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Abstract——In the electricity market environment, the regional 
integrated energy system (RIES) can reduce the total operation 
cost by participating in electricity market transactions. Howev‐
er, the RIES will face the risk of load and electricity price un‐
certainties, which may make its operation cost higher than ex‐
pected. This paper proposes a method to optimize the operation 
cost of the RIES in the electricity market environment consider‐
ing uncertainty. Firstly, based on the operation cost structure of 
the RIES in the electricity market environment, the energy flow 
relationship of the RIES is analyzed, and the operation cost 
model of the RIES is built. Then, the electricity purchase costs 
of the RIES in the medium- and long-term electricity markets, 
the spot electricity market, and the retail electricity market are 
analyzed. Finally, considering the risk of load and electricity 
price uncertainties, the operation cost optimization model of the 
RIES is established based on conditional value-at-risk. Then it 
is solved to obtain the operation cost optimization strategy of 
the RIES. Verification results show that the proposed operation 
cost optimization method can reduce the operation cost of high 
electricity price scenario by optimizing the energy purchase and 
distribution strategy, constrain the risk of load and electricity 
price uncertainties, and help balance the risks and benefits.

Index Terms——Conditional value-at-risk, electricity market, 
uncertainty, operation cost, regional integrated energy system 
(RIES).

I. INTRODUCTION 

THE regional integrated energy system (RIES) integrates 
multi-energy resources in a region, which can coordi‐

nate the scheduling of the internal energy units, improve en‐
ergy efficiency, promote the consumption of renewable ener‐
gy and reduce pollution emissions [1], [2]. In recent years, it 
has developed rapidly all over the world. At the same time, 
with the electric power system reform in China, the construc‐
tion of the spot electricity market has been in the pilot 
phase, and the market-oriented electricity trading mechanism 
has been initially formed [3]. In the electricity market envi‐
ronment, the RIES can make full use of its own advantages 
and further reduce the overall operation cost by optimizing 
the collaborative scheduling strategy among its internal ener‐
gy units when participating in electricity market transactions. 
However, the RIES will face the risk of loads and electricity 
price uncertainties, which may make its operation cost high‐
er than expected. Therefore, it is necessary to study the 
method to reduce the operation cost of RIES in the electrici‐
ty market environment.

At present, some research has been carried out on the op‐
eration optimization of RIES. In [4], the modeling method 
of heat, electricity and gas supply networks in the RIES is 
studied, and the operation of the RIES is optimized by using 
the fruit fly algorithm. Reference [5] summarizes and analyz‐
es several modeling and solution methods for optimal opera‐
tion of integrated thermal and electrical systems. Based on 
graph theory, [6] establishes a unified matrix form of the in‐
tegrated energy system model. Aiming at a practical commu‐
nity integrated energy system, [7] establishes the equipment 
model and the operation optimization strategy, which im‐
prove the reliability and economy of the system. In [8], the 
day-ahead optimal scheduling model of integrated energy 
system is established and solved by second-order cone pro‐
gramming. However, the above optimization methods do not 
consider the uncertain factors such as the output power of 
wind power and photovoltaic, electricity prices, and energy 
demand in the integrated energy system. Therefore, there 
may be a large gap between the theoretical values and the 
actual optimization results.

In view of the uncertainty in the integrated energy system, 
[9] and [10] establish a robust optimization model to give 
priority to satisfy the operation constraints and improve the 
operation stability of the power system. In [11], the stochas‐
tic optimization method is adopted and the Latin hypercube 
sampling is used to generate multiple scenarios for analysis, 
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which effectively reduces the negative impact caused by un‐
certainty. Reference [12] applies interval optimization theory 
to deal with the uncertainty of wind power and proposes the 
coordinated operation strategy of a gas-electricity integrated 
energy system considering demand side response. References 
[13]-[15] study the method of guiding users to improve ener‐
gy consumption behavior through the demand response of 
multiple energy sources, which improves the matching de‐
gree of supply and demand and the operation economy of 
the integrated energy system. In the electricity market envi‐
ronment, the price of electricity is uncertain. In [16], consid‐
ering the uncertainty of energy demand, wind power output, 
and electricity prices, an optimal scheduling model based on 
fuzzy theory is proposed for multi-energy systems. Consider‐
ing the uncertainty of thermal load, power load and real-time 
price, [17] proposes a stochastic optimal operation model of 
multiple-energy carrier systems based on conditional value-
at-risk (CVaR). The above studies only consider the overall 
operation optimization method of integrated energy system 
under the uncertainty of renewable energy generation, user 
demand, and electricity prices, but lack of modeling and 
analysis of the electricity market in detail, which cannot re‐
flect how exactly the RIES participates in electricity market 
transactions in reality.

In the studies of the electricity market, [18] summarizes 
the trading mode of the electricity market of China and pro‐
poses a portfolio optimization method of electricity retailers 
based on CVaR. In [19], the conditional drawdown-at-risk is 
used to model the risk of load and electricity price uncertain‐
ties in the market, so as to reduce the risk of trading in the 
electricity market. Reference [20] applies the information 
gap decision theory to limit the risk of market transactions 
and uses the demand response to further hedge the risk and 
lock in the profits in advance. Reference [21] proposes a bi-
level stochastic optimization method in spot electricity mar‐
ket, which improves the revenue of strategic retailers by opti‐
mizing joint demand and virtual bidding strategy. Reference 
[22] compares and analyzes the three risk assessment meth‐
ods, namely minimax regret, chance-constrained, and CVaR 
criteria, to help the electricity retailers choose the appropri‐
ate way to make trading decisions. Reference [23] adopts the 
mixed stochastic-interval model to deal with the uncertainty 
and proposes the operation optimization strategy of the hy‐
brid energy generation company in the electricity market. 
Considering the investment of investors, the profit of bid‐
ding decision and the clearing of electricity market, [24] pro‐
poses the optimal planning method of electricity to gas ener‐
gy storage facilities in electricity market. Based on the 
above studies and the basic rules of Guangdong electricity 
market [25] of China, the market entity in the electricity 
market is each user of the RIES, including the users who 
participate in wholesale electricity market transactions and 
those who participate in retail electricity market transactions. 
Therefore, the RIES cannot be simply regarded as a whole 
to participate in the electricity market transactions. In addi‐
tion, there are many different settlement ways in the electrici‐
ty market. The settlement prices may be fixed or uncertain, 
and the assessment fees should be considered. However, 

there is no existing research on the modeling and analysis of 
RIES participating in electricity market transactions in detail 
and the strategy of jointly scheduling the energy units of 
RIES to reduce operation costs while participating in electric‐
ity market transactions.

The contributions of this paper are listed as follows.
1) Based on the rules of Guangdong electricity market, 

the users of RIES are divided into wholesale and retail buy‐
ers, and the operation cost structure and model of RIES are 
proposed. The electricity purchase cost of the RIES in the 
wholesale and retail electricity markets are analyzed in detail.

2) Based on CVaR theory, the optimal operation strategy 
of RIES is proposed to reduce the operation cost considering 
the uncertainty of spot prices and multiple energy loads.

3) Case studies are carried out and the results in the gener‐
ated and actual scenarios are analyzed. Furthermore, the elec‐
tricity purchase strategy of the RIES and the output of the 
energy conversion equipment and energy storage equipment 
are analyzed.

II. OPERATION COST MODEL OF RIES IN ELECTRICITY 
MARKET ENVIRONMENT 

This section constructs the operation cost structure and 
builds the operation cost model of RIES in the electricity 
market environment, so as to provide the basis for the later 
optimization strategy.

A. Operation Cost Structure of RIES in Electricity Market 
Environment

According to the basic rules of Guangdong electricity mar‐
ket, electricity consumers can be divided into two categories, 
i.e., the large consumers who can participate in wholesale 
electricity market transactions or retail electricity market 
transactions, and the general consumers who can only partici‐
pate in retail electricity market transactions. In this paper, 
the large consumers who participate in the wholesale electric‐
ity market transactions are called wholesale buyers; the large 
consumers or general consumers who participate in the retail 
electricity market transactions are called retail buyers. For 
the convenience of analysis, when analyzing the electric en‐
ergy flow, all the wholesale buyers of RIES are regarded as 
a whole, while all the retail buyers of RIES are regarded as 
another group, so the electricity in the RIES is divided into 
two parts: electricity purchased in the wholesale electricity 
market and that purchased in the retail electricity market.

The operation cost structure of the RIES in the electricity 
market environment is shown in Fig. 1. The energy purchase 
cost of the RIES mainly includes electricity purchase cost, 
gas purchase cost, and heat purchase cost. For the electricity 
purchase cost, it can be divided into two parts, namely the 
cost of electricity purchased in the wholesale electricity mar‐
ket and the cost of electricity purchased in the retail electrici‐
ty market. In addition, in the RIES, there are various energy 
conversion equipment and energy storage equipment, includ‐
ing electric boilers (EBs), electric refrigerators (ERs), gas 
boilers (GBs), absorption refrigerators (ABs), batteries 
(BATs), gas holders (GHs), thermal storage tanks (TSs), etc. 
Among them, the batteries are only for the internal users of 
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the RIES, not directly connected to the power system. More‐
over, the power generation equipment in the RIES, such as 
gas turbines, wind turbines, and solar generators, sells elec‐
tricity through the electricity market without affecting the op‐

eration of other equipment. Therefore, they are not part of 
the operation cost of the RIES and will not be considered in 
this paper.

B. Operation Cost Model of RIES in Electricity Market Envi‐
ronment

According to the above analysis, the total operation cost 
of the RIES in the electricity market environment ftotal is giv‐
en as:

ftotal =∑
t = 1

T ( )fEwholesalet + fEretailt + fHt + fFt (1)

where fEwholesalet and fE.retailt are the electricity purchase costs 
of wholesale and retail electricity markets at time t, respec‐
tively; fHt and fFt are the costs of purchasing heat and gas at 
time t, respectively; and T is the total time period.

C. Operation Constraints of RIES in Electricity Market Envi‐
ronment

In order to ensure the safe and stable operation of RIES, 
it is necessary to meet the constraints of energy supply and 
demand balance of cold, heat, electricity, and gas, and the 
constraints of safe operation of equipment. According to Fig. 
1, there are four kinds of energy loads in RIES, namely 
cold, heat, electricity, and gas loads. Among them, the elec‐
tricity load is mainly supplied by purchasing electricity from 
the electricity market and users’  own batteries; the heat load 
can be supplied by EBs, GBs, TSs, and purchased heat; the 
cold load is mainly supplied by ERs and ABs; and the gas 
load is mainly met by GHs and purchased gas. Therefore, 
the balance equations of the supply and demand of cold, 
heat, electricity, and gas are shown as:

CER1t +CER2t +CABt =Cloadt (2)

Ht +HEB1t +HEB2t +HGBt +HTSt -CABt /ηAB =Hloadt (3)

Qretailt -CER1t /ηER1 -HEB1t /ηEB1 +QBAT1t =Qloadretailt (4)

Qwholesalet -CER2t /ηER2 -HEB2t /ηEB2 +QBAT2t =Qloadwholesalet (5)

Ft -HGBt /ηGB +FGHt =Floadt (6)

where Qwholesalet and Qretailt are the actual total electricity con‐
sumption of wholesale and retail buyers of the RIES at time 
t, respectively; CER1t, CER2t, CABt, HEB1t, HEB2t, and HGBt are 
the output power of ER1, ER2, AB, EB1, EB2, and GB at 
time t, respectively; QBAT1t and QBAT2t are the electricity 
charged/discharged by BAT1 and BAT2, respectively, and 
the value is positive for discharging and negative for charg‐
ing; HTSt is the heat stored/released by TS at time t, and the 
value is positive for heat storage and negative for heat re‐
lease; FGHt is the gas stored/released by GH at time t, and 
the value is positive for gas storage and negative for gas re‐
lease; Qloadwholesalet, Qloadretailt, Hloadt, Floadt, and Cloadt are the 
electricity load of wholesale buyers, the electricity load of re‐
tail buyers, heat load, gas load, and cold load in the RIES, 
respectively; Ht and Ft are the quantities of heat and gas pur‐
chased at time t, respectively; and ηER1, ηER2, ηAB, ηEB1, ηEB2, 
and ηGB are the energy conversion efficiencies of ER1, ER2, 
AB, EB1, EB2, and GB, respectively.

The constraints for the safe operation of equipment main‐
ly include the operation constraints of all kinds of energy 
conversion equipment and energy storage equipment.

For the energy conversion equipment, the operation con‐
straints are mainly the upper and lower limits of the output 
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Fig. 1.　Operation cost structure of RIES in electricity market environment.
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power as:

0 £Pit £Pimax (7)

where Pit is the output power of the ith energy conversion 
equipment at time t; and Pimax is the upper output limit of 
the ith energy conversion equipment.

For the energy storage equipment, the operation con‐
straints are mainly the upper and lower limits of the output 
power and the upper and lower limits of capacity:

0 £Pkint £Pkinmax (8)

0 £Pkoutt £Pkoutmax (9)

0 £ Skt £ Skmax (10)

where Pkint and Pkinmax are the charging or storage power of 
the kth energy storage equipment at time t and its upper lim‐
it, respectively; Pkoutt and Pkoutmin are the discharging or re‐
lease power of the kth energy storage equipment at time t 
and its upper limit, respectively; and Skt and Skmax are the ca‐
pacity of the kth energy storage equipment at time t and its 
upper limit, respectively.

The capacity of energy storage equipment is calculated by:

Skt + 1 = Skt(1 - ηkloss ) - ( Pkoutt

ηkout

-Pkintηkin ) Dt (11)

where ηkloss, ηkout, and ηkin are the self-discharging rate, dis‐
charging efficiency, and charging efficiency of the kth energy 
storage equipment, respectively; and Dt is the unit time inter‐
val.

The operation and management of energy storage equip‐
ment are periodic. So, in order to facilitate the operation and 
management, the capacity at the beginning of the scheduling 
period is the same as that at the end of the scheduling peri‐
od, which can be expressed as:

Skstart = Skend (12)

where Skstart and Skend are the capacities at the beginning and 
end of the scheduling period of the kth energy storage equip‐
ment, respectively.

III. OPERATION COST ANALYSIS OF RIES IN ELECTRICITY 
MARKET ENVIRONMENT 

On the basis of the operation cost model of RIES in the 
electricity market environment in Section II, this section will 
make a detailed analysis of various operation costs of RIES 
in the electricity market environment, especially the electrici‐
ty purchase cost.

A. Electricity Purchase Cost Analysis of RIES in Wholesale 
Electricity Market

The wholesale electricity market includes electric energy 
market and ancillary service market. Among them, the elec‐
tric energy market includes medium- and long-term market 
and spot market. The buyers in wholesale electricity market 
mainly purchase electricity through the electric energy mar‐
ket. Therefore, the electricity purchase cost of RIES in the 
wholesale electricity market is mainly the electricity pur‐
chase cost in the medium- and long-term markets and spot 
market expressed as:

fEwholesalet = fElongt + fEspott (13)

where fElongt is the electricity purchase cost in the medium- 
and long-term markets; and fEspott is the electricity purchase 
cost in the spot market.
1)　Electricity Purchase Cost of RIES in Medium- and Long-
term Markets

There are many kinds of transactions in the medium- and 
long-term markets, including bilateral negotiation, central‐
ized bidding, listing trading, etc. The medium- and long-
term contracts need to stipulate the electricity quantity, con‐
tract price, and decomposition curve. The electricity quantity 
of medium- and long-term contracts is the total amount of a 
period of time, which needs to be decomposed to each hour 
according to the decomposition curve. And the medium- and 
long-term contracts are settled on the basis of the difference 
between the contract price and day-ahead price.

Suppose that all the wholesale buyers of RIES have 
signed N contracts, and the decomposed electricity quantity 
and the price of the nth contract at time t are Qlongnt and 
plongnt, respectively. The day-ahead price at time t is pdayt, 
then the total electricity quantity of medium- and long-term 
contracts at time t is expressed as:

Qlongt =∑
n = 1

N

Qlongnt (14)

The average price of medium- and long-term contracts at 
time t is expressed as:

plongt =
∑
n = 1

N

Qlongnt plongnt

∑
n = 1

N

Qlongnt

(15)

Then, the electricity purchase cost in medium- and long-
term markets at time t is expressed as:

fElongt =Qlongt( plongt - pdayt ) (16)

2)　Electricity Purchase Cost of RIES in Spot Market
Spot electricity trading can be divided into two categories, 

namely day-ahead electricity trading and real-time electricity 
trading. At present, in the spot market, the generation side 
will submit the quantity-price curves, whereas the consumer 
side will only submit the electricity quantity curves. That is, 
the consumer side is the price receiver, and the submitted 
electricity quantity curves on the consumer side are only 
used as the basis for settlement instead of market clearing. 
The settlement of day-ahead market shall be carried out on 
the basis of the submitted electricity quantity curve and day-
ahead price. In the real-time market, the settlement shall be 
carried out on the basis of the difference between the actual 
electricity consumption curve and the submitted electricity 
quantity curve and the real-time price. In addition, in order 
to prevent market participants from speculative arbitrage, 
when the deviation between the submitted electricity quanti‐
ty curve and the actual electricity consumption curve is too 
large, the wholesale buyers will be charged assessment fees. 
To sum up, the electricity purchase cost in spot market is 
mainly composed of three parts: the electricity charge of day-
ahead market fEdayt, the electricity charge of real-time mar‐
ket fErealt, and the assessment fee fEerrt. The electricity pur‐
chase cost in spot market is expressed as:
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fEspott = fEdayt + fErealt + fEerrt (17)

When participating in spot electricity trading, the whole‐
sale buyers of the RIES will independently participate in the 
spot electricity trading, submit the electricity quantity curves 
and settle the expenses. However, it is too complicated to an‐
alyze the trading strategy of each wholesale buyer separate‐
ly, and it is not conducive to the overall optimization to cal‐
culate the electricity purchase cost of wholesale buyers in 
the spot market separately. If these wholesale buyers can be 
considered as a whole, this problem can be greatly simpli‐
fied. The electricity charges of day-ahead and real-time mar‐
kets are given in (18) and (19), respectively.

fEdayt = pdaytQdayt (18)

fErealt = prealt(Qwholesalet -Qdayt ) (19)

where prealt is the real-time price at time t; and Qdayt is the 
total submitted electricity quantity of wholesale buyers of 
the RIES at time t. For every wholesale buyer, the day-
ahead price is the same, and the real-time price is also the 
same [26]. Therefore, when calculating the electric charges 
of day-ahead and real-time markets, all the wholesale buyers 
of RIES can be regarded as a whole.

According to (18) and (19), when the real-time price is 
higher than the day-ahead price, the more the submitted elec‐
tricity quantity of wholesale buyer, the lower the electricity 
purchase cost in spot market. When the real-time price is 
lower than the day-ahead price, the submitted electricity 
quantity of wholesale buyer is less, and the electricity pur‐
chase cost in spot market is lower. This provides a large 
space for the wholesale buyers to carry out speculative arbi‐
trage in the electricity market. However, after adding the as‐
sessment fee, the electricity purchase cost in spot market is 
shown in Fig. 2, and the upper limit of allowable deviation 
λ0 is set to be 10%. And the deviation is (Qwholesalet -
Qdayt )/Qwholesalet.

As can be observed from Fig. 2, the speculative arbitrage 
gains that exceed the allowable deviation will be recovered, 
but the loss from speculative arbitrage will not be compen‐
sated, so the speculative arbitrage behavior of the wholesale 

buyer is restricted. As the assessment fee is related to the 
submitted electricity quantity curve and actual electricity con‐
sumption curve of each wholesale buyer, there will be errors 
if the wholesale buyers are considered as a whole. However, 
we can guide the wholesale buyers to adopt similar trading 
strategies, so as to facilitate the overall optimization of the 
operation cost of the system and reduce the calculation error 
of the assessment fee. Therefore, in the case of little differ‐
ence of the day-ahead trading strategies of wholesale buyers, 
there is little difference between calculating the assessment 
fee as a whole and calculating it separately for each whole‐
sale buyer. Therefore, when calculating the assessment fee, 
all the wholesale buyers can also be regarded as a whole. 
Then the assessment fee of the RIES is expressed as:

fEerrt =max{0Qdayt -Qwholesalet(1 + λ0 )}max{0prealt - pdayt} +
max{0Qwholesalet(1 - λ0 ) -Qdayt}max{0pdayt - prealt}

(20)

For (21) and (22), the continuous variables atbt, the Bool‐
ean variables u1tu2tu3tu4t, and the large positive numbers 
M1M2 are introduced to linearize the formula.

fEerrt = atmax{0prealt - pdayt} + btmax{0pdayt - prealt} (21)
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(22)

B. Electricity Purchase Cost Analysis of RIES in Retail Elec‐
tricity Market

In RIES, there are also retail buyers who participate in re‐
tail electricity market transactions. Retail buyers will sign 
various retail contracts with electricity retailers according to 
their own demands, such as fixed price contract, time-of-use 
price contract, peak-valley price contract, step tariff contract, 
and real-time price contract. In this paper, we only consider 
the peak-valley price contracts signed by retail buyers and 
electricity retailers. For the total actual electricity consump‐
tion of all the retail buyers of the RIES Qretailt, the contract 
price at time t is pretailt, and the electricity purchase cost of 
RIES in retail electricity market fEretailt is expressed as:

fEretailt = pretailtQretailt (23)

C. Other Operation Cost Analysis of RIES

In addition to participating in the electricity market to pur‐
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Fig. 2.　Electricity purchase cost in spot market under different deviations.
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chase electricity, the RIES also needs to purchase heat and 
gas, and the prices of heat and gas are relatively fixed. Sup‐
pose that the prices of heat and gas are pH and pF, respec‐
tively. The costs of purchasing heat and gas, i.e., fHt and fFt, 
are given by:

fHt = pH Ht (24)

fFt = pF Ft (25)

where Ht and Ft are the quantities of heat and gas pur‐
chased, respectively.

IV. OPERATION COST OPTIMIZATION STRATEGY OF RIES IN 
ELECTRICITY MARKET ENVIRONMENT 

RIES will face the risk of load and electricity price uncer‐
tainties when participating in electricity market transactions, 
which may lead to the actual operation cost much higher 
than expected. Therefore, the RIES needs to evaluate the 
risks faced, measure its own risk tolerance, and take corre‐
sponding measures to reduce the risks while meeting its own 
operational demands. In this section, the CVaR method is ad‐
opted to evaluate the risk of the RIES participating in elec‐
tricity market transactions, and the operation cost optimiza‐
tion strategy of RIES in electricity market environment is 
proposed.

A. CVaR Model

CVaR model is proposed by Rockafellar and Uryasev on 
the basis of value-at-risk (VaR) model [27], [28], which 
means the expected loss of portfolio if the loss of portfolio 
is greater than a given VaR. The VaR model represents the 
maximum possible loss of a portfolio or asset during a spe‐
cific period of time in the future at a certain confidence lev‐
el. Due to some defects, for example, the coherent axiom is 
not satisfied, the tail loss measurement is not sufficient, or 
the probability model must satisfy the normal distribution, 
the application scope of VaR is limited. CVaR overcomes 
the defects of VaR, so it is widely used in risk assessment 
[29], [30]. In this paper, CVaR is used to evaluate the risk of 
spot electricity price and load uncertainty. The basic princi‐
ple is shown as follows.

Suppose that h(xy) is the loss function of portfolio, x is 
the decision variable (xÎXXÌRk, X is the feasible set of 
decision variables), and y is random variable (yÌRm), which 
indicates the uncertain factors in the market transactions. 
The probability density function of y is p(y). When the confi‐
dence level is β, the formula of CVaR is expressed as:

CVaRβ =
1

1 - β ∫h(xy)³VaRβ

h ( )xy p ( )y dy =

VaRβ +
1

1 - β ∫yÌRm

max{ }0h ( )xy -VaRβ p ( )y dy

(26)

As it is difficult to obtain the analytic expression of p(y), 
we use the Latin hypercube sampling method [31] to gener‐
ate the sample data and estimate the value of CVaRβ approxi‐
mately on the basis of the generated sample data. Suppose 

that there are W generated scenarios y1y2yW, and the 
probability of each scenario is 1/W. The approximate value 
of CVaRβ is given by:

CVaRβ =VaRβ +
1

( )1 - β W
( )h ( )xyw -VaRβ

+

(27)

Then, we introduce the dummy variables zw (w = 12W ) 
and ξ. Using the following linear model, we can obtain 
CVaRβ.

min 
é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú

ξ +
1

( )1 - β W
∑
w = 1

W

zw (28)

ì
í
î

ïï
ïï

zw ³ 0

zw ³ h ( )xyw - ξ
(29)

In the optimal solution of the linear model, ξ corresponds 
to VaRβ. The minimum value of (28) is CVaRβ.

B. Operation Cost Optimization Strategy of RIES Based on 
CVaR

The flow chart of the proposed optimization method is 
shown in Fig. 3. Assuming that the operation day is day D, 
the wholesale buyers in the RIES will sign the medium- and 
long-term contracts before day D - 1, so they can confirm 
their medium- and long-term electricity price and quantity 
on day D. The retail buyers will also sign retail contracts, so 
as to confirm their contract prices on day D. The medium- 
and long-term contracts and retail contracts signed on and af‐
ter day D - 1 are invalid for day D. Therefore, the medium- 
and long-term electricity prices of wholesale buyers and the 
contract prices of retail buyers are known before optimiza‐
tion. During the period from 00: 00 to 13: 00 on day D - 1, 
the RIES should firstly forecast the cold, heat, electricity, 
and gas loads of its users, as well as the day-ahead and real-
time prices, and generate W scenarios by Latin hypercube 
sampling. Then, based on the information of W scenarios 
and the parameters of each energy unit, the operation cost 
optimization objective function is constructed. After that, the 
operation strategy of the RIES is obtained by solving the 
model. Finally, the RIES guides the wholesale buyers to sub‐
mit the electricity quantity curves in the day-ahead market, 
so that the total submitted electricity quantity in the day-
ahead market is consistent with the strategy obtained by solv‐
ing the model. On day D, the RIES operates according to 
the solution strategy. The electricity trading center will an‐
nounce the clearing results of day-ahead and real-time mar‐
ket at 17:30 on day D - 1 and day D + 1, including the day-
ahead price and real-time price. And on day D + 5, the elec‐
tricity trading center will announce the electricity fees of 
wholesale buyers on day D.

For the practical application of RIES, two schemes are de‐
signed to optimize the operation cost of the RIES in electrici‐
ty market.

1) Scheme 1: only the price of the electricity market is as‐
sumed to be uncertain.

2) Scheme 2: the price of the electricity market and the 
heat, electricity, and gas loads are assumed to be uncertain.
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Scheme 1 is suitable for the situation where the RIES can 
effectively control the load, while Scheme 2 is suitable for 
more general situations. When adopting the CVaR model to 
solve the problem, it is necessary to determine the random 
variable y, decision variable x, and loss function h(xy). For 
Scheme 1, when the RIES participates in the electricity mar‐
ket transactions, the day-ahead price and real-time price are 
uncertain, so they are random variables y. In Scheme 2, in 
addition to the day-ahead price and the real-time price, the 
cold, heat, electricity, and gas loads of the RIES are also un‐
certain. Therefore, these variables belong to random variable 
y. Since the cold demand is mainly derived from the trans‐
formation of electricity and heat, its uncertainty can be re‐
garded as the uncertainty of electricity demand and heat de‐
mand, so the cold load is assumed to be known here. We 
use the Latin hypercube sampling method to generate W sce‐
narios. Take Scheme 1 as an example. For scenario wÎW, 
the generated data, which include the day-ahead price and re‐
al-time price in the whole scheduling period, are yw=
[pw

real1p
w
day1p

w
real2p

w
day2pw

realtp
w
daytpw

realTp
w
dayT ]. In this 

scenario, the operation cost of the RIES is f w
total, then the ex‐

pected operation cost of the RIES for the W scenarios ftotalavg 
is given by:

ftotalavg =
1
W∑w = 1

W

f w
total (30)

The RIES needs to adopt reasonable energy purchase strat‐
egy and energy scheduling strategy, and these variables be‐
long to decision variable x. For Scheme 1, the decision vari‐
ables of the RIES mainly include Qdayt, Qwholesalet, Qretailt, Ft, 
Ht, and the operation schemes of energy conversion equip‐
ment and energy storage equipment in the RIES. For 
Scheme 2, due to the uncertainties of heat, electricity, and 
gas loads, Qwholesalet, Qretailt, Ft, Ht will be used to balance 
the fluctuation of the loads, i.e., to make up for the energy 
shortage supplied by energy conversion equipment and ener‐
gy storage equipment in the RIES. Therefore, the energy pur‐
chased cannot be determined in advance. They are no longer 
decision variables, but random variables determined by sup‐
ply and demand. In Scheme 2, the decision variables are 
Qdayt and the operation scheme of energy conversion equip‐
ment and energy storage equipment in the RIES. In addition 
to the random variables and decision variables, other vari‐
ables belong to known variables.

We take the total operation cost of RIES as the loss func‐
tion h(xy), introduce the risk aversion coefficient γ, combine 
the expected operation cost of the RIES for the W scenarios 
with CVaR, and finally obtain the operation cost optimiza‐
tion objective function f of the RIES considering CVaR, 
which is given by:

min f = ftotalavg + γ
é

ë

ê
êê
ê
ê
ê
ξ +

1

( )1 - β W
∑
w = 1

W

zw

ù

û

ú
úú
ú
ú
ú

(31)

According to the constraints shown in (2)-(12), (22), and 
(29), this optimization problem is a mixed-integer linear pro‐
gramming problem, which can be solved by CPLEX solver 
[32]. And the optimal operation strategy of RIES can be ob‐
tained.

V. CASE STUDIES AND DISCUSSIONS 

A. Basic Data

Taking an RIES in a certain area in China as an example, 
the scheduling period is 24 hours, and the unit time interval 
Dt is 1 hour. The average price of medium- and long-term 
contracts signed by the wholesale buyers in the RIES plongt 
is the same during the whole scheduling period. And the 
electricity of medium- and long-term contracts is divided in‐
to each hour on average. The parameters of the RIES are list‐
ed in Table I and other parameters in Table II. Among them, 
the maximum output of EB, ER, GB, AB, BAT, GH, and TS 
is the sum of the same type of equipment in the RIES, and 
the conversion efficiency is the average value of the same 
type of equipment. In addition, AB and ER also use external 
energy during operation, so the conversion efficiency is 
greater than 1. The 24-hour retail contract price, the forecast‐
ed 24-hour day-ahead price, and the real-time price are 
shown in Fig. 4. And the forecasted 24-hour cold, heat, elec‐
tricity, and gas loads of the RIES are shown in Fig. 5.

In Scheme 1, only the uncertainty of electricity price is 
considered. Assuming that the day-ahead price and real-time 
price follow the normal distribution. The forecasted values 
of the day-ahead price and real-time price are taken as the 
mean values, and the standard deviations of the day-ahead 
price and real-time price are 30 and 60, respectively. In 
Scheme 2, the price of the electricity market and the heat, 
electricity, and gas loads of the RIES are assumed to be un‐
certain. The forecasted values of these variables are taken as 

Retail buyers of

 the RIES sign 

retail contracts

 

Before day D�1 Before day D�1

 17:30 on day D�1Day D+5

Wholesale buyers 

of the RIES sign 
medium- and 

long-term contracts

Forecast the cold, heat, electricity 

and gas loads of the RIES on day
 D, and generate W scenarios by 

Latin hypercube sampling

00:00 to 13:00 on day D�1 00:00 to 13:00 on day D�1 00:00 to 13:00 on day D�1

00:00 to 13:00 on day D�1

Based on the scenario information

 and the parameters of each energy 

unit, construct the operation cost 

optimization objective function

Solve the model and 
obtain the operation 

cost optimization 
strategy of RIES

According to the optimization 
strategy, the RIES guides the wholesale

 buyers to submit the day-ahead 
electricity consumption curve

The trading center 
announces the 

clearing result of the
 day-ahead market

Each energy unit of 
the RIES operates 
according to the 

optimization strategy

The trading center 
announces the 

clearing result of the 
real-time market

The trading center
 announces the electricity
 fees of wholesale buyers

 on day D

Day D+1 Day D

Fig. 3.　Flow chart of proposed optimization method.
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the mean values. The standard deviations of the day-ahead 
price and real-time price are the same as those in Scheme 1. 
And the standard deviations of the heat, electricity, and gas 
loads are 10, 10, and 100, respectively. Latin hypercube sam‐
pling method is adopted to generate 1000 scenarios random‐
ly. Then, we set the different risk aversion coefficient γ and 
calculate the average operation cost of 1000 scenarios on the 
basis of the above-mentioned operation cost optimization 
strategy of the RIES in the electricity market environment.

B. Analysis of Results

By using different risk aversion coefficients, the corre‐
sponding average operation cost and CVaR of Scheme 1 and 
Scheme 2 are obtained, as shown in Figs. 6 and 7. It can be 
observed that high risk aversion coefficient can reduce 

CVaR, but will increase the average operation cost; low risk 
aversion coefficient can reduce the average operation cost, 
but will increase CVaR. As the uncertainty of load is consid‐
ered in Scheme 2, the risk is higher. Compared with Scheme 
1, the average operation cost is higher in Scheme 2.

1)　Comparison of Different Optimization Methods
To verify the effectiveness of the proposed method, the 

proposed method is compared with the traditional optimiza‐
tion method [7]. The traditional optimization method optimiz‐
es the operation cost based on the forecasted values of the 
loads and electricity prices. In this paper, the optimal opera‐
tion decision obtained by the traditional optimization method 
is substituted into 1000 different electricity price scenarios 
to calculate the average operation cost, and the calculation 
results are compared with the proposed method.

The results of Scheme 1 and Scheme 2 (risk aversion coef‐
ficient γ = 1) are compared with the traditional optimization 
method, as shown in Table III. It can be observed that the 
average operation costs of Scheme 1 and Scheme 2 in 1000 

TABLE Ⅰ
PARAMETERS OF EQUIPMENT IN RIES

Equipment

EB1

EB2

ER1

ER2

GB

AB

BAT1

BAT2

TS

GH

Parameter

Maximum output (MW)

Conversion efficiency (%)

Maximum output (MW)

Conversion efficiency (%)

Maximum output (MW)

Conversion efficiency (%)

Maximum output (MW)

Conversion efficiency (%)

Maximum output (MW)

Conversion efficiency (MWh/m3)

Maximum output (MW)

Conversion efficiency (%)

Capacity (MW)

Maximum charging power (MW)

Maximum discharging power (MW)

Self-discharging rate (%)

Charging efficiency (%)

Discharging efficiency (%)

Capacity (MW)

Maximum charging power (MW)

Maximum discharging power (MW)

Self-discharging rate (%)

Charging efficiency (%)

Discharging efficiency (%)

Capacity (MWh)

Maximum storage power (MW)

Maximum release power (MW)

Self-release rate (%)

Store efficiency (%)

Release efficiency (%)

Capacity (MWh)

Maximum storage power (MW)

Maximum release power (MW)

Self-release rate (%)

Store efficiency (%)

Release efficiency (%)

Value

100

95

100

95

65

280

65

280

100

0.00972

130

250

30

15

15

0.001

90

90

30

15

15

0.001

90

90

60

30

30

1

85

80

6000

3000

300

0

100

100

TABLE Ⅱ
OTHER PARAMETERS IN CASE STUDIES

Parameter

pF (¥/m3)

pH (¥/MWh)

plongt (¥/MWh)

Value

2.87

460

579

Parameter

Qlongt (MWh)

β

λ0 (%)

Value

268.687

0.95
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Fig. 4.　 24-hour retail contract price, forecasted 24-hour day-ahead price, 
and real-time price.
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Fig. 5.　Forecasted 24-hour cold, heat, electricity, and gas loads of RIES.
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scenarios are lower than that of the traditional method, and 
the electricity purchase costs of Scheme 1 and Scheme 2 in 
the wholesale electricity market are far lower than that of 
the traditional method, while the heat and gas purchase costs 
are relatively higher. It shows that Scheme 1 and Scheme 2 
reduce the electricity purchase cost in the electricity market 
and increase the cost of heat and gas with a relatively fixed 
price to reduce the risk as well as the average operation cost.

In order to further verify the effectiveness of the proposed 
method, this paper uses the actual price data of Guangdong 
electricity market on August 1, 2020, August 11, 2020, Au‐
gust 14, 2020, and May 4, 2021. The forecasted loads are re‐
garded as the actual loads. The optimal operation decision 
obtained by the methods above is substituted into these four 
actual scenarios to calculate the operation cost.

The average electricity price and operation cost of the 
RIES are shown in Table IV. It can be observed that the op‐
eration cost of the traditional method is lower when the elec‐
tricity price is lower than the forecasted value. However, 
when the electricity price is higher than the forecasted value, 
the operation cost of the proposed method is lower. It can be 
observed that the proposed method sacrifices the operation 
cost of low-electricity-price scenario, but limits the operation 
cost of high-electricity-price scenario, so that the average op‐
eration cost of RIES in multiple scenarios is lower. This 
method can find a trade-off between low operation cost and 
low risk, so that the RIES can operate at a relatively low op‐
eration cost, and reduce the operation cost in the extreme 
scenario. For the risk-averse RIES, the proposed method is 
of great significance.

2)　Analysis of Optimal Operation Strategy
To study the operation strategy of the RIES in the electric‐

ity market, the electricity purchase strategy of the RIES in 
the wholesale electricity market and the characteristics of 
each energy conversion equipment and energy storage equip‐
ment are analyzed.

1)　Result analysis of Scheme 1
Figure 8 shows the total submitted electricity quantity of 

wholesale buyers of the RIES Qdayt and the actual total elec‐
tricity consumption of wholesale buyers of the RIES 
Qwholesalet when the risk aversion coefficient γ is 0.1 and 1 in 
Scheme 1, respectively. Due to the uncertainty of spot elec‐
tricity price in the wholesale electricity market, when the 
risk aversion coefficient is high, to reduce the risk, it is 
more inclined to consume less electricity during these peri‐
ods; while when the risk aversion coefficient is low, it is 
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TABLE Ⅲ
RESULTS OF TRADITIONAL METHOD, SCHEME 1, AND SCHEME 2

Method

Traditional method

Scheme 1 (γ = 1)

Scheme 2 (γ = 1)

Average cost (¥)

9051738.86

8990233.14

9032500.28

Electricity purchase cost in 
wholesale electricity market (¥)

3849696.56

3166424.64

3140476.73

Electricity purchase cost in 
retail electricity market (¥)

3915136.90

3923192.22

3923189.84

Heat purchase cost (¥)

360458.60

785981.53

903713.41

Gas purchase cost (¥)

926446.79

1114634.75

1065120.31

TABLE Ⅳ
AVERAGE ELECTRICITY PRICE AND OPERATION COST OF RIES

Date

August 1, 2020

August 11, 2020

August 14, 2020

May 4, 2021

Average day-ahead 
price (¥)

180.97

253.74

205.45

355.17

Average real-time 
price (¥)

86.81

268.33

206.37

391.17

Operation cost with traditional 
method (¥)

8416885.60

9090036.49

8644983.85

10110595.56

Operation cost with 
Scheme 1 (γ = 1) (¥)

8506778.72

9047284.50

8709581.93

9941570.83

Operation cost with 
Scheme 2 (γ = 1) (¥)

8566407.89

9086787.70

8759716.48

9990637.31
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more inclined to consume more electricity in the wholesale 
electricity market.

In addition, combined with the analysis of forecasted day-
ahead electricity price and real-time electricity price curves, 
it can be concluded that when the forecasted day-ahead elec‐
tricity price is lower than the forecasted real-time price, the 
day-ahead submitted electricity quantity is higher than the ac‐
tual consumption. And the higher or lower submitted electric‐
ity quantity is always close to the upper or lower limits of 
the allowable deviation. This result shows that in the pro‐
posed method, when participating in the electricity market 
transactions, the RIES makes full use of the space of specu‐
lative arbitrage. By comparing the forecasted day-ahead and 
real-time electricity prices, less or more electricity quantity 
can be submitted to reduce the expected operation cost. 
Since the electricity loads are known, the deviation between 
the day-ahead submitted electricity quantity and the actual 
electricity consumption can be accurately controlled by the 
RIES to ensure that it does not exceed the upper or lower 
limits of the allowable deviation.

Figure 9 shows the output of each refrigeration equipment 
in Scheme 1. It can be observed that, since retail buyers im‐
plement peak-valley price, the electricity price is relatively 
low in the valley period. During the flat and peak periods, 
the electricity price is higher than the forecasted day-ahead 
price, the forecasted real-time price, and the heat purchase 
price. Therefore, even if the spot electricity price in the 
wholesale electricity market has the risk of uncertainty, ER2 
and AB are still preferred to ER1 during the flat and peak 
periods. Figure 10 shows the output of each heating equip‐
ment in Scheme 1. By comparing the outputs with the two 
risk aversion coefficients, the output of EB2 during certain 
periods when γ is 1 is significantly lower than that when γ is 
0.1, which shows that when γ is high, the output of EB2 is 
reduced, and the electricity consumption in the wholesale 
electricity market is reduced as well as the risk.

Figure 11 shows the capacity of each energy storage 
equipment in Scheme 1. For the BATs, it can store electrici‐
ty when the electricity price is low, and release electricity 
when the electricity price is high. Although the price of pur‐
chasing heat remains unchanged in the whole scheduling pe‐
riod, when the electricity price is low, a part of cheap heat 
energy can be generated by electric boiler and then stored in 
the TS. As the gas price remains unchanged during the 
whole scheduling period, there is no way to convert other en‐
ergy into gas, so the GH cannot help reduce the operation 
cost.

From the above analysis, it can be concluded that when γ 
is low, the RIES will purchase more electricity from the 
wholesale electricity market, and correspondingly increase 
the output of EB2. Without changing the energy supply, the 
potential profit margin is improved, but the risk is also in‐
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Fig. 9.　Output of each refrigeration equipment in Scheme 1. (a) γ = 0.1. (b) 
γ = 1.
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creased at the same time. When γ is high, the RIES will pur‐
chase less electricity from the wholesale electricity market, 
and correspondingly reduce the output of EB2. Without 
changing the energy supply, the profit margin is reduced, but 
the risk is also reduced at the same time.

2)　Result analysis of Scheme 2
Figure 12 shows the total submitted electricity quantity 

and actual electricity consumption in Scheme 2 when the 
risk aversion coefficient γ is 0.1 and 1 considering the load 
uncertainty of the RIES. As can be observed from Fig. 12, 
as the actual electricity consumption cannot be determined 
in advance, it is impossible to determine the deviation be‐
tween the day-ahead submitted electricity quantity and the 
actual electricity consumption. In this case, the day-ahead 
declaration strategy cannot set the deviation between the day-
ahead submitted electricity quantity and the actual electricity 
consumption just at the upper and lower limits of the allow‐
able deviation to obtain the maximum speculative arbitrage 
space. At this time, the day-ahead declaration strategy 
should be divided into two situations. One is that when the 
gap between the forecasted value of day-ahead electricity 
price and day-ahead electricity price is too large, it is almost 
possible to determine the level of day-ahead electricity price 
relative to real-time electricity price. Therefore, when the 
day-ahead electricity price is higher, the corresponding sub‐
mitted electricity quantity can be as small as possible; and 
when the day-ahead electricity price is lower, the correspond‐
ing submitted electricity quantity can be as large as possible. 
In this way, even if part of the revenue is recovered, it will 
not reduce its own profit space. The other is that when the 
gap between the forecasted value of day-ahead electricity 
price and real-time electricity price is small, it is impossible 
to determine the level of day-ahead electricity price relative 
to real-time electricity price. Due to the existence of assess‐
ment fee, excessive deviation will not increase the revenue, 
but may cause greater losses. Therefore, the deviation be‐
tween the submitted electricity quantity and the expected ac‐

tual electricity consumption should be small. When the RIES 
carries out speculative arbitrage, the RIES needs to limit the 
possible losses. In addition, as in Scheme 1, when the risk 
aversion coefficient is high, the RIES reduces the actual elec‐
tricity consumption, so as to reduce the risk of the spot elec‐
tricity price uncertainty in the wholesale electricity market.

Figures 13 and 14 show the outputs of each refrigeration 
equipment and heating equipment in Scheme 2, respectively.

When the risk aversion coefficient γ is 1, the outputs of 
ER2 and EB2 of the RIES are reduced during certain peri‐
ods compared with that when γ is 0.1, which reduces the ac‐
tual electricity consumption in the wholesale electricity mar‐
ket, so as to reduce the risk. Figure 15 shows the capacity of 
each energy storage equipment in Scheme 2. It can be ob‐
served that the operation strategy of the energy storage 
equipment is similar to that in Scheme 1.
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tion in Scheme 2. (a) γ = 0.1. (b) γ = 1.
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Fig. 11.　Capacity of each energy storage equipment in Scheme 1. (a) γ =
0.1. (b) γ = 1.
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Fig. 13.　Output of each refrigeration equipment in Scheme 2. (a) γ = 0.1. 
(b) γ = 1.
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From the above analysis, it can be observed that different 
from Scheme 1, the electricity purchase strategy in the 
wholesale electricity market is more complex and the RIES 
faces more uncertainties in Scheme 2.

VI. CONCLUSION 

In this paper, the operation cost model of RIEM in the 
electricity market environment is established. And the risk of 
load and electricity price uncertainties are considered. The 
operation cost optimization model of RIES based on CVaR 
is proposed, and the optimization problem is transformed in‐
to a mixed-integer linear programming problem. The effec‐
tiveness of the model is verified by a real-world example. 
The following conclusions can be drawn.

1) Compared with the traditional method, the proposed 
method cannot reduce the operation cost in all cases. In the 

low-electricity-price scenario, the operation cost may be 
higher than the traditional method. However, the proposed 
method can effectively reduce the operation cost of high-
electricity-price scenario and effectively restrict the risk of 
electricity market transactions, which is of great significance 
for the risk-averse RIES.

2) When the risk aversion degree of RIES is high, the con‐
servative strategy can be selected to reduce the risk, but the 
expected operation cost will be higher. When the risk aver‐
sion degree of RIES is low, the aggressive strategy can be 
selected to reduce the expected operation cost, but the risk 
will be higher.

3) By reducing the actual electricity consumption in the 
wholesale electricity market and using the energy at a fixed 
price, the risk of spot electricity price uncertainty in the 
wholesale electricity market can be effectively reduced.

4) Under the condition that the loads can be effectively 
controlled, only the electricity prices are uncertain. The 
RIES can make full use of the speculative arbitrage space in 
the wholesale electricity market transactions, so as to reduce 
the electricity purchase cost in the wholesale electricity mar‐
ket as much as possible.

5) In the case of uncertain loads and electricity prices, the 
RIES cannot make full use of the speculative arbitrage 
space, but can choose the appropriate trading strategy accord‐
ing to the gap between the forecasted day-ahead electricity 
price and the forecasted real-time electricity price, so as to 
reduce the electricity purchase cost of the wholesale electrici‐
ty market as much as possible.

In this paper, the operation cost optimization method only 
considers the optimization strategy before the day-ahead 
price is announced. In future, we will further study the oper‐
ation optimization strategy of the RIES when the day-ahead 
electricity price is known.
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