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Sampled Value Attack Detection for Busbar 
Differential Protection Based on a Negative 

Selection Immune System
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Abstract——Considering a variety of sampled value (SV) at‐
tacks on busbar differential protection (BDP) which poses chal‐
lenges to conventional learning algorithms, an algorithm to de‐
tect SV attacks based on the immune system of negative selec‐
tion is developed in this paper. The healthy SV data of BDP are 
defined as self-data composed of spheres of the same size, 
whereas the SV attack data, i.e., the nonself data, are preserved 
in the nonself space covered by spherical detectors of different 
sizes. To avoid the confusion between busbar faults and SV at‐
tacks, a self-shape optimization algorithm is introduced, and 
the improved self-data are verified through a power-frequency 
fault-component-based differential protection criterion to avoid 
false negatives. Based on the difficulty of boundary coverage in 
traditional negative selection algorithms, a self-data-driven de‐
tector generation algorithm is proposed to enhance the detector 
coverage. A testbed of differential protection for a 110 kV dou‐
ble busbar system is then established. Typical SV attacks of 
BDP such as amplitude and current phase tampering, fault re‐
plays, and the disconnection of the secondary circuits of current 
transformers are considered, and the delays of differential relay 
operation caused by detection algorithms are investigated.

Index Terms——Cyberattack, busbar differential protection 
(BDP), negative selection, self-data-driven detector, sampled val‐
ue attacks, internal faults.

I. INTRODUCTION 

HIGHLY advanced smart grids are characterized by the 
interconnection of numerous intelligent electric devices 

(IEDs) through high-speed networks such as Ethernet and In‐
ternet, leading to a high-degree integration among physical 
power systems and cyber systems. Communication systems 
play a major role in maintaining the reliability and security 
of power systems. In recent years, the number of malicious 
attacks on the cyber components of power systems, which re‐
sult in blackouts, increases globally, and the security of 

smart grids is facing severe challenges [1]-[3]. Currently, re‐
search works on cyberattacks on power systems have fo‐
cused mainly on wide-area monitoring, protection and con‐
trol, e.g., supervisory control, data acquisition, and wide-area 
protection [4] - [8]. This trend is attributed to the fact that 
wide-area power systems with enormous network architec‐
tures are highly vulnerable to cyberattacks and frangible in 
terms of security [9]. Cyberattacks can be realized by inject‐
ing spoofed sampled value (SV) and generic object-oriented 
event data frames of substation into the communication net‐
work at the bay level [10]. For local protection in substa‐
tions, a private communication structure is typically em‐
ployed to enhance the security, which prevents external at‐
tacks on the protection system. However, internal attacks 
cannot be stopped. In particular, the IEC 61850 standard, 
which is widely used in smart grids, increases the conve‐
nience of integrating IEDs such as protection IEDs and 
merging units (MUs) from different vendors. Thus, a great 
opportunity exists for countries or regional groups to deploy 
IEDs on target protection systems for political purposes. Pro‐
tective relays are originally designed to recognize power sys‐
tem faults and do not yet possess the ability to detect false 
SVs. Once an SV attack occurs, the maloperation may occur. 
Similarly, if a circuit breaker (CB) IED receives false trip‐
ping signals, the  component of protected power system is 
directly cut off. The busbar is one of the most important 
components in a power system, and a malfunction of its pro‐
tection due to an SV attack can lead to the outage of all con‐
nected lines, which may seriously affect the stability of the 
power system. Therefore, defending against SV attacks on 
busbar differential protection (BDP) for the stable operation 
of power systems is essential.

Currently, the security of relay protection has received 
considerable attention [11]- [13], but practical algorithms re‐
main limited. One popular algorithm is to use an encryption 
strategy to ensure the integrity and confidentiality of data 
[14]. However, the security of encryption algorithms is rela‐
tive, and complex algorithms increase not only the security 
but also the decoding time. In [15], an algorithm for detect‐
ing anomalous SVs is proposed by checking the sequence 
number of each SV packet. Yet, this algorithm cannot identi‐
fy incorrect SV data and is ineffective against internal at‐
tacks from legal IEDs. To discriminate false faults from val‐
id faults, a neural-network-based pattern recognition algo‐
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rithm is presented in [16], but this algorithm requires the cur‐
rent data of all lines within a substation. A distributed agent-
based decentralized protection system is presented in [17], in 
which peer-to-peer communication, reputation-based trust, 
and a data retransmission scheme are utilized to combat ma‐
licious attacks. However, the data retransmission is not suit‐
able for SV transmission of relay protection. To distinguish 
network attacks from power system faults, a distributed 
multi-agent algorithm using synchrophasor data, relay status 
logs, and network event-monitor logs is proposed in [18] 
and [19]. The criterion of the protection relay agent based 
on the synchrophasor data of a single line is not suitable for 
identifying busbar faults and attacks. In addition, the use of 
relay logs and network event-monitor logs may increase the 
detection time. However, real-time tests are not conducted in 
the aforementioned studies. In [20], an algorithm to detect 
false data injection attacks in line-current differential relays 
is proposed using unknown input observers. This particular 
algorithm cannot solve the problem of SV attacks on BDP 
because the dimension of the attack data of line differential 
protection is much lower than that of BDP. In [21], a ma‐
chine learning algorithm called a support vector machine 
(SVM) is used in the transformer differential relay to distin‐
guish internal faults from other situations. In [22], a common 
path-mining algorithm (CPMA) is developed and used to learn 
and identify power system faults and network attack patterns. 
An intelligent algorithm based on a convolutional neural net‐
work (CNN) is proposed in [23] to identify various power sys‐
tem events, including normal operation, fault, false data, and 
load change events. In [21] - [23], various types of samples 
must be prepared and used to train the corresponding detec‐
tors. However, preparing an available attack sample set for 
busbar protection is very difficult. Currently, no references are 
available to address the problem of SV attack identification in 
BDP.

The biological immune system is an effective organic sys‐
tem that protects the body from invasion. To date, artificial 
immune models based on biological immune system such as 
the immune network [24], clonal selection theory [25], and 
negative selection algorithms (NSAs) [26] have received con‐
siderable attentions from researchers studying anomaly and 
change detections [27]. Compared with other immune algo‐
rithms, NSAs are more efficient in detecting unknown types 
of data and have been widely studied and improved in re‐
cent years. In [28], a variable radius for self-sample based 
on affinity density is proposed to overcome the problems of 
boundary invasion and overlap between samples. However, 
changing the size of the self-sample without using the cor‐
rect means of self-verification is risky. To reduce the compu‐
tational cost, a screening rule for a decreased overlay rate is 
proposed in [29]. In addition, the detector movement is used 
to avoid a decreased coverage rate. Considering the deficien‐
cy of the random coverage of traditional NSAs, the known 
nonself is used as the candidate detector to further generate 
the detector and thereby repair holes [30]. In [31], an adap‐
tive immunoregulation-based real-value NSA is proposed to 
calculate the self-radius and optimize the location of candi‐
date detectors for different applications. To overcome the 

challenges of negative selection and multiple NSAs, a hy‐
brid algorithm combining negative and positive selection 
techniques is proposed to detect the  unknown malware in 
the Internet of Things [32]. Currently, most NSAs are unable 
to comprehensively address boundary intrusion, detector cov‐
erage, and particularly computational costs.

In view of these problems, we present an improved NSA 
and develop a detection algorithm for SV attacks on BDP. 
The main contributions of this paper are as follows.

1) Based on the immune system of negative selection,  
SV attack detection by BDP is developed. Compared with 
traditional learning algorithms, this algorithm has greater po‐
tential to identify unknown SV attacks of differential relays 
according to the sample deficiency experiment.

2) The results prove that SV attack detection can cause de‐
lays in differential relay operations. However, these delays 
can be reduced by the proposed self-shape optimization 
(SSO) algorithm by decreasing the confusion between bus‐
bar faults and SV attacks.

3) A self-data-driven (SDD) detector algorithm is pro‐
posed to generate optimal detectors and overcome the diffi‐
culty of boundary coverage in traditional NSAs.

II. ATTACK MODEL OF BDP 

A bus is a critical power component in a substations, 
whose primary protection typically employs current differen‐
tial relay with restraint characteristics. The basic operation 
principle of current differential relay is:

Id ³ It =max{ }Isetmin Kres∑
i = 1

n

|| İ i (1)

where Id is the differential current; It is the threshold current; 
Iset,min is the minimum threshold current, which can be 50% 
to 150% of the maximum rated value of the current trans‐
formers (CTs); Kres is the restraint coefficient with a typical 
range of 0.3-0.7; Ii is the line current; and the restraint cur‐

rent is equal to ∑
i = 1

n

|| İ i , where n is the number of lines con‐

nected to the protected bus.
Figure 1 shows a typical SV attack tree model for busbar 

protection, where DC, TC, RC stand for the differential, 
threshold, and restraint currents, respectively, and DR stands 
for differential relay. The root node is the differential relay 
operation determined by the second layer nodes. When the 
differential current is greater than or equal to the threshold 
current, and a voltage component such as the zero sequence 
V0, the negative sequence V2, or the phase amplitude Vph ex‐
ceeds a certain threshold, the busbar protection will operate 
and send tripping signals to the corresponding CB IEDs. Be‐
cause the current differential relay is the key to busbar pro‐
tection, we focus only on the current data attack. The differ‐
ential relay is assumed to operate when Id ³ It. Two common 
algorithms are used to enable Id ³ It: ① increase the differen‐
tial current by tampering with the SVs through one or more 
MUs; and ② decrease the restraint current (or threshold cur‐
rent) by tampering with the SVs through one or more MUs 
during an external fault. SVs can be tampered with by re‐
playing the data and free attacks. A typical SV attack in‐
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volves the replay of a fault current or saturation current by 
specific MUs. The free attack can increase or decrease the 
current amplitude or modify the current angle through one 
or more MUs. According to the different current data and 
the combination of attackers, numerous attack samples are 
available for differential relay. For machine learning algo‐
rithms, preparing a sufficient training sample set of attack 
types is difficult. One advantage of NSAs is that they re‐
quire only nonattack samples, which can be easily obtained 
through experiments. Therefore, an NSA is chosen in this pa‐
per to design the detection algorithm for SV attacks.

III. NSA 

NSAs, which imitate the immune tolerance behavior of T- 
cells in biological immune system (BIS), are first introduced 
in [33]. In T-cell production, a censoring process is em‐
ployed in which T-cells that bind to self-molecules are de‐
stroyed, whereas those that do not bind are permitted to 
leave the thymus. This process is known as negative selec‐
tion. Mature cells that leave the thymus are used to identify 
foreign cells such as viruses and bacteria. In NSAs, the self 
and detectors are basic data corresponding to T-cells that 
bind to self-molecules and those that do not bind, respective‐
ly. The self-data model is defined based on the characteris‐
tics of the research object. In general, it is a fixed-size entity 
described by multiple feature attributes. Detectors are the en‐
tities that occupy the nonself region and are usually generat‐
ed using a random algorithm [34]. Each candidate detector 
must undergo a process known as self-tolerance. In this pro‐
cess, if the detector matches any self-samples, it is eliminat‐
ed. Eventually, mature detectors remain outside the self-re‐
gion. The basic steps of an NSA are described as follows.

Step 1: define the self-model according to the characteris‐
tics of the SV data, and then obtain the self-set that repre‐
sents the normal operation of the busbars.

Step 2: generate a set of detectors through the self-toler‐
ance process.

Step 3: monitor the attack behavior by matching the detec‐

tors with new data. When an SV data point is covered by a 
detector, it is regarded as attack data.

The main goal of NSAs is to cover the entire nonself re‐
gion with detectors. However, the coverage close to the 
boundary between the self and nonself regions is a difficult 
problem for current algorithms [35]. In this paper, an SDD 
detector generation algorithm is proposed to enhance the de‐
tector coverage. In addition, to avoid the confusion between 
internal faults and attacks, an SSO algorithm is considered.

A. Data Model

For differential relay, the synchronous current data for a 
multiline in the same phase can be divided into three 
groups: increased, decreased, and unchanged current ampli‐
tudes. Correspondingly, the three characteristic attributes 
used to determine the coordinates of the SV data point in 
the shape space are defined as follows.
  1)　Increment attribute AI. This attribute is determined by 
the current data with an increased amplitude as:

ì
í
î

ïï
ïï

AI =∑[DIi -Kv Ii (t -Dt)]

DIi -Kv Ii (t -Dt)> 0
(2)

where DIi = Ii (t) −Ii (t−Dt), Ii (t) is the current amplitude at 
time t for the ith line, and Dt is the time window; and Kv is a 
constraint parameter used to reduce the proportional error 
and is equal to the composite error of the CT.

2) Decrement attribute AD. This attribute is determined by 
the current data with a decreased amplitude as:

ì
í
î

ïï
ïï

AD =∑[-DIi -Kv Ii (t -Dt)]

-DIi >Kv Ii (t -Dt)
(3)

3) Constant attribute AC. This attribute is used to reflect 
the steady-state characteristics. It is determined by the cur‐
rent data with an unchanged amplitude as:

ì
í
î

ïï

ïïïï

AC =∑Ii (t -Dt)

||DIi £Kv Ii (t -Dt)
(4)

In the aforementioned model, Δt should not be less than 
the transient time of the fault current to extract as much tran‐
sient information as possible from the sampled data.

B. Definition, Optimization, and Verification of Self-set

1)　Definition of Self-set
A self-set is composed of nonattack samples during vari‐

ous operations, including normal operation during internal 
and external faults. The self-sample is a sphere with a fixed 
radius. The normalized self-sample diameter should not ex‐
ceed the composite error of the CTs for the optimization of 
the self-set. The coordinates of the sphere center are deter‐
mined by the three characteristic attributes proposed in sec‐
tion III-A. Self-samples can be easily prepared through a 
simulation experiment. However, obtaining a perfect self-set 
for continuous sampling data is impossible. If the space of 
vacant self-samples, e. g., internal fault samples, is covered 
by detectors, the corresponding self-samples will be mistak‐
en for attack data, which may cause delay in the operation 
of differential relay or even maloperations. To address this 
problem, the self-set is rearranged using an optimization al‐
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Fig. 1.　Typical SV attack tree mode for busbar protection.
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gorithm with the goal of covering the self-space as complete‐
ly as possible with a minimum number of samples.
2)　Optimization of Self-set

SSO is realized by performing multiple proliferation and 
inhibition operations on the sample set. If a sample set Sm ex‐
ists prior to the mth proliferation, then sample Xi and its near‐
est neighbor Xj, both of which belong to Sm, will determine a 
new sample Xn that satisfies:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

D(XnXi )+D(XnXj )=D(XiXj )

D(XiXj )£D(XiXk )        XkÎ S

D(XnXi )= 0.5D(XiXj )

D(XiXj )£ 4Rs

(5)

where S is the current sample set; D(·) is the Euclidean dis‐
tance between two data points with three dimensions (charac‐
teristic attributes); Xn is a new sample; and Rs is the radius 
of a self-sample.

An orthogonal mutation cloning strategy is considered to 
further enhance proliferation coverage. The variant of a 
new sample Xn is generated on a plane in which any vector 
is perpendicular to the vector η =

   
Xi Xj. Let η =[a, b, c], 

where a, b, and c are coordinates, u =[b, a, 0]T, and v = η ×
u. Then, the variant coordinates are expressed as:

C ′n =Cn + ρRs( )u
 u

cos t +
v

 v
sin t (6)

where Cn is the coordinate of Xn; t is the time of mutation; 
and ρ is the probability of variation, which can be calculated 
by:

ρ = 1/(p2 - 1) (7)

where p is the total number of samples intersecting Xn.
Inhibition operations are performed after the proliferation 

operations. For any three samples Xi, Xj, and Xk, if the Eu‐
clidean distance between any two samples is less than 2RS, 
the samples covered by the minimum sphere tangent to the 
triangle determined by the three samples can be deleted. Let 
the center of the minimum sphere be Xo; then, its radius ro 
can be solved by:

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï
ï

ï

ï

ï

ro =
||    

Xi Xo ´
   
Xi Xj

||    
Xi Xj

=
||    

Xj Xo ´
   
Xj Xk

||    
Xj Xk

=
||     

Xk Xo ´
   
Xk Xi

||    
Xk Xi

 

|

|

|

|

|

|
|||
|

|

||

|

|

|

|

|
|||
|

|

|
   
Xo Xi

   
Xo Xi

   
Xo Xi

   
Xo Xj

   
Xo Xi

    
Xo Xk

   
Xo Xj

   
Xo Xi

   
Xo Xj

   
Xo Xj

   
Xo Xj

    
Xo Xk

    
Xo Xk

   
Xo Xi

    
Xo Xk

   
Xo Xj

    
Xo Xk

    
Xo Xk

= 0

(8)

The aforementioned proliferation and inhibition operations 
are executed alternately and terminated when a stable status 
is reached.
3)　Verification of Self-set

For optimization, the self-set should be divided into three 
classes associated with normal operation, internal faults, and 
external faults. In the proliferation operation, new samples 
must be verified to avoid false negatives, which decrease the 
detection rate. In BDP, power-frequency fault components 
can be used to increase relay sensitivity. A common power-

frequency fault-component-based differential protection crite‐
rion is expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

|

|
|
||
||

|
|
||
|∑

i = 1

n

Dİi >DIset

|

|
|
||
||

|
|
||
|∑

i = 1

n

Dİi >K ′res∑
i = 1

n

||Dİi  0 <K ′res < 1

(9)

where Dİi is the power-frequency fault component of the cur‐
rent for the ith line; DIset is a set value that should be greater 
than or equal to the minimum line current at full load; and 
K ′res is the restraint coefficient of the power-frequency fault 
component.

Since 
|

|
|
||
|∑

i = 1

n

Dİi

|

|
|
||
|
= | AI -AD |, (9) can be used to determine 

whether the samples are types of internal faults.
The sequence-component-based differential protection is 

not considered because the positive-, negative-, and zero-se‐
quence components cannot be calculated based on the char‐
acteristic attributes.

According to (9), the judgment equations for an external 
fault and normal operation can be expressed as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

|

|
|
||
||

|
|
||
|∑

i = 1

n

|| AI -AD >DIset

|

|
|
||
||

|
|
||
|∑

i = 1

n

|| AI -AD £K ′res∑
i = 1

n

|| AI -AD

(10)

|

|
|
||
|∑

i = 1

n

|| AI -AD

|

|
|
||
|
£DIset (11)

C. Detector Generation

Detector generation can be implemented by using random 
generation algorithm, a genetic algorithm, or a deterministic 
algorithm. The random generation algorithm is simple but 
has difficulty in covering a narrow region due to blind gener‐
ation, and the genetic algorithm is too complicated for a 3D 
model. The proposed SDD algorithm is a deterministic algo‐
rithm for generating spherical detectors. In this algorithm, 
each self-sample determines a set of detectors that are tan‐
gential to the outer surface of the self-sample. The tangency 
points are uniformly distributed on the surface of the self-
sample to ensure the coverage in each direction. As shown 
in Fig. 2(a), 12 detectors exist, which are driven by the self-
sample located at the bottom left of the shape space. The 
narrow region between the self-sample and the border of the 
shape space shows good coverage. The unique advantage of 
the proposed SDD algorithm is that the coverage rate of the 
nonself space increases with the number of self-samples. Fig‐
ure 2(b) shows the distribution of detectors driven by two 
self-samples, which provide a larger coverage area than that 
driven by a single sample. The number of detectors increas‐
es with the number of self-samples. However, the available 
coverage increases with the number of detectors. Therefore, 
the proposed SDD algorithm can be used for complex self-
structures.

According to the proposed SDD algorithm, the detector 
generation for a self-sample in 3D space includes the follow‐
ing three steps.
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Step 1: determine the boundary points of the detectors 
around the self-sample. First, randomly select a plane cross‐
ing the center of the self-sample, and then determine m 
boundary points with a rotation step of θ (θ= 360/m) on the 
circle section. Finally, rotate the m points around a local axis 
from 0° to 180° with a rotation step of θ.

Step 2: validate the self-tolerance. Eliminate the boundary 
points that fall in any self-sample. Checking all self-samples 
for a boundary point is not necessary because removable 
boundary points exist only at the intersections between the 
self-samples. Only samples close to the driven self-sample 
must be considered.

Step 3: solve the radius of the detector. Assume that the 
center and boundary point of a detector are Xc and Xb, re‐
spectively. Thus, the radius of the detector can be expressed 
as rd = D(Xc, Xb ). The optimal radius of the detector is the 
maximum value when the detector remains outside the self-
set. In other words, we can obtain:

ì

í

î

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï
ïïï
ï

ï

ï

max  rd =D(XcXb )

s.t.  D(XcXb )+D(XzXb )>Rs + rd    " zÎ S

       D(XcXz )³D(XcXb )+Rs    "zÎ S

       D(XcXb )+D(XbXv )=D(XvXc )
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Xv Xz

<
π
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       D(XcXb )£Lh

(12)

where Xz is the center of the reference sample z; S is the self-
set; Xv is the center of the self-sample v on which Xb is gen‐
erated; and Lh is the size of the data space.

With a blind search, the efficiency of the aforementioned 
model is very low for numerous samples, which is a common 
shortcoming of deterministic generation algorithms. Thus, we 
introduce a self-boundary heuristic (SBH) that uses the bound‐
ary information of historical records as the current search 
guide. We then define the subdomain model, i.e., the minimum 
grid cell of the data space, and the number is written as:

g = φ(xyz) xyzÎWg (13)

where Wg is the data space set of subdomain g; (x, y, z) are 
3D coordinates; and φ(×) is the mapping function that satis‐
fies the following conditions.
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φ(x1y1z1 )¹ φ(x2y2z2 )

x1y1z1ÎWi

x2y2z2ÎWj

i ¹ j

(14)

where Wi and Wj are the data space self of subdomains i and 
j, respectively.

The optimal reference sample of the boundary point of the 
self-sample is recorded in the corresponding number of sub‐
domain models. The optimal reference sample model of 
boundary point b of self-sample v is:

min
ì
í
î

ïï

ïï

ü
ý
þ

ïïïï

ïï

D(XvXz )

2cos <
    
Xv Xb 

     
Xv Xz >

-Rs zÎ S (15)

The solution process of the optimal detector based on 
SBH is shown in Fig. 3. For a given boundary point of the 
self-sample, the information about the reference sample in 
the corresponding subdomain is first examined, which usual‐
ly becomes the current global optimal reference because it is 
the optimal information of the adjacent nodes. Even if it is 
not the optimal, the self-samples covered by the subdomain 
can be used as reference samples to solve the optimal detec‐
tor.

D. Detection of SV Attacks

In the detection of SV attacks, if an SV data point is cov‐
ered by a detector, it is regarded as attack data. We used a 
grid-based detector searching algorithm to quickly find the 
matching detector. Figure 4 shows the grid model for detec‐
tor searching. The node has 3D coordinates (x,y,z) that must 
have an integer index. The standardized characteristic attri‐
butes of the detector, which are usually less than 1 and more 
than 0, are mapped onto the grid space by multiplying by an 
integer that depends on the memory space. In the power sys‐
tem, each node stores the detectors that cover it.

The process of searching for a matched detector is as fol‐
lows:

(a) (b)

Detector;Self-sample; Boundary point

Fig. 2.　Distribution of detectors. (a) Single-sample driven. (b) Two-sample 
driven.
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1) Convert the SV data into the characteristic attribute data 
and determine the coordinates in the power system.

2) Identify the node nearest the SV data coordinates as 
the center and sequentially search the memory detectors 
from the vertices of eight adjacent subcubes.

3) If the Euclidean distance between the data point and 
the center of the detector is less than the detector radius, the 
SV data are regarded as attack data.

The proposed matched detector searching algorithm em‐
ploys mapping table technology. In the worst case, only 27 
nodes must be checked for a data point.

IV. RESULTS 

To verify the performance of the proposed NSA, we first 
conduct a comparison test on a benchmark dataset and then 
implement the NSA for double-bus protection. Finally, we 
build an online testbed to investigate the performance of the 
NSA by considering various conditions including normal op‐
eration, external faults, and internal faults.

A. Performance Comparison of Up-to-date NSAs on a 
Benchmark Dataset

The compared algorithms include the real-valued negative 
selection algorithm (RVNSA) [28], improved negative selec‐
tion algorithm (INSA) [29], known nonself (KN) [30], and 
adaptive immunoregulation negative selection algorithm (AI‐
NSA) [31]. It is assumed that 40% of the nonself set is 
known and used for INSA and KN to optimize the detector 
distribution. The constant self-radius is 0.05 for the SDD, IN‐
SA, and KN. These algorithms all utilize the same self-set. 
Considering the data attribute characteristics of the BDP, 
Haberman’s survival dataset [36] is selected for the test. 
The dataset contains 306 postoperative patient records, of 
which 225 survive, and the remaining 81 die. Each record in‐
cludes three attributes as in the BDP data model. We define 
the data of dead and surviving patients as self (negative) and 
nonself (positive), respectively. Table I lists the true positive 
rates (TPRs) and false positive rates (FPRs) of each algo‐
rithm for 20% and 80% of the known self-set. When the 
known self-proportion is 20%, RVNSA has the smallest TPR 
(81.33%) due to random detector generation and INSA has 
the highest FPR (79.01%) because the self-coverage is not op‐
timized. Our algorithm proves its superior in terms of self-re‐

pair and detector coverage and has the highest TPR (98.22%) 
and the lowest FPR (19.75%). When the known self-propor‐
tion is 80% (this case is similar to that of BDP), the FPR of 
SDD is 3.7%, which is still the smallest. However, the TPR is 
reduced to 96.89%, which is slightly lower than the AINSA 
value of 97.78%. This is due to the fact that when the self is 
sufficient, the proposed SSO technique will cause some self-
data to invade the nonself area to a minimal extent. In addi‐
tion, the self-verification is not used in this example because 
the self-verification algorithm proposed in this paper is only 
applicable to BDP. However, the proposed NSA still ensures 
that the FPR is as small as possible, which is critical to the reli‐
ability of relay protection.

B. Implementation of NSA for BDP

The test case is a 110 kV double busbar system, as shown 
in Fig. 5. For simplicity, in the simulation model, all feeders 
have the same maximum load current, and the total maxi‐
mum load current is 1.2 kA. The differential protection of 
the double busbar consists of a large differential relay (LDR) 
and two small differential relays (SDRs) associated with bus 
bar 1 and busbar 2. For the LDR and SDRs, the minimum 
operation current threshold Isetmin is set to be 900 A, and the 
restraint coefficient Kres is 0.5. In the self-verification model, 
the power frequency fault component threshold ΔIset is 67 A, 
and the restraint coefficient K'res is 0.5. For the current mea‐
surement, it is assumed that all CTs have the same ratio of 
600  A/5  A and a composite error of 5%. The sampling rate 
for relay protection is 2400 Hz.

In the proposed NSA, considering the composite error of 
the CT, the normalized self-radius is set to be 0.025, and the 

z

x

y

Node; Attack sample

Fig. 4.　Grid model for detector searching.

TABLE I
PERFORMANCE COMPARISON OF UP-TO-DATE NSAS ON HABERMAN’S 

SURVIVAL DATASET

Algorithm

SDD

RVNSA

INSA

KN

AINSA

20% of known self-set

TPR (%)

98.22

81.33

86.22

85.44

97.33

FPR (%)

19.75

38.27

79.01

76.54

28.40

80% of known self-set 

TPR (%)

96.89

84.89

86.22

85.44

97.78

FPR (%)

3.70

7.41

17.28

16.05

6.17

... ...

CT; CB

Fault

Line 10 Line 21

Line 11

Line 1 Line 2 Line 9 Line 12 Line 13 Line 20

Busbar 1 Busbar 2

Fig. 5.　110 kV double busbar system.
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rotation step is 30° . The time window Δt in the SV data 
model is a fundamental cycle. Characteristic attribute data 
are normalized using:

y = x/(x + Iresmax ) (16)

where Ires,max is the maximum restraint current of differential 
relay under normal operation.
1)　Preparation of Self-samples

Self-samples are selected from the recorded data of a pow‐
er system based on a PSCAD simulation conducted at a sam‐
pling rate of 2400 Hz. The feeders adopt a stochastic load 
model that is evenly distributed between the two sources. 
The fault sample set mainly consists of various metallic 
short-circuit faults such as single-line-to-ground faults (1-
LGF), double-line-to-ground faults (2-LGF), three-line-to-
ground faults (3-LGF), and line-to-line faults (LLF). The 
sampling time for the fault samples spans from the moment 
of fault occurrence to the relay operation moment. In total, 
5327 self-samples are prepared for the LDR and SDRs.

Figures 6-8 show the distributions of self-samples for nor‐
mal operation, external faults, and internal faults, respectively. 
To illustrate the shapes more effectively, the self-samples are 
shown in several different colors. Many cracks can be ob‐
served in the original self-shape due to lack of samples associ‐
ated with load current and various nonmetallic faults. Follow‐
ing SSO, the distribution of the self-samples is improved so 
that the mature detectors cannot enter the cracks.

2)　Preparation of Attack Samples
According to the attack tree model, many possibilities ex‐

ist for data attack against differential relay. We illustrate sev‐
eral types of data attacks that can be easily performed by at‐

tackers. However, our proposed algorithm can be applied to 
other attack types.

The SV attacks studied include the following six types:
Class 1 (C1): the MU corresponding to the CT on line 10 

replays the SV data of the CT on line 10 for a 3-LGF on 
bus 1 during normal operation.

Class 2 (C2): the MU corresponding to the CT on line 11 
replays the SV data of the CT on line 11 for an LLF on bus 
2 during normal operation.

Class 3 (C3): the MU corresponding to the CT on line 9 
replays the SV data of the CT on line 9 for a 1-LGF on line 
9 during normal operation.

Class 4 (C4): the MU corresponding to the CT on line 11 re‐
duces the line current to mimic a disconnection fault of the 
secondary circuit of the CT when a 1-LGF occurs on bus 2.

Class 5 (C5): the MU corresponding to the CT on line 11 
modifies the current phase angle through a rotation of 180° 
when a 1-LGF occurs on bus 2.

Class 6 (C6): the MU corresponding to the CT on line 11 
replays the saturation current data of the CT on line 11 
when a 1-LGF occurs on bus 2.

Figure 9 shows the measurement data for SV attack. We 
fabricate 50 instances for each attack class based on a sto‐
chastic load model, in which the load current obeys a uni‐
form distribution. In each instance, the attack current is in‐
jected at 0.02 s, and the samples are extracted from 0.02 s to 
0.036 s at a sampling rate of 2400 Hz.
3)　Detector Generation

In NSAs, generating a large number of detectors is typical‐
ly time-consuming because each generated detector must un‐
dergo self-tolerance and be checked against the existing de‐
tectors to remove redundancies. To verify the performance 
of the proposed algorithm, the same initial self-set is used 
with other algorithms, including RVNSA [28], INSA [29], 
KN [30], and AINSA [31]. The average increment of each 
round of candidate detectors is 100, and the maximum num‐
ber of detectors is 58292, which is the total number of detec‐
tors generated by the proposed algorithm. We use the attack 
sample set to check the nonself coverage rate of the detector 
generation algorithms at certain intervals. Figure 10 shows 
the curves of nonself coverage rate with the time for up-to-
date NSAs on a 2.93 GHz computer. The proposed algo‐
rithm utilizes an SBH to guide optimal detector generation. 
The advantage is that it does not require many repeated 
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checks. Therefore, compared with other algorithms, it has a 
shorter computation time (99% nonself coverage in 13 s). Al‐
though many improvements have been made to NSAs, they 
are still based on random generation. In particular, KN also 
uses the existing attack samples (mature detectors) to gener‐
ate candidate detectors, which helps speed up the algorithm, 
and the time to reach 99% nonself coverage is 212 s. How‐
ever, due to lack of heuristic technology, the computing 

costs of the other three algorithms rise considerably as the 
number of detectors increases. As the number of detectors in‐
creases from 50000 to 58000, the computation cost for the 

verification is ∑
i = 0

7999

(50000 + i)(i + 1)> 1.6 ´ 1012. This redundant 

processing presents great challenges to the computer. Howev‐
er, BNSA also adds the detector movement operation, result‐
ing in the lowest coverage index.

C. Online Test

An online testbed based on a real-time digital simulator 
(RTDS) is established, as shown in Fig. 11, where GOOSE 
stands for generic object-oriented substation event. Networks 
1 and 2 are constructed using a 100-Mbps Ethernet switch. 
All IEDs such as the protection device, MU, and CB are 
simulated using industrial computers with 2.93 GHz CPUs. 
The test algorithm involves modifying the SV messages 

from the RTDS with specific MUs and sending the messages 
to network 1, causing the protection IED to send tripping 
signals to the CB IEDs. The detection program for SV at‐
tacks is installed on the protection IED, which can generate 
a log file for detection and tripping events.

The performance of the detection algorithm is tested by in‐
vestigating the action of the differential relays for busbar 1 
under SV attacks during normal operation and external faults 
and the effects on protection during internal faults. To verify 
the advantages of the proposed algorithm, common algo‐
rithms including CNN [21], CPMA [20], and SVM [19] as 
well as a V-detector-based improved NSA (KN [30]) are 
used for comparison. To ensure the fairness, under normal 
operation and external fault experiments, all algorithms use 
the same original measurement data. KN has the same self-
radius and number of detectors with SDD and has 99% cov‐
erage by training. For the other three algorithms, all pre‐
pared attack samples are used for training.

Figure 12 shows the normal operation under SV attacks. 
The output of the detection program should be SV attacks or 
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nonattacks. For the SV attack, the protection operation will 
be blocked for a time of 3/f, where f is the sampling rate, 
and the fault counter will be reset to be zero. If the relay is 
not locked, the tripping signals are sent when three succes‐
sive fault samples that satisfy (1) are detected.

1) Normal Operation Under SV Attacks
Under normal operation, the maloperation rates under SV 

attacks are shown in Fig. 13. With a low load, the detection 
performance of the KN is the worst because of the poor 
boundary coverage, and the maximum maloperation rates of 
the LDR and SDR appearing under the no-load condition, i.e., 
the boundary point, are 23.4% and 23.4%, respectively. In 
addition, as the boundary coverage is greatly enhanced, the 
maloperation rates of the LDR and SDR provided by SDD 
are 13.2% and 13.4%, respectively, which are slightly higher 
than those of the other learning algorithms. However, when 
the load is relatively high, e.g., greater than 10%, SDD ex‐
hibits the best performance in reducing the maloperation 
rates for the two relays. Because traditional learning algo‐
rithms are essentially based on the principle of similarity, 
their performance is not affected by the load, and fluctua‐
tions in maloperation rates are relatively small. Table II 

shows the average TPRs and FNRs of the LDR and SDR for 
each algorithm. In this paper, TPR denotes the detection 
rate, which is equal to the ratio of detected attack instances 
to total attack instances. Thus, FNR is the maloperation rate 
of the differential relays. For the LDR, the lowest average 
maloperation rate provided by SDD is 7.42%, and the aver‐
age maloperation rates by the other algorithms are greater 
than 8%. Similar results are obtained for the SDR.

It should be noted that the aforementioned results rely on 
the known training samples. In fact, BDP may encounter un‐
known attacks, which should be the focus of our study. Fig‐
ure 14 shows the maloperation rates of SDR for various de‐
tection algorithms with and without the training by the corre‐
sponding attack samples. Only the results of the SDR are 
provided because of the similarity of the results of the two 
relays. Without training, the performances of CNN, CPMA, 
and SVM significantly decrease. In particular, for C5, the 
maloperation rates for CPMA, CNN, and SVM are 85.2%, 
80.6%, and 81.6%, respectively. In contrast to C5, the other 
attack classes show some similarities that can compensate 
for insufficient training samples. For example, CT saturation, 
disconnection line, and current amplitude reduction show 
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TABLE II
AVERAGE TPRS AND FNRS OF LDR AND SDR FOR EACH ALGORITHMS

Algorithm

CPMA

CNN

SVM
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SDD

LDR

TPR (%)

89.58

91.51

88.47

91.49

92.58

FNR (%)

10.42

8.49
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8.51
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similar current amplitude variations. Thus, when only C2 is 
learned, the attacks with C4 and C6 can be detected with a 
certain probability.
2) External Faults Under SV Attacks

Currently, the maloperation of the differential current re‐
lay caused by the secondary circuit disconnection of CT or 
core saturation during the external faults may occur. Thus, 
investigating the defense against the attacks with C4 and C6 
on external faults is of great significance. In this experiment, 
the external fault is set at point f on line 1 close to busbar 1. 
And for each type of fault, the number of C4 instances is 
11, which is related to the disconnection of phase A CTs on 
the lines connected to busbar 1. The number of C6 instances 
is 50, corresponding to different saturation degrees of CT for 
line 1. Table III lists the maloperation rates of the SDR un‐
der SV attacks during external faults. For the secondary cir‐
cuit disconnection of CT, all algorithms can block the protec‐
tion operation, whereas for CT saturation, the learning algo‐
rithms including CNN, CPMA, and SVM fail. In this paper, 
all detection algorithms are based on the fundamental root 
mean square of the current, which cannot fully reflect the 
CT saturation characteristics such as the inrush harmonic 
component or waveform feature. Therefore, even after suffi‐
cient training, the learning algorithms cannot distinguish SV 
attacks from CT saturation.

The average maloperation rates provided by the CNN, CP‐
MA, and SVM are 71%, 53%, and 67%, respectively. In con‐
trast to normal operation, CT saturation during external 
faults is very similar to internal faults for differential relay. 
Therefore, the learning algorithms may regard SV attacks as 

internal faults, which reduces the detection performance. In 
the absence of training, the average maloperation rates pro‐
vided by the learning algorithms reach 90% or higher, where‐
as for SDD and KN, differential relay remains silent. Regard‐
ing the surface area of the self, the external fault is smaller 
than that of the normal operation, which means that the prob‐
ability of the boundary effect is smaller. Thus, the immune 
algorithms perform better against external attacks.

The aforementioned results show that the detection perfor‐
mance of learning algorithms for unknown attacks will be 
greatly reduced due to the absence of training, whereas that 
of immune algorithms is not affected. In addition, to detect 
the attacks with complex characteristics, learning algorithms 
underperform compared with the proposed algorithm be‐
cause of the limitations of the data model.
3) Internal Faults with SV Attack Detection

To investigate the influence of the detection algorithm on 
the protection operation, many simulations with differential 
protection for various faults on busbar 1 have been previous‐
ly conducted. The FPR can reflect the failure rate of a relay 
and is defined as the ratio of the number of internal fault in‐
stances detected as an attack to the total number of internal 
fault instances. Table IV shows the FPRs of each algorithm 
for SDR during bus faults. The FPRs provided by SDD and 
KN with SSO are higher than those provided by the other 
three algorithms at the same sampling rate. However, when 
SSO is not adopted, the NSAs will perform poorly. For ex‐
ample, at a sampling rate of 4800 Hz, the FPRs derived 
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Fig. 14.　Maloperation rates of SDR for various detection algorithms. (a) 
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TABLE III
MALOPERATION RATES OF SDR UNDER SV ATTACKS DURING 

EXTERNAL FAULTS

Algorithm

SDD

KN

CNN

CPMA

SVM

Training 
or not

Yes

No

Yes

No

Yes

No

Yes

No

Yes

No

Attack class

C4

C6

C4

C6

C4

C6

C4

C6

C4

C6

C4

C6

C4

C6

C4

C6

C4

C6

C4

C6

Maloperation rate (%)

1-LGF

0

0

0

0

0

0

0

0

0

68

0

90

0

52

0

92

0

66

0

94

2-LGF

0

0

0

0

0

0

0

0

0

72

0

96

0

50

0

96

0

64

0

98

LLF

0

0

0

0

0

0

0

0

0

70

0

92

0

52

0

94

0

68

0

96

3-LGF

0

0

0

0

0

0

0

0

0

72

0

94

0

56

0

92

0

68

0

96
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from SDD and KN are 10.58% and 10.46%, respectively, 
whereas those of the other three algorithms are lower 
than 6%.

In the case of busbar faults, false positives in SV samples 
will cause protection action delays. In Fig. 15, the tripping 
signal delay caused by NSA without an SSO is shown when 
a 1-LGF occurs on busbar 1. The 1st, 4th, 5th, 6th, and 8th fault 
samples are identified as the attack data. Because the relay 
will be blocked for three sampling intervals when detecting 
an attack sample, the blocking signals retain 10 sampling in‐
tervals. The tripping signals are not presented until three suc‐
cessive fault samples are detected. Therefore, the total opera‐
tion delay of the SDR is 13 sampling intervals (approximate‐
ly 2.7 ms for a sampling rate of 4800 Hz). In other algo‐
rithms, increased protection operation delays are also ob‐
served. We test the maximum protection operation delays of 
the SDR, as shown in Table V. For each algorithm, the de‐
lays of relay operation for LLF are higher than those for 1-
LGF, and increased sampling rates lead to decreased delays 
in the relay operation. The worst case for the immune algo‐
rithms appears at a sampling rate of 1200 Hz for the three 
LGFs when the delay of the relay operation provided by 
SDD is 9.21 ms. By contrast, the delays provided by the oth‐
er three learning algorithms are less than half a cycle (8.33 
ms). In the case of an incomplete self-set, the detectors gen‐
erated by the NSA tend to cover the missing internal fault 
samples, which cause the proposed algorithm to underper‐
form compared with the learning algorithms. With the help 
of the SSO, the relay operation delays provided by the SDD 

and KN are greatly reduced. With the 1-LGF taken as an ex‐
ample, at a sampling rate of 1200 Hz, the maximum opera‐
tion delay of the relay using SDD is 1.72 ms (reduced by 
66%), which is determined by the normal samples (close to 
the threshold of the differential relay operation) that are re‐
garded as the SV attacks according to the condition of the 
operation and prevention of differential relay. Whereas the 
maximum operation delays provided by CNN, CPMA, and 
SVM are 3.34, 4.17, and 5.02 ms, respectively, which are 
three times greater than the sampling interval and are there‐
fore caused by the internal fault samples regarded as SV at‐
tacks. At a sampling rate of 1200 Hz, SDD and KN show 
nearly the same operation delays for various faults. Howev‐
er, at the other sampling rates, SDD still provides greater re‐
lay operation delays. One reason for this is that the detectors 
generated by the SDD cover the self-samples of normal oper‐
ation that have not been recovered. In fact, the adoption of 
SSO to detect SV attacks of the BDP is risky. In this paper, 
to improve the detection performance of SV attacks, the opti‐
mized self does not cross the actual boundary between self 
and nonself, which is a conservative strategy. In other 
words, if the self exceeds the actual boundary, the relay oper‐
ation delays will decrease as the maloperation rate of the 
protective relays increases.

TABLE IV
FPRS PROVIDED BY EACH ALGORITHM FOR SDR DURING BUS FAULT

Algorithm

SDD

KN

CNN

CPMA

SVM

Adopt SSO 
or not

Yes

No

Yes

No

FPR (%)

f = 1200 Hz

3.69

10.44

3.69

10.19

4.83

5.17

5.36

f = 2400 Hz

3.82

10.51

3.81

10.35

4.96

5.28

5.54

f = 4800 Hz

4.02

10.58

4.02
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Fig. 15.　Recording data of SDR with SDD at a sampling rate of 4800 Hz.

TABLE V
THE MAXIMUM OPERATION DELAY OF SDR FOR EACH ALGORITHM

Algorithm

SDD

KN

CNN

CPMA

SVM

Adopt SSO 
or not

Yes

No

Yes

No

The maximum operation delays of SDR (ms)

f = 1200 Hz

1-LGF

1.73

5.06

1.72

4.24

3.34

4.17

5.02

2-LGF

2.54

8.41

2.56

7.53

4.17

5.01

5.85

LLF

2.55

8.42

2.55

7.54

4.17

5.01

5.85

3-LGF

3.37

9.21

3.37

8.35

5.01

5.84

6.68

f = 2400 Hz

1-LGF

1.72

3.81

1.31

2.98

2.12

2.95

3.35

2-LGF

2.56

7.11

2.14

5.47

2.94

3.77

4.59

LLF

2.56

7.11

2.14

5.46

2.94

3.77

4.59

3-LGF

2.98

7.95

2.56

7.14

3.35

4.52

5.01

f = 4800 Hz

1-LGF

0.48

3.18

0.27

2.35

1.49

1.69

2.52

2-LGF

1.11

4.43

0.89

4.01

2.32

3.14

3.97

LLF

1.10

4.42

0.89

4.01

2.32

3.14

3.97

3-LGF

1.31

7.01

1.10

6.52

2.73

3.35

4.18
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V. CONCLUSION 

Identifying SV attacks of BDP is difficult because of high 
dimensionality. In this paper, a detection algorithm based on 
an NSA is developed to identify SV attacks of BDP. Two im‐
provements are proposed: ① recovering the self-data of dif‐
ferential relay using shape-space optimization algorithm; and ② generating the detectors by self-driven algorithm to en‐
hance the boundary coverage. Compared with up-to-date 
NSAs, our detector generation algorithm has a shorter com‐
putation time and higher nonself coverage. The online test re‐
sults show that the traditional learning algorithms suffer 
from a decreased detection performance due to lack of train‐
ing samples, whereas the performance of SDD is not affect‐
ed by training samples. Therefore, our detection algorithm 
has great potential for detecting unknown SV attacks of 
BDP. Compared with fully trained learning algorithms, the 
proposed algorithm also has some advantages. For example, 
during normal operation, when the load is not too small, 
SDD exhibits stronger performance in preventing a differen‐
tial relay operation. For busbar faults, the delays of differen‐
tial relay operation using SDD and KN are significantly 
higher than those of the learning algorithms, indicating that 
NSAs are still deficient in distinguishing busbar faults from 
SV attacks. After SSO, the delays of the differential relay op‐
eration are greatly reduced, and SDD outperforms the tradi‐
tional learning algorithms. However, compared with KN, the 
delays of differential relay operation are still slightly higher. 
The comparison between SDD and KN proves that the detec‐
tion performance of SV attacks is improved and the conflict 
for the delays of differential relay operation is reduced. To 
ensure the rapid action of BDP, developing an optimization 
scheme is necessary, which aims at the maximum detection 
rate of SV attacks and is constrained by differential relay op‐
eration delays. The development of this type of scheme is 
the future research goal.
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