and 118-bus systems. The numbers of ZIBs and 
branches for the above systems [47] are summarized in Ta‐
ble II. The placement solutions are obtained by using 
YALMIP with the CUTSDP solver [46] in MATLAB 2016a. 
The computer used to carry out the simulations is equipped 
with an Intel Core i7 central processing unit (CPU) running 
at 3.60 GHz with 8 GB of random access memory (RAM).

The proposed OPP method is applicable to both Gaussian 
and non-Gaussian noise types when the probability density 
function (PDF) of the noise is known. As shown in (24), the 
proposed OPP method is identical to the OPP method based 
on the WLS estimator under the assumption of Gaussian 
measurement noise. Since the WLS-based OPP problem has 
been studied in [7], a non-Gaussian PDF is used in this 
study to model the measurement noise [49]:

fi (ϵi )=

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

96%

2πσ 2
i

exp ( )-
ϵ 2

i

2σ 2
i

+
4%
20σi

    |ϵi| £ 10σi

96%

2πσ 2
i

exp ( )-
ϵ 2

i

2σ 2
i

                   otherwise 

(45)

where σi = 0.005. The standard deviation of the PMU mea‐
surement noise is usually between 0.0005 and 0.01 [50]. For 
simplicity, σi is set to be 0.005 in this study. A uniform dis‐
tribution component can be used to model measurement out‐
liers [34]. For the MLE, the maximum likelihood criterion is 
widely used to formulate the optimization problem, and the 
optimal parameters of the PDF can then be found to fit the 
data. The maximum likelihood criterion is implemented by 

minimizing -∑
i = 1

m

ln( fi (ϵi (k))), where vi and ξi are unknown. 

On the basis of the known data ϵi generated by (45), a t-dis‐
tribution with parameters vi = 3.10 and ξi = 0.0035 and a 
Gaussian distribution with σi = 0.006 can be obtained to fit 
the histogram of measurement noise, as shown in Fig. 2. It 
is noted that the t-distribution can fit non-Gaussian noise 
more precisely than a Gaussian distribution. The simulation 
results obtained using the proposed OPP method under differ‐
ent operating conditions are presented below.

A. Case Study Considering SEE and MSEEV

In this subsection, the effects of the SEE and MSEEV are 
considered in the IEEE 14-bus system. Note that the SEE or 
MSEEV for Gaussian noise and WLS are usually taken as 
the objective function in previous work [7], [19], [26], and 
the values of SEE or MSEEV are determined by the selec‐

Start

End

Define tolerances δt and δm

Obtain Π using (21)

Calculate Hj using grid topology

Determine PMU CLs, ZIBs, and PMU loss contingency

Obtain PMU placement decision vector by

solving optimization problem (33) 

Fig. 1.　Procedure for solving proposed OPP problem subject to different 
constraints.

TABLE II
NUMBERS OF ZIBS AND BRANCHES FOR DIFFERENT POWER SYSTEMS

System

IEEE 14-bus

IEEE 30-bus

IEEE 118-bus

Number 
of ZIBs

1

6

10

Location of ZIBs

7

6, 9, 22, 25, 27, 28

5, 9, 30, 37, 38, 63, 64, 68, 71, 81

Number of 
branches

20

41

186

-0.02 -0.01 0 0.01 0.02 0.035
0

20

40

60

80

100

120
Random variables
Gaussian
t-distribution

0.020 0.025 0.030 0.035
0

1

2

f i
(ϵ

i)

-0.03
ϵi

Fig. 2.　Histogram of measurement noise approximated by a t-distribution 
with parameters vi = 3.10, ξi = 0.0035, and a Gaussian distribution with σi =
0.006.
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tion of a set of measurements. In this paper, different values 
of SEE δt and MSEEV δm are chosen to simulate different 
levels of SE accuracy for the WAMS. In practice, according 
to the historical SE results obtained from existing WAMS, 
the values of SEE and MSEEV should be further decreased 
to obtain a new PMU placement solution, and the relevant 
SEE is reduced, leading to an improvement in the SE accura‐
cy. Note that more PMUs need to be placed or more mea‐
surements are needed if a smaller SEE is required. The ob‐
jective of this simulation is to demonstrate whether the pro‐
posed OPP method can still find the optimal PMU place‐
ment solution when different SEE and MSEEV constraints 
are added for non-Gaussian noise and robust MLE. The sim‐
ulation results in IEEE 14-bus system considering SEE or 
MSEEV constraints are given in Table III. For the “with 
SEE constraint only” case, the optimal PMU placement solu‐
tions are obtained, and the final SEE results are less than the 
predetermined SEE constraints. Moreover, the value of SEE 

is further decreased when the SEE constraints become more 
strict. The trade-off for a smaller SEE is to install more 
PMUs at certain buses or to place certain PMUs at different 
buses. For example, if the SEE constraint is set to be £ 180 ´
10-5, the PMUs are placed at Buses 2, 6, 7, and 9, which de‐
creases the MSEEV and SEE results, i. e., 0.71 ´ 10-5 and 
15.71 ´ 10-5, respectively. This new placement result is better 
than the original placement vector [5], [10], [14], [16] be‐
cause the SEE result is reduced from 27.92 ´ 10-5 to 15.71 ´
10-5. A minimum number of 11 PMUs is required to achieve 
an SEE that is less than 5.46 ´ 10-5. In addition, the simula‐
tion results considering the SEE and MSEEV constraints are 
studied. When an SEE or MSEEV constraint becomes small‐
er, more PMUs are required, and the optimal PMU place‐
ment results are obtained. Even though an additional con‐
straint is considered in the optimization problem, the 
MSEEV and SEE results are both within the given con‐
straints.

B. Case Study Considering PMU CLs, ZIBs, Single PMU 
Loss Contingency, SEE, and MSEEV

The impacts of the ZIBs, single PMU loss contingency, 
and the available number of PMU channels on the tradition‐
al OPP solution have been examined [7], [16] - [18]. Here, 
the additional influences caused by the SEE and MSEEV in 
conjunction with the PMU CLs, ZIBs, and PMU loss contin‐
gency are evaluated. The IEEE 14-bus, 30-bus, and 118-bus 
systems are considered, and the simulation results are given 
in Table IV. Compared with the solutions given in [14], the 
inclusion of ZIBs reduces the required number of PMUs, 
and the number of ZIBs determines the reduction in the num‐
ber of PMUs required. In addition, the PMU placement solu‐
tion for the IEEE 14-bus system is the same as that in [14] 
when the SEE and MSEEV constraints are not considered. 
That is, nine PMUs are installed at Buses 2, 3, 5, 6, 7, 8, 9, 
10, and 13. This verifies that the proposed OPP method is 
consistent and the obtained solutions are credible. The above 
placement solution is based on the assumption of Gaussian 
noise. When the t-distribution is considered and the SEE is 

more accurately calculated, the PMUs are installed at Buses 
2, 4, 5, 6, 7, 8, 9, 11, and 13. The corresponding SEE result 
decreases from 6.74 ´ 10-5 to 6.62 ´ 10-5. The number of in‐
stalled PMUs remains the same. The SEE decreases to 5.92 ´
10-5 when the number of PMUs increases to 10. In addition, 
given the predetermined SEE and MSEEV constraints, it is 
clear that a reduction in the available number of PMU chan‐
nels leads to more PMUs being installed on certain buses. 
For example, the number of PMUs increases from 10 to 11 
when the number of PMU channels changes from ¥ to 2. 
Similar improvements in the reduction in the SEE for the 
IEEE 30-bus and 118-bus systems can also be obtained, as 
summarized in Table IV. The execution time for solving the 
optimization problem considering multiple constraints is also 
given in Table IV. The execution time of the proposed OPP 
method increases with the size of the power system. Taking 
the IEEE 118-bus system as an example, the execution time 
of 6324.0 s has a similar order of magnitude as that in [7]. 
Therefore, the execution time overhead of the proposed OPP 
method is acceptable.

TABLE III
SIMULATION RESULTS IN IEEE 14-BUS SYSTEM CONSIDERING SEE OR MSEEV CONSTRAINTS

With SEE constraint only

SEE 
constraint 

(10-5)

£ 1800.00

£ 180.00

£ 11.00

£ 7.29

£ 5.46

Number 
of PMUs

4

4

6

9

11

Placement of 
PMUs

2, 7, 11, 13

2, 6, 7, 9

1, 4, 6, 7, 9, 14

2, 4, 6, 7, 8, 9, 
11, 13, 14

2, 4, 5, 6, 7, 8, 
9, 11, 12, 13, 14

MSEEV 
result 
(10-5)

1.22

0.71

0.51

0.30

0.21

SEE 
result 
(10-5)

27.92

15.71

10.24

6.61

5.37

With SEE and MSEEV constraints

SEE 
constraint 

(10-5)

£ 1800.00

£ 11.00

£ 7.29

£ 5.46

MSEEV 
constraint 

(10-5)

£ 1.0

£ 0.5

£ 10.0

£ 1.0

£ 1.0

£ 1.0

£ 0.2

Number 
of PMUs

4

6

6

6

9

11

12

Placement of 
PMUs

2, 6, 7, 9

2, 6, 7, 9, 12, 14

1, 4, 6, 7, 9, 14

2, 4, 6, 7, 9, 14

2, 4, 6, 7, 8, 9, 11, 
12, 14

2, 4, 5, 6, 7, 8, 9, 
11, 12, 13, 14

2, 4, 5, 6, 7, 8, 9, 
10, 11, 12, 13, 14

MSEEV 
result 
(10-5)

0.71

0.44

0.51

0.51

0.26

0.21

0.19

SEE 
result 
(10-5)

15.72

10.40

10.22

10.01

6.61

5.36

4.93

Time 
(s)

0.6

0.9

0.8

1.0

0.7

0.7

0.4
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C. Monitoring System Upgrades

Considering the number of available PMU channels and 
pre-existing SCADA measurements, the OPP method is im‐
portant since there still exists a transition where both pre-ex‐
isting SCADA and PMU measurements are utilized for the 
SE of the power system [51]. In reality, it is easy to obtain 
the SEE using the historical SE results. To increase the esti‐
mation accuracy of the monitoring system to a certain level, 
the SEE and MSEEV constraints can be added, and the pro‐
posed OPP method can provide the correct placement solu‐

tion. In this example, a total of 84 measurements consisting 
of power flows and injected power for the IEEE 118-bus sys‐
tem are used [14]. The PMU placement solutions for differ‐
ent values of SEE are given in Table V. When the CL is 4, 
the values of SEE and MSEEV are 63.7 ´ 10-5 and 
0.18 ´ 10-5, respectively, and 24 PMUs are required. This ver‐
ifies that the proposed OPP method is compatible with exist‐
ing monitoring system upgrade. Once the desired SEE is 
achieved, the proposed OPP method can be used to deter‐
mine the optimal PMU locations.

D. Practical 211-bus Distribution System in China

To further test the scalability of the proposed OPP method 
in a real distribution system, a system comprising 211 buses 
in China is considered [52]. There are many radial buses in‐
cluded in this 211-bus distribution system. If the PMU loss 
contingency is considered, each radial bus should be in‐
stalled with one PMU, and the majority of distribution sys‐
tem buses should be installed with PMUs. Therefore, in this 
case, the constraints such as the PMU CLs, ZIBs, SEE, and 
MSEEV are considered, and the simulation results are given 
in Table VI. It is observed that the execution time is higher 
than those in Table IV since the number of PMU placement 
decision variables increases.

Even though the OPP methods based on topological ob‐
servability theory can be applied to large-scale power sys‐

tems by using an integer linear programming (ILP) method, 
they may not always ensure the numerical observability re‐
quired for successful execution of SE [15]. Note that the nu‐
merical-observability-based OPP problem is usually formulat‐
ed as an MISDP problem, and existing OPP methods based 
on numerical observability theory are applied to IEEE 14-
bus, 57-bus, and 118-bus systems and 95-bus and 136-bus 
distribution systems [7], [14], [19], [21], [26], [29]. One pos‐
sible drawback of SDP-based methods is their running time 
[53]. However, some solution methods such as the distribut‐
ed SDP method [54] and solving constraint integer programs 
(SCIP) together with YALMIP [14] have been developed to 
reduce the running time.

Our main contribution is to form an MISDP problem link‐
ing OPP and SE of the power system and propose a new 
OPP method that considers the PMU CLs, ZIBs, PMU loss 

TABLE IV
SIMULATION RESULTS IN IEEE STANDARD SYSTEMS CONSIDERING PMU CLS, ZIBS, PMU LOSS CONTINGENCY, SEE, AND MSEEV

System

14-bus

30-bus

118-bus

SEE 
constraint 

(10-5)

£¥

£ 9.11

£ 10.90

£ 10.90

£¥

£ 13.60

£ 13.60

£¥

£ 10.12

MSEEV 
constraint 

(10-5)

£¥

£ 1.0

£ 0.5

£ 0.5

£¥

£ 5.0

£ 5.0

£¥

£ 0.1

Number 
of PMUs

9

9

10

11

21

21

22

66

72

CL

¥

¥

¥

2

¥

¥

2

¥

3

Placement of PMUs

2, 3, 5, 6, 7, 8, 9, 10, 13

2, 4, 5, 6, 7, 8, 9, 11, 13

2, 4, 5, 6, 7, 8, 9, 11,13,14

1, 2, 4, 6, 7, 9, 10, 11, 12, 13, 14

1, 2, 3, 5, 6, 8, 9, 10, 11, 12, 13, 15, 17, 19, 20, 22, 23, 25, 26, 27, 29

2, 3, 4, 6, 7, 9, 10, 11, 12, 13, 15, 17, 19, 20, 22, 24, 25, 26, 27, 28, 29

1, 2, 4, 5, 6, 9, 10, 11, 12, 13, 15, 16, 17, 18, 19, 
21, 24, 25, 26, 27, 29, 30

2, 3, 4, 6, 8, 9, 11, 12, 15, 16, 17, 19, 21, 22, 24, 25, 27, 28, 29, 32, 34, 
35, 39, 40, 41, 43, 45, 46, 49, 50, 51, 53, 54, 56, 59, 62, 64, 66, 68, 70, 
73, 75, 76, 77, 78, 80, 83, 85, 86, 87, 89, 91, 92, 94, 96,100, 101, 105, 

106, 109, 110, 111, 112, 114, 116, 117

2, 3, 5, 7, 8, 10, 11, 12, 15, 17, 19, 20, 22, 23, 25, 27, 29, 30, 31, 32, 
34, 36, 37, 38, 40, 42, 43, 45, 46, 49, 51, 53, 54, 56, 57, 59, 61, 62, 65, 
66, 68, 69, 70, 71, 72, 75, 77, 78, 80, 81, 82, 83, 85, 86, 87, 89, 90, 92, 
94, 96, 100, 101, 103, 105, 107, 109, 110, 111, 112, 115, 117, 117, 118

MSEEV 
result 
(10-5)

0.310

0.300

0.280

0.230

0.530

0.490

0.290

0.100

0.087

SEE 
result 
(10-5)

6.74

6.62

5.92

5.43

9.11

8.60

7.86

11.29

8.52

Time 
(s)

7.9

7.8

15.3

98.2

598.5

1080.6

3142.1

3651.7

6324.0

TABLE V
SIMULATION RESULTS FOR UPGRADED MONITORING SYSTEM IN IEEE 118-BUS SYSTEM

SEE 
constraint (10-5)

102.1

63.7

MSEEV 
constraint (10-5)

91.10

0.18

Number of 
PMUs

18

24

CL

6

4

Placement of PMUs

5, 9, 12, 19, 24, 32, 37, 49, 59, 61, 65, 68, 70, 
80, 85, 92, 105, 110

5, 9, 12, 19, 24, 27, 30, 32, 37, 40, 49, 56, 59, 
64, 68, 70, 80, 85, 86, 89, 95, 100, 105, 110

MSEEV 
result (10-5)

1.45

0.18

SEE result 
(10-5)

95.1

33.5

Time (s)

611.4

575.2

486



CHEN et al.: OPTIMAL PLACEMENT OF PHASOR MEASUREMENT UNIT IN SMART GRIDS CONSIDERING MULTIPLE CONSTRAINTS

contingency, SCADA measurements, SEE, and MSEEV. We 
will focus future work on a fast solution method for the 

MISDP problem.

V. CONCLUSION 

A new OPP method is proposed for smart grids, where the 
PMU CLs, ZIBs, single PMU loss contingency, SCADA 
measurements, SEE, and MSEEV are considered. The SEE 
and MSEEV constraints are formulated as linear matrix in‐
equality constraints using A- and G-optimal experimental cri‐
teria. The simulation results obtained from the IEEE 14-bus, 
30-bus, and 118-bus systems and a real 211-bus distribution 
system in China verify the efficient performance of the pro‐
posed method. The proposed method is useful for designing 
and upgrading monitoring systems.
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