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Time-domain Dynamic State Estimation for 
Unbalanced Three-phase Power Systems

Martin Pfeifer, Felicitas Mueller, Steven de Jongh, Frederik Gielnik, Thomas Leibfried, and Sören 
Hohmann

Abstract——In this paper, we present a time-domain dynamic 
state estimation for unbalanced three-phase power systems. The 
dynamic nature of the estimator stems from an explicit consid‐
eration of the electromagnetic dynamics of the network, i.e., the 
dynamics of the electrical lines. This enables our approach to 
release the assumption of the network being in quasi-steady 
state. Initially, based on the line dynamics, we derive a graph-
based dynamic system model. To handle the large number of in‐
teracting variables, we propose a port-Hamiltonian modeling 
approach. Based on the port-Hamiltonian model, we then fol‐
low an observer-based approach to develop a dynamic estima‐
tor. The estimator uses synchronized sampled value measure‐
ments to calculate asymptotic convergent estimates for the un‐
known bus voltages and currents. The design and implementa‐
tion of the estimator are illustrated through the IEEE 33-bus 
system. Numerical simulations verify the estimator to produce 
asymptotic exact estimates, which are able to detect harmonic 
distortion and sub-second transients as arising from converter-
based resources.

Index Terms——Dynamic state estimation, power system, har‐
monic, observer, port-Hamiltonian system, static state estima‐
tion, transient.

I. INTRODUCTION 

STATE estimation techniques are inevitable for power sys‐
tem monitoring, control, and protection. Nowadays, the 

state estimation in power system control centers is realized 
in form of a weighted least squares (WLS) estimation [1], 
[2]. The core of this WLS approach dates back to [3] and is 
based on the assumption that the system is in quasi-steady 
state. Indeed, this assumption was justified at earlier time. 
However, in recent years, power systems have experienced a 
tremendous extension of converter-based resources such as 
wind and solar power renewable generation, energy storages, 
and power electronic loads. With the increasing penetration 

of these converter-based resources, the system dynamic re‐
sponses are heavily dependent on the fast-response power 
electronic devices and their controls. In consequence, con‐
verter-induced dynamics and stability issues on a sub-second 
time scale start to dominate the system [4]- [6]. This makes 
the quasi-steady state assumption and therewith a WLS-
based state estimation inadmissible [1], [7]. In particular, the 
existing WLS-based protection functions may become inade‐
quate [7].

Due to these reasons, new sub-second state estimation 
tools are required for monitoring, control, and protection of 
power systems. Power system dynamic state estimation 
(DSE) is a promising approach to provide such tools. DSE 
approaches are based on a dynamic model of the power sys‐
tem and fast-sampled and time-synchronized measurements. 
In the sequel, we distinguish between two different classes 
of DSE, viz. component-based DSE and network-based DSE.

In component-based DSE approaches, the dynamic states 
to be estimated are related to the components connected to 
the network, e. g., synchronous machines, storage systems, 
voltage source converters, or dynamic loads. Component-
based DSE is a very active field of research as illustrated by 
the fruitful activities of the IEEE Task Force on Power Sys‐
tem Dynamic State and Parameter Estimation [1], [7], [8]. 
Furthermore, the textbook in [9] outlines the fundamental 
idea of a DSE estimating the states of synchronous genera‐
tors. Reference [10] presents a DSE based on an unknown 
input observer to estimate the dynamic states of reheater sec‐
tions and storage systems. Another observer-based DSE ap‐
proach can be found in the anomaly detection scheme from 
[11]. In [12], the unscented Kalman filter (UKF) is used to 
estimate the dynamic states of generators and power system 
stabilizers. Reference [13] extends this approach to asynchro‐
nous measurements. Reference [14] applies UKFs and parti‐
cle filters to develop a DSE for the states of synchronous 
generators. An approach based on a sigma-point Kalman fil‐
ter (SPKF) is presented in [15]. An unknown-input extended 
Kalman filter (EKF) is used in [16] for a robust estimation 
of the generator states. Other component-based DSE ap‐
proaches based on an EKF have been proposed in [17]-[19]. 
Reference [20] presents a DSE which estimates the dynamic 
states of converter-interfaced generation units in microgrids.

A restriction of component-based DSE approaches is that 
they assume the network to be in quasi-steady state. As ar‐
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gued above, in converter-based power systems, this assump‐
tion is inadmissible leading to a blindness of component-
based DSE approaches concerning important sub-second phe‐
nomena. This motivates a network-based DSE in which the 
dynamic states to be estimated are related to the variables 
from the network such as voltages and currents of buses and 
lines. Therewith, as with the classic WLS approach, the ob‐
jective of a network-based DSE is to estimate the state of 
the network. However, network-based DSE has received lim‐
ited attention in the literature. An exception is given by [21] 
in which the centralized and distributed DSEs for microgrids 
based on unknown-input Kalman filters are proposed. On 
the one hand, the estimators provide estimates of the dynam‐
ic states of components, viz. distributed generation units and 
capacitor banks. On the other hand, they provide estimates 
of the dynamic states of the network, viz. the lines in the dq-
domain. However, to our knowledge, there are hardly no 
more reports into this direction. In other words, the benefit 
of considering the network dynamics for the state estimation 
has been largely unexplored.

In this paper, we bridge this research gap. To this end, we 
develop a time-domain dynamic model and state estimator 
for the sub-second time scale in unbalanced three-phase dis‐
tribution systems. In both the model and the estimator, the 
dynamics stem from the electromagnetic phenomena of the 
electrical lines of the network. The dynamic states of compo‐
nents connected to the network (such as converters) are not 
explicitly considered in our approach. Naturally, due to the 
large number of lines in a power system, such an approach 
leads to a large number of interacting system variables in 
terms of inputs, states, and outputs. To deal with this com‐
plexity, we propose a port-Hamiltonian approach. Port-Ham‐
iltonian system (PHS) is a powerful framework for modeling 
complex physical systems [22]. In particular, the port-Hamil‐
tonian paradigm has a great affinity to graph theory. This 
makes this paradigm a promising framework for this paper 
as it is easily transferable to other configurations and well 
scalable to larger setups.

Based on the port-Hamiltonian approach, the contributions 
of this paper are threefold: ① a graph-based PHS model 
which explicitly considers the dynamics of the lines; ② a dy‐
namic state estimator, which is based on the model from ① 
and can be designed offline in an automated manner; and ③ 
a simulation study in which we demonstrate that the state es‐
timator from ② extends the functionalities of a WLS-based 
state estimation to a sub-second time scale.

Notation: vectors and matrices are written in bold font. 
Let AÎRm ´ n be a matrix with m rows and n columns. For 
the transpose of A, we write AT. Let BÎRp ´ q. The Kroneck‐
er product of A and B is written as A⊗B. Now let m = n. 
The inverse of A is denoted by A-1 (if it exists). A 0 means 
that A is positive-definite. The identity and zero matrices are 
denoted as I and 0, respectively. A block diagonal matrix of 
matrices is denoted by blkdiag(×).

Further, let M be a set of indices. For each iÎM, sup‐
pose a variable xiÎR. For the vertical concatenation of all 
xi in a vector x, we write x = ( )xi  and append “for 

all iÎM”.
Throughout this paper, the time-dependence “( )t ” of vari‐

ables and vectors is omitted in the notation.
The remainder of the paper is structured as follows. In 

Section II, we derive a graph-based PHS model of unbal‐
anced three-phase systems. Based on the model, a dynamic 
state estimator is developed in Section III. In Section IV, the 
model generation and estimator design are exemplified for 
the IEEE 33-bus system. The estimation results are analyzed 
through numerical simulations. Section V concludes the pa‐
per and outlines directions for future research.

II. SYSTEM MODELING

A. System Description

Consider an unbalanced three-phase power system with N 
buses. The three phases are collected in the set P = { }ABC . 
P of the N buses are connected to higher-level systems. The 
remaining N -P buses are connected to N -P loads. Distrib‐
uted power generation is described by a negative load. The 
N buses are connected by M three-phase lines. The topology 
of the power system is described by a connected graph G =
( )VE , where V and E contain N buses and M lines, respec‐
tively.

Figure 1 shows an exemplary system with N = 33, M = 32, 
and P = 1. The depicted system is the well-known IEEE 33-
bus system from [23]. The nominal voltage of this system is 
12.66 kV, and the system frequency is 50 Hz.

B. Line Model

A line jÎE is described by the π-section model in Fig. 2. 
The π-section model considers phase resistances Rkj, phase 
self inductances Lkkj and phase-phase mutual inductances 
Lklj, where k, lÎP, k ¹ l. The mutual inductances are neces‐
sary to consider lines that are untransposed [24]. Shunt ele‐
ments are neglected, which is permissible in the majority of 
systems [24]. The resistances and inductances are collected 
in the following resistance and inductance matrices, respec‐
tively, with Rj =RT

j  0, L j =LT
j  0 for all jÎE.

Rj =
é

ë

ê

ê
êê
ê

ê ù

û

ú

ú
úú
ú

úRAj 0 0
0 RBj 0
0 0 RCj
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ê

ê
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Fig. 1.　Schematic diagram of IEEE 33-bus system.
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C. Power System Model

Based on the line model from the previous subsection, we 
now derive a graph-based model of the power system. We 
consider an unbalanced system whose topology is described 
by the directed graph G = ( )VE  with the incidence matrix B.

First, we define the vectors of all bus voltages and bus 

currents as vbus: = ( )vbus
ij ÎR3N and ibus: = ( )ibus

ij ÎR3N, respec‐

tively, for all iÎP and jÎV. With “bus current”, we refer 
either to a current between a bus and a source of supply 
(e.g., bus 1 in Fig. 1) or to a current between a bus and a 
load (e.g., buses 2 to 33 in Fig. 1). Likewise, the vector of 
voltages across lines and the vector of currents through lines 

are defined as vline: = ( )vline
ij ÎR3M and i line: = ( )iline

ij ÎR3M, re‐

spectively, for all iÎP and jÎE. Moreover, we define the 
vector of all magnetic flux linkages of the line inductances 

as ψ line: = ( )ψ line
ij ÎR3M for all iÎP and jÎE.

From the law of inductance, the voltages across the line 
inductances are given by:

vind = ψ̇ (2)

The currents through the inductances (and therewith the 
line currents) can be expressed as:

vind = i line =
¶H
¶ψ (3)

In (3), the function H describes the energy contained in 
the line inductances and is given by (4) with Q =
blkdiag (L-1

j ), where the matrix L j is from (2) for jÎE. Note 

that by the symmetry and positive definiteness of L j, we 
have Q =QT 0.

H =
1
2
ψTQψ (4)

By Kirchhoff’s voltage law, the line voltages and the bus 
voltages are related in terms of:

vline =- (B⊗ I3 ) T
vbus (5)

where I3 is the 3×3 identity matrix.
The bus and line currents satisfy Kirchhoff’s current law:

ibus =- (B⊗ I3 ) i line (6)

The voltage drop across the lines is composed of the volt‐
age drop across the line resistances vline and the voltage drop 
across the line inductances vind (cf. Fig. 2):

vline = vind + vres (7)

The voltage drop across the line resistances is given by:

vres =Ri line (8)

where R = blkdiag ( )Rj  with Rj from (1) for jÎE. By insert‐

ing (5) and (8) into (7), we can obtain:

vind =-Ri line - ( )B⊗ I3

T
vbus (9)

By inserting (2) and (3) into (9) and (6), we then obtain 

the dynamic model with G =- ( )B⊗ I3

T
 and H from (4).

The model (10) is a state-space model in form of an ex‐
plicit PHSs (cf. [22]). Therewith, (10) is a purely physical 
model describing the relations between the system variables. 
In particular, ibus =GT¶H/¶ψ generally does not coincide 
with the system measurement equation. In the next subsec‐
tion, we thus extend the model (10) by a model of the mea‐
surements.

ψ =-R
¶H
¶ψ

+Gvbus (10a)

ibus =GT ¶H
¶ψ (10b)

D. Measurement Model

We consider synchronized sampled value measurements 
(cf. [7]) of voltages and currents at subsets VM

v  and VM
i  of 

the set of buses V, respectively, i.e., VM
v VM

i ÍV. The linear 
independent voltage measurements at the subset VM

v  are de‐
scribed by a voltage measurement vector mvÎRqv with qv <
3N.

mv =Mvv
bus (11)

The matrix MvÎ {01}qv ´ 3N
 is a selector matrix that deter‐

mines which of the bus voltages are measured. In a selector 
matrix, each row is a transposed unit vector [25].

m̄v = M̄vv
bus (12)

where M̄v is the complimentary matrix to Mv, i.e., a selector 
matrix which picks the unmeasured bus voltages from the 
vector of all bus voltages. Note that by the properties of Mv 

and M̄v, the composite matrix [ ]M T
v , M̄ T

v

T
 is a permutation 

matrix and therewith orthogonal.
The current measurements miÎRqi at the subset VM

i  can 
be described by:

mi =M ii
bus (13)

where M iÎ { }0 ± 1
qi ´ 3N

 and qi < 3( )N +M .

E. Model Discussion

The PHS (10) is a graph-based model of three-phase pow‐
er systems. For a particular system, one obtains the particu‐
lar system model by specifying the number of buses N, the 
number of lines M, the (directed) incidence matrix B, and 
the resistance and inductance matrices in (1). Thereby, we 
can assign the resistance and inductance values individually 
to each of the three phases of each line, making the model 
capable of describing unbalanced power systems.

The dynamic states of the model (10) are the magnetic 
flux linkages of the self and mutual inductances of the three-
phase lines. The inputs and outputs of the model are given 
by the bus voltages and bus currents, respectively. The bus 
currents are used to describe loads and generation units in 
terms of current extractions and injections, respectively. 

RA, j LA,A, j

RB, j LB,B, j

RC, j LC,C, j

LA,B, j

LB,C, j
LA,C, j

+

+

+

+

+

+

������

Fig. 2.　π-section equivalent circuit of a three-phase line.
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Note that with the bus voltages and bus currents, we can cal‐
culate all other voltages and currents in the power system.

The model (10) is defined in the time domain on a sub-
second time scale. Hence, in the nominal case, the time 
courses of the model variables are oscillating with the sys‐
tem frequency (e.g., 50 Hz or 60 Hz).

The measurement model consists of two parts, viz. the 
voltage measurement equation (11) and the current measure‐
ment equation (13). The voltage measurement equation de‐
scribes which of the bus voltages are being measured. The 
current measurement equation may describe the measure‐
ments of bus currents and line currents (expressed through 
bus currents). The basis for the validity of the measurement 
models (11) and (13) is fast-sampled and time-synchronized 
sampled value measurements [7]. Phasor measurement units 
(PMUs) provide such measurements with a high signal-to-
noise ratio (SNR) and typical sampling times between 0.15 
and 0.2 [26].

Based on model (10) and the measurement models (11) 
and (13), the next section is devoted to the development of 
an estimator for unbalanced three-phase power systems.

III. ESTIMATOR DESIGN

A. Dynamic Estimator

Consider the system model in (10) with voltage measure‐
ments (11) and current measurements (13).

By inserting (4) into (10a) and using the orthogonality of 

[ ]M T
v , M̄ T

v

T
, the dynamics equation can be rewritten as:

ψ̇ =
(4)

-RQψ +G [ ]M T
v M̄ T

v
é
ë
êêêê ù

û
úúúú

Mv

M̄v

vbus =
(11) (12)

-RQψ +G [ ]M T
v M̄ T

v
é
ë
êêêê ù

û
úúúúmv

m̄v

=-RQψ +GM T
v mv +GM̄ T

v m̄v

(14)

Moreover, by inserting (10b) into (13), we can obtain:

mi =M iG
TQψ = :Cψ (15)

Based on the dynamics equation (14) and the measure‐
ments (15), we now derive a dynamic estimator. Note that in 
(14), the states (i.e., the magnetic flux linkages of the lines) 
are unknown as they are not measured during system opera‐
tion. Moreover, with m̄v, (14) contains unknown inputs. In 
the sequel, we address this setup with an unknown input ob‐
server (note that by discretizing (14), we could also ap‐
proach with a Kalman filter). In order to ensure the exis‐
tence of such an observer, we make the following assump‐
tion.

Assumption 1: the system in (14) and (15) is strong* de‐
tectable. 

Appendix A provides a brief introduction into the concept 
of strong* detectability. The existence condition from As‐
sumption 1 now allows to state the main theorem of this sec‐
tion. In this theorem, we propose an estimator for the un‐
known system variables.

Theorem 1: for the dynamic system consisting of (14) 
and (15), let Assumption 1 hold. Then, there exist matrices 
NÎR3M ´ 3M, LÎR3M ´ qi, FÎR3M ´ qv, and EÎR3M ´ qi, such that 

the system of (16) yields estimates ψ̂, m̂̄v, and îbus, which as‐
ymptotically converge towards the unknown flux linkages ψ, 
the unmeasured bus voltages m̄v, and the bus currents ibus, re‐
spectively. In (16), the vector zÎR3M is the estimator state 

and the term ( )CGM̄ T
v

+
 is the Moore-Penrose inverse 

of CGM̄ T
v .

ż =Nz +Lmi +Fmv    |z
t = 0

= z0 (16a)

ψ̂ = z -Emi (16b)

m̂̄v = ( )CGM̄ T
v

+( )ṁi +CRQψ̂ -CGM T
v mv (16c)

îbus =GTQψ̂ (16d)

Proof: we first verify that (16a) and (16b) yield an asymp‐
totically converging estimate of the flux linkages—indepen‐
dently of the unknown bus voltages. To this end, we apply 
the unknown-input observer from [27]. Afterwards, we show 
that (16c) and (16d) yield asymptotically converging esti‐
mates of the unknown bus voltages and bus currents, respec‐
tively.

Let Assumption 1 hold. Consider the estimation error ε =
ψ̂ -ψ. The dynamics of the estimation error read:

ε̇ =
 
ψ̇̂ - ψ̇ =

(14) (16b)

ż -Eṁi - ( )-RQψ +Gmv +GM̄ T
v m̄v =

(16a) (16b)

N ( )ψ̂ +Emi +Lmi +Fmv -Eṁi +RQψ -

GM T
v mv -GM̄ T

v m̄v =
(14) (15)

Nε + ( )NK +LC +KRQ ψ +

( )F -KGM T
v mv -KGM T

v mv (17)

where K = I +EC. Suppose we have:

0 =NK +LC +KRQ (18a)

0 =F -KGM T
v (18b)

0 =KGM T
v (18c)

If the conditions in (18) hold, (17) reads ε̇ =Nε. If, in addi‐
tion, N is a Hurwitz matrix, we have ε® 0 for t®¥. Next, 
we show that we can always find matrices N, L, F, and E 
such that the conditions in (18) are fulfilled and N is a Hur‐
witz matrix.

Assumption 1 implies rank ( )CGM̄ T
v = rank ( )GM̄ T

v = 3N -
qv [28]. Hence, from (18c), we obtain the solution set for E 

with ( )CGM T
v

+
= ( )( )CGM T

v

T( )CGM T
v

-1

( )CGM T
v

T
 and 

YÎR3N ´(3N - qv ) as an arbitrary matrix. 

E =-GM T
v ( )CGM T

v

+
+Y ( )I - ( )CGM T

v ( )CGM T
v

+
(19)

Based on a particular solution for E, we can calculate F 
from (18b):

F = ( )I +EC GM T
v (20)

For the determination of the matrix N, we rewrite (18a) as:

N =-KRQ -ZC (21)

where Z =L +NE. From [27] and [28], it follows that As‐
sumption 1 implies the pair ( )-KRQC  to be detectable. 
Thus, there always exists a matrix Z such that N is Hurwitz. 
Substituting (21) into Z = ( )L +NE  yields the following ex‐
pression for L, which then satisfies (18a).
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L =Z ( )I +CE +KRQE (22)

Hence, we can always find matrices ( )NLFE  such that 
the conditions in (18) are satisfied and such that N is a Hur‐
witz matrix.

For the estimation of the unknown bus voltages, we de‐
rive (15) with respect to time:

ṁi =Cψ̇ =-CRQψ +CGM T
v mv +CGM̄ T

v m̄v (23)

With ( )CGM T
v

+
, we may solve (23) for m̄v:

m̄v = ( )CGM̄ T
v

+( )ṁi +CRQψ -CGM T
v mv (24)

In (24), we substitute m̄v with m̂̄v and ψ with ψ̂ and ob‐
tain (16c). By comparing (24) and (16c), we may deduce 
m̂̄v® m̄v from ψ̂®ψ for t®¥. Finally, from (10b), (16d), 
and ψ̂®ψ, we may directly infer î  bus® ibus for t®¥.

B. Estimator Discussion

The dynamic estimator (16) produces asymptotically con‐
verging estimates of the unknown bus voltages, the bus cur‐
rents, and flux linkages based on the measurements mv and 
mi. As a model, the estimator is able to reconstruct system 
imbalances, sub-second transients, and harmonic distortion. 
Therewith, the dynamic estimator extends the functionalities 
of a classical WLS-based state estimation for advanced pow‐
er system monitoring, control and protection schemes [7]. As 
with the WLS-based state estimation, the estimator (16) fo‐
cuses only on the network states; and the states of compo‐
nents connected to the network such as converters and syn‐
chronous generators are not estimated.

Note that (16) denotes a linear state-space system which 
can be solved numerically by using well-known techniques 
such as Euler or Runge-Kutta methods. Equation (16c) re‐
quires the first time-derivative of the current measurements. 
Reference [29] shows that a time-derivative of the measure‐
ment vector is unavoidable if one aims for a reconstruction 
of the unknown inputs. This suggests that the estimator (16) 
is vulnerable to measurement noise. In Section IV, we will 
analyze this vulnerability in detail via numerical simulations.

It is noteworthy that the matrices N, L, F, and E for the 
estimator (16) can be computed in an automated manner. Al‐
gorithm 1 provides a pseudocode listing to compute these 
matrices. For the evaluation of Assumption 1, there exist 
simple algebraic criteria for which the reader is referred to 
[27] and [28]. Hence, the design of the estimator (16) is ful‐
ly automatable and can be conducted offline. Moreover, the 
online execution of the estimator requires a small number of 
matrix multiplications and thus involves little computational 
costs.

IV. SIMULATION STUDY 

In this section, we illustrate the model (10) and the estima‐
tor (16) for the IEEE 33-bus system from Fig. 1. The partic‐
ular aims of the study are: ① to evaluate the validity of the 
model and the estimator; and ② to compare the performance 
of the estimator with the performance of a WLS-based esti‐
mation of the network variables. Note that a comparison be‐
tween the estimator (16) and DSE methods from the litera‐
ture is not possible. Our approach differs from the existing 
approaches in the states to be estimated as well as in the 
measurement and model information underlying the estima‐
tion (cf. Section I).

A. Model Derivation and Estimator Design

The IEEE 33-bus system from Fig. 1 contains N = 33 bus‐
es and M = 32 lines. The incidence matrix B describes the to‐
pology of the system. The numeric values of the resistance 
and inductance matrices in (1) are taken from [23].

By inserting the incidence matrix, the resistance matrices, 
and the inductance matrices into (10), we obtain a dynamic 
model of the IEEE 33-bus system. The state vector, the in‐
put vector, and the output vector of the model are given by 
the flux linkages ψÎR96, the bus voltages vbusÎR99, and the 
bus currents ibusÎR99, respectively.

To demonstrate the estimator design, we first define the 
sets of current and voltage measurement buses VM

i  and VM
v , 

respectively. We assume the following buses to be equipped 
with current measurements: VM

i ={24681012141618 
2022232527293133}. In each measurement bus iÎVM

i , 
sensors provide synchronized sampled value measurement of 
the three-phase line currents, i.e., the currents flowing through 
the incident lines. The bus currents are assumed to be non-
measured. The current measurements are collected in the 
measurement vector miÎR96. The dimension of 96 is calcu‐
lated from 3 ´ 32, where “3” accounts for three-phase mea‐
surements and “32” for the number of lines being incident 
to the buses from VM

i . From the relation between the line 
currents and the bus currents in (6), we may then formulate 
a measurement equation in the form (13).

For the entire system, we assume only one three-phase 
bus voltage measurement which is located at bus 2, i.e., VM

v =
{2}. This voltage measurement acts as a reference for the 
voltage estimates and constitutes the voltage measurement 
vector mvÎR3. From this, we can directly formulate a mea‐
surement equation (11).

Based on the two measurement equations (11) and (13) 
and the dynamic model (10), we apply Algorithm 1 to com‐
pute an estimator of the form (16). In the obtained estimator, 
ψÎR96, mvÎR96, and ibusÎR99 are estimates of the un‐
known flux linkages, the unmeasured bus voltages, and the 
unmeasured bus currents, respectively. The matrix N is calcu‐
lated as a diagonal matrix with negative entries. The matrix 
E is a sparse matrix in which the arrangement of the non-ze‐
ro matrix blocks reflects the structure of the incidence ma‐
trix of the graph G = (VE). The matrices L and F are calcu‐
lated to be zero.

Algorithm 1: automated design of the estimator of (16)

Input: model (10) with measurements (11) and (13) 

1: Set up (14) and (15)

2: Calculate E and F from (19) and (20), respectively

3: Specify the eigenvalues of N

4: Calculate Z from (21) by pole placement techniques

5: Calculate N and L from (21) and (22), respectively

6: Return (NLFE)
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B. Simulation Setup

In this subsection, the model and estimator obtained in 
Section IV-A are analyzed through numerical simulations. As 
a ground truth, we use the MATLAB/Simulink time-domain 
simulation model of the IEEE 33-bus system from [30]. By 
default, this simulation model describes a scenario in which 
the system is balanced and in quasi-steady state. Hence, to 
account for the recent changes in power systems, the model 
from [30] is modified in three points.

1) On buses {421273031}, {717222526}, and {312 
242832}, load imbalances for the phases A, B, and C are in‐
troduced, respectively. For these buses, the load at the concern‐
ing phase is 30 higher than the load at the other two phases.

2) At t1 = 1, t2 = 2, and t3 = 3, we consider load transients 
in which the active and reactive power of the three-phase 
loads at buses 14, 17, and 26, respectively, increase by the 
factor 2.

3) The voltage at bus 1 is subject to harmonic distortion. 
We consider the 3rd, 5th, 7th and 11th harmonics of the system 
frequency (i.e., 50 Hz). The amplitudes of the harmonics are 
set to be 2.5% of the amplitude of the system frequency. 
This yields a total harmonic distortion of 5, which is within 
the range of an allowed total harmonic distortion [31].

From now on, we denote the modified model from [30] as 
ground truth model.

For the evaluation of the model and estimator, first, the 
ground truth model has been simulated which results in time 
series for all bus voltages, bus currents, line currents, and 
line flux linkages. Moreover, we obtain time series for all 
variables from the vectors mv and mi. The bus voltages con‐
stitute the input vector of the model (10). Hence, based on 
the time series of the bus voltages, we simulate (10). The 
output of this simulation is, amongst others, the time series 
for the bus currents (i. e., the output vector of (10)). Like‐
wise, with the time series for mv and mi, we simulate the es‐
timator (16) and obtain time-series for the estimates of the 
unmeasured bus voltages and currents.

In order to compare the results of the estimator (16) with 
the results obtained from a WLS estimation, we design a 
standard three-phase unbalanced WLS estimator. Thereby, 
we consider the same measured variables as for the estima‐
tor (16). To simulate the WLS estimator, the time series of 
the variables from the vectors mv and mi from the ground 
truth model are transferred to the phasor domain by phase-
locked loops (PLLs). The parametrization of the PLLs is con‐
ducted via the advanced tuning method from [32] with win‐
dow length Tw = 0.01, design parameter b = 2.4, nominal volt‐
age vN = 12.66 kV, and nominal current iN = 10 A. To enable 
a comparison between the WLS estimator and the estimator 
(16), the estimates obtained from the WLS estimator are re‐
transferred to the time domain by converting the phasors in‐
to sine signals with the corresponding phases and amplitudes.

All simulations were run with the same resolution on a 
computer with Intel(R) Core(TM) i7-6600U CPU @ 2.60 GHz 
and 12 GB RAM in MATLAB/Simulink R2019a with a 
fixed-step solver at a simulation step size of 0.01 ms. The 
initial values are chosen such that the simulations start in 
quasi-steady state. The simulation time horizon is T = 4 s.

C. Simulation Results

For the evaluation of the model (10) and estimator (16), 
we use the relative error signal power (RESP). Note that the 
deterministic and periodic nature of the signals obtained 
from the model (1) and estimator (2) makes the well-known 
similarity measures from statistics inappropriate for this 
study. The RESP is a relative measure for the similarity of a 
signal to the corresponding ground truth signal. The formal 
definition of the RESP can be found in Appendix B.

First, we analyze the RESP of the bus currents obtained 
from the simulations of the model (10) and the estimator 
(16). Figure 3 shows the three-phase average RESP of bus 
currents for model (10) and the estimator (16).

As can be observed, for each of the buses, the RESP of 
the model takes values equal to or less than 0.25%. Hence, 
the model (10) accurately reproduces the behavior of the 
ground truth model. The remaining differences between the 
models are due to numerical differences and can be further 
decreased by choosing a smaller simulation step size. For 
the estimator, we obtain even smaller RESP values of less 
than 0.025%. This is due to the measurement error feedback 
in an observer.

Figure 4 depicts the bus currents at bus 17 for the ground 
truth model, the model (10), and the estimator (16) for the 
time between 1.95 s and 2.10 s. We can clearly identify the 
system frequency of 50 Hz. Due to the load imbalance at 
phase B of bus 17, the amplitude of the current at phase B 
is slightly higher than those at the phases A and C. At t = 2 s, 
we see the load jump in which the amplitude of the bus cur‐
rent increases approximately by the factor of 2. As can be 
observed, the model (10) and the estimator (16) correctly re‐
produce the behavior of the ground truth model at this cru‐
cial point. Visually, we cannot distinguish between the ob‐
tained currents.

As an interim result, let us summarize that the model (10) 
accurately reflects the behavior of the ground truth model. 
Moreover, the estimator (16) produces the estimates that are 
very close to the values from the ground truth model.

Next, we compare the simulation results of the estimator 
(16) with the results obtained for a WLS estimator. For the 
estimator (16), the mean RESP over all reconstructed bus 
voltages is 0.0015% (standard deviation: 0.00092%). The re‐
spective value for the WLS estimator is 5.1% (standard devi‐
ation: 0.063%). Hence, the estimator (16) significantly out‐
performs the WLS estimator. This can be explained by two 
reasons. First, the WLS estimator cannot capture the harmon‐
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Fig. 3.　Three-phase average RESP of bus currents for model (10) and the 
estimator (16).
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ic distortion. This is illustrated in Fig. 5 which shows one os‐
cillation period of the voltage at phase A of bus 17 starting 
from 2 s. In contrast to the WLS estimator, the estimator 
(16) is able to reconstruct the harmonic distortion from the 
ground truth model. Second, the WLS estimator cannot deal 
with abrupt changes in the load. This is shown in Fig. 6 
which depicts the estimated bus current for phase A of bus 
17 between t = 1.98 s and 2.08 s. Here, the WLS estimator re‐
quires about four periods to reach the amplitude of the cur‐
rent computed by the estimator (16) and ground truth model. 
Hence, as expected, on the sub-second time scale, the estima‐
tor (16) significantly outperforms the WLS estimator, e.g., as 
a basis for fast control and protection schemes.

In the last part of this case study, we now compare the re‐
constructions from the estimator (16) and the WLS estimator 
under measurement noise. To this end, the measurements 
(13) are extended by noise, i.e., mi =M ii

bus + ò, where ò is a 
vector-valued Gaussian random process with zero mean and 
covariance matrix σ2 I 2

q̄ , σÎR³ 0, where I q̄ is the identity ma‐
trix of order q̄. The above simulations of the estimator (16) 
and the WLS estimator are then repeated on the basis of the 
noisy measurements.

The results are depicted in Fig. 7. The figure shows the 
mean RESPs of the reconstructed bus voltages for the esti‐
mator (16) and the WLS estimator for different noise vari‐
ances σ2. For the six considered noise variances 10-5, 10-4, 
10-3, 10-2, 10-1, and 100, the mean SNRs over all measure‐
ment signals are given by 98.0 dB, 86.5 dB, 75.0 dB, 63.4 
dB, 51.9 dB, and 40.4 dB, respectively. As can be observed, 
starting at a low level, the mean RESP of the reconstructions 
from the estimator (16) increases with increasing noise vari‐
ance. In contrast, the RESPs of the WLS estimator are al‐
most constant over the different noise variances. This can be 
explained by the smoothing property of the PLLs for the 
phasor computation in the WLS estimator.

Figure 7 shows that for a variance smaller than or equal 
to 10-2 (i.e., an SNR ³ 63.4 dB), the estimator (16) gives ade‐
quate reconstructions which have a significantly lower mean 
RESP than the reconstructions obtained from the WLS esti‐
mator. Note that the SNRs of sampled value measurements 
from PMUs are considerably higher than 63.4 dB [26]. 
Therewith, for realistic SNR values, the estimator (16) out‐
performs a WLS estimation. For low SNR values (e.g., from 
low-quality measurement systems), however, we find a dete‐
rioration of the reconstructions from the estimator (16), 
which may be explained by the first time-derivative of the 
current measurements in the estimator, as shown in (16c). In 
such cases, however, we can still increase the SNR of the 
measurements in a pre-processing using well-known noise 
suppression methods from the field of low-pass and band-
pass filtering.

Finally, note that the 4 s simulation of the estimator (16) 
is finished in about 2 s, which indicates its real-time capabil‐
ity for a system of such size.
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V. CONCLUSION 

In this paper, we present an observer-based dynamic state 
estimator (i. e., (16)) for unbalanced three-phase power sys‐
tems with synchronized sampled value measurements. The 
estimator is based on a PHS model (i.e., (10)), which explic‐
itly considers the line dynamics. Our DSE can be designed 
offline in a fully automated manner (i. e., Algorithm 1). The 
estimator is able to capture sub-second phenomena such as 
transients from converter-based load and generation as well 
as harmonic distortion. Therewith, it extends the functional‐
ities of a classical WLS-based power system state estimation 
towards modern control and protection schemes for convert‐
ed-dominated systems. Future work will focus on a Kalman 
filter based approach to our state estimation in order to han‐
dle uncertainties.

APPENDIX A STRONG∗ DETECTABILITY

The concept of strong* detectability extends the notion of 
detectability to systems with unknown inputs. Strong* detect‐
ability can be explained by the smoothing property of PLLs 
for phasor computation in WLS estimation. Here, we briefly 
recapitulate this concept.

Consider a linear state-space system x =Ax +Bu, y =Cx +
Du with initial state |x

t = 0
= x0. The following definition is 

taken from [28].
Definition: the above system is strong* detectable if 

lim
t®¥

y® implies, lim
t®¥

x® 0.

APPENDIX B DEFINITION OF RESP

Consider a ground truth signal sgt: [ ]0T ®R, t sgt( )t . 

The mean power of the signal sgt( )t  is:

pgt =
1
T ∫

0

T

s2
gt( )t dt (B1)

Furthermore, consider a second signal sap( )t : [ ]0T ®R, 

t sap( )t  which represents an approximation of the signal 

sgt( )t . This approximation may stem from a model or an esti‐

mator. We define the error signal as ε ( )t sgt( )t - sap( )t . The 

mean error signal power is defined as:

pε: =
1
T ∫

0

T

ε ( )t 2
dt =

1
T ∫

0

T( )sgt( )t - sap( )t
2

dt (B2)

The RESP is defined as the quotient of (B2) and (B1):

rε: =
pε
pgt

(33)
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