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Time-domain Dynamic State Estimation for
Unbalanced Three-phase Power Systems

Martin Pfeifer, Felicitas Mueller, Steven de Jongh, Frederik Gielnik, Thomas Leibfried, and Séren
Hohmann

Abstract—In this paper, we present a time-domain dynamic
state estimation for unbalanced three-phase power systems. The
dynamic nature of the estimator stems from an explicit consid-
eration of the electromagnetic dynamics of the network, i.e., the
dynamics of the electrical lines. This enables our approach to
release the assumption of the network being in quasi-steady
state. Initially, based on the line dynamics, we derive a graph-
based dynamic system model. To handle the large number of in-
teracting variables, we propose a port-Hamiltonian modeling
approach. Based on the port-Hamiltonian model, we then fol-
low an observer-based approach to develop a dynamic estima-
tor. The estimator uses synchronized sampled value measure-
ments to calculate asymptotic convergent estimates for the un-
known bus voltages and currents. The design and implementa-
tion of the estimator are illustrated through the IEEE 33-bus
system. Numerical simulations verify the estimator to produce
asymptotic exact estimates, which are able to detect harmonic
distortion and sub-second transients as arising from converter-
based resources.

Index Terms—Dynamic state estimation, power system, har-
monic, observer, port-Hamiltonian system, static state estima-
tion, transient.

1. INTRODUCTION

STATE estimation techniques are inevitable for power sys-
tem monitoring, control, and protection. Nowadays, the
state estimation in power system control centers is realized
in form of a weighted least squares (WLS) estimation [1],
[2]. The core of this WLS approach dates back to [3] and is
based on the assumption that the system is in quasi-steady
state. Indeed, this assumption was justified at earlier time.
However, in recent years, power systems have experienced a
tremendous extension of converter-based resources such as
wind and solar power renewable generation, energy storages,
and power electronic loads. With the increasing penetration
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of these converter-based resources, the system dynamic re-
sponses are heavily dependent on the fast-response power
electronic devices and their controls. In consequence, con-
verter-induced dynamics and stability issues on a sub-second
time scale start to dominate the system [4]-[6]. This makes
the quasi-steady state assumption and therewith a WLS-
based state estimation inadmissible [1], [7]. In particular, the
existing WLS-based protection functions may become inade-
quate [7].

Due to these reasons, new sub-second state estimation
tools are required for monitoring, control, and protection of
power systems. Power system dynamic state estimation
(DSE) is a promising approach to provide such tools. DSE
approaches are based on a dynamic model of the power sys-
tem and fast-sampled and time-synchronized measurements.
In the sequel, we distinguish between two different classes
of DSE, viz. component-based DSE and network-based DSE.

In component-based DSE approaches, the dynamic states
to be estimated are related to the components connected to
the network, e.g., synchronous machines, storage systems,
voltage source converters, or dynamic loads. Component-
based DSE is a very active field of research as illustrated by
the fruitful activities of the IEEE Task Force on Power Sys-
tem Dynamic State and Parameter Estimation [1], [7], [8].
Furthermore, the textbook in [9] outlines the fundamental
idea of a DSE estimating the states of synchronous genera-
tors. Reference [10] presents a DSE based on an unknown
input observer to estimate the dynamic states of reheater sec-
tions and storage systems. Another observer-based DSE ap-
proach can be found in the anomaly detection scheme from
[11]. In [12], the unscented Kalman filter (UKF) is used to
estimate the dynamic states of generators and power system
stabilizers. Reference [13] extends this approach to asynchro-
nous measurements. Reference [14] applies UKFs and parti-
cle filters to develop a DSE for the states of synchronous
generators. An approach based on a sigma-point Kalman fil-
ter (SPKF) is presented in [15]. An unknown-input extended
Kalman filter (EKF) is used in [16] for a robust estimation
of the generator states. Other component-based DSE ap-
proaches based on an EKF have been proposed in [17]-[19].
Reference [20] presents a DSE which estimates the dynamic
states of converter-interfaced generation units in microgrids.

A restriction of component-based DSE approaches is that
they assume the network to be in quasi-steady state. As ar-

JOURNAL OF MODERN POWER SYSTEMS
AND CLEAN ENERGY



PFEIFER et al.: TIME-DOMAIN DYNAMIC STATE ESTIMATION FOR UNBALANCED THREE-PHASE POWER SYSTEMS

gued above, in converter-based power systems, this assump-
tion is inadmissible leading to a blindness of component-
based DSE approaches concerning important sub-second phe-
nomena. This motivates a network-based DSE in which the
dynamic states to be estimated are related to the variables
from the network such as voltages and currents of buses and
lines. Therewith, as with the classic WLS approach, the ob-
jective of a network-based DSE is to estimate the state of
the network. However, network-based DSE has received lim-
ited attention in the literature. An exception is given by [21]
in which the centralized and distributed DSEs for microgrids
based on unknown-input Kalman filters are proposed. On
the one hand, the estimators provide estimates of the dynam-
ic states of components, viz. distributed generation units and
capacitor banks. On the other hand, they provide estimates
of the dynamic states of the network, viz. the lines in the dg-
domain. However, to our knowledge, there are hardly no
more reports into this direction. In other words, the benefit
of considering the network dynamics for the state estimation
has been largely unexplored.

In this paper, we bridge this research gap. To this end, we
develop a time-domain dynamic model and state estimator
for the sub-second time scale in unbalanced three-phase dis-
tribution systems. In both the model and the estimator, the
dynamics stem from the electromagnetic phenomena of the
electrical lines of the network. The dynamic states of compo-
nents connected to the network (such as converters) are not
explicitly considered in our approach. Naturally, due to the
large number of lines in a power system, such an approach
leads to a large number of interacting system variables in
terms of inputs, states, and outputs. To deal with this com-
plexity, we propose a port-Hamiltonian approach. Port-Ham-
iltonian system (PHS) is a powerful framework for modeling
complex physical systems [22]. In particular, the port-Hamil-
tonian paradigm has a great affinity to graph theory. This
makes this paradigm a promising framework for this paper
as it is easily transferable to other configurations and well
scalable to larger setups.

Based on the port-Hamiltonian approach, the contributions
of this paper are threefold: (D a graph-based PHS model
which explicitly considers the dynamics of the lines; 2 a dy-
namic state estimator, which is based on the model from @
and can be designed offline in an automated manner; and (3)
a simulation study in which we demonstrate that the state es-
timator from (2 extends the functionalities of a WLS-based
state estimation to a sub-second time scale.

Notation: vectors and matrices are written in bold font.
Let A € R"*" be a matrix with m rows and n columns. For
the transpose of A, we write A™. Let B € R”*?. The Kroneck-
er product of 4 and B is written as 4 (X B. Now let m=n.
The inverse of 4 is denoted by A™' (if it exists). 40 means
that 4 is positive-definite. The identity and zero matrices are
denoted as I and 0, respectively. A block diagonal matrix of
matrices is denoted by blkdiag(-).

Further, let M be a set of indices. For each i e M, sup-
pose a variable x, € R. For the vertical concatenation of all
X, in a vector x, we write x= (x,.) and append “for

i
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all i e M”.

Throughout this paper, the time-dependence “(¢)” of vari-
ables and vectors is omitted in the notation.

The remainder of the paper is structured as follows. In
Section II, we derive a graph-based PHS model of unbal-
anced three-phase systems. Based on the model, a dynamic
state estimator is developed in Section III. In Section IV, the
model generation and estimator design are exemplified for
the IEEE 33-bus system. The estimation results are analyzed
through numerical simulations. Section V concludes the pa-
per and outlines directions for future research.

II. SYSTEM MODELING

A. System Description

Consider an unbalanced three-phase power system with N
buses. The three phases are collected in the set P={A4,B,C}.
P of the N buses are connected to higher-level systems. The
remaining N— P buses are connected to N—P loads. Distrib-
uted power generation is described by a negative load. The
N buses are connected by M three-phase lines. The topology
of the power system is described by a connected graph G=
(V,E), where V and E contain N buses and M lines, respec-
tively.

Figure 1 shows an exemplary system with N=33, M=32,
and P=1. The depicted system is the well-known IEEE 33-
bus system from [23]. The nominal voltage of this system is
12.66 kV, and the system frequency is 50 Hz.

19 20 21 22

26 27 28 29 30 31 32 33

7 8 9 10 11 12 13 14 15 16 17 18

23 24 25

.

Schematic diagram of IEEE 33-bus system.

Fig. 1.

B. Line Model

A line j € E is described by the m-section model in Fig. 2.
The m-section model considers phase resistances R, ;, phase
self inductances L,,; and phase-phase mutual inductances
Ly,,, where k, I € P, k=1 The mutual inductances are neces-
sary to consider lines that are untransposed [24]. Shunt ele-
ments are neglected, which is permissible in the majority of
systems [24]. The resistances and inductances are collected
in the following resistance and inductance matrices, respec-
tively, with R, =R} ~0, L,=L[ -0 for all j € E.

j
R, ; 0 0
R=|0 Ry, © (1a)
0 0 R ¢
LA.A,j LAtB,j L, CJj
Lj = LA,B./’ LB,BA,j LB, cj (1b)
L, Cj Ly Cj L CJj
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Fig. 2. m-section equivalent circuit of a three-phase line.

C. Power System Model

Based on the line model from the previous subsection, we
now derive a graph-based model of the power system. We
consider an unbalanced system whose topology is described
by the directed graph G= (V,[E) with the incidence matrix B.

First, we define the vectors of all bus voltages and bus

currents as v™*:= (v}’j‘) e R* and i*™:= (z?}“) e R*", respec-
tively, for all ieP and j € V. With “bus current”, we refer
either to a current between a bus and a source of supply
(e.g., bus 1 in Fig. 1) or to a current between a bus and a
load (e.g., buses 2 to 33 in Fig. 1). Likewise, the vector of

voltages across lines and the vector of currents through lines
are defined as v'™:= (v:'j"e) e R*™ and i"™:= (11‘;3) e R, re-
spectively, for all i € P and j € E. Moreover, we define the
vector of all magnetic flux linkages of the line inductances
as y'" = (w,"j“e) eR*™ for all ie P and j € E.

From the law of inductance, the voltages across the line
inductances are given by:

vind — W (2)

The currents through the inductances (and therewith the
line currents) can be expressed as:
OH
£ A3)

In (3), the function H describes the energy contained in
the line inductances and is given by (4) with Q=

blkdiag(LjTl ), where the matrix L, is from (2) for j € E. Note

that by the symmetry and positive definiteness of L, we
have @=0">0.

ind _ iline —

H=Jy'0y @

By Kirchhoff’s voltage law, the line voltages and the bus
voltages are related in terms of:

vline:_ (B ®13 )Tvbus
where I, is the 3x3 identity matrix.
The bus and line currents satisfy Kirchhoff’s current law:
ibus:_(B®I3)iline (6)

The voltage drop across the lines is composed of the volt-
age drop across the line resistances v"™ and the voltage drop
across the line inductances v'™ (cf. Fig. 2):

©)

vline — vind + vres (7)
The voltage drop across the line resistances is given by:
vrcszRilinc (8)

where R=blkdiag(Rj) with R; from (1) for j € [E. By insert-
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ing (5) and (8) into (7), we can obtain:
vind:_Rl-line_ <B®I3)Tvbus (9)

By inserting (2) and (3) into (9) and (6), we then obtain
the dynamic model with G=— (B®I3)T and H from (4).

The model (10) is a state-space model in form of an ex-
plicit PHSs (cf. [22]). Therewith, (10) is a purely physical
model describing the relations between the system variables.
In particular, i* =G"0H/0y generally does not coincide
with the system measurement equation. In the next subsec-
tion, we thus extend the model (10) by a model of the mea-
surements.

yor? Gy

o (10a)

ibus — GTaﬂ

ow (10b)

D. Measurement Model

We consider synchronized sampled value measurements
(cf. [7]) of voltages and currents at subsets V' and VM of
the set of buses V, respectively, i.e., V), VM V. The linear
independent voltage measurements at the subset VM are de-
scribed by a voltage measurement vector m, € R? with ¢, <

3N.
m,=M v (11)
The matrix M, € {0,1}"*" is a selector matrix that deter-
mines which of the bus voltages are measured. In a selector
matrix, each row is a transposed unit vector [25].

m,=M v (12)
where M is the complimentary matrix to M, i.e., a selector

matrix which picks the unmeasured bus voltages from the
vector of all bus voltages. Note that by the properties of M,

— . . — 117 . .
and M, the composite matrix [MVT, M! ] 1S a permutation
matrix and therewith orthogonal.

The current measurements m, € R? at the subset VM can
be described by:

m,=M,i"™

where M, e {0, =1} and ¢,<3(N+M).

(13)

E. Model Discussion

The PHS (10) is a graph-based model of three-phase pow-
er systems. For a particular system, one obtains the particu-
lar system model by specifying the number of buses N, the
number of lines M, the (directed) incidence matrix B, and
the resistance and inductance matrices in (1). Thereby, we
can assign the resistance and inductance values individually
to each of the three phases of each line, making the model
capable of describing unbalanced power systems.

The dynamic states of the model (10) are the magnetic
flux linkages of the self and mutual inductances of the three-
phase lines. The inputs and outputs of the model are given
by the bus voltages and bus currents, respectively. The bus
currents are used to describe loads and generation units in
terms of current extractions and injections, respectively.
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Note that with the bus voltages and bus currents, we can cal-
culate all other voltages and currents in the power system.

The model (10) is defined in the time domain on a sub-
second time scale. Hence, in the nominal case, the time
courses of the model variables are oscillating with the sys-
tem frequency (e.g., 50 Hz or 60 Hz).

The measurement model consists of two parts, viz. the
voltage measurement equation (11) and the current measure-
ment equation (13). The voltage measurement equation de-
scribes which of the bus voltages are being measured. The
current measurement equation may describe the measure-
ments of bus currents and line currents (expressed through
bus currents). The basis for the validity of the measurement
models (11) and (13) is fast-sampled and time-synchronized
sampled value measurements [7]. Phasor measurement units
(PMUs) provide such measurements with a high signal-to-
noise ratio (SNR) and typical sampling times between 0.15
and 0.2 [26].

Based on model (10) and the measurement models (11)
and (13), the next section is devoted to the development of
an estimator for unbalanced three-phase power systems.

III. ESTIMATOR DESIGN

A. Dynamic Estimator

Consider the system model in (10) with voltage measure-
ments (11) and current measurements (13).

By inserting (4) into (10a) and using the orthogonality of
(M, M :|T, the dynamics equation can be rewritten as:

L@ _ M an. (12
W= —RQI/I-FG[M;I- MJ]I:MV:'vbus —_

v

—RQu+ G ]| | =-RQy+GMIm,+ G Im,
mV
(14)

Moreover, by inserting (10b) into (13), we can obtain:
m,=M,G"Qy=:Cy (15)

Based on the dynamics equation (14) and the measure-
ments (15), we now derive a dynamic estimator. Note that in
(14), the states (i.e., the magnetic flux linkages of the lines)
are unknown as they are not measured during system opera-
tion. Moreover, with m , (14) contains unknown inputs. In
the sequel, we address this setup with an unknown input ob-
server (note that by discretizing (14), we could also ap-
proach with a Kalman filter). In order to ensure the exis-
tence of such an observer, we make the following assump-
tion.

Assumption 1: the system in (14) and (15) is strong” de-
tectable.

Appendix A provides a brief introduction into the concept
of strong” detectability. The existence condition from As-
sumption 1 now allows to state the main theorem of this sec-
tion. In this theorem, we propose an estimator for the un-
known system variables.

Theorem 1: for the dynamic system consisting of (14)
and (15), let Assumption 1 hold. Then, there exist matrices
NeRM3M [ e R4 FeR™ % and E € R*™*%, such that
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the system of (16) yields estimates y, m,, and i*, which as-

ymptotically converge towards the unknown flux linkages ,
the unmeasured bus voltages m,, and the bus currents i*, re-
spectively. In (16), the vector z € R* is the estimator state
and the term (CG]VIVT )+ is the Moore-Penrose inverse
of CGM .

i=Nz+Lm+Fm, z| =z, (16a)
yr=7—Em, (16b)

i, = (CGM) (1, + CRQy—~CGMm,)  (16c)
=Gy (16d)

Proof: we first verify that (16a) and (16b) yield an asymp-
totically converging estimate of the flux linkages—indepen-
dently of the unknown bus voltages. To this end, we apply
the unknown-input observer from [27]. Afterwards, we show
that (16c) and (16d) yield asymptotically converging esti-
mates of the unknown bus voltages and bus currents, respec-
tively.

Let Assumption 1 hold. Consider the estimation error &=
v —w. The dynamics of the estimation error read:

N (14), (16b) _ (16a), (16b)
é=y—y = i—Enm,—~(-RQy+Gm,+GM m,) =
N (w+Em,) +Lm,+Fm,—En,+RQy —
_ 14). (15)
GM'm,—~GM'm, = Ne+ (NK+LC+KRQ)y+
(F-KGM)m ~KGMm, (17)
where K=1+EC. Suppose we have:
0=NK+LC+KRQ (18a)
0=F-KGM (18b)
0=KGM (18c)

If the conditions in (18) hold, (17) reads ¢=Ne. If, in addi-
tion, N is a Hurwitz matrix, we have ¢ —» 0 for — oo. Next,
we show that we can always find matrices N, L, F, and E
such that the conditions in (18) are fulfilled and N is a Hur-
witz matrix.

Assumption 1 implies rank(CGM') =rank(GM) =3N-
q, [28]. Hence, from (18c), we obtain the solution set for E
. -1
with  (cM]) = ((cam)'(cemT)) (cemT)"  and

Y € R¥*CN"4) a5 an arbitrary matrix.
E=—-GM(CGM) + Y(I—(CGM‘,T)(CGMVTY) (19)

Based on a particular solution for E, we can calculate F
from (18b):

F=(I+EC)GM (20)

For the determination of the matrix NV, we rewrite (18a) as:

N=-KRQ-ZC @1

where Z=L+ NE. From [27] and [28], it follows that As-

sumption 1 implies the pair (~KRQ,C) to be detectable.

Thus, there always exists a matrix Z such that N is Hurwitz.

Substituting (21) into Z= (L +NE) yields the following ex-
pression for L, which then satisfies (18a).
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L=Z(I1+CE) + KRQE (22)
Hence, we can always find matrices (V,L, F,E) such that
the conditions in (18) are satisfied and such that V is a Hur-
witz matrix.
For the estimation of the unknown bus voltages, we de-
rive (15) with respect to time:

i1, = Cjr=—CRQw+CGM"m,+ CGM ",
With (CGM")", we may solve (23) for s,;

(23)

i, = (CGM) (rir,+ CRQy—CGMm,) (24)

In (24), we substitute m, with m, and w with ¥ and ob-
tain (16¢). By comparing (24) and (16c), we may deduce
m,—m, from y—y for t— co. Finally, from (10b), (16d),

2 bus

and ¥ — y, we may directly infer i "™ — i* for #—> oo.

B. Estimator Discussion

The dynamic estimator (16) produces asymptotically con-
verging estimates of the unknown bus voltages, the bus cur-
rents, and flux linkages based on the measurements m, and
m, As a model, the estimator is able to reconstruct system
imbalances, sub-second transients, and harmonic distortion.
Therewith, the dynamic estimator extends the functionalities
of a classical WLS-based state estimation for advanced pow-
er system monitoring, control and protection schemes [7]. As
with the WLS-based state estimation, the estimator (16) fo-
cuses only on the network states; and the states of compo-
nents connected to the network such as converters and syn-
chronous generators are not estimated.

Note that (16) denotes a linear state-space system which
can be solved numerically by using well-known techniques
such as Euler or Runge-Kutta methods. Equation (16c) re-
quires the first time-derivative of the current measurements.
Reference [29] shows that a time-derivative of the measure-
ment vector is unavoidable if one aims for a reconstruction
of the unknown inputs. This suggests that the estimator (16)
is vulnerable to measurement noise. In Section 1V, we will
analyze this vulnerability in detail via numerical simulations.

It is noteworthy that the matrices N, L, F, and E for the
estimator (16) can be computed in an automated manner. Al-
gorithm 1 provides a pseudocode listing to compute these
matrices. For the evaluation of Assumption 1, there exist
simple algebraic criteria for which the reader is referred to
[27] and [28]. Hence, the design of the estimator (16) is ful-
ly automatable and can be conducted offline. Moreover, the
online execution of the estimator requires a small number of
matrix multiplications and thus involves little computational
Costs.

Algorithm 1: automated design of the estimator of (16)

Input: model (10) with measurements (11) and (13)

: Set up (14) and (15)

: Calculate E and F from (19) and (20), respectively

: Specify the eigenvalues of N

: Calculate Z from (21) by pole placement techniques
: Calculate V and L from (21) and (22), respectively

: Return (N, L, F.E)

[ N B S S
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IV. SIMULATION STUDY

In this section, we illustrate the model (10) and the estima-
tor (16) for the IEEE 33-bus system from Fig. 1. The partic-
ular aims of the study are: (D to evaluate the validity of the
model and the estimator; and 2 to compare the performance
of the estimator with the performance of a WLS-based esti-
mation of the network variables. Note that a comparison be-
tween the estimator (16) and DSE methods from the litera-
ture is not possible. Our approach differs from the existing
approaches in the states to be estimated as well as in the
measurement and model information underlying the estima-
tion (cf. Section I).

A. Model Derivation and Estimator Design

The IEEE 33-bus system from Fig. 1 contains N=33 bus-
es and M =32 lines. The incidence matrix B describes the to-
pology of the system. The numeric values of the resistance
and inductance matrices in (1) are taken from [23].

By inserting the incidence matrix, the resistance matrices,
and the inductance matrices into (10), we obtain a dynamic
model of the IEEE 33-bus system. The state vector, the in-
put vector, and the output vector of the model are given by
the flux linkages y € R*, the bus voltages v** € R”, and the
bus currents i™ € R*, respectively.

To demonstrate the estimator design, we first define the
sets of current and voltage measurement buses VM and VM,
respectively. We assume the following buses to be equipped
with current measurements: VM={2,4,6,8,10,12,14, 16,18,
20,22,23,25,27,29,31,33}. In each measurement bus i € V?A,
sensors provide synchronized sampled value measurement of
the three-phase line currents, i.e., the currents flowing through
the incident lines. The bus currents are assumed to be non-
measured. The current measurements are collected in the
measurement vector m, € R*. The dimension of 96 is calcu-
lated from 3 x 32, where “3” accounts for three-phase mea-
surements and “32” for the number of lines being incident
to the buses from VM. From the relation between the line
currents and the bus currents in (6), we may then formulate
a measurement equation in the form (13).

For the entire system, we assume only one three-phase
bus voltage measurement which is located at bus 2, i.e., VM=
{2}. This voltage measurement acts as a reference for the
voltage estimates and constitutes the voltage measurement
vector m, € R’. From this, we can directly formulate a mea-
surement equation (11).

Based on the two measurement equations (11) and (13)
and the dynamic model (10), we apply Algorithm 1 to com-
pute an estimator of the form (16). In the obtained estimator,
weR”® m, eR” and i™ eR” are estimates of the un-
known flux linkages, the unmeasured bus voltages, and the
unmeasured bus currents, respectively. The matrix N is calcu-
lated as a diagonal matrix with negative entries. The matrix
E is a sparse matrix in which the arrangement of the non-ze-
ro matrix blocks reflects the structure of the incidence ma-
trix of the graph G= (V,E). The matrices L and F are calcu-
lated to be zero.
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B. Simulation Setup

In this subsection, the model and estimator obtained in
Section IV-A are analyzed through numerical simulations. As
a ground truth, we use the MATLAB/Simulink time-domain
simulation model of the IEEE 33-bus system from [30]. By
default, this simulation model describes a scenario in which
the system is balanced and in quasi-steady state. Hence, to
account for the recent changes in power systems, the model
from [30] is modified in three points.

1) On buses {4,21,27,30,31}, {7,17,22,25,26}, and {3,12,
24,28,32}, load imbalances for the phases A, B, and C are in-
troduced, respectively. For these buses, the load at the concern-
ing phase is 30 higher than the load at the other two phases.

2) At t,=1, t,=2, and t;=3, we consider load transients
in which the active and reactive power of the three-phase
loads at buses 14, 17, and 26, respectively, increase by the
factor 2.

3) The voltage at bus 1 is subject to harmonic distortion.
We consider the 3, 5%, 7" and 11" harmonics of the system
frequency (i.e., 50 Hz). The amplitudes of the harmonics are
set to be 2.5% of the amplitude of the system frequency.
This yields a total harmonic distortion of 5, which is within
the range of an allowed total harmonic distortion [31].

From now on, we denote the modified model from [30] as
ground truth model.

For the evaluation of the model and estimator, first, the
ground truth model has been simulated which results in time
series for all bus voltages, bus currents, line currents, and
line flux linkages. Moreover, we obtain time series for all
variables from the vectors m, and m, The bus voltages con-
stitute the input vector of the model (10). Hence, based on
the time series of the bus voltages, we simulate (10). The
output of this simulation is, amongst others, the time series
for the bus currents (i.e., the output vector of (10)). Like-
wise, with the time series for m, and m, we simulate the es-
timator (16) and obtain time-series for the estimates of the
unmeasured bus voltages and currents.

In order to compare the results of the estimator (16) with
the results obtained from a WLS estimation, we design a
standard three-phase unbalanced WLS estimator. Thereby,
we consider the same measured variables as for the estima-
tor (16). To simulate the WLS estimator, the time series of
the variables from the vectors m, and m, from the ground
truth model are transferred to the phasor domain by phase-
locked loops (PLLs). The parametrization of the PLLs is con-
ducted via the advanced tuning method from [32] with win-
dow length 7,,=0.01, design parameter »=2.4, nominal volt-
age v,=12.66 kV, and nominal current i,=10 A. To enable
a comparison between the WLS estimator and the estimator
(16), the estimates obtained from the WLS estimator are re-
transferred to the time domain by converting the phasors in-
to sine signals with the corresponding phases and amplitudes.

All simulations were run with the same resolution on a
computer with Intel® Core™" i7-6600U CPU @ 2.60 GHz
and 12 GB RAM in MATLAB/Simulink R2019a with a
fixed-step solver at a simulation step size of 0.01 ms. The
initial values are chosen such that the simulations start in
quasi-steady state. The simulation time horizon is 7=4 s.
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C. Simulation Results

For the evaluation of the model (10) and estimator (16),
we use the relative error signal power (RESP). Note that the
deterministic and periodic nature of the signals obtained
from the model (1) and estimator (2) makes the well-known
similarity measures from statistics inappropriate for this
study. The RESP is a relative measure for the similarity of a
signal to the corresponding ground truth signal. The formal
definition of the RESP can be found in Appendix B.

First, we analyze the RESP of the bus currents obtained
from the simulations of the model (10) and the estimator
(16). Figure 3 shows the three-phase average RESP of bus
currents for model (10) and the estimator (16).

0 Model (10)
0 Estimator (16)

Fig. 3. Three-phase average RESP of bus currents for model (10) and the
estimator (16).

As can be observed, for each of the buses, the RESP of
the model takes values equal to or less than 0.25%. Hence,
the model (10) accurately reproduces the behavior of the
ground truth model. The remaining differences between the
models are due to numerical differences and can be further
decreased by choosing a smaller simulation step size. For
the estimator, we obtain even smaller RESP values of less
than 0.025%. This is due to the measurement error feedback
in an observer.

Figure 4 depicts the bus currents at bus 17 for the ground
truth model, the model (10), and the estimator (16) for the
time between 1.95 s and 2.10 s. We can clearly identify the
system frequency of 50 Hz. Due to the load imbalance at
phase B of bus 17, the amplitude of the current at phase B
is slightly higher than those at the phases A and C. At t=2s5,
we see the load jump in which the amplitude of the bus cur-
rent increases approximately by the factor of 2. As can be
observed, the model (10) and the estimator (16) correctly re-
produce the behavior of the ground truth model at this cru-
cial point. Visually, we cannot distinguish between the ob-
tained currents.

As an interim result, let us summarize that the model (10)
accurately reflects the behavior of the ground truth model.
Moreover, the estimator (16) produces the estimates that are
very close to the values from the ground truth model.

Next, we compare the simulation results of the estimator
(16) with the results obtained for a WLS estimator. For the
estimator (16), the mean RESP over all reconstructed bus
voltages is 0.0015% (standard deviation: 0.00092%). The re-
spective value for the WLS estimator is 5.1% (standard devi-
ation: 0.063%). Hence, the estimator (16) significantly out-
performs the WLS estimator. This can be explained by two
reasons. First, the WLS estimator cannot capture the harmon-
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ic distortion. This is illustrated in Fig. 5 which shows one os-
cillation period of the voltage at phase A of bus 17 starting
from 2 s. In contrast to the WLS estimator, the estimator
(16) is able to reconstruct the harmonic distortion from the
ground truth model. Second, the WLS estimator cannot deal
with abrupt changes in the load. This is shown in Fig. 6
which depicts the estimated bus current for phase A of bus
17 between t=1.98 s and 2.08 s. Here, the WLS estimator re-
quires about four periods to reach the amplitude of the cur-
rent computed by the estimator (16) and ground truth model.
Hence, as expected, on the sub-second time scale, the estima-
tor (16) significantly outperforms the WLS estimator, e.g., as
a basis for fast control and protection schemes.

10
5t
0
5t
-10
15

iy (A)

ip (A)

ic (A)

-10 L L { { )
1.96 198 200 2.02 204 206 208 2.10
1(s)

—— Ground truth model; ----- Estimator (16); - - - Model (10)

Fig. 4. Bus currents at bus 17 for ground truth model, model (10) and es-
timator (16) for time between 1.95 s and 2.10 s.

10
—— Ground truth model
5 - - - - Estimator (16)

N —— WLS estimator
Z 0
;

-5

-10 . A .
2.000 2.005 2.010 2.015 2.020
1(s)

Fig. 5. Bus voltages at phase A of bus 17 for ground truth model, estima-
tor (16), and WLS estimator for time between 2 s and 2.02 s.

In the last part of this case study, we now compare the re-
constructions from the estimator (16) and the WLS estimator
under measurement noise. To this end, the measurements
(13) are extended by noise, i.e., m,=M,i**+6, where 0 is a
vector-valued Gaussian random process with zero mean and
covariance matrix ¢°1;, o € R, where I is the identity ma-
trix of order g. The above simulations of the estimator (16)
and the WLS estimator are then repeated on the basis of the
noisy measurements.
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Fig. 6. Bus currents at phase A of bus 17 for ground truth model, estima-
tor (16), and WLS estimator for time between 1.98 s and 2.08 s.

2.00

The results are depicted in Fig. 7. The figure shows the
mean RESPs of the reconstructed bus voltages for the esti-
mator (16) and the WLS estimator for different noise vari-
ances ¢>. For the six considered noise variances 107>, 107,
107, 107, 107", and 10°, the mean SNRs over all measure-
ment signals are given by 98.0 dB, 86.5 dB, 75.0 dB, 63.4
dB, 51.9 dB, and 40.4 dB, respectively. As can be observed,
starting at a low level, the mean RESP of the reconstructions
from the estimator (16) increases with increasing noise vari-
ance. In contrast, the RESPs of the WLS estimator are al-
most constant over the different noise variances. This can be
explained by the smoothing property of the PLLs for the
phasor computation in the WLS estimator.

151
B Estimator (16)
B WLS estimator

Mean RESP (%)

103 102 10! 10°
2

[

1074

1073

Fig. 7. Mean RESPs over all voltages from reconstructions of estimator
(16) and WLS estimator for different noise variances o°.

Figure 7 shows that for a variance smaller than or equal
to 1072 (i.e., an SNR>63.4 dB), the estimator (16) gives ade-
quate reconstructions which have a significantly lower mean
RESP than the reconstructions obtained from the WLS esti-
mator. Note that the SNRs of sampled value measurements
from PMUs are considerably higher than 63.4 dB [26].
Therewith, for realistic SNR values, the estimator (16) out-
performs a WLS estimation. For low SNR values (e.g., from
low-quality measurement systems), however, we find a dete-
rioration of the reconstructions from the estimator (16),
which may be explained by the first time-derivative of the
current measurements in the estimator, as shown in (16c¢). In
such cases, however, we can still increase the SNR of the
measurements in a pre-processing using well-known noise
suppression methods from the field of low-pass and band-
pass filtering.

Finally, note that the 4 s simulation of the estimator (16)
is finished in about 2 s, which indicates its real-time capabil-
ity for a system of such size.
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V. CONCLUSION

In this paper, we present an observer-based dynamic state
estimator (i.e., (16)) for unbalanced three-phase power sys-
tems with synchronized sampled value measurements. The
estimator is based on a PHS model (i.e., (10)), which explic-
itly considers the line dynamics. Our DSE can be designed
offline in a fully automated manner (i.e., Algorithm 1). The
estimator is able to capture sub-second phenomena such as
transients from converter-based load and generation as well
as harmonic distortion. Therewith, it extends the functional-
ities of a classical WLS-based power system state estimation
towards modern control and protection schemes for convert-
ed-dominated systems. Future work will focus on a Kalman
filter based approach to our state estimation in order to han-
dle uncertainties.

APPENDIX A STRONG" DETECTABILITY

The concept of strong” detectability extends the notion of
detectability to systems with unknown inputs. Strong” detect-
ability can be explained by the smoothing property of PLLs
for phasor computation in WLS estimation. Here, we briefly
recapitulate this concept.

Consider a linear state-space system x=Ax+Bu, y=Cx+
Du with initial state x| _ =x,. The following definition is
taken from [28].

Definition: the above system is strong® detectable if
lim y — implies, lim x — 0.

t—>w t—>w

APPENDIX B DEFINITION OF RESP

Consider a ground truth signal s,: [0.7] >R, tF>s,(7).
The mean power of the signal s,(¢) is:

1 T
Pu= ?foszt(t)dt

Furthermore, consider a second signal s,,(7): [0,T] >R,

(B1)

t|—>sap(t) which represents an approximation of the signal
sgt(t). This approximation may stem from a model or an esti-
mator. We define the error signal as ¢(7)s,(¢) —s,,(¢). The
mean error signal power is defined as:
T T
piz g ] o= 1 [ (50 =s,(0) & @)
The RESP is defined as the quotient of (B2) and (B1):

P,
ra=— 33
p gt ( )
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