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Abstract——Photovoltaic (PV) power generation has highly pen‐
etrated in distribution networks, providing clean and sustain‐
able energy. However, its uncertain and intermittent power out‐
puts significantly impair network operation, leading to unex‐
pected power loss and voltage fluctuation. To address the uncer‐
tainties, this paper proposes a multi-timescale affinely adjust‐
able robust reactive power dispatch (MTAAR-RPD) method to 
reduce the network power losses as well as alleviate voltage de‐
viations and fluctuations. The MTAAR-RPD aims to coordinate 
on-load tap changers (OLTCs), capacitor banks (CBs), and PV 
inverters through a three-stage structure which covers multiple 
timescales of “hour-minute-second”. The first stage schedules 
CBs and OLTCs hourly while the second stage dispatches the 
base reactive power outputs of PV inverter every 15 min. The 
third stage affinely adjusts the inverter reactive power output 
based on an optimized Q-P droop controller in real time. The 
three stages are coordinately optimized by an affinely adjust‐
able robust optimization method. A solution algorithm based on 
a cutting plane algorithm is developed to solve the optimization 
problem effectively. The proposed method is verified through 
theoretical analysis and numerical simulations.

Index Terms——Multi-timescale, photovoltaic (PV), reactive 
power dispatch, uncertainty, affinely adjustable robust optimiza‐
tion.

NOMENCLATURE

A. Sets and Indices

E, ij Set and index of network branches

G Set of sub-network number

N, i Set and index of nodes for whole network

N CB, N PV Sets of nodes connecting capacitor (CB) and 
photovoltaic (PV)

T, t Set and index of operation periods

U PV, U PD, U QD Uncertainty sets of PV, active load, and reac‐
tive load

B. Parameters

αi Control parameter
-
μ, 

-
μ Upper and lower bounds of uncertainty budget

At, Bt, Ft, Ht, Coefficient matrices
It, Kl,t, hl,t

bt, c, ft, jt Constant vectors

N max
OLTC, N max

CB Allowed maximum switch changing times for 
on-load tap changer (OLTC) and CB during 
operation period

-
P

PV
it  -P

PV
it Upper and lower bounds of PV

-
P

PD
it   -P

PD
it Upper and lower bounds of active load

-
Q

PD

it
  
-
Q PD

it
Upper and lower bounds of reactive load

QPVmax
it   QPVmin

it The maximum and minimum limits of PV re‐
active power

Qtap Reactive power supply of per unit CB

rmin Square of the minimum tap ratio in OLTC

rs Difference for square of ratio between step s 
and step s - 1 in OLTC

rit Disturbance parameter

rij, xij Resistance and reactance of branch ij

S PV
it Capacity of PV at node i during period t

T max
OLTC  T

max
CB The maximun taps of OLTC and CB

V max
it , V min

it Upper and lower bounds of allowed voltage

w Droop control gain
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C. Variables

DP, DQ Active and reactive power variations

δOLTCIN
it , δOLTCDE

it Auxiliary binary variables of OLTC
δCBIN

it , δCBDE
it Auxiliary binary variables of CB

σ OLTC
st , σ CB

ist Dummy binary variables of OLTC and CB
J0 Jacobian matrix
Li,t Sensitivity of node voltage magnitude to reac‐

tive power injection
P PV

it P
PD
it Actual active power of PV and active load

QPV
it  Q

CB
it  Q

QD
it Reactive power of PV, CB, and reactive load

QPVbase
it Reactive power base setpoint of PV

P PVf
it Forecasted value of mean active power of PV

Pij,t, Qij,t Active and reactive power flow of branches
T OLTC

it  T CB
it Taps of OLTC and CB

ut Uncertain variables
V0 Bus voltage vector
vbase,t Square of voltage for OLTC at primary side
Vi,t, Iij,t Node voltage magnitude and current
V PV

it Node voltage magnitude of bus with PV sys‐
tems

vi,t, lij,t Square of node voltage magnitude and current
xt The first-stage decision variables
yt The second-stage decision variables

I. INTRODUCTION 

THE high penetration of photovoltaics (PVs) brings sig‐
nificant challenges to distribution network operation 

due to its high uncertainty and intermittency. Regarded as 
important in distribution network operation, reactive power 
dispatch (RPD) is effective in regulating bus voltages and re‐
ducing network power losses [1]. In the RPD, on-load tap 
changers (OLTCs) are scheduled to regulate bus voltages 
while capacitor banks (CBs) and inverters of PVs are sched‐
uled for var compensation [2]. As traditional discrete devic‐
es, the OLTCs and CBs act slowly so that these devices are 
scheduled over long periods such as several hours. The PV 
inverters are power electronics equipment that can provide 
continuous var compensation in RPD at a real-time-level re‐
sponse speed. Thus, PV inverters are suggested to be em‐
ployed for real-time dispatch and control in RPD methods 
by IEEE 1547 working group [3].

The current RPD methods can be classified into decentral‐
ized, centralized, and hierarchical architectures [4]. In decen‐
tralized RPD, the RPD devices are controlled locally and do 
not need global information communication. In [5], an incre‐
mental voltage control algorithm which adjusts the reactive 
power gradually is designed for local voltage control. A lo‐
cal volt/var setting which regulates the voltage utilizing PV 
inverters is proposed in [6]. In [7], the purely local control 
architectures which take voltage, power flow, and both as in‐
puts are discussed. In [8], a local RPD method which regu‐
lates the reactive power based on locally available informa‐
tion is proposed to correct the voltage deviation. The decen‐
tralized RPD is always easy and simple to implement while 

it needs a small amount of communication, computation, or 
storage resources. However, it is hard to achieve globally op‐
timal control by decentralized RPD, stemming from its short‐
age in the global observation of the whole network infor‐
mation.

Regarded as a static optimization approach, the centralized 
RPD schedules OLTCs, CBs, and PV inverters coordinately 
to achieve control objectives from the system-wide perspec‐
tive. Reference [9] analyzes the ability of inverters to pro‐
vide reactive power support. In [10], a centralized reactive 
power compensation system optimized by minimizing the ex‐
pected total cost is designed to regulate voltage, improve 
power factor, and reduce power losses. Reference [11] pro‐
poses a multi-objective RPD model with a switch law be‐
tween optimization objectives to reduce power losses and im‐
prove power quality simultaneously. From the system-wide 
perspective, the centralized RPD achieves global optimality 
by coordinating the controllable devices. However, due to 
slow response speeds, it is inflexible to adjust control deci‐
sions to gusty variations of network operation status, e.g., un‐
expected sharp variations of PV power generation.

Considering the advantages and drawbacks of the decen‐
tralized and centralized methods, the hierarchical RPD which 
applies the central optimization and the local control has 
been developed recently. In [12], a hybrid RPD control meth‐
od containing two control loops is proposed. The optimal de‐
cisions of OLTC, CBs, and static var compensators (SVCs) 
are determined in the coordinated control loop firstly, while 
the CBs and SVCs become self-controlled in the uncoordi‐
nated control loop if large variations of PV power outputs 
occur. In [13], a hierarchical RPD method which achieves 
the optimal objectives through a system-wide voltage control‐
ler in an upper layer and regulates voltage locally to trace 
controller setpoints at a lower layer is proposed. Reference 
[14] proposes a distributed hierarchical RPD method, which 
controls the OLTC and distributed generators employing dif‐
ferent agents. However, in these works, the local real-time 
operating conditions are not considered in optimal decision 
making at the centralized level.

It is worth noting that the stochastic nature and uncertain‐
ties of PV power generation and loads impact the control ef‐
fectiveness seriously. Conventionally, stochastic program‐
ming (SP) methods are utilized to address the uncertainties. 
SP is implemented based on probability distribution of uncer‐
tainties, thus [15] utilizes Beta distribution and normal distri‐
bution to describe stochastic variations of renewable energy 
sources and loads, respectively. Reference [16] reviews the 
present optimal RPD methods and proposes a stochastic 
model considering a voltage stability index under uncertain 
renewable power generation and loads. In [17], the PV in‐
verters are managed to provide optimal reactive power com‐
pensation by a stochastic scheme, which is constructed 
based on the Lagrange multipliers of a second-order cone 
programming. Although SP has a complete theoretical archi‐
tecture, its applications are limited in practice, since accurate 
probability distribution of uncertainties is hard to be ob‐
tained. In addition, sampled scenarios for SP problems may 
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not cover all possible uncertainty realizations, then operating 
risks are left and constraint violations may still occur.

Different from SP, robust optimization (RO) methods mod‐
el uncertainties by lower and upper bounds without any prob‐
ability distribution information. Besides, RO obtains optimal 
solutions in the worst case of uncertainty realization within 
the bounds. In [18], a robust centralized optimal dispatch ap‐
proach for PV inverter is proposed. In this approach, several 
PV inverters with much influence on node voltage are select‐
ed and controlled to regulate bus voltages. Reference [19] 
coordinately optimizes schedules of OLTC, CB, PV inverter, 
and distributed storage system based on the two-stage RO. 
An adaptive robust RPD method is proposed in [20] to re‐
duce power losses. Compared with SP, RO can ensure oper‐
ating constraints to be satisfied when uncertainties are within 
the predefined lower and upper bounds. Thus, due to its 
high solution robustness against uncertainties, RO is suggest‐
ed and widely applied in the RPD methods considering un‐
certainties.

However, in [15] - [20], the real-time local control is not 
considered or discussed. In [21], the two-stage RO is uti‐
lized to schedule the OLTCs, CBs, and PV inverters in two 
central control stages, while the local Q-V droop control is 
employed to control PV inverters in real time. The Q-V con‐
trol is effective in regulating voltage locally but weak in re‐
ducing power losses from the system-wide perspective. Be‐
sides, the Q-V control may lead to output vibrations during 
the system convergence procedure.

Considering the above issues are unsolved in the litera‐
ture, this paper proposes a multi-timescale affinely adjust‐
able robust RPD (MTAAR-RPD) method to coordinately op‐
erate OLTC, CBs, and PV inverters covering the whole tim‐
escale, i. e., hour, minute, and second. Scheduling OLTC, 
CBs, and dispatching PV inverter are coordinated through 
the centralized adaptive RO (ARO) while the real-time PV 
inverter control with a linear Q-P control strategy is fully 
considered via an affinely ARO (AARO).

Compared with the existing research, the major contribu‐
tions of this paper can be summarized as follows.

1) The central and local RPD methods are coordinated in 
a multi-timescale “hour-minute-second” framework, in which 
the influences of uncertainty are fully considered.

2) A linear Q-P real-time control strategy regulating the in‐
verter reactive power output according to its real-time active 
power output is proposed and optimized in the centralized 
optimization to reduce power losses.

3) The multi-timescale RPD method is optimized by an 
AARO method which is solved by a cut plane algorithm so 
that the uncertainty impacts are addressed.

II. MULTI-TIMESCALE RPD STRUCTURE 

The MTAAR-RPD is a coordinated control strategy which 
covers the “hour-minute-second” multiple timescales, fully 
coordinating central and local control under uncertainties. 
Technically, MTAAR-RPD aims to schedule and control mul‐
tiple RPD devices at the corresponding timescales to reduce 
power losses and maintain bus voltages within an allowed 

range considering uncertain PV power generation and loads. 
The whole structure of MTAAR-RPD is shown in Fig. 1.

A. “Hour” Scheduling of OLTC and CBs

In the “hour” scheduling stage, the OLTC and CBs are 
scheduled optimally. To address the uncertainties, an interval 
prediction technique [22] is employed to provide predicted 
intervals. Then, based on these predicted intervals of PV ac‐
tive power outputs and loads over a prescribed horizon, e.g., 
4 hours in this paper, the taps of an OLTC and CBs are opti‐
mized to minimize network power losses. Moreover, a roll‐
ing horizon strategy is employed to address prediction errors 
in the short-term future. In this strategy, only the decisions 
in the first hour are adopted and the decisions in the next 
hours will be renewed in this 4-hour horizon. The maximal 
switching time limitation of discrete devices over the whole 
scheduling horizon and the sufficient reserve capacity for the 
following periods are fully considered in the rolling horizon 
based optimization.

With consideration of the uncertainties, the “hour” sched‐
uling and “minute” dispatch are optimized through an ARO 
model [21], which considers the 15-min base reactive power 
output of PV inverter in the “hour” scheduling of OLTC and 
CBs. As ARO optimizes the control decisions based on the 
worst case of uncertainty realization, the RPD in “hour” and 
“minute” timescales can be robustly coordinated. It should 
be noted that only the decisions of the OLTC and CBs are 
employed in the first hour, while PV inverter reactive power 
outputs will be reoptimized to be implemented in the “min‐
ute” dispatch stage.

B. “Minute” Dispatch of PV Inverter

Within each hour, the base reactive power outputs of PV 
inverter are scheduled to further reduce network power loss‐
es in a 15-min horizon. A 15-min-ahead interval prediction 
is employed and provides forecasted PV power generation 
and loads. Then, based on the prediction data, the optimal 
dispatch decisions are obtained through solving an according‐
ly formulated AARO model, which is introduced in Section 
IV.

The “minute” dispatch and “second” control are modeled 
in the AARO model where the “minute” dispatch decisions 
of PV inverter will be the reference setpoint of the “second” 
real-time local control. It is worth noting that the “second” 
real-time local control under the PV power generation fluctu‐

“Hour”

scheduling

“Minute”

dispatch

Input data Decisions

15

min

15

min

15

min

15

min

OLTC
CB

MTAAR-RPD

4-hour

prediction

PV & load

interval

predictions

15-min

prediction

Real-time

variations

Coordinated

control

Coordinated

control

Real-time

control

1st

hour

2nd

hour

3rd

hour

4th

hour

PV

inverter
Real time (900 s)

Fig. 1.　Structure of MTAAR-RPD.
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ations is fully considered in the “minute” inverter dispatch 
optimization. Thus, the RPD in these two timescales are co‐
ordinately optimized.

C. “Second” Control of PV Inverter

Within the 15-min horizon, a local Q-P control method is 
applied to reduce voltage fluctuations and power losses in re‐
al time. By utilizing a 15-min-ahead interval prediction of 
PV power generation, the parameters of Q-P control are opti‐
mized via the AARO. Then, with the optimized parameters, 
the inverter reactive power output is controlled according to 
its actual active power generation in real time. In the next 
15 min, the control parameters will be updated based on the 
reoptimized 15-min inverter dispatch decisions.

III. MATHEMATICAL FORMULATION 

A. Mathematical Formulation of Q-P Control

Reference [23] utilizes the Q-V droop control to regulate 
voltage according to the real-time voltage variations. The Q-
V control model and its corresponding characteristic is 
shown as:

QPV
it =

ì

í

î

ïïïï

ïïïï

QPVbase
it +wLit (V

min
it -V PV

it ) V PV
it <V min

it

QPVbase
it V min

it £V PV
it £V max

it

QPVbase
it +wLit (V

max
it -V PV

it ) V PV
it >V max

it

(1)

where QPVmin
it £QPV

it £QPVmax
it .

As shown in Fig. 2, in the Q-V control, the inverter reac‐
tive power is kept as QPVbase

it  when the voltage is within the 
allowed operating range [V min

it ,V max
it ]. Once the voltage is be‐

yond the allowed range, the real-time reactive power com‐
pensation is implemented through the Q-V droop control 
function. Apparently, it exists a dead band in Q-V control, 
which results in low utilization efficiency of the inverter re‐
active power capacity. Moreover, only the local information 
is utilized in this Q-V control, thus it is hard to operate the 
network optimally.

Through fully utilizing the reactive power capacity of PV 
inverter and optimizing the local control in global perspec‐
tive, a more effective real-time control strategy as Q-P con‐
trol is proposed. In the proposed Q-P control, the reactive 
power of PV inverter is controlled through a linear function 
according to the real-time active power output. The control 
characteristics are illustrated in Fig. 3 and the real-time reac‐
tive power output of the ith PV inverter QPV

it  is controlled as:

QPV
it =QPVbase

it + (DQit DPit)(P
PV
it -P PVf

it ) (2)

It can be observed that the Q-P droop control supports 
more flexible reactive power control and makes more effi‐
cient utilization of the inverter capacity. Besides, as the Q-V 
control usually needs several iterations to determine the PV 
reactive power output based on node voltage, the vibrations 
may occur. By contrast, as the Q-P control function is linear 
and related to active power generation, it makes the deter‐
ministic control decision directly, therefore the vibration is 
avoided.

B. Mathematical Formulation of MTAAR-RPD

The MTAAR-RPD provides “hour” decisions for OLTC 
and CBs and “minute-second” decisions for PV inverter, re‐
spectively. Based on the coordinated coupling of these three 
controlling timescales, the mathematical model of MTAAR-
RPD is shown as:

min
T OLTC

t T CB
t QPV
∑
tÎ T
∑
ijÎE

lijtrij (3)

s.t.

∑
jkÎE

Pjkt -∑
ijÎE

(Pijt - rijlijt )=P PV
jt -P PD

jt     "t (4)

∑
jkÎE

Qjkt -∑
ijÎE

(Qijt - xijlijt )=QCB
jt +QPV

jt -QQD
jt     "t (5)

vjt = vit + (r 2
ij + x2

ij )lijt - 2(rij Pijt + xijQijt )    "ijÎE"t (6)













 











2Pijt

2Qijt

lijt - vit 2

£ lijt + vit    "ijÎE"t (7)

(V min
it )2 £ vit £(V max

it )2    "iÎN"t (8)

(I min
ijt )2 £ lijt £(I max

ijt )2    "ijÎE"t (9)

v1t = vbaset( )rmin +∑
s

rsσ
OLTC
st     "t (10)

σ OLTC
m - 1t ³ σ

OLTC
mt     "mÎ[2T max

OLTC ]"t (11)

∑
s

σ OLTC
st £ T max

OLTC    "t (12)

∑
s

σ OLTC
st -∑

s

σ OLTC
st - 1 ³ δ

OLTCIN
t - δOLTCDE

t T max
OLTC    "t (13)

∑
s

σ OLTC
st -∑

s

σ OLTC
st - 1 £ δ

OLTCIN
t T max

OLTC - δ
OLTCDE
t     "t (14)

∑
tÎ T

(δOLTCIN
t + δOLTCDE

t )£N max
OLTC    "t (15)

Q

V

∆Qi,t

∆Vi,t

Qi,t
PV,max

Qi,t
PV,base

Qi,t
PV,min

Vi,t
min

Vi,t
max

Vi,t
PV

Qi,t
PV

Fig. 2.　Control characteristics of Q-V droop control.

Q

∆Qi,t

∆Pi,t

Pi,t
PV, f

Pi,t
PV

Qi,t
PV,max

Qi,t
PV,base

Qi,t
PV,min

Qi,t
PV

P

Fig. 3.　Control characteristics of Q-P droop control.
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δOLTCIN
t + δOLTCDE

t £ 1    "t (16)

QCB
it =Qtap∑

s

σ CB
ist    "iÎN CB"t (17)

σ CB
im - 1t ³ σ

CB
imt    "mÎ[2T max

iCB ]"iÎN CB"t (18)

∑
s

σ CB
ist £ T max

iCB    "iÎN CB"t (19)

∑
s

σ CB
ist -∑

s

σ CB
ist - 1 ³ δ

CBIN
it - δCBDE

it T max
iCB    "iÎN CB"t  (20)

∑
s

σ CB
ist -∑

s

σ CB
ist - 1 £ δ

CBIN
it T max

iCB - δ
CBDE
it     "iÎN CB"t  (21)

ì
í
î

ïï

ïïïï

∑
tÎ T

(δCBIN
it + δCBDE

it )£N CBmax
i     "iÎN CB"t

δCBIN
it + δCBDE

it £ 1    "iÎN CB"t
(22)

(P PV
it )2 + (QPV

it )2 £(S PV
it )2    "iÎN PV"t (23)

The objective function is to reduce power losses in sched‐
uling period T, shown as (3). The power flow model is illus‐
trated by the Dist-flow constraints as (4)-(6) while (7) is the 
second-order cone relaxation (SOCR) constraint. Referring 
to [24], when the objective function is the strictly increasing 
function of branch current, the SOCR is exact. This SOCR 
constraint transfers the non-convex power flow constants in‐
to convex ones, thus it is possible to obtain the global opti‐
mal solution. Constraints (8) and (9) indicate the safe con‐
straints of voltage and branch current, respectively.

The operation constraints of OLTC and CB are shown in 
(10)-(16) and (17)-(22), respectively. Equations (10) and (11) 
show the voltage square relationship between the primary 
and secondary sides of OLTC in a linear form while (17) 
and (18) describe the reactive power supply of CB. Equa‐
tions (12) and (19) express the maximal switch limitation of 
OLTC and CBs, respectively. Equations (13), (14), (20), and 
(21) show that the tap changes of OLTC and CBs during 
one operation period should be constrained within the maxi‐
mum limit. Equations (15), (16), and (22) show that the total 
tap action times of OLTC and CBs should be limited by the 
allowable values during the scheduling period. Constraint 
(23) shows the capacity constraint of PV inverters.

During the “hour” scheduling and “minute” dispatch peri‐
ods, the OLTC, CBs, and PV inverters are dispatched while 
the decisions are considered as definite values. Thus, (3) -
(23) formulate the RPD model covering “hour-minute” tim‐
escales. Based on the optimized taps of OLTC and CBs, the 
PV inverter is regulated dynamically in the “second” control 
while the decisions relate to the real-time variations follow‐
ing the strategy as shown in (2). As QPVbase

it  is obtained dur‐
ing the “minute” dispatch, (2)-(10), (17), and (23) formulate 
the coordinated “minute” and “second” RPD model. There‐
fore, the “hour-minute-second” RPD model are coordinated 
as above.

IV. OPTIMIZATION METHODOLOGY UNDER UNCERTAINTY 

In accordance with the RPD model constructed in Section 
III, the ARO is utilized in the coordinated “hour” and “min‐
ute” scheduling [18] while the AARO is employed in the co‐

ordinated “minute” and “second” controlling [25]. The de‐
tails are shown as follows.

A. ARO Formulation

The uncertainties of PV active power outputs and loads 
are modeled by uncertainty sets U PV, U PD, and U QD shown 
as:

U PV =
ì

í

î

ïïïï

ïïïï

ü

ý

þ

ï
ïï
ï

ïïïï
-P

PV
it £P PV

it £
-
P

PV
it  -

μ PV £
∑
iÎN
∑
tÎ T

P PV
it

∑
iÎN
∑
tÎ T

P PVf
it

£ -
μ

PV
(24)

U PD =
ì

í

î

ïïïï

ïïïï

ü

ý

þ

ï
ïï
ï

ïïïï
-P

PD
it £P PD

it £
-
P

PD
it  -

μ PD £
∑
iÎN
∑
tÎ T

P PD
it

∑
iÎN
∑
tÎ T

P PDf
it

£ -
μ

PD
(25)

U QD =
ì

í

î

ïïïï

ïïïï

ü

ý

þ

ï
ïï
ï

ïïïï
-
Q QD

it
£QQD

it £
-
Q

QD

it
 
-
μ QD £

∑
iÎN
∑
tÎ T

QQD
it

∑
iÎN
∑
tÎ T

QQDf
it

£ -
μ

QD
(26)

The first terms in (24)-(26) depict the varying range of un‐
certain issues which can be obtained through interval predic‐
tion techniques [22]. The second terms in (24)-(26) show the 
budget which is utilized to balance robustness with conserva‐
tiveness of solutions. The detailed illustration and discussed 
selection on this budget can be found in [26].

For the “hour-minute” RPD model, the OLTC and CBs 
are regulated hourly while the PV inverters are scheduled ev‐
ery 15 min, thus this model is formed in a two-stage struc‐
ture. With the utilization of ARO, the first-stage decision 
variable is the tap of OLTC and CBs, which is known as the 
“here-and-now” decision. The “here-and-now” decision de‐
termined before the uncertainties are realized and cannot be 
changed with uncertainty. As the second-stage decision vari‐
able, the PV reactive power output is optimized according to 
the realization of uncertainties and this decision is referred 
as the “wait-and-see” decision. Then, based on ARO, the 
“hour-minute” RPD model is rewritten in a “min-max-min” 
form as:

min
xt

max
ut

min
yt
∑
tÎ T

Ct (yt ) (27)

s.t.

At x t £ b t    "t (28)

∑
tÎ T

B t x t £ c    "t (29)

Ft yt £ ft    "t (30)

Ht x t + I t yt + J tut = jt    "t (31)

 K lt yt £ hT
lt yt    "t (32)

utÎU    "t (33)

Equation (27) denotes the objective function. The action 
limits of OLTC and CBs (expressed as (10) - (12) and (17) -
(19), respectively) are expressed by constraint (28). Con‐
straint (29) denotes the time coupling of OLTC and CBs (ex‐
pressed as (13)-(16) and (20)-(22), respectively). Constraints 
(8), (9), and (23) are integrated as constraint (30). Equation 
(31) denotes constraints (4)-(6). The SOCR constraint shown 
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as (7) is expressed by (32) and (33) shows the uncertainty 
sets as (24)-(26), where U =U PVU PDU QD.

In this “min-max-min” formulation, it minimizes power 
losses under the worst case in the uncertain set. The second 
“min” aims to optimize the second-stage dispatch decision 
under the worst case which is searched by the “max”. Based 
on the second-stage dispatch decisions and the obtained 
worst case, the first-stage scheduling decisions are optimized 
by the first “min”. Thus, the first and second RPD stages 
can be optimized coordinately and robustly.

B. AARO Formulation

With the 15-min-ahead interval prediction, the uncertain 
PV active power is illustrated as (24). As the strict require‐
ment of safety in real-time operation, the regulation budget 
is not employed. By applying the affine mathematic, the ac‐
tive power output of an arbitrary PV can be obtained as:

P PV
it =P PVf

it + βitrit (34)

βit = (
-
P

PV
it - -P

PV
it ) 2 (35)

Then, with the Q-P control, the reactive power output is 
updated by the following affine function:

QPV
it =QPVbase

it + αitrit (36)

rit = (P PV
it -P PVf

it ) βit (37)

It should be noted that (2) and (36) are equivalent while 
(2) shows the physical meaning and (36) is utilized to pres‐
ent the AARO mathematical model easily.

Accordingly, the capacity constraint is written as:

(P PVf
it + βitrit )

2 + (QPVbase
it + αitrit )

2 £(S PV
it )2 (38)

The renewed capacity constraint (38) is quadratic, and it 
causes the AARO model to be complex and hard to solve. 
Then, the inner approximation [26] is designed to transfer 
the quadratic constraint into a group of linear constraints, as 
shown in Fig. 4.

The original capacity constraint shown as a semi-circle is 
transferred into the constraint described by the area which is 
formed by the line segments (A, B), (B, C), (C, D), (D, E), 
(E, F), (F, G), and (G, A). Then, the line segment (A, B) can 
be shown as:

QPVbase
it + αitrit - (P PVf

it + βitrit - S PV
it ) ( 3 - 2) £ 0 (39)

The other line segments (B, C), (C, D), (D, E), (E, F), (F, 
G), and (G, A) can be expressed in a similar way. For the in‐
ner approximation, the segments can be changed according 

to practical requirements. More segments are used to in‐
crease accuracy and less segments are used to speed up com‐
putation. As the PV active power variation is always small 
compared with the active power output, it can be concluded 
that if the above constraints are guaranteed under the ex‐
treme points as rit = 1 and rit =-1, they can be satisfied with 
other conditions. To simplify the expression, the above con‐
straints are represented by h(QPVbase

it αitrit )£ 0 .
As the traditional voltage constraint (8) is static, it is in‐

sufficient to guarantee the safe operation with dynamic volt‐
age variation in real time. Then, a novel AARO voltage con‐
straint is proposed in this paper.

Based on the sensitivity equation from Newton-Raphson 
method, we can obtain:

é
ë
êêêê ù

û
úúúú

DP
DQ

= J0
é
ë
êêêê ù

û
úúúúDθ

DV
(40)

J -1
0 = S = é

ë
êêêê ù

û
úúúúS θ

P S θ
Q

S V
P S V

Q

(41)

V =V0 +DV =V0 + S V
PDP + S V

QDQ (42)

ì
í
î

DPit = βitrit "iÎN PV"t

DQit = αitrit "iÎN PV"t
(43)

Then, (40) - (43) illustrate the relationship between node 
voltage magnitude and PV power supplies in real time. 
Based on this linear relationship, the constraints of node volt‐
age can be transferred into the constraints on PV power sup‐
plies in real time.

Based on the above analysis, the AARO model is ex‐
pressed as:

min
QPVbase

t α
max

r
∑
tÎ T
∑
ijÎE

rijlijt (44)

s.t.

ì

í

î

ïïïï

ïïïï

h(QPVbase
it αitrit )£ 0    "iÎN PV"t

V min
t £V0t + S V

PDP t + S V
QDQt £V max

t     "t

(4)-(6) (8)-(10) (17) (34)-(37) (40)-(43)

(45)

C. Solution Method

The ARO model which schedules OLTC and CBs is 
solved by applying the column and constraint generation 
(C&CG) algorithm and the detailed illustration of C&CG 
can be found in [27]. From the linear function shown in 
(36), the control variables to be acquired are QPVbase

t  and α. 
By considering (36) and (37) together, it can be concluded 
that if the disturbance parameter r equals to 0, the PV active 
power is the forecasted value and the optimal reactive power 
QPV

t  equals to QPVbase
t . Thus, QPVbase

t  can be obtained by solv‐
ing the AARO mathematical model with r = 0, which is a de‐
terministic optimization model.

With known QPVbase
t , the unknown parameters in (36) are 

α and r. The objective function of AARO in (44) is trans‐
formed to min

α
max

r
f (αr). It is assumed that (α*r* ) is the 

optimal solution, (αkrk ) is one pair of arbitrary values with‐
in the feasible region of the original problem. Then, the fol‐
lowing constraints are satisfied:

A B

C

D

E

FG

O

Qi,t
PV Qi,t

PV

Pi,t
PV

Pi,t
PV

Fig. 4.　Inner approximation of capacity constraint.
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min
α*

max
r*

f (α*r* )³ min
α

f (αr* )³ min
α

f (αrk ) (46)

min
α*

max
r*

f (α*r* )£ max
r

f (α*r)£ max
r

f (αkr) (47)

By analyzing (46) and (47) together, the min-max prob‐
lem is one saddle point problem, which is solved by a cut‐
ting plane algorithm. The detailed procedure of solution 
method for AARO is shown in Algorithm 1.

V. CASE STUDIES 

A. Test System

The IEEE 123-bus distribution network, whose data can 
be found in [2], is utilized to testify the efficiency of the pro‐
posed MTAAR-RPD approach. The OLTC, CBs, and PVs 
are installed while the parameters are shown in Table I. The 
voltage of OLTC at the primary side is set as 1.0 p.u. and 
the voltage regulation scope is set as [0.95, 1.05] p.u.

The uncertainties of loads and PV power generation are il‐
lustrated as follows. As for the PV active power, the lower 
and upper bounds of 4-hour-ahead prediction are set as 0.7 
and 1.3 of the expected value, respectively, while the bounds 
of uncertainty budgets are set as 0.8 and 1.2. Moreover, its 
15-min-ahead predicted lower and upper bounds of the 15-
min-ahead prediction are set as 0.8 and 1.2 of the expected 
value, respectively. In terms of loads, the predicted lower 
and upper bounds are set as 0.8 and 1.2 of the expected val‐
ue, respectively, while the bounds of uncertainty budgets are 
set as 0.9 and 1.1, respectively. The multiplier factors of the 
uncertain issues are shown in Fig. 5 while the predicted and 
actual values of these issues equal to their base value times 
of the corresponding factors.

B. “Hour” and “Minute” Controlling Decisions

The decisions of OLTC and CBs are optimized for the 4-
hour scheduling period while only decisions in the first hour 
are adopted. And this procedure is rolled hourly. 

Based on the predicted interval of PV generation and 
loads, the decisions of OLTC and CBs are obtained through 
solving the ARO model. Figure 6 shows the tap decisions of 
the OLTC and CBs from 8 a.m. to 12 a.m., in other words, 
the decisions shown are for the 1-hour time sections starting 
at 08:00, 09:00, 10:00, and 11:00, respectively.

Within each hour, the “minute” controlling decisions of 
PV reactive power contribution are obtained by solving a de‐
terministic optimization model based on the obtained results 
of OLTC and CBs. The controlling decisions of PV reactive 
power from 08:00 to 08:45 are shown in Fig. 7.

It should be noted that, the decisions in Fig. 7 are ob‐
tained by solving the “minute” control model, which are not 
the real-time decisions of the PV reactive power outputs. In 
real-time operation, the PV reactive power output will be 
regulated by employing the “second” control proposed in 
this paper with the updated real-time measurements. The 
“hour-minute” scheduling model in the ARO form is solved 
in 26.7107 s, indicating the proposed method is fully compat‐
ible for practical online use.

C. Real-time Controlling Decisions

To test the performance of proposed Q-P control, a ran‐
dom scenario for period from 08:00 to 08:15 (900 s) is con‐

TABLE I
PARAMETERS OF OLTC, CBS AND PVS

Type

OLTC

CB

PV

Limit 
taps

20

10

Per tap/
capacity

0.005 p.u.

30 kvar

600 kVA

Bus No. of placement location

1

19, 50, 70, 83, 96, 118

15, 25, 40, 51, 65, 77, 85, 95, 97, 113

Algorithm 1: procedure of solution method for AARO

 1: Initialize r0 = 0, solve the deterministic optimization problem and ob‐
tain QPVbase

t .
 2: Set the iteration time k = 1, the iteration convergence standard ε = 1 ´

10-2, the upper bound UB =+¥ and the lower bound LB =-¥.
 3: while |UB - LB| > ε do
 4:   Set r = rk - 1, solve the AARO model to obtain αk, then update LB =

min
α

f (αrk - 1 ).

 5:   Set α = αk, solve the AARO model to obtain rk, then update UB =
max

r
f (αkr) and k = k + 1.

 6: end

Uncertainty interval; Predicted value; Actual value

0 3 6 9 12 15 18 21 24
Time (hour)

(a)

0 3 6 9 12 15 18 21 24
Time (hour)

(b)

0.5

1.0

F
ac

to
r

0.5

1.0

F
ac

to
r

Fig. 5.　Uncertain load and PV factors in 24 hours. (a) Load. (b) PV.
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Fig. 7.　Controlling decisions of PV reactive power.
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structed while the real-time PV power generation factor is 
shown in Fig. 8. It should be noted that the PV power gener‐
ation fluctuates beyond the given lower and upper bounds of 
uncertainty to simulate the actual scenario as the sudden 
cloud movement.

In the Q-P control, the control parameters are obtained by 
solving the AARO model with the proposed cut plane algo‐
rithm. And the AARO model is solved in 3.5878 s, which 
meets the requirement of practical online use. During the 
time period from 08:00 to 08:15, the controlled reactive pow‐
er outputs of PV inverters are shown in Fig. 9. Correspond‐
ingly, the voltage magnitude of the network at t = 410 s em‐
ploying Q-P control is shown in Fig. 10.

To test the proposed Q-P strategy, the comparison be‐
tween Q-P control and Q-V control on a 900-second scenar‐
io is conducted as follows. The parameters of Q-V control 
strategy are not optimized but set as a traditional model, and 
the details of Q-V control can be found in [5]. The conver‐
gence procedures of Q-V control and Q-P control at four lo‐
cations are shown in Fig. 11. The comparison on voltage reg‐
ulation is shown in Fig. 12.

As shown in Fig. 11, the proposed Q-P control achieves 
flat control results while the Q-V control leads to vibration. 
This is because the Q-P control is based on active power, 
thus the decision on PV reactive power output can be ob‐
tained directly based on the measurement of real-time active 
power output in (36).

However, the Q-V control is voltage-based and voltage 
can only be obtained via power flow calculation. 

Moreover, the relationship between the bus voltage and re‐
active power injection is non-linear, and it usually needs iter‐
ations for converging the reactive power output and the volt‐
age operating point on the Q-V droop curve. Thus, Q-V con‐
trol needs time for making decisions when power flow 
changes, which leads to slight vibrations.

From Fig. 12, the Q-V control behaves slightly better in al‐
leviating voltage fluctuations when voltage is over 1.05 p.u.. 
However, under the condition that bus voltages are within 
the allowed regulation scope, Q-P control provides a lower 
voltage level, for it can better track PV power fluctuations 
with fully-optimized control parameters.

Besides, the average power losses of Q-V control and Q-P 
control are 17.702 kW and 16.401 kW, respectively. It can 
be observed that Q-P control significantly reduces 7.35% 
power losses more than Q-V control from 08: 00 to 08: 15. 
Thus, Q-P control achieves less power loss, and more eco‐
nomic benefits than Q-V control.

These two strategies are applicable under different condi‐
tions. If the distribution network operates in the normal volt‐
age level, the Q-P control is more effective. On the other 
hand, if the distribution network operates under the risk of 
overvoltage, the Q-V control is more applicable.

D. 24-hour Scenario

As shown in Fig. 6, the 24-hour scenario is constructed to 
testify the effectiveness of the proposed MTAAR-RPD in a 
whole day. The uncertain bounds of 4-hour-ahead prediction 
are utilized in optimizing the “hour-minute” dispatch with 
rolling horizon while uncertain bounds of 15-min-ahead pre‐
diction and actual value of PV power generation are em‐
ployed in optimizing the “minute-second” control. Then, the 
decisions of OLTC and CBs are shown in Fig. 13 while reac‐
tive power outputs of PVs are shown in Fig. 14.
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Fig. 12.　Voltage magnitude of node 44 under Q-V and Q-P controls.
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As shown in Fig. 13, the OLTC acts with low tap to bring 
down the voltage level during the hours with high PV active 
power supply, i. e., 10:00-17:00, while it acts with high tap 
during the hours with low PV active power supply, i.e., 00:
00-07:00 and 19:00-24:00. During the hours with high de‐
mand and low PV active power supply, CBs provide high re‐
active power output to maintain the voltage level. It can be 
observed from Fig. 14 that PVs provide less or even absorb 
reactive power from the distribution network with the in‐
crease of actual active power supply of PVs, i.e., 11:45-12:
00. Moreover, reactive power decisions of PVs fluctuate in 
large range when their active power supplies fluctuate heavi‐
ly, i.e., 10:00-14:00.

Figure 15 shows the power losses of the test system with 
and without RPD in 24 hours. The average power loss is 
79.0729 kW without RPD while the loss is significantly re‐
duced to 53.9479 kW by employing the proposed MTAAR-
RPD. Thus, the reduction rate is regarded as 31.77%.

On the other hand, as shown in Fig. 16, by employing the 
MTAAR-RPD, the hourly voltage profiles for all the buses 
are improved to avoid bus voltage violations and concentrate 

much with small deviations.

E. Robustness Verification of MTAAR-RPD

To verify the robustness of the proposed method, the com‐
parison of MTAAR-RPD with the multi-timescale determinis‐
tic RPD (MTD-RPD) is implemented with the Monte Carlo 
simulation (MCS). The dispatch is performed every 15 min, 
thus there are 96 short periods in 24 hours. In MCS, 300 ran‐
dom scenarios with norm distribution, whose standard varia‐
tions for PV and load are 0.1 and 0.05, respectively, are gen‐
erated during each short period. Thus, there are 28800 sce‐
narios in total.

As in the MTD-RPD, the scheduling decisions are ac‐
quired based on the point prediction of loads and PV active 
power, neglecting the uncertainties. By employing these two 
methods in the 28800 scenarios, respectively, the correspond‐
ing dispatch decisions are acquired firstly. Then, the power 
losses and voltage deviation of utilizing MTD-RPD and 
MTAAR-RPD are obtained and the results are shown in Ta‐
ble II.

From Table II, it can be observed that the total OLTC tap 
changes are 5 and the total CB tap switches are 34 when the 
MTAAR-RPD is utilized. Then, both of these changes meet 
the daily maximal limitations 6 and 48, respectively. More‐
over, the average PV reactive power output of MTAAR-RPD 
is 91.612 kvar which is less than that of MTD-RPD, show‐
ing better control performance. There are 4632 infeasible cas‐
es with MTD-RPD while MTAAR-RPD provides valid 
scheduling decisions for all the 28800 cases. It is shown that 

the MTD-RPD which is the deterministic optimization meth‐
od is not applicable with uncertain loads and PV active pow‐
er. Moreover, the MTAAR-RPD provides less power losses 
and voltage deviation, which shows its effectiveness in pow‐
er losses reduction and voltage regulation. In conclusion, the 
MTAAR-RPD provides robustly and efficiently optimized de‐
cisions in reducing power losses and regulating voltage un‐
der uncertainties.
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Fig. 16.　Voltage profiles for all buses in IEEE 123-bus system. (a) With‐
out RPD. (b) With MTAAR-RPD.

TABLE II
COMPARISON RESULTS BETWEEN MTD-RPD AND MTAAR-RPD

Method

MTD-RPD

MTAAR-RPD

Number of 
infeasible cases

4632

0

Actual maximal 
loss (kW)

161.151

149.135

Actual average 
loss (kW)

56.195

55.857

Voltage absolute 
deviation (p.u.)

0.0185

0.0169

Total OLTC 
tap changes

6

5

Total CB 
switches

31

34

Average PV 
reactive power (kvar)

95.583

91.612
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VI. CONCLUSION 

This paper proposes an MTAAR-RPD method to robustly 
reduce power losses and alleviate voltage fluctuations in a 
three-stage structure covering “hour-minute-second” multiple 
timescales. The OLTC and CBs are scheduled hourly in the 
first stage while reactive power of PV inverter is scheduled 
every 15 minutes in the second stage. The third stage con‐
trols PV reactive power output through an optimized Q-P 
control in real time. To address the uncertainties, the coordi‐
nated “hour-minute” control is formulated in an ARO model 
while the coordinated “minute-second” Q-P control is formu‐
lated in an AARO model. The ARO model is solved by the 
C&CG algorithm while the AARO model is solved by a pro‐
posed cutting plane algorithm.

In the case study, the proposed MTAAR-RPD method is 
executed on the IEEE 123-bus system. The simulation re‐
sults verify that the three stages are effectively coordinated 
among “hour-minute-second” multiple timescales to achieve 
optimal operating results. Compared with the existing meth‐
ods, the proposed method can achieve significantly less pow‐
er losses and better voltage profiles. Moreover, the solutions 
are fully robust against any uncertainty realization.
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