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Abstract——The rapid development of electric vehicles (EVs) 
has benefited from the fact that more and more countries or re‐
gions have begun to attach importance to clean energy and en‐
vironmental protection. This paper focuses on the optimization 
of EV charging, which cannot be ignored in the rapid develop‐
ment of EVs. The increase in the penetration of EVs will gener‐
ate new electrical loads during the charging process, which will 
bring new challenges to local power systems. Moreover, the un‐
coordinated charging of EVs may increase the peak-to-valley 
difference in the load, aggravate harmonic distortions, and af‐
fect auxiliary services. To stabilize the operations of power 
grids, many studies have been carried out to optimize EV 
charging. This paper reviews these studies from two aspects: 
EV charging forecasting and coordinated EV charging strate‐
gies. Comparative analyses are carried out to identify the ad‐
vantages and disadvantages of different methods or models. At 
the end of this paper, recommendations are given to address the 
challenges of EV charging and associated charging strategies.

Index Terms——Electric vehicle (EV), forecasting, aggregator, 
coordination strategy, smart charging.

I. INTRODUCTION 

WITH the rapid development of decarbonization of the 
whole system and the wide adoption of electric vehi‐

cles (EVs), EV charging has posed a range of challenges to 
the power grid. In the past few years, several high-profile re‐
searchers have investigated the optimization of EV charging 
and vehicle-to-grid (V2G) applications to provide ancillary 
services to the electricity market [1]. The flexibility created 
by managed EV charging is mainly attributed to idled EVs, 
which are adopted as stationary energy storage systems [2]. 
Further, the charging time and mileage vary depending on 
the vehicle model, battery type, and power consumption.

This paper will critically review the most concerning chal‐
lenges with prioritized research in the context of the optimi‐
zation of EV charging, including forecasting, scheduling, 
and aggregated charging optimization. The main motivations 
and contributions of this study are as follows.

1) EV charging demand forecasting
The EV charging demand in modern power systems is 

enormous. The power grid faces considerable challenges in 
meeting market demand, especially in the next 5-10 years 
when new registrations can no longer be internal-combustion-
engine vehicles in the US and Europe. Demand forecasting 
is one of the biggest challenges in the management of EV 
charging. An accurate forecast for EV charging demand 
would alleviate uncertainties during the optimization of de‐
mand management. Very few studies have reviewed and in‐
vestigated forecasting methods for coordinated EV charging 
strategies using practical field data. This study highlights the 
cooperation between forecasting techniques and coordinated 
charging. The available EV charging data and challenges in 
the forecasting process are also included in this review.

2) Coordinated EV charging and V2G applications
Smart charging is becoming legally bound in several coun‐

tries including the UK. In the past, research has mainly fo‐
cused on the optimization of a single entity, e.g., an EV, EV 
owner, EV charging station, or aggregator. More recently, 
there has been emerging research on the optimization of co‐
ordinated EV charging to ensure energy efficiency, viability, 
and system stability. This paper critically discusses coordinat‐
ed and collaborative EV charging and V2G applications.

The remainder of this paper is organized as follows. Sec‐
tion II discusses forecasting strategies for EV charging, in‐
cluding various forecasting objectives, forecasting methods, 
and the methods for searching the historical data generated 
during the EV charging process. Section III presents the opti‐
mization of coordinated EV charging, in which various 
charging strategies and models are reviewed to identify their 
strength, weakness, and differences. Section IV presents a 
discussion and recommendations for future research, and 
conclusions are drawn in Section V.

II. FORECASTING STRATEGIES FOR EV CHARGING 

The increase in the penetration rate of EVs will increase 
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the load on the power grid, which means that it may be diffi‐
cult for the original capacities of the power generation equip‐
ment and the power transmission and distribution facilities 
to meet the additional power demand. The stability of the 
power grid requires accurate forecasts for various data dur‐
ing the EV charging process. Section II-A reviews different 
types of forecasting data including the EV charging load, the 
error in the energy consumption, EV connection time, and 
the transition of the state of charge (SOC) distribution. In 
Section II-B, the methods and models used in the forecast‐
ing process are introduced. The advantages and disadvantag‐
es of different models and the types that can be adapted are 
analyzed by comparison. Moreover, accurate historical data 
are crucial in forecasting strategies, and how to obtain avail‐
able real-world EV charging data is introduced in Section II-
C. A detailed discussion of each part is provided below.

A. EV Charging Forecasting

1) EV Charging Load Forecasting 
The increasing popularity of private electric cars has grad‐

ually increased the total daily electricity consumption. This 
poses challenges when forecasting the load for a collection 
of EVs, e.g., in a community. In [3], a random forest algo‐
rithm was proposed to forecast the EV charging load. More‐
over, the factors such as charging stations at different scales 
and locations are considered. A large amount of historical da‐
ta is learned by combining regression and classification algo‐
rithms to improve the accuracy of the random forest algo‐
rithm when forecasting the EV charging load. Reference [4] 
used four different forecasting algorithms: nearest neighbor, 
modified pattern sequence forecasting, support vector regres‐
sion, and random forests. By comparing these algorithms, 
the charging load data are analyzed [5], which can improve 
the accuracy of forecasted EV electricity benchmark loads.

The above scenario is used to forecast short-term EV 
charging. In [6], a method for forecasting the additional load 
caused by the long-term charging of EVs was proposed. It 
consists of two parts: a probabilistic model for the charging 
curve of EVs and a model for forecasting the number of 
EVs in the future. To be more realistic, [6] divided the EVs 
in the charging state into three types: private EVs, electric 
taxis, and electric buses. The charging loads of these three 
types of EVs are then forecasted. The planning of EV charg‐
ing uses long- and short-term machine learning predictions 
and high-dimensional data for machine learning during mod‐
el building and data training. The charging behavior of EVs 
was analyzed and predicted using both supervised and unsu‐
pervised machine learning [7]. Most previous studies only 
considered historical data, including the arrival time, depar‐
ture time, and energy consumption of EVs in machine learn‐
ing models. In fact, there are many other types of data that 
could be included, e.g., traffic, weather, and local events, to 
refine and enhance the charging patterns and classification.

Forecasting the baseline load of the daily EV charging 
by users will effectively reduce the uncertainty and vari‐
ance in the energy consumption by establishing a charging 
schedule.

2) Uncertainty and Error in Energy Consumption Forecast‐
ing

The energy consumption forecasting based on past charg‐
ing data can be used to make the corresponding charging de‐
cisions. Various factors in the EV charging process result in 
different levels of uncertainty and errors in the energy con‐
sumption. The errors in the energy consumption forecasting 
will result in uncertainty in EV charging behavior and direct‐
ly affect the contribution of an EV to the system, such as 
the battery capacity loss, V2G energy trading loss, and EV 
charging cost. The error in energy consumption forecasting 
is a link that cannot be omitted.

In [8], Gaussian distribution was used to represent the dai‐
ly mileage of an EV and the error in the estimated consump‐
tion rate. In addition, an analysis of variance was used to ex‐
plore the impact of different factors on the energy consump‐
tion and various errors. Figure 1 shows the distribution of 
the energy consumption rate of EVs [9]. However, the re‐
search situation in [8] is based on very limited cases. In [7], 
a linear regression (LR) model was used to predict the ener‐
gy consumption, and this forecast was integrated into a 
smart charging algorithm to achieve grid stability. However, 
[7] did not consider the performance of this forecasting mod‐
el, which will lead to an increase in the error in the energy 
consumption forecasting. Therefore, in [10]-[13], game theo‐
ry was used to determine the optimal energy consumption 
schedule to reduce the uncertainty in the demand response 
caused by errors in the energy consumption forecasting.

A convolutional neural network based on deep learning 
was used to predict the traffic flow and fully learn the uncer‐
tainty in the EV charging load [14], [15]. Then, different 
forecasting uncertainties were evaluated to formulate a fore‐
cast interval for the traffic flow. Finally, [16] used a fuzzy al‐
gorithm to control the EV schedule to reduce the waiting 
time for charging and balance the rate of requests for charg‐
ing to avoid EV congestion at a charging station, thereby im‐
proving the charging performance of the power grid.

3) Forecast of EV Connection Time

The management of EV charging activities is a challenge 
when the grid load is high. To optimize the charging sched‐
ule of EVs, [17] used a discrete-time Markov chain to pre‐
dict the EV connection time. In [18], a Poisson distribution 
was estimated based on historical datasets, and predictive 
model control for the optimization of scheduling was used. 
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Reference [19] input a larger volume of historical data into a 
model to train a support vector machine, which is a more 
complex LR model that improves the forecasting accuracy 
of the EV connection time. The method uses probability dis‐
tributions to forecast the departure time, ignoring the impact 
of real-time electricity prices on users’  charging behavior.

In [20], an autoregressive integrated moving average mod‐
el was used to fit historical charging load data and obtain a 
day-ahead forecast. This model also proposes charging ac‐
cording to an EV user’s price list to control EV charging ac‐
cording to the user’s price preferences. On the user side, EV 
users can submit their price preferences and daily travel 
times themselves. The above methods forecast the user’s 
charging schedule but do not evaluate and classify the EV 
user’s charging habits. Reference [21] combined a time-of-
use (TOU) tariff and user’s charging behaviors to introduce 
a hybrid kernel density estimator. It uses a novel detection 
method to select different kernel density estimators. Accurate 
forecasts of the EV connection time may significantly mini‐
mize EV charging costs and load changes.
4) Transition of Combined SOC Distribution

The SOC of an EV battery is the percentage of the cur‐
rent remaining battery power to the maximum capacity of 
the battery. The SOC distribution must be considered when 
determining the power demand. Many factors affect the SOC 
distribution, e.g., the distance traveled by the EVs, the mar‐
ket share of different types of EVs, the charging rate, and 
the initial SOC after the EV is connected to the power grid 
[22]. Many studies have shown that a more accurate forecast 
of the SOC can significantly reduce the number of decision 
variables, reduce the time for formulating charging strate‐
gies, and maximize the energy utilization [23]. Moreover, an 
accurate SOC forecast can prevent the EV from being 
charged for a long time and prolong the service life of the 
EV battery.

The central limit theorem in [24] states that the combined 
SOC distribution of EVs is a Gaussian distribution at any 
given point in time, as shown in Fig. 2. Each EV unit has a 
Gaussian distribution for its SOC, confirming that the com‐
bined SOC distribution is Gaussian distribution. Historical 
data were used to calculate the dynamic combination of 
SOC distributions to estimate the maximum likelihood. How‐
ever, it may take a considerable amount of time to calculate 
the SOC distribution and formulate a strategy. Reference 
[25] proposed another solution using Benders decomposi‐
tion, which can reduce the calculation time to 11 s. Howev‐
er, the optimization performance of this method decreases as 
the number of EVs increases. On this basis, [26] used the al‐
ternating direction method of multipliers to reduce the calcu‐
lation time.

The arrival and departure of EVs and the power required 
during the day are dynamic; therefore, the SOC distribution 
is dynamic [27]. Reference [23] showed the dynamics of the 
SOC distribution with a larger number of EVs. The pro‐
posed SOC fair charging strategy can reduce the calculation 
time and memory requirements by reducing the number of 
decision variables. References [28] - [30] considered adding 
the expected SOCs of EV users by combining the dynamic 
probability distribution when the EV is connected to the 

power grid and the expected SOC when a user leaves a 
charging point to predict the transition of the combined SOC 
distribution.

B. Forecasting Methods and Model Types

Section II-A describes the data that can be forecasted but 
did not analyze their applicability and characteristics in de‐
tail. This subsection will analyze and discuss some typical 
forecasting methods and models.

These methods/models may be applied to different practi‐
cal users and forecast different objectives, which are listed 
in Table I. Reference [6] used the Bass model to forecast the 
future numbers of different types of EVs. The model consid‐
ers several influencing factors including subsidy policies, oil 
prices, charging facilities, and industry maturity. The Monte 
Carlo method is used to eliminate random errors, simulating 
the future load demand generated by EV charging. The col‐
lection of historical EV charging data is indispensable. Refer‐
ence [31] used a wavelet neural network to collect historical 
EV charging loads and predict the impact of fast charging 
on the power grid using the collected data. However, [6] and 
[31] only considered the impact of increases in the numbers 
of different types of EVs on the future load, and the EV 
charging forecasting based on the charging and driving hab‐
its of EV users need to be considered.

Reference [32] estimated the changes in the EV power de‐
mand based on the EV consumers’  preferences, EV supply 
equipment (EVSE), and charging modes. The discrete choice 
experiment method was applied to analyze the preferences 
of EV consumers. Reference [32] assessed the potential mar‐
ket size of EVs based on consumers’  preferences for passen‐
ger EVs and derived the probability of consumers choosing 
different types of EVs. They used discrete choice experi‐
ments to estimate the probability of using different forms of 
EVSE and combined consumers’  preferences for passenger 
cars to estimate the total electricity demand. Machine learn‐
ing and deep neural networks can analyze and forecast charg‐
ing behaviors so that these data can improve the analysis of 
EV consumer charging patterns [7]. By combining this with 
the Markov decision process, the EV connection time was al‐
so taken into consideration in [15].

The forecasting methods presented in Table I do not con‐
sider real-time data; they only consider the behaviors of ran‐
dom EV users and the limitation on the power grid charging 
capacity. However, the impact of real-time electricity prices 
is also crucial. V2G technology provides a service in which 
the electrical energy stored in an EV battery is transferred 
back to the power grid, which means that energy flows in 
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both directions between the EV and the power grid. Refer‐
ence [33] proposed a multi-objective integrated independent 
solution based on a dynamic pricing model to coordinate the 
V2G scheduling of EVs. A nonlinear autoregressive neural 
network cyclic load predictor is used for effective load fore‐

casting. These factors include the EV type (public/private), 
the SOC, the arrival and departure time of EVs (insertion 
time), the daily mileage, the driving frequency, the travel 
purpose, the charging rate, the battery capacity, and the dy‐
namic charging price [34].

C. EV Charging Data

In the forecasting strategy of coordinated EV charging, 
various optimization methods using real data can improve 
the forecasting accuracy. Therefore, real charging data are 
very important when making EV charging forecasting. In 
this subsection, we will focus on a method for searching the 
historical data generated during the EV charging process.

Reference [36] utilized “My Electric Avenue” (MEA), one 
of the largest EV trials in the world, to study how EVs and 
power grids work together and provide a large amount of de‐
tailed information on MEA trials. In [36], the available EV 
charging data included the charging habits of EV users and 
the impact of EVs on a low-voltage power grid. On the ba‐
sis of these data, the suggestions for increasing the hosting 
capacity and methods by which EVs can provide various 
auxiliary services were proposed. Few studies have analyzed 
the number of EV charging instances per day. Reference 
[37] collected the number of charging events per day, and 
the results showed that approximately 70% of EVs are 
charged only once a day. Further, a rate density function 
based on a Gaussian mixture model was used to determine 
the time when an EV starts to charge and the initial and fi‐
nal SOCs of each EV battery. The number of cars in the 
MEA project was approximately 200. Another recent project 
in the UK, i. e., “Electric Nation” [38], [39], collected data 
on approximately 700 EVs, which includes charging transac‐
tions, the data communicated between EVs and charging sta‐
tions, and vehicle database data. The results obtained by 
combining available real-world charging data with simula‐
tion models will be closer to reality and have smaller errors.

There are many challenges in this process, such as the un‐
certainty in EV charging, data collection security, and trans‐
action risks. Reference [9] studied the uncertainty in EV 
charging and explained that this situation could affect the re‐
liability of the system. Hence, [9] proposed a method to in‐
corporate these uncertainties into a well-being analysis of 
the generating system to solve this problem, and [5] used 
the two-stage stochastic programming to model the problem 
of uncertainty. References [40] and [41] provided recourse 

decisions in the second stage according to the personal wish‐
es of EV users for allocation to the parking lot of their 
choices. Reference [40] formulated the number of charging 
stations in a parking lot selected by consumers, and [41] 
used Boolean variables to represent the availability of charg‐
ing points in the first stage. The two-stage optimization prob‐
lem can reduce the expected operating cost of the charging 
station in a specific period and improve the stability of pow‐
er system.

III. OPTIMIZATION OF COORDINATED EV CHARGING 

The cost of EV charging using a smart grid cannot be ig‐
nored. Therefore, the optimization of the EV charging pro‐
cess is crucial [42]. In [43], it was explained that the smart 
grid must determine the price of EV charging. This can opti‐
mize its income while charging the EV and balance the 
charging revenue and related costs. Reference [44] evaluated 
the impact of different customers’  charging behaviors on the 
economy and pointed out that the cost and revenue are not 
necessarily proportional to the popularity of EVs but depend 
on customer preferences to a large extent. The above re‐
search objectives focused on EV consumers and charging sta‐
tions without considering the optimization of power grid. 
For example, the grid used V2G services to cut peaks and 
fill valleys, thereby reducing the load difference in the dis‐
tributed grid system [45]. Table II presents a comparison of 
multi-objective optimization strategies.

A reasonable arrangement of the charging schedule for the 
purpose of avoiding excessive load can reduce the cost of 
power plant upgrades [51] and the energy loss in the distri‐
bution system [52]. Close integration of the power grid and 
charging station can minimize the operation cost of the pow‐
er grid (including the operation of renewable energy and en‐
ergy storage) [53], the risk of energy trading [54], etc. How‐
ever, another focus of research is to optimize the aggregator, 
such as maximizing the profit of the aggregator [55] and re‐
ducing the imbalance caused by the energy purchased by the 
aggregator from the day market and the energy actually con‐
sumed [56].

TABLE I
COMPARISON OF FORECASTING METHODS AND MODEL TYPES

No.

1

2

3

4

5

6

Method/model

Bass model or probability theory

Mixed-integer linear programming or Monte 
Carlo method

Discrete choice experiment

Wavelet neural network

Nonlinear autoregressive neural network

Constrained Markov decision process

Forecasting objective

Future number of different types of EVs

Error of energy consumption forecasting

Choosing different types of EVSE, historical EV charging 
loads, and fast charging in power grid

Charging behavior

Effective load and charging load forecasting

Demand response strategy and EV connection time

Practical user

Charging facilities and EV

Power grid

EVSE, EV, and power grid

EV and EV users

EV and EV users

EV and power grid

Reference

[6]

[35]

[32]

[31], [34]

[33]

[15]
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V2G technology can significantly increase the capacity of 
distributed storage [57]. Compared with the traditional one-
way charging mode, V2G technology can promote the popu‐
larization of EVs and improve their economic efficien‐
cies [58].

A. Ancillary Services

As participants in the V2G market, EVs play a vital role 

in ancillary services such as grid frequency modulation and 
power regulation. Table III presents a comparison of ancil‐
lary services, where the methods or models required for dif‐
ferent optimization objectives are listed [58]-[63]. Each typi‐
cal optimization target in auxiliary services is compared and 
analyzed as follows.

1) FR of Power Grid
FR is an auxiliary service that can maintain a balance be‐

tween supply and demand in a smart grid. The deviation in 
the power grid frequency can be removed by adjusting the 
power generation and energy consumption for both supply 
and demand [59]. V2G technology has the potential to pro‐
vide FR services. The power adjustment when the EV charg‐
ing time is short has almost no impact on the EV itself. 
However, the receiving system requires frequency and volt‐
age adjustments when there is a higher EV charging load in 
the receiving system. Thus, EVs can meet the requirements 
of FR, which means that the charging load of EV is of great 
significance to the FR [59]. Reference [60] used a bilevel hi‐
erarchical control mechanism, and the results show that the 
price difference between regulation up (discharge capacity) 
and regulation down (charge capacity) is very large. Many 
studies have focused on methods to directly handle uncertain 
input parameters through stochastic dynamic programming 
[61], robustness [62], stochastic optimization [63], [64], and 
fuzzy algorithms [16] to optimize the FR of power grid.

However, these methods require a large amount of histori‐
cal data to deal with the uncertainty in the frequency and 
need to consider the operating time. Therefore, the determin‐
istic method in [55] was developed to optimize the vehicle 
charging and frequency adjustment settings for evaluation.

2) Load Mismatch Risks
The mismatch between supply (planned load) and demand 

(actual load) may cause the regional frequency or voltage to 
deviate from its normal value [67]. Owing to the uncertainty 
in EV consumers’  charging behaviors, the load mismatch be‐
tween dispatches will incur other costs in addition to the 
electricity bills required for charging [68], [69]. EVs do not 
necessarily remain charged when they are connected to the 
power grid. EVs connected to the power grid can participate 
in the V2G strategy or remain still. Therefore, the charging 
time is usually less than the total time when an EV is con‐
nected to the power grid. The risk minimization of real-time 
load mismatch is a daunting challenge.

As mentioned in the Section II, the load forecasting dur‐
ing EV charging will increase energy utilization and reduce 
energy loss, and the risk of load mismatch can complicate 
the scheduling problem of advancing risk awareness (it in‐
volves nonconvex optimization). To solve this problem, [69] 
reproduced it as a two-stage stochastic linear program [70] 
and then used the L-shaped method [71] to solve it. By es‐
tablishing the risk-aware advance scheduling, the EV charg‐
ing cost and the risk of load mismatch are minimized.
3) Systems Integrated with Renewable Energy

Renewable energy, as a clean energy source, can be a solu‐
tion to reducing energy costs and emissions. Most studies on 
renewable energy systems aimed to increase the rate of pene‐

TABLE Ⅱ
COMPARISON OF MULTI-OBJECTIVE OPTIMIZATION STRATEGIES

No.

1

2

3

4

5

Optimization objective

Capacity reserves in ancillary 
service market

Qualified voltage by controlling 
EV demand

Frequency regulation (FR)

Annual charging cost

Total operating cost

Method/model

CVaR-based risk management and 
sampling average approximation

Multi-stage optimization and Monte 
Carlo simulation

Fuzzy logic

Particle swarm optimization and 
Monte Carlo simulations

Two-stage stochastic centralized 
dispatch scheme

Drawback

No guarantee of global optimality

No spatial uncertainty in EV 
load model

Lack of simulation cases

May not guarantee global optimum

Long computation time and may not 
guarantee global optimum

Practical user

EV charging station
 operator

Adaptive distribution 
network operator

Microgrid operator

Smart home

Distributed system
 operator

Reference

[46]

[47]

[48]

[49]

[50]

TABLE Ⅲ
COMPARISON OF ANCILLARY SERVICES BASED ON SMART CHARGING

No.

1

3

4

4

Optimization objective

FR

Minimize renewable energy system loss

Increase system profit

Control load mismatch risk

Method/model

Bilevel hierarchical control mechanism, stochastic dynam‐
ic programming, robust optimization, and fuzzy algorithm

The maximum sensitivity selection (MMS)

Unit commitment

Two-stage stochastic linear program and L-shaped method

Practical user

EV charging station and power grid

EV charging station and power grid

EV aggregator (EVA) and EV owner

Power grid

Reference

[58]-[63]

[65]

[66]

[67], [68]
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tration of renewable energy in the EV charging process and 
reduce the cost of power generation [72]. When renewable 
energy participates in ancillary services, wind energy, solar 
energy, and EVs can be combined through V2G strategies to 
enhance the overall performance of the integrated system. 
Wind energy and solar energy are the main renewable ener‐
gy sources, which can be combined with EVs to meet the 
needs of the power grid under various conditions [46], [73]-
[75]. References [76] and [77] find that wind power, hydro‐
power, photovoltaic power generation, and fuel cells can be 
used for distributed power generation in integrated systems, 
but it is difficult to integrate renewable energy into the pow‐
er grid [78]. The ways in which EVs participate in ancillary 
services is shown in Fig. 3.

Reference [21] proposed suggestions to reduce the cost of 
the smart grid and reduce emissions by maximizing the use 
of grid-connected vehicles and renewable energy. The intelli‐
gent dispatch and control of grid-connected vehicles calculat‐

ed by particle swarm optimization show its potential as a so‐
lution to developing sustainable integrated power and trans‐
portation infrastructure. The stochastic optimization methods 
were used in [79] to incorporate plug-in hybrid vehicles 
(PHEVs) as an energy-saving solution to address the varia‐
tion in the time span of renewable energy and its limited pre‐
dictability. However, [79] and [80] only maximized the use 
of renewable energy. In [78], the Lyapunov optimization al‐
gorithm was used to reduce the charging cost of EVs and de‐
lay the problem of satisfying the charging demand of EVs.

However, while meeting these requirements, it is also par‐
ticularly important to ensure the stability of the power grid. 
Reference [81] built a PHEV charging station architecture 
and a quantitative random model based on queuing theory, 
which can maintain the stability of the power grid and pro‐
vide the required quality of service.

B. Application of Game Theory in Vehicle-to-aggregator 
Methods

An EVA is a type of business entity. It can combine sys‐
tem operators and EV users to participate in the electricity 
market. The aggregator processes charging and collects the 
available capacity of the EVs connected to the power grid 
[82]. When the number of EVs in a geographic area is 
small, a single aggregator is sufficient for handling EV 
charging and grid services. However, multiple aggregators 
may be required in the overall system when the EVs in the 
system cover a large area or the penetration rate of EVs is 
high [9]. Table IV presents a comparison of strategies for 
the multi-objective optimization of EVAs, and a specific 
analysis and discussion will be given below.

1) Coordinating Multiple Aggregators
The coordination of multiple aggregators can effectively 

utilize the distributed power of EVs to optimize the power 
grid [88]. A schematic of single aggregator and multiple ag‐
gregators is shown in Fig. 4.

Reference [17] applied a dynamic programming algorithm 
to calculate the optimal charging control for each vehicle. 
However, before this, the parameters must be collected. 

Through local and global control strategies based on quadrat‐
ic programming [83], the aggregator was used to collect the 
parameters including the maximum battery capacity of the 
EV, the SOC, and the charging rate, which is the role of the 
aggregator. Another use of aggregators is to reduce load 
peaks. The coordination of multiple aggregators can enhance 
this effect. Reference [84] presented a smart energy control 
strategy based on quadratic programming for charging 

EV

Energy market

Renewable energy

EV charging station/aggregator 

Real-time 

energy

 market 

Day-ahead 

energy

 market 

Ancillary service market

Grid 

FR

Load 

mismatch

 risk

Power system 

integrated with

 renewable energy

Fig. 3.　EV’s participation in ancillary service markets.

TABLE IV
COMPARISON OF STRATEGIES FOR MULTI-OBJECTIVE OPTIMIZATION OF EVAS

No.

1

2

3

4

5

6

Optimization objective

Calculation of the optimal 
charging control

Frequency adjustment
 provided

Evaluation of the optimal bid‐
ding strategy for power 

reserve market

Risk measurement index and 
profits of aggregator and EV 

owner

Optimization bidding strategy 
of EV aggregators 
in electricity market

Effect of number of 
aggregators

Model/method

Dynamic programming algorithm 
and quadratic programming

Quadratic programming

Monte Carlo method and 
stochastic programming

Bilevel optimization mode and 
mixed integer linear programming

Bilevel optimization model, KKT 
method, and single-level 

linear program

Monte Carlo method

Technique evolution advantage

Collect parameters of EV, the maximum 
battery capacity, SOC, and charging rate

Minimize peak load and flatten overall 
load profile

Provide flexibility for operating 
electricity market

Consider financial risk management and 
market inferiority

Decompose problem to find global 
optimal solution

Increasing number of aggregators does 
not necessarily improve state of system

Practical user

Power grid, EV, and EV 
user

EV and smart grid

Reserve market and EV 
user

EVA

EV charging station, EV 
users, and renewable 
energy source owner

Power grid and EV

Reference

[17], [83]

[84]

[85], [86]

[35]

[87]

[9]

394



JIA et al.: REVIEW ON OPTIMIZATION OF FORECASTING AND COORDINATION STRATEGIES FOR ELECTRIC VEHICLE CHARGING

PHEVs, aiming to minimize the peak load and flatten the 
overall load profile. However, the frequency adjustment pro‐
vided by the aggregator is proportional to the number of 
EVs under its control. Considering the distributed storage ca‐
pacity of V2G systems, a dynamic programming algorithm 
was used to design an optimal centralized control strategy 
for FR in the presence of aggregators [1], [57].

The various studies above are based on ideal conditions 
without in-depth consideration of the energy loss factor. In 
[89], a real-time EV charging control strategy is proposed to 
minimize the total electricity generation cost and the associ‐
ated grid energy losses. Two-stage optimization is used to 
demonstrate the competence of the distribution feeder recon‐
figuration (DFR) towards minimizing system losses in the 
presence of EVs. With an increase in the uncertainty in the 
aggregator scheduling process, [90] proposed the use of hy‐
brid energy systems to optimize the bidirectional power flow 
so that an EV can obtain the optimal solution during the 
scheduling process, thereby minimizing the operating costs.
2) Market Transactions of Aggregators for Coordinated EV 
Charging

Owing to rapid increases in the popularity and use of 
EVs, the EV charging loads pose new challenges to the 
smooth operation of the power grid. The uncoordinated 
charging of EVs will increase the peak-to-valley load differ‐
ence in the local power grid. Reference [22] stated that an 
EVA connects an independent system operator and a single 
EV to provide flexibility for operating the electricity market. 
However, there are uncertainties in the V2G market, the ran‐
dom aggregation behavior of EV owners, and the fluctua‐
tions in electricity market prices that incur financial risks to 
the operation of aggregators [91]. The aggregators must first 
evaluate the optimal bidding strategy for the power reserve 
market. Reference [85] used a Monte Carlo method to simu‐
late this strategy, and stochastic programming was used in 
[86] to ensure that uncertain EV management is also taken 
into account.

These studies did not consider financial risk management 
and market inferiority. Hence, [35] used a bilevel optimiza‐

tion model to solve these problems. The conditional value of 
risk (CVaR) manages the financial risk caused by uncertain‐
ty and is used as a risk measurement index [42]. The aggre‐
gator maximizes the CVaR in upper-level problems, whereas 
lower-level problems minimize the operating cost of the sys‐
tem. In this model, the profits of the aggregator and EV 
owner are optimized. The Karush-Kuhn-Tucker (KKT) meth‐
od was used to decompose the problem to obtain the global 
optimal solution [87]. Reference [92] combined the bilevel 
model and the CVaR, and the impact of the risk aversion pa‐
rameters on the aggregator was evaluated to optimize the 
bidding strategy of the EVAs in the electricity market.
3) Challenges of Multiple Aggregators

Aggregators are considered essential for EV to participate 
in power grid services. To determine the influence of the 
number of EVAs on the operating conditions, [9] conducted 
simulations with different numbers of participating aggrega‐
tors using Monte Carlo method, as shown in Fig. 5. It is 
found that an increase in the number of aggregators does not 
necessarily improve the state of the system.

The failure of an aggregator implies that it will have no 
contribution to the power grid, such as component failure in 
charging facilities, human error due to punctuality, time 
rounding, and the energy consumption forecasting [9]. In ad‐
dition to the algorithmic challenge of dealing with uncertain‐
ties, the frequent discharge of EV batteries will also affect 
the optimization problem. Reference [93] proposed a new 
type of bidirectional control strategy for battery charger. The 
proposed control strategy can charge and discharge EV bat‐
teries in slow and fast modes. Combined with the loss of the 
battery, a reduction in the uncertainty in the bidirectional 
power flow during the charging of the aggregator is a new 
challenge. Temporary charging piles on the roadside or 
household mobile charging piles are a type of decentralized 
charging. The battery capacity of a single EV is limited, 
which limits its ability to participate in the energy market 
[94]. These scattered EVs can be dynamically combined to 
form a relatively fixed charging load. A service framework 
can solve this problem. EVs can subscribe to the services of 
aggregators (similar to telecommunications operators), and 
aggregators can coordinate the subscription of EVs at these 
charging stations through owned or cooperative charging sta‐
tions [95]. Collaboration among aggregators is a research 
challenge.
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Fig. 4.　Schematic of single aggregator and multiple aggregators. (a) Single 
aggregator. (b) Multiple aggregators.
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C. Charging Behaviors of EV Users

The arrival and departure time of an EV and the electrici‐
ty price are random; therefore, it is difficult to determine the 
best charging/discharging schedule to ensure that the electric 
car is fully charged when it leaves. Reference [15] formulat‐
ed this scheduling problem as a constrained Markov decision 
process (CMDP) to ensure that EVs can be fully charged 
while minimizing the charging cost. In [96], a heuristic meth‐
od is used to control the EV charging rate and time based on 
a TOU tariff.

References [15] and [96] did not clearly explain the possi‐
ble effects of the charging behaviors of EV users, such as be‐
haviors related to searching for charging, navigation behav‐
iors, and the distribution of charging piles. The algorithms 
based on Bayesian inference were used to simulate these 
problems [97] and plan EV charging stations according to 
the users’  charging behavior. On this basis, [98] added some 
daytime activity parameters including working, shopping, 
and traveling. These charging behaviors are intermittent and 
can last for several hours or longer. Therefore, charging sta‐
tions around a driver’s departure location or destination 
were regarded as potential locations for charging [99]. Ow‐
ing to the limited driving range of a vehicle, the flow refuel‐
ing location model in [100] can be utilized to plan the loca‐
tion of a charging station. The comparison of charging strate‐
gies based on behaviors of EV users is concluded in Table V.

This section has reviewed the optimization methods or 
models for coordinated EV charging strategies and coordinat‐
ed aggregator strategies. Moreover, multi-objective optimiza‐
tion has also been briefly discussed. The discussion and rec‐
ommendations of this study will be presented in the next sec‐
tion. The authors propose conjectures and an outlook for in‐
frastructure planning, data interaction, and incentive policies 
for V2G services.

IV. DISCUSSION AND RECOMMENDATIONS 

Future charging scheduling algorithms are considered to 
be bidirectional, decentralized, and mobile [101]. Scheduling 
is a core area of EV charging management, and short- and 
long-term predictions and their impacts on scheduling need 
to be further considered. The optimization of EV charging 
strategies may be achieved through prediction using machine 
learning, bidirectional power flow aggregator charging sched‐

ules, and decentralized EV charging. The research publica‐
tions reviewed in this paper are based on V2G technology, 
and V2G technology used in the intelligent charging process 
of EVs still faces many challenges. The following subsec‐
tions will provide recommendations for potential problems 
arising in the future development of V2G technology.

A. Infrastructure Planning

The increasing number of EVs will lead to the inability of 
the existing charging infrastructure to meet the correspond‐
ing demand. Therefore, the government or related agencies 
need to plan for the expansion of the charging infrastructure. 
The planning of improper charging infrastructure may have 
a negative impact on the operation of the entire charging sys‐
tem [102] such as the unstable operation of power grid and 
the irrational use of electrical energy. The rationality of infra‐
structure planning is considered to be one of the challenges 
in ensuring the safe and stable operation of the entire sys‐
tem [103].

The cost associated with planning the EV charging infra‐
structure includes the maintenance cost, operating cost, dis‐
tributed generation (DG) investment cost, and network loss 
cost. Figure 6 shows how the planning problem is optimized 
according to different types of EV charging stations includ‐
ing fast charging, battery swapping, and regulated charging 
[103]. Because of the similar uses of charging stations and 
gas stations, the planning of gas stations can be referred to 
in future research on the planning of EV charging infrastruc‐
ture. The optimal planning of charging stations is the prima‐
ry goal [104]. On this basis, the characteristics of the distri‐
bution lines, distributed generators, and road conditions also 
need to be considered. Reference [105] reviewed EV infra‐
structure development in the UK, in which the typical de‐
signs and business models are discussed for EV charging in‐
frastructure as well as the challenges for the development of 
EVs and their charging infrastructure in the future.

B. Data Flow and Management

In V2G applications, the efficiency of EVs with charging 
infrastructure, aggregators, the transmission of electricity 
market data, and the ability to process data is particularly im‐
portant. Reference [106] proposed the application of a multi‐
agent model to the data interaction between EVs and the 
charging infrastructure (including the battery status of an 
EV, the location of the charging station, and the distance). In 
this model, the multiagent traffic simulation model can be 

TABLE V
COMPARISON OF CHARGING STRATEGIES BASED ON 

BEHAVIORS OF EV USERS

No.

1

2

3

4

5

Optimization objective

Minimization of EV charging cost

Control of EV charging rate and 
time

EV charging station planning

Potential location for charging 
demand

EV charging station planning

Model/method

CMDP

Heuristic method

Bayesian inference 
algorithm

An integer program

Flow-based methods

Reference

[15]

[96]

[97]

[99]

[100]

EV charging station types

Fast charging Regulated charging Battery swapping 

Infrastructure planning 

Location planning Sizing planning Coplanning problem with DG

Fig. 6.　Categories of charging infrastructure planning problem.
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used to evaluate the impact of the driving and charging pro‐
cesses of an EV on different electricity price strategies and 
charging priorities. Aggregators can be responsible for coor‐
dinating information for multiple targets, including the real-
time status of EVs, electricity market data, and real-time in‐
formation on charging stations. Reference [26] proposed an 
optimization framework based on the alternating direction 
method of multipliers to achieve computational scalability. 
Therefore, an increasing number of studies have begun to 
consider the issue of data interaction, which is essential for 
the future development of EVs.
C. Data Privacy

This paper discusses various challenges in EV charging  
forecasting. All of the predictive problems discussed need to 
collect a large amount of historical data to understand users’  
charging behaviors or driving preferences. For example, 
when consumers let their cars participate in V2G coordinat‐
ed charging, these cars will send and receive a large amount 
of data including the charging location, the SOC, and person‐
al user information. It is extremely important to observe and 
protect the privacy of these data [95]. Reference [107] 
solved the problem of data privacy when using the open 
charge point protocol to ensure the safe flow of data be‐
tween charging stations and the control center. Reference 
[108] proposed that cyber infections may occur with this sys‐
tem. Therefore, their solution is to disconnect the infected 
EV supply equipment and formulate a linear program to off‐
set the spread of network infections throughout the charging 
infrastructure while maintaining EV charging services.
D. Incentive Policies in V2G Systems

At present, EV owners receive very few benefits when 
participating in a V2G market, and some losses will also oc‐
cur. For example, the number of EV battery cycles will in‐
crease during the V2G process, which will lead to an in‐
crease in the rate of battery degradation. Therefore, it is nec‐
essary to formulate a reasonable incentive policy. Most exist‐
ing incentive policies are subject to government supervision, 
and the relevant departments can appropriately accelerate the 
speed of EV adoption in the transportation system. The for‐
mulation of future incentive strategies can be considered 
from multiple perspectives, such as determining the best in‐
centives for EV owners from an EVA perspective and using 
incentive schemes to reduce communication delays in the 
field of EVAs.

V. CONCLUSION 

The optimization of charging is a challenge for the devel‐
opment of EVs, which will affect the promotion of new 
EVs, the load on the power grid, and changes at the econom‐
ic level. This paper reviewed previous research in this area 
in terms of EV charging forecasting strategies and coordinat‐
ed EV charging strategies and hence provided recommenda‐
tions, which are summarized as follows.

1) EV charging forecasting strategies: they need to com‐
bine various forecasting data such as the predicted charging 
load, energy consumption error, EV connection time, and 
SOC distribution. Simultaneously, different methods have dif‐
ferent effects on the optimization objective. Available EV 

charging data can increase the accuracy of EV predictions. 
This paper also describes how to search for historical data 
generated during EV charging.

2) Coordinated EV charging strategies: the optimization of 
coordination strategies presented in this paper includes ancil‐
lary services, the application of game theory in vehicle-to-ag‐
gregator methods, and the charging behaviors of EV users. 
In ancillary services, the impacts of coordinated charging on 
the grid frequency, the load mismatch risk, and the combina‐
tion of systems integrated with renewable energy and power 
grids have been analyzed. On this basis, game theory used 
in methods that model the transfer of energy from electric 
cars to aggregators has also been reviewed. Compared with 
a single aggregator, the coordination of multiple aggregators 
is a future research direction for smart grids. However, the 
coordination of multiple aggregators must be combined with 
market transactions, and different risk coefficients will lead 
to differences in returns. Moreover, it is necessary to accu‐
rately obtain the charging behaviors of EV users to ensure 
that an EV is fully charged when leaving and the charging 
cost is minimized.

3) Recommendations: the rationality of infrastructure plan‐
ning is an important factor in ensuring safe and stable opera‐
tion of the entire system. The charging infrastructure needs 
to be carefully planned and improved to reduce the impact 
on the power grid during the charging of EVs. Moreover, 
the data transferred between EVs and the charging infrastruc‐
ture, aggregators, and electricity markets are complex, and 
the efficiency of data interaction and data processing capabil‐
ities are particularly important. Moreover, the formulation of 
reasonable incentive policies can effectively reduce the 
charging costs of EV owners and increase the participation 
of EV users in V2G markets.
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