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Abstract——Micro-phasor measurement units (μPMUs) with a 
micro-second resolution and milli-degree accuracy capability 
are expected to play an important role in improving the state es‐
timation accuracy in the distribution network with increasing 
penetration of distributed generations. Therefore, this paper in‐
vestigates the problem of how to place a limited number of 
μPMUs to improve the state estimation accuracy. Combined 
with pseudo-measurements and supervisory control and data ac‐
quisition (SCADA) measurements, an optimal μPMU placement 
model is proposed based on a two-step state estimation method. 
The E-optimal experimental criterion is utilized to measure the 
state estimation accuracy. The nonlinear optimization problem 
is transformed into a mixed-integer semidefinite programming 
(MISDP) problem, whose optimal solution can be obtained by 
using the improved Benders decomposition method. Simulations 
on several systems are carried out to evaluate the effective per‐
formance of the proposed model.

Index Terms——Phasor measurement unit (PMU), distribution 
system state estimation, mixed-integer semidefinite program‐
ming (MISDP).

I. INTRODUCTION 

PHASOR measurement units (PMUs) can provide real-
time magnitude and phase angle information of voltage 

and current with high accuracy, from which many applica‐
tions such as network observability, state estimation (SE), 
and safety protection and coordinated control can benefit [1]. 
Currently, PMUs have been widely applied in transmission 
networks and the optimal PMU placement (OPP) problem 
for transmission networks has been well studied. However, 
the network structure of the distribution network is quite dif‐
ferent from that of the transmission network. Most of distri‐
bution networks operate radially with a large number of 
nodes and low node-connectivity. Moreover, more and more 

distributed generations are connected to the distribution net‐
work, which results in rapid change of network state and 
much more complex faults [2]. However, on the one hand, 
some PMU placement methods in transmission networks are 
not well suited to distribution networks. On the other hand, 
the micro-phasor measurement unit (µPMU) with micro-sec‐
ond resolution and milli-degree accuracy capability has been 
developed, which is more suitable for complex distribution 
networks [3]. Thus, it is of great significance to study OPP 
considering the characteristics of distribution network and 
economic factor to facilitate the monitoring and controlling 
of the distribution network.

Most of existing OPP methods ensure complete network 
observability with a minimum number of installed PMUs or 
a minimum installation cost. The network observability is 
mainly divided into topological observability [4] and numeri‐
cal observability [5], where the former is usually achieved 
based on the decoupled measurement model and graph theo‐
ry [6], and the latter is mostly achieved through the gain ma‐
trix of SE with full rank [7]. However, it needs to cover al‐
most one third of the nodes to obtain complete network ob‐
servability in distribution networks [8], which leads to large 
installation scale and high cost. Therefore, many OPP stud‐
ies also take pseudo-measurements as well as traditional 
measurements from supervisory control and data acquisition 
(SCADA) system into consideration. This not only enhances 
the network observability, but also reduces the number of 
PMUs and the total cost for obtaining complete network ob‐
servability. In recent literature, mathematical and heuristic 
optimization algorithms were implemented to solve OPP 
problem. Mathematical optimization algorithms include bina‐
ry integer linear programming (BILP) [9], binary semidefi‐
nite programming (BSDP) [10], and recursive quadratic pro‐
gramming [11]. Interior-point method [12], branch and 
bound method [13], and Benders decomposition method [14] 
are commonly used to solve these programming problems. 
In [10], a BSDP approach was presented to solve the substa‐
tion-oriented OPP problem considering the observability of 
transformer tap settings and the limited PMU channel capaci‐
ty. Heuristic optimization algorithms include genetic algo‐
rithm (GA) [13], [15], simulated annealing algorithm (SAA) 
[16], binary particle swarm optimization (BPSO) [17], and 
evolutionary algorithm (EA) [18]. In [17], a BPSO-based 
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methodology was proposed for the OPP to ensure topological 
observability while maximizing the measurement redundancy.

Furthermore, some other possible scenarios [19] such as 
line outages [20], loss of PMUs [21], [22], controlled island‐
ing [23], [24], and bounded observability propagation [25] 
were considered based on the network observability. A mod‐
el for the optimal placement of contingency-constrained 
PMUs was presented in [20] by formulating conventional 
complete network observability first and then adding differ‐
ent contingency conditions in the network to the main mod‐
el. In [23], an OPP model was proposed considering the con‐
trolled islanding in order that the network remains observ‐
able under both controlled islanding condition and normal 
operation condition. In [25], the optimal number and place‐
ment locations of PMUs were determined under new observ‐
ability propagation rules to enhance measurement systems.

However, it is worth noting that studying the full rank of 
gain matrix or Jacobian matrix of SE can obtain network ob‐
servability and ensure the executability of SE [26], [27], but 
cannot improve the SE accuracy effectively. In recent years, 
some OPP methods were presented that take the improve‐
ment of SE accuracy as the optimization objective. Some re‐
searchers evaluated SE accuracy with scalar function of the 
SE covariance matrix [28] and proposed some OPP methods 
to improve the SE accuracy of distribution networks [29] -
[37]. In [29], the mean squared error of SE subject to sever‐
al observability constraints under a fixed number of PMUs 
was minimized. In [30], the concept of participation of vari‐
ous states in the error uncertainty was applied to identify the 
most important states that influence the estimated errors, and 
an OPP method was proposed without solving mathematical 
programing problems. In [31], the OPP problem was formu‐
lated as an optimal experiment design problem with E- , A- 
and D-optimal criteria to improve SE accuracy and the 
greedy approach was implemented to solve it, but the opti‐
mality of feasible solutions cannot be guaranteed. In [32], 
the D-optimal design was used to formulate OPP problem as 
a Boolean-convex optimization model based on fisher infor‐
mation matrix. In [33], the M-optimal experimental design 
technique was utilized to optimize the measurement alloca‐
tion whereas the model cannot be solved efficiently. In [34], 
the OPP problems based on four optimal experimental crite‐
ria were formulated as semidefinite programming (SDP) 
problems by using convex relaxation, and a simple heuristic 
algorithm was proposed to obtain a feasible but not necessar‐
ily optimal binary solution. In [35], by choosing weighted 
least square (WLS) based SE under Gaussian hypothesis, a 
local optimization method following the convex relaxation 
was employed to solve the SDP problem. In [36], different 
distributions of noise measurement and robust estimators 
were considered, and the improved optimization solution 
method similar to [35] was utilized to obtain local optimal 
solution. In [37], an OPP method was proposed to minimize 
the mean squared error of SE measured by A-optimal criteri‐
on and feasible solutions were obtained by implementing 
Cholesky decomposition. Based on a two-step SE method, 
several bounds for the optimal solution to the PMU place‐
ment problem in distribution networks were compared in 

[38] by using greedy approach and convex relaxation, and 
the gap between a given suboptimal solution and the optimal 
solution can be checked with these bounds.

Therefore, on the basis of the existing studies, this paper 
proposes an optimal µPMU placement method to obtain the 
optimal solution, thus maximizing SE accuracy in distribu‐
tion networks. A covariance matrix of SE error in rectangu‐
lar coordinates is formulated based on mixed measurements 
and the two-step SE method [39]. Then, an optimal µPMU 
placement model aimed at minimizing the worst error vari‐
ance of SE is established based on E-optimal experimental 
criterion. After that, the optimization problem is transformed 
into a mixed-integer semidefinite programming (MISDP) 
problem which can be solved by using the improved Bend‐
ers decomposition method.

The main contributions of this paper are listed as follows.
1) An optimal µPMU placement model is proposed to 

minimize the worst error variance of SE based on E-optimal 
experimental criterion for a given number of μPMUs, thus 
improving the SE accuracy. Pseudo-measurements, SCADA 
measurements, and zero injection buses (ZIBs) are collective‐
ly utilized for a two-step SE to reduce the number of re‐
quired µPMUs.

2) The proposed nonlinear optimization model is trans‐
formed to an MISDP problem by introducing an auxiliary 
variable and the improved Benders decomposition method is 
used to obtain the optimization solution.

3) Global optimal solutions can be obtained by utilizing 
the improved Benders decomposition method compared with 
convex relaxation and greedy approach, and the solving time 
is much less than CUTSDP solver, conventional Benders de‐
composition method, and branch and bound method, espe‐
cially when the number of μPMUs is large.

The rest of the paper is organized as follows. Section II in‐
troduces the proposed methodology for SE and an evaluation 
index of estimation accuracy. Section III establishes the opti‐
mal μPMU placement model and proposes the solution meth‐
odology. Section IV presents the results of case study. Final‐
ly, Section V draws the conclusions.

II. PROPOSED METHODOLOGY FOR SE AND EVALUATION 
INDEX OF ESTIMATION ACCURACY 

Among SE methods utilized in the OPP problem, the most 
common one is WLS method [40]. A new two-step SE meth‐
od considering mixed measurement and ZIB was proposed 
in [39] and was used to establish the OPP model in [38]. 
Compared with the traditional method, the two-step SE meth‐
od avoids the recalculation of SE when the SCADA measure‐
ments change or multi-stage μPMU deployment is consid‐
ered. This is because the SCADA measurements and prior in‐
stalled μPMUs are processed in the second step after dealing 
with pseudo-measurements, whereas all the existing measure‐
ments are processed by the WLS-based method. Moreover, 
the proposed two-step SE method can effectively improve 
the computational efficiency of real-time SE while guarantee‐
ing the accuracy of the results. Therefore, the two-step SE 
method is carried out to solve SE involved in optimal 
µPMU placement problem in this paper.
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A. Two-step SE Method

For a three-phase network with N nodes (including Nsrc ac‐
tive nodes and Nload passive nodes), the brief calculation steps 
of the two-step SE method in rectangular coordinates are pre‐
sented as follows. For more details, please refer to [39].

In the first step, prior estimation is carried out by using 
pseudo-measurements, and the voltage formula at iteration k 
can be expressed as:

Vk =Bk - 1

é
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úÂ{Spsd }

Á{Spsd }
+V0 (1)

where Â{*} and Á{*} are the real and imaginary parts of *, 
respectively; Spsd is the matrix of pseudo-measurements that 
are known beforehand; V0ÎR

6 ´Nload is the voltage matrix un‐
der zero loads in rectangular coordinates; and Bk - 1 is the co‐
efficient matrix at iteration k.

The iteration stops only when the gap between the calcu‐
lated Spsd and the real Spsd is less than the given value. After 
the first step of SE, the estimation error covariance 
EpriorÎR

(6Nload )´(6Nload )
 of VpriorÎC

3 ´Nload can be obtained 
from (2).

Eprior =B0σpsddiag ( éëêêêê ù

û
ú
úú
ú(Â{Spsd })2

(Á{Spsd })2 ) BT
0 (2)

where σpsd is the standard deviation of pseudo-measure‐
ments; and B0 is the initial coefficient matrix.

As analyzed in [38] and [39], ZIBs lead to zero rows in 
Eprior thus making the matrix irreversible, and a linear trans‐
formation method is used to produce feasible solutions to 
this problem. But this method is unable to take µPMU place‐
ments at ZIBs into account because of dimensionality reduc‐
tion of state variables. In this paper, zero value of the ZIB is 
replaced by a very small constant, i.e., 10-6, and a relatively 
small standard deviation, i. e., 0.01, is set for ZIBs. In this 
way, the µPMU placement of each node can be taken into 
consideration and the effect of approximate substitution 
method will be discussed in detail later.

In the second step, SCADA and µPMU measurements are 
utilized to carry out a linear post-estimate combined with 
Vprior and Eprior obtained in the first step. The post-estimate 
voltage Vpost can be expressed as:

Vpost =Vprior +K
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where zPÎC
Npm and zSÎR

Nsm are the vectors of Npm µPMU 
measurements and Nsm SCADA measurements, respectively; 
CP is the matrix mapping state voltages to µPMU measure‐
ments; CS is the matrix mapping state voltages to SCADA 
measurements; and K is the gain matrix obtained by mini‐
mizing the error covariance Epost, which can be expressed as:

K =EpriorC
T
A (CA EpriorC

T
A +EA )-1 (4)
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EA = diag(EPES ) (6)

where EP and ES are the covariance matrices of the µPMU 
and SCADA measurement noises, respectively; and V is the 
state voltage vector.

The relationship between the voltage and µPMU measure‐
ment i at phase p of bus k is shown in (7), and the relation‐
ship between the voltage and SCADA measurement i at 
phase p of bus k is shown in (8).

(CPV )i = (CP )i ×V =

ì

í

î

ïïïï

ïïïï

Vkp                               voltage measurement

(Y )kp ×V                       current measurement

(Y )kpmp (Vkp -Vmp )   current measurement of branch k®m

(7)

(CS (V ))i =

ì
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|Vkp|                              voltage measurement

|(Y )kp ×V|                       current measurement

|(Y )kpmp (Vkp -Vmp )|   current measurement of branch k®m

(8)

where Vkp is the voltage at phase p of bus k; (*)i denotes the 
ith element of vector *; (*)i × denotes the ith row of matrix*; and 
(*)kpmp denotes the element of matrix * in the kpth row and 
mpth column; |* | denotes the magnitude of complex number 
*; and Y is the node admittance matrix of the system.

Finally, the first-order approximation of the estimation er‐
ror covariance EpostÎR

(6Nload )´(6Nload )
 can be obtained from (9).

Epost »K(EA +CA EpriorC
T
A )K T +Eprior -

KCA Eprior -EpriorC
T
A K T (9)

B. Evaluation Index of Estimation Accuracy

The error covariance matrix Epost is obtained through a 
two-step SE method in the previous subsection and indicates 
the estimation accuracy that the measurement system can 
achieve. The scalar-valued function f (Epost ) is usually cho‐
sen as an indicator to evaluate the accuracy of SE in the esti‐
mation field [37]. One of the functions is based on E-opti‐
mal design [28] and it can be expressed as:

fE = λmax (Epost ) (10)

where λmax (*) is the maximum eigenvalue of * and its physi‐
cal meaning is the worst error variance of an estimate. In 
this paper, the worst error variance, i.e., E-optimal design, is 
selected as the evaluation index of SE accuracy and the opti‐
mal µPMU placement model is established based on this 
strategy.

III. OPTIMAL µPMU PLACEMENT MODEL AND SOLUTION 
METHODOLOGY 

A. Optimal µPMU Placement Model

According to [38], the deformation formula of Epost can be 
expressed as:

Epost = (E -1
prior +C  *

A E -1
A CA )-1 (11)

where * denotes the complex conjugate transpose. Further, 
since the measurements at different nodes are independent of 
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each other, C  *
A E -1

A CA can be rewritten as:

C  *
A E -1

A CA =∑
i

si( )∑
im

(C ′A )*im × (C ′A )im × (E
-1
A ′ )imim +

∑
i

ai( )∑
ik

(C ′A )*ik × (C ′A )ik × (E
-1
A ′ )ikik (12)

where si and ai are the binary variables, si = 1 means that a 
µPMU is installed at node i, and ai = 1 means that other mea‐
surement device such as feeder terminal unit (FTU) is in‐
stalled at node i, 0 otherwise; im is the serial number of the 
mth µPMU measurement of node i among all µPMU mea‐
surements; ik is the serial number of the kth SCADA mea‐
surement of node i among all SCADA measurements; and 
C ′A and E -1

A ′ are the values of CA and E -1
A  when all measure‐

ments for all nodes are configured, respectively.
In this paper, we only focus on the optimal placement of 

µPMUs with unlimited number of channels, so the variable 
ai is known by default and only the variable si is optimized. 
Therefore, the latter formula in (12) related to ai can be re‐
placed with a constant cSCADA and Epost can be expressed as 
(13) which is only related to the variable s =(si ).

Epost (s)=

é
ë

ù
ûE -1

prior + cSCADA +∑si( )∑(C ′A )*im × (C ′A )im × (E
-1
A ′ )imim

-1

(13)

The objective of the optimal µPMU placement model in 
this paper is to improve the SE accuracy, and the constraint 
is the number of installed µPMUs. Therefore, combined with 
the E-optimal standard design in Section II-B as well as the 
SE error covariance matrix (13), the model can be written as:
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min
s

fE = min
s
λmax (Epost (s))

s.t. ∑si £Nset    "i

       siÎ{01}    "i

(14)

where Nset is the maximum number of µPMUs.

B. Solving Methodology

As shown in (13), Epost (s) in (14) involves the inversion 
of variable matrix, which makes (14) be a nonlinear optimi‐
zation problem and hard to obtain the largest eigenvalue of 
Epost (s) directly. As we know, the maximum eigenvalue of a 
matrix equals to the inverse of the minimum eigenvalue of 
its inverse matrix. In this way, the original problem of mini‐
mizing the maximum eigenvalue of Epost (s) can be converted 
to a problem of how to maximize the minimum eigenvalue 
of E -1

post (s):
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max
s

fE = max
s
λmin (E -1

post (s))

s.t.  ∑si £Nset    "i

        siÎ{01}    "i

(15)

where λmin (*) is the minimum eigenvalue of *.
By introducing the auxiliary variable t [34], the nonlinear 

E-optimal µPMU placement problem (15) can be rewritten 
as an MISDP problem (16), where variables si are all binary 
variables and variable t is a continuous variable.
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ï

min(-t)

s.t. E -1
post (s)- tI2Nload

≽ 0

      ∑si £Nset    "i

      siÎ{01}    "i

(16)

where I2Nload
 is an identity matrix.

The proof of transformation is presented as follows.
Proof  Constraint E -1

post (s)- tI2Nload
≽ 0 in (16) means that all 

eigenvalues ε of E -1
post (s)- tI2Nload

 are greater than or equal to 

0, which means that when |E -1
post (s)- tI2Nload

- εI2Nload
| = 0, ε ³ 0 

always holds. In order to achieve this, the value of t needs 
to satisfy that the solution of the inequality t + ε £
λmin (E -1

post (s)) with ε as a variable is greater than or equal to 
0. In this case, when ε = εmin = 0, t gets the maximum value 
which is equal to the minimum eigenvalue of E -1

post (s), i. e., 
λmin (E -1

post (s)). Therefore, (16) is equivalent to (15).
Considering the mathematical characteristics of the MIS‐

DP model (16), Benders decomposition is utilized in this pa‐
per to decompose the model into a simple mixed-integer lin‐
ear programming (MILP) master problem and an SDP sub‐
problem with continuous variables [14]. The master problem 
determines the optimal location, and the subproblem optimiz‐
es the SE accuracy.

The subproblem is an SDP model where the discrete vari‐
ables si are given, and the expression is as follows:

ì
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î

ïïïï

ï
ïï
ï

min(-t)

s.t.  si = ξ
k
i :τ k

i     "i

       E -1
post (s)- tI2Nload

≽ 0

(17)

where ξ k
i  is the µPMU placement result of node i at iteration 

k; and τ k
i  is the dual variable corresponding to the constraint 

si = ξ
k
i  at iteration k and it can be obtained when the subprob‐

lem is solved.
The master problem is an MILP model, and the expres‐

sion is as follows:

ì

í

î

ï
ïï
ï
ï
ï

ï

ïï
ï
ï

ï

min(α)

s.t.  ∑si £Nset    "i

        siÎ{01}    "i

        α ³-t l +∑τ l
i (si - ξ

l
i )     l = 01...k

(18)

where -t l is the objective function value of the subproblem 
with si = ξ

l
i  at iteration l; and α is an auxiliary variable added 

in the solving process. During the process of solving the 
MISDP model based on the Benders decomposition for opti‐
mal µPMU placement, Benders cuts formed by -t l and τ l

i  
play the role of connecting the master problem and the sub‐
problem.

The master problem is formed by relaxing the constraints 
of the original problem, while the subproblem is a restricted 
version of the original problem. Therefore, the Benders de‐
composition method regards the objective function values of 
master problem and subproblem as lower and upper bounds 
of original problem, respectively. During iterations, the ob‐
jective function value of the master problem increases with 
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the Benders cuts provided by the subproblem. Finally, the 
method converges until the gap between objective function 
values of master problem and subproblem is less than a giv‐
en value. However, it is worth noting that the new master 
problem must be solved from scratch when the Benders cut 
generated by the subproblem is added as a new constraint in 
each iteration. As the number of iterations increases, the 
more Benders cuts are added to (18), the longer it takes to 
solve the master problem.

Therefore, the improved Benders decomposition method 
based on lazy constraints is utilized to solve this problem in 
this paper [41]. Lazy constraints are a group of inequalities 
specified by the user and are all necessary for the model. 
But these constraints are not added to the model initially. 
When a feasible solution is found and goes against the origi‐
nal problem, the corresponding lazy constraints are added to 
the model being solved currently. It can be observed that a 
model containing a large number of constraints can benefit 
from this method greatly.

The procedure of the improved Benders decomposition 
method using lazy constraints can be summarized as follows.

Step 1: k = 0. Start to solve the MILP master problem (18) 
without Benders cut. When a feasible solution ξ k is found, 
go to Step 2.

Step 2: solve the SDP subproblem (17) using feasible solu‐
tion ξ k to obtain the objective function value -tk of subprob‐
lem and the dual variable τ k.

Step 3: form the Benders cut according to the feasible so‐
lution ξ k, the dual variable τ k, and the objective function val‐
ue -tk of subproblem. Add the Benders cut to the master 
problem as lazy constraint.

Step 4: k = k + 1. Continue to solve the master problem. If 
a feasible solution ξ k is found, return to Step 2. If the con‐
vergence precision σ(10-4) of master problem is reached, out‐
put the optimal solution ξ k.

With lazy constraints, there is no need to solve the master 
problem from scratch after each cut is added, which greatly 
accelerates the solving process. Therefore, using the im‐
proved Benders decomposition method to solve the MISDP 
problem ensures the solution efficiency.

In addition, it is known that the convergence of the im‐
proved Benders decomposition method for the MISDP prob‐
lem is guaranteed as long as the envelope of function 
g(s′1s′2...s′Nload

) is convex, where g(s′1s′2...s′Nload
) is the 

function that relaxes all 0-1 variables into continuous vari‐
ables and provides the optimal objective function value of 
problem (19) for given values of s′1s′2...s′Nload

 [14].
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ï
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ï
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ïï
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ï

g(s′1s′2...s′Nload
)=min(-t)

s.t.  E -1
post (s′ )- tI2Nload

≽ 0

       ∑s′i £Nset    "i

        s′iÎ[01]    "i

(19)

Since the SDP function g(s′1s′2...s′Nload
) is convex accord‐

ing to the definition of convex programming, the conver‐
gence of the proposed MISDP problem can be guaranteed, 

which ensures the optimal solution of discrete variables. To‐
gether with the fact that the SDP model (17) can ensure the 
global optimality of the solution of continuous variables, the 
proposed method can finally obtain σ-global optimal solu‐
tion, i. e., the error between the obtained optimal solution 
and the true global optimal solution does not exceed σ.

To implement the proposed method, a complete flowchart 
is presented in Fig. 1.

IV. CASE STUDY 

The proposed optimal µPMU placement model is evaluat‐
ed in two balanced systems, namely the IEEE 33-bus and 
123-bus systems [42], which are shown in Figs. 2 and 3, re‐
spectively. And a practical distribution network with 446 
nodes is also tested.

It is worth noting that balanced systems are considered for 

Input

Obtain Vprior,

Eprior using

(1) and (2)  

Obtain CA, EA,

cSCADA, Epost
using (3)-(13)

Calculate power flow 

End

Start

Nset

Generate optimal PMU

placement model using

(14)  

Obtain optimal results

using improved Benders

decomposition method

Pseudo measurements

SCADA measurements

Data support;         Operation flow 

Two-step SE

Fig. 1.　Flowchart of proposed method.
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Fig. 3.　Topology of IEEE 123-bus system.
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simplicity in this paper whereas the proposed method is also 
applicable to unbalanced distribution systems. The pseudo-
measurements utilized in the test cases include active and re‐
active power injection of each node. Since these measure‐
ments are estimations rather than actual values, the corre‐
sponding noise is modeled with a relatively large standard 
deviation with σpsd = 0.5 [38], [39]. SCADA and µPMU mea‐
surements include voltage measurements, injected current 
measurements, and branch current measurements. The SCA‐
DA measurements can only provide magnitude information 
whereas the µPMU measurements can provide both magni‐
tude and phase angle information. The standard deviation of 
the error is set to be 0.05 for SCADA measurements and 
0.01 for µPMU measurements [43]. The simulations are per‐
formed in Python 3.7.9 [44] using an AMD R7-3700X CPU 
at 3.60 GHz with 32 GB of RAM. The master problem of 
the MISDP problem is solved by using Gurobi solver [45] 
and the Callback function in Gurobi is called to solve the 
subproblem and to add lazy constraints when a feasible solu‐
tion of master problem is found. The SDP subproblem is 
solved by using Mosek solver [46] with CVXPY pack‐
age [47].

A. µPMU Placement Results Under Different Combinations 
of ZIBs

In this subsection, approximate substitution method which 
is utilized to deal with ZIBs is compared with linear transfor‐
mation method [38] under different combinations of ZIBs in 
IEEE 33-bus system. Five ZIBs are randomly selected and 
added in order. The number of installed µPMUs Nset is set to 
be 4 and the SCADA measurements are not considered here. 
As shown in Table I, when 2, 4 and 5 ZIBs are considered, 
the approximate substitution method obtains larger objective 
values of the problem (15), which means the better optimiza‐
tion effect. For example, when nodes 6 and 11 are ZIBs, the 
approximate substitution method selects ZIB 11 as one of 
the µPMU installation nodes, which helps increase the objec‐
tive value. In comparison, the linear transformation method 
neglects the µPMU placements at ZIBs because of dimen‐
sionality reduction. The same is true for the case with 4 ZI‐
Bs where ZIB 25 is selected to deploy the µPMU based on 
the approximate substitution method. The comparison indi‐
cates that it is better to take ZIBs into consideration during 
the µPMU placement.

B. Sensitivity to SCADA Measurement Placement

The sensitivity of the µPMU placement results to the 
SCADA measurement placement is tested in IEEE 33-bus 
system. The number of nodes with SCADA measurements 
Ns ranges from 0 to 4. On the basis of the SCADA measure‐
ments in the previous round, one of the nodes configured 
with µPMUs from the previous round is selected to be 
equipped with SCADA measurements in the current round. 
ZIBs are not considered here. Figure 4 shows the µPMU 
placement results under different SCADA measurement 
placements using the proposed method when the number of 
installed µPMUs Nset is set to be 4.

It can be observed that the proposed method can take 
good account of the SCADA measurements in all cases, thus 
making the distribution of measurements in the system more 
uniform. Additionally, Fig. 5 shows the optimization results 
under different SCADA measurement placements and differ‐
ent numbers of µPMUs using the proposed method. A small 
maximum eigenvalue proves that the worst error variance is 
minor. The number of installed µPMUs Nset is limited to one 
quarter of the number of nodes considering economic fac‐
tors, i.e., Nset ranges from 1 to 8. Figure 6 demonstrates that 

the more nodes are configured with SCADA measurements, 
the fewer µPMUs are required to achieve the same results. 
For instance, the result of Ns = 4, Nset = 3 is similar to those 
of Ns = 3, Nset = 4 and Ns = 0, Nset = 5. The result of Ns = 2, 
Nset = 3 is similar to that of Ns = 1, Nset = 4. However, as the 
number of µPMUs increases, the influence of SCADA mea‐
surements is gradually weakened. As shown in the Fig. 5, 
the gap between the five cases at Nset = 8 is relatively smaller 
than that at Nset = 4.

C. Optimization Solution of MISDP Problem

Before tests, IEEE 33- and 123-bus systems are both con‐
figured with SCADA measurements and ZIBs randomly. Par‐
ticularly, there are 11 SCADA measurements and 2 ZIBs in 
IEEE 33-bus system, and 43 SCADA measurements and 5 
ZIBs in IEEE 123-bus system. Table II shows the types and 
quantities of SCADA measurements in two systems. The 
configuration of SCADA measurements and ZIBs above is 
kept unchanged for all the following tests.

Firstly, the IEEE 33-bus system is tested in this case. Nset 
ranges from 1 to 8. Several methods are compared with the 
proposed method to solve the E-optimal µPMU placement 
problem.

TABLE I
μPMU PLACEMENT RESULTS AND OBJECTIVE VALUES USING APPROXIMATE SUBSTITUTION METHOD AND LINEAR TRANSFORMATION METHOD

No. of ZIBs

None

6

6, 11

6, 11, 14

6, 11, 14, 25

6, 11, 14, 25, 31

Approximate substitution method

µPMU placement result

2, 6, 11, 25

2, 7, 12, 26

2, 7, 11, 26

1, 4, 9, 25

1, 5, 10, 25

1, 5, 8, 13

Objective value

62880

75640

78000

79710

90610

114920

Solving time (s)

122

121

128

116

130

126

Linear transformation method [38]

µPMU placement result

2, 6, 11, 25

2, 7, 12, 26

2, 7, 12, 26

1, 4, 9, 25

1, 4, 9, 26

1, 3, 7, 9

Objective value

62880

75640

75780

79710

82570

97580

Solving time (s)

122

120

112

108

101

95
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1)　Greedy Approach
The greedy approach in [31] makes the optimal choice of 

µPMU placement at each round (totally Nset rounds). Specifi‐
cally, in each round, the objective function value (14) is ob‐
tained for each candidate node configured with μPMU individ‐
ually.

Then, the node with the minimum value is added to 
μPMU placement set and removed from candidate nodes. 
The approach terminates until the number of μPMUs reaches 
the upper limit.
2)　Convex Relaxation Method

Convex relaxation method in [34] is to relax the con‐
straints siÎ{01} in (16) to siÎ[01], thus converting the MIS‐

DP problem to an SDP problem. After obtaining the optimal 
solution of SDP problem, the Nset largest variables of si are 
selected as μPMU placement nodes.
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Fig. 6.　Optimization results using different methods in IEEE 33- and 123-
bus systems. (a) IEEE 33-bus system. (b) IEEE 123-bus system.

TABLE II
TYPES AND QUANTITIES OF SCADA MEASUREMENTS IN TWO SYSTEMS

Item

No. of ZIBs

No. of nodes with SCADA 
measurements

Number of voltage 
measurements

Number of injected current 
measurements

Number of branch current 
measurements

IEEE 33-bus

14, 30

16, 19, 32

3

3

5

IEEE 123-bus

14, 26, 36, 76, 110

3, 12, 28, 42, 57, 69, 84, 
89, 101, 122

10

10

23

Node with SCADA measurements; Node with PMU measurements
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Fig. 4.　µPMU placement results when Nset=4 under different SCADA mea‐
surement placements using proposed method. (a) Ns = 0. (b) Ns = 1. (c) 
Ns = 2. (d) Ns = 3. (e) Ns = 4.
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3)　Enumeration Method
Enumeration method can list and compare all possible 

μPMU placement schemes, so it can ensure the optimality of 
final results. However, this method can only be utilized in 
small-scale systems considering long computation time.

The results of each method are shown in Fig. 6(a). The 
greedy approach performs the same as the proposed method 
for three out of eight times, but worse for the other times. 
All of the optimization results of the convex relaxation meth‐
od are inferior to those of the other methods. Moreover, the 
results of the proposed method coincide with those of the 
enumeration method, which verifies its global optimality in 
IEEE 33-bus system.

Then, the IEEE 123-bus system is considered in this case. 
Nset is set as 1 to 30 and two methods, i.e., greedy approach 
and convex relaxation method, are compared with the pro‐
posed method. Figure 6(b) shows the results using different 
methods in IEEE 123-bus system. All of the optimization re‐
sults of the convex relaxation method are inferior to the oth‐
er methods obviously in 30 tests. Regarding greedy ap‐
proach, it obtains the same optimal results as the proposed 
method in the first five rounds. But the gap gradually wid‐
ens as the number of µPMUs increases. It can be observed 
that, similar to the IEEE 33-bus system, the proposed meth‐
od outperforms the other methods in the IEEE 123-bus sys‐
tem, with better objective function values.

Additionally, Table III shows the optimal µPMU place‐
ment results in IEEE 33-bus system. It is noteworthy that 
the optimal sets of µPMU placement obtained by the pro‐
posed method do not satisfy the nested relations for different 
Nset. In other words, the optimal set of Nset µPMUs is not 
necessarily a subset of the optimal set of Nset + 1 µPMUs. 
However, the number of the same µPMU placements be‐
tween adjacent optimal sets increases significantly as Nset in‐
creases.

Since the ultimate goal of optimal µPMU placement in 
this paper is to improve the SE accuracy, the effect of place‐
ment results on the SE accuracy is also investigated when 
Nset = 5. Errors of voltage magnitude and phase angle in the 
IEEE 33-bus system are shown in Fig. 7. It can be observed 
that the proposed method yields a smaller relative error in 
both magnitude and phase angle of the estimated voltage 

than greedy approach and convex relaxation method, espe‐
cially at nodes 4, 5, 16, 17, 18, 28, and 29.

D. Applicability of Proposed Method to a Larger-scale Sys‐
tem

A practical distribution network with 446 nodes is tested 
to discuss the applicability of the proposed method to practi‐
cal power systems. A total number of 890 pseudo-measure‐
ments and 127 SCADA measurements are considered. Nset is 
set to be 1, 4, 7, , 100, respectively. Greedy approach and 
convex relaxation method are compared with the proposed 
method. It can be observed from Fig. 8 that the results of 
the convex relaxation method are inferior to the other meth‐
ods and the results of the greedy approach are between those 
of the other two methods. The better optimization results of 
the proposed method demonstrate that the proposed method 
is available in a relatively large-scale power system.

E. Benefits of Improved Benders Decomposition Method

Finally, the E-optimal µPMU placement problem modeled 
as an MISDP problem is also solved by utilizing the follow‐
ing three methods: ① the conventional Benders decomposi‐
tion (Method 1) introduced in Section III; ② the CUTSDP 
solver [48] (Method 2); and ③ branch and bound method 
[49] (Method 3).

TABLE III
OPTIMAL µPMU PLACEMENT RESULTS IN IEEE 33-BUS SYSTEM

Number of µPMUs

1

2

3

4

5

6

7

8

Optimal µPMU placement result

5

2, 7

2, 5, 9

2, 6, 11, 25

1, 4, 7, 13, 28

1, 2, 5, 7, 13, 29

1, 2, 5, 7, 13, 25, 29

1, 2, 5, 7, 11, 14, 27, 29
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Fig. 7.　Errors of voltage magnitude and phase angle in IEEE 33-bus sys‐
tem. (a) Voltage magnitude. (b) Phase angle.

475



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 11, NO. 2, March 2023

Method 2 is provided by a MATLAB toolbox named 
YALMIP [50] for mixed-integer semidefinite programs, im‐
plementing an outer approximation approach. It is based on 
an iterative process where it relaxes the conic constraints to 
linear constraints, solves an MILP problem, and adds violat‐
ed linear cuts to the model. Method 3 splits the initial MIS‐
DP problem into smaller subproblems, which are then solved 
in some specified order. Method 3 is implemented based on 

the BNB solver [51] for MISDP.
Table IV compares the solving time of the MISDP prob‐

lem using Methods 1, 2, 3, and the proposed method in IEEE 
33-bus system. It can be observed that the objective function 
values of the proposed method are consistent with the other 
methods. When Nset = 1, 2, 3, Method 2 takes a similar 
amount of time as the proposed method whereas Method 1 
takes nearly four times longer and Method 3 takes the lon‐
gest time among all methods. When Nset exceeds 3, the solv‐
ing time for Methods 1, 2, and 3 increases sharply. Particu‐
larly, Methods 1, 2, and 3 take 37.8 hours, 79.4 hours, and 
5.2 hours to optimize the placement of 6 µPMUs, respective‐
ly, whereas the proposed method takes only 12 min. More‐
over, the convergence diagrams of the four methods are pre‐
sented in Fig. 9 when the number of µPMUs is 4. It can be 
observed that the convergence time of the proposed method 
is much less than the others. This is mainly because lazy 
constraints of the proposed method avoid the solving of mas‐
ter problem from scratch after each cut is added, while Meth‐
od 1 and Method 2 solve the respective master problem re‐
peatedly. In addition, since Method 3 is a deterministic meth‐
od of search and iteration which belongs to partial enumera‐
tion, the solving time is longer when it is used individually 
to solve a real power system with many nodes.

Moreover, the solving time of the proposed method in the 
case of 30 µPMUs is 3.1 hours and 11.5 hours for the IEEE 

123-bus system and the practical distribution network, re‐
spectively. While Methods 1, 2, and 3 cannot complete the 
solution of the same OPP problem within 24 hours. In sum‐
mary, the proposed method shows higher solution efficiency 
than Methods 1, 2, and 3. It proves that the proposed meth‐
od can deal with discrete variables and continuous variables 
efficiently and can obtain the global optimal solution at the 
same time.

V. CONCLUSION 

This paper presents an optimal µPMU placement method 
in distribution networks. A new model for optimal µPMU 
placement is established based on a two-step SE method, 
which can not only improve the SE accuracy, but also take 
into account the impact of SCADA measurements and ZIBs. 
The nonlinear optimization problem is transformed into an 
MISDP problem and an improved Benders decomposition 
method is utilized to solve it to obtain global optimal solu‐
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Fig. 8.　Optimization results using different methods in a practical distribu‐
tion network.

TABLE IV
COMPARISON OF SOLUTION INFORMATION IN IEEE 33-BUS SYSTEM

Nset

1

2

3

4

5

6

7

8

Proposed method

Solving time (s)

2

18

33

130

399

724

809

2775

Objective value

3800

9000

54300

65800

123100

192500

211800

323200

Method 1

Solving time (s)

8
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53180

285700
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Fig. 9.　Convergence diagram of four methods in IEEE 33-bus system.
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tion. Simulations on several test cases verify the feasibility, 
optimality, and high efficiency of the proposed method by 
contrast with other methods.

Future work could include studying the optimal µPMU 
placement problem by combining SE with other applications 
such as fault location to meet multi-application requirements 
of distribution networks.
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