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Abstract——This paper presents a data-driven variable reduc‐
tion approach to accelerate the computation of large-scale trans‐
mission-constrained unit commitment (TCUC). Lagrangian re‐
laxation (LR) and mixed-integer linear programming (MILP) 
are popular approaches to solving TCUC. However, with many 
binary unit commitment variables, LR suffers from slow con‐
vergence and MILP presents heavy computation burden. The 
proposed data-driven variable reduction approach consists of of‐
fline and online calculations to accelerate computational perfor‐
mance of the MILP-based large-scale TCUC problems. A data‐
base including multiple nodal net load intervals and the corre‐
sponding TCUC solutions is first built offline via the data-driv‐
en and all-scenario-feasible (ASF) approaches, which is then lev‐
eraged to efficiently solve new TCUC instances online. On/off 
statuses of considerable units can be fixed in the online calcula‐
tion according to the database, which would reduce the compu‐
tation burden while guaranteeing good solution quality for new 
TCUC instances. A feasibility proposition is proposed to 
promptly check the feasibility of the new TCUC instances with 
fixed binary variables, which can be used to dynamically tune 
parameters of binary variable fixing strategies and guarantee 
the existence of feasible UC solutions even when system struc‐
ture changes. Numerical tests illustrate the efficiency of the pro‐
posed approach.

Index Terms——Unit commitment, accelerated algorithm, data 
driven, variable reduction.

I. INTRODUCTION 

UNIT commitment (UC), as a key building block in pow‐
er system planning and operation and electricity market 

clearing problems, has long-standing challenges in computa‐
tional performance and solution quality [1]. As a matter of 

fact, regional transmission organizations (RTOs) follow strin‐
gent market clearing timelines, e.g., the 1800 s time limit of 
MISO [2] to compute UC solutions and inform market par‐
ticipants of the results. However, as a non-deterministic poly‐
nomial-time hard (NP-hard) mixed-integer optimization prob‐
lem with multitudes of binary/continuous variables and 
equality/inequality constraints, UC is recognized as the most 
complex math problem [3] in power system operation. To 
this end, fast computation approaches for UC problem are in 
urgent needs, especially in recognizing the increasing scale 
and complexity of modern power systems.

Lagrangian relaxation (LR) [4]-[7] and mixed-integer lin‐
ear programming (MILP) [8]-[12] are among the most popu‐
lar approaches to solve UC problems. LR solves the dual 
problem of UC, and uses the optimal dual solution to heuris‐
tically construct a feasible solution to the original UC prob‐
lem. Indeed, constructing feasible solutions and accelerating 
convergence are two core challenges of LR, and many ef‐
forts have been taken on these aspects. A systematic ap‐
proach is presented in [4] to construct feasible solutions to 
security-constrained UC (SCUC) problems based on analyti‐
cal feasibility conditions within the LR framework. Relax‐
ation-based neighborhood search and improved relaxation in‐
ducement are proposed in [5] to reduce the computation 
time of UC. A surrogate LR approach is developed in [6] to 
accelerate the convergence by penalizing constraint viola‐
tions via quadratic functions. A variable reduction approach 
is applied to large-scale UC problems in [7], for improving 
the computational efficiency and ensuring solution quality.

With the recent advance of commercial MILP solvers 
such as CPLEX and Gurobi, the MILP-based approach be‐
comes the mainstream approach in the power industry. In 
this direction, advanced modeling and decomposition tech‐
niques have been explored to resolve the computational con‐
cerns of MILP-based approaches for large-scale UC prob‐
lems. Tight formulations and dynamic global cutting plane 
approaches are presented in [8] to accelerate transmission-
constrained UC (TCUC). Reference [9] proposes a multi-cut 
outer approximation approach to decompose the UC problem 
into an MILP master problem (MP) and several nonlinear 
programming subproblems (SPs). An efficient MILP approxi‐
mation approach is proposed in [10] for the hydro-thermal 
UC problem based on the variable separation and piecewise 
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linear techniques. A tight and compact MILP formulation for 
start-up and shut-down power trajectories of thermal units is 
presented in [11]. Reference [12] proposes a strengthened 
MILP formulation for gas turbines in the UC problem, in 
which several new families of strong valid inequalities are 
developed to reduce the computational time. Clustered unit 
commitment (CUC) model [13] groups identical or similar 
plants into clusters to replace the binary commitment vari‐
ables within a cluster by a single integer variable. And [14] 
presents a set of constraints to correctly represent the units’ 
hidden flexibility, thus replicating the result of the individual 
UC. By incorporating critical region preparation in gap time, 
[15] transfers most computation burden from the online deci‐
sion stage to the gap time via a customized technique based 
on multi-parametric programming.

In observing the recent advance in data-driven approaches 
and the volume of available data, data-driven approaches are 
explored to solve the UC problem [16]-[20]. Reference [16] 
presents an integrated framework combining a data-driven 
approach and a variable-aggregation approach to improve 
the computational performance of SCUC and achieve good 
solution quality. In [17], a data-driven approach leveraging 
historical information is proposed to screen out and elimi‐
nate non-binding transmission constraints in the TCUC prob‐
lem. A number of machine learning techniques is proposed 
in [18] to extract the information from previously solved in‐
stances, which can be used to improve the computational 
performance of MILP solvers when solving similar instances 
in the future. In [19], a dataset containing large samples of 
diverse environment and grid conditions along with their re‐
spective UC solutions is created to accelerate the computa‐
tional procedure. The learning-based approach in [20] learns 
the map from the parameter to the optimal integer solution 
and the optimal basis, and then is discretized to accelerate 
the solving of UC problems online.

From the above literature review, we note that the LR-
based approaches [4]- [7] suffer from the convergence is‐
sues, e.g., zigzagging effect, and feasibility issues. The com‐
putational time of the MILP-based approaches [8]-[12] high‐
ly depends on the number of nodes in the branch-and-bound 
(BAB) tree to be explored as well as time spent on each 
node (for generating cutting planes and solving the corre‐
sponding nodal relaxation problem). Although valuable ef‐
forts in [4] - [12] are proposed to improve LR-based and 
MILP-based approaches, these critical issues are not fully re‐
solved. Besides, the CUC model [13], [14] is limited by the 
number of identical or similar plants, and when there are no 
identical or similar plants, the CUC problem will degenerate 
into the original UC problem. Model-driven approaches [15] 
are limited by the robust framework and the scalability can‐
not be guaranteed.

In comparison, the data-driven approaches show potentials 
to fundamentally mitigate computational complexity of the 
UC problem. However, in the existing data-driven studies, 
[16] and [17] focus on handling network security con‐
straints, rather than directly addressing the UC solutions. 
Reference [18] offers initial UC solutions to accelerating the 

solving process, which may be infeasible due to initial on/
off statuses and other constraints. Similarly, the feasibility of 
UC solutions involved in the offline database is also not dis‐
cussed in [19]. In [20], the division of discrete polyhedral re‐
gions is more susceptible to these differences in parameters 
of offline and online TCUC instances and the feasibility can 
only be guaranteed by a sufficiently large number of learn‐
ing samples.

This paper discusses a new data-driven variable reduction 
approach to efficiently reduce the number of binary vari‐
ables for large-scale TCUC problems and render the fast cal‐
culation. The main idea is depicted in Fig. 1. 

The key features are summarized as follows.
1) The proposed data-driven variable reduction approach 

for fast TCUC includes two parts of offline and online calcu‐
lations. Specifically, a database including multiple nodal net 
load, i. e., the load minus renewable energy output of each 
node, intervals and corresponding TCUC solutions is estab‐
lished offline. This knowledge is then leveraged to assist in 
fixing certain on/off binary variables in new TCUC instanc‐
es, reducing the online computational burden of TCUC.

2) Different from the existing data-driven approaches such 
as [18] and [19], the TCUC solution for each nodal net load 
interval in the offline database is solved by an all-scenario-
feasible (ASF) UC approach, ensuring solution feasibility 
and optimality for any load realization contained in this inter‐
val. In turn, this helps the solution quality of the online cal‐
culation of TCUC.

3) In the online calculation, several customized schemes 
are proposed to achieve the adaptability to the differences be‐
tween online and offline TCUC instances such as initial on/
off statuses and system parameter changes. Specifically, a 
feasibility check proposition is proposed to strategically ad‐
just the number of on/off statuses for generators to be fixed, 
guaranteeing the feasibility against the new nodal net load in‐
stances and system parameter changes.

4) Numerical tests on the IEEE 6-bus, IEEE 118-bus, and 
Polish 2383-bus systems show that, with the comprehensive 
offline database established according to sufficient and high-
quality historical and simulated nodal net load data, consider‐
able on/off statuses of generators in the new TCUC instanc‐
es can be strategically fixed via the customized schemes. 
Therefore, the computational efficiency with acceptable solu‐
tion quality is improved.

The rest of this paper is organized as follows. Section II 
presents the framework of the proposed data-driven variable 
reduction approach for fast TCUC. The offline database is 
established in Section III, and the online fast TCUC calcula‐
tion is introduced in Section IV. Numerical results are ana‐
lyzed in Section V and Section VI concludes this paper.

Classify nodal net load data and
establish a database of nodal net

load intervals and TCUC solutions

Solve new TCUC instances with
reduced variables based on

established database

Offline part Online part

Fig. 1.　Main idea of proposed data-driven variable reduction approach for 
fast TCUC.
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II. FRAMEWORK OF PROPOSED DATA-DRIVEN VARIABLE 
REDUCTION APPROACH FOR FAST TCUC 

This paper aims at accelerating the computational perfor‐
mance of TCUC for large-scale power systems. The main 
idea is to first use the data-driven approach for exploring the 
relationship between nodal net load profiles and feasibility/
optimality of UC solutions, which is then leveraged to guide 
binary variable fixing strategies and render fast online calcu‐
lation of new TCUC instances. The flowchart of proposed 
data-driven variable reduction approach for fast TCUC is 
shown in Fig. 2.

The first step is an offline procedure, which leverages his‐
torical and simulated nodal net load data, K-means cluster‐
ing approach, and ASF UC approach to establish a database 
including a suite of classified nodal net load intervals and 
the corresponding unique TCUC solutions. Each record in 
the database describes the nodal net load intervals, and the 
corresponding unique TCUC solution supports the system op‐
erations when individual nodal net load varies within the in‐
tervals. The second step is an online procedure, which com‐
pares nodal net load profiles of new TCUC instances against 
individual classified nodal net load intervals to strategically 
fix on/off statuses of certain units. It will reduce the number 
of binary variables and promptly derive TCUC solutions. 
The establishment of offline database and the calculation of 
fast online TCUC will be detailed in Sections III and IV.

Two aspects of the proposed data-driven variable reduc‐
tion approach for fast TCUC are discussed as follows.

1) The offline database is established based on the nodal 
net loads. In the actual operation of complex power systems, 
the TCUC solutions would depend on many features such as 
loads, generation bids, and system structure. However, if all 
features are considered to build the offline database, the data‐
base would be considerable large, impacting its establish‐
ment and application. Therefore, since nodal net loads con‐
tain the information on loads, renewable energy outputs, and 
partial system structure, i. e., locations of loads and renew‐
ables, and have a great influence on scheduling results, the 
offline database is established by leveraging nodal net loads, 
which is essentially a tradeoff between data scale and calcu‐
lation efficacy.

2) The proposed data-driven variable reduction approach 
for fast TCUC could handle the differences in parameters of 
offline and online TCUC instances such as initial on/off sta‐
tuses, generation bids, and system structures. In the online 
calculation of the proposed approach, several customized 
schemes are proposed to achieve the adaptability for such 
differences. Specifically, the online calculation includes a 
feasibility check pass, which can dynamically tune the num‐
ber of on/off statuses for the generators to be fixed, guaran‐
teeing the feasibility against the new nodal net load instanc‐
es and changes of system parameters. In the extreme situa‐
tion, when the online system parameters significantly differ 
from the offline database, only a limited number of on/off 
statuses will be fixed to guarantee the solution feasibility.

III. ESTABLISHMENT OF OFFLINE DATABASE 

We first leverage multiple historical and simulated nodal 
net load data, with respect to the fixed grid structure of a 
given power system, to establish the offline database. To 
guarantee the solution quality of online TCUC calculation, 
the established offline database shall follow two principles.

1) Feasibility: each classified nodal net load interval corre‐
sponds to a unique UC solution. This solution remains feasi‐
ble for any load realization contained in this interval.

2) Optimality: for any nodal net load profile contained in 
a classified nodal net load interval, the objective value with 
respect to the corresponding unique UC solution is within a 
prespecified threshold ε of the true optimal TCUC solution 
of the nodal net load profile.

A. Generation and Preprocessing of Nodal Net Load Data

As the database covering a wider range of nodal net load 
intervals would provide more information for the online 
TCUC calculation, besides historical nodal net load data, we 
also generate additional nodal net load data to establish the 
database offline. The simulated data intend to compensate 
the historical data for covering representative nodal net load 
situations. In this paper, the simulated nodal net load data 
are generated by the proper forecasting approaches [21]-[23], 
and their time resolution is consistent with the TCUC prob‐
lem to be studied. Collected historical nodal net load data 
may contain certain obvious errors, which may influence the 
classification accuracy. To this end, the de-noising prepro‐

Process data

Cluster data based on

K-means clustering approach

Solve ASF UC

Start

End

N

Y

Y

Update K

Is
the economic

checked?

Expand and merge the interval

Solve UC with

reduced variables

Output UC solutions

Offline

Online

Fix certain on/off statuses

Is
the feasibility

checked?

Update fixed

statuses

N

Input historical and

simulated data

Nodal net load

classification

Variable

reduction

approach

Fig. 2.　Flowchart of proposed data-driven variable reduction approach for 
fast TCUC.
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cess of the data is adopted to remove these faulty data for 
improving the accuracy of the database.

B. Classification of Nodal Net Load

The proposed classification algorithm of nodal net load in‐
cludes three steps. ① Classify net load data samples into K 
clusters, i.e., K nodal net load intervals. ② Check TCUC fea‐
sibility and optimality of each classified nodal net load inter‐
val. If both feasibility and optimality of a nodal net load in‐
terval are achieved, this classified nodal net load interval is 
completed. Otherwise, all nodal net load data in this interval 
will be reclassified. ③ Update K and go back to ① until all 
nodal net load data have been classified. Finally, multiple 
nodal net load intervals and their corresponding TCUC solu‐
tions that can simultaneously guarantee feasibility and opti‐
mality are obtained. The detailed nodal net load classifica‐
tion algorithm is described in Algorithm 1. 

The convergence of the proposed classification algorithm 
is naturally guaranteed, as K will be updated only when the 
feasibility/optimality check of TCUC in ② fails. That is, in 
the worst case, each category includes a single sample of his‐
torical/simulated nodal net load data. Note that the final clas‐
sified number of nodal net load categories is determined by 
continuously updating iterations of Algorithm 1. And the 
threshold ε could be set by system operators to weigh eco‐

nomic and computational efficiency.
As shown in Algorithm 1, three approaches are involved 

to achieve the interval classification of nodal net load: ① 
UC and economic dispatch (ED) models; ② K-means clus‐
tering approach; and ③ ASF UC approach and acceleration 
algorithm, which are detailed as follows.
1)　UC and ED Models

The UC model J UC (1)-(3) and ED model J ED (4), (5) are 
used to calculate the optimal reference of classification re‐
sults in the proposed classification algorithm of nodal net 
load.

J UC = min
zp

(S(z)+C(p)) (1)

s.t.

Ap +Bz +Ed £F (2)

zÎX (3)

J ED = min
p

(S(z* )+C(p)) (4)

s.t.

Ap +Bz* +Ed £F (5)

where z and p are the UC and dispatch decision variables, re‐
spectively; S(×) and C(×) are the start-up/shut-down cost and 
fuel cost, respectively; matrices A, B, E and vector F are 
constant coefficients; d is the nodal net load vector, i.e., de‐
mands minus renewable energy outputs of individual nodes; 
X is the set of z; and z* is a known UC solution derived 
from (1)-(3).

The objective (1) is to minimize the total operation cost. 
Prevailing constraints coupling z and p are described as in 
(2) such as the load balance, generation capacity, ramping, 
and network constraints. In (3), the set X describes con‐
straints related to z such as the minimum on/off time limits 
and on/off time requirements.
2)　K-means Clustering Approach

K-means clustering approach is applied to classify nodal 
net load data into multiple categories according to their simi‐
larities. Each classified nodal net load category will be used 
later to identify a unique UC solution. The objective of the 
K-means clustering approach is to minimize the sum of 
squared errors over all K clusters, as shown in (6).

min∑
kÎK

 ∑
xiÎ ck

||x i - μk||
2

(6)

where k is the index of clusters, kÎK; μk is the mean vector 
of the kth cluster; and x i and ck are the vector of samples and 
sample set of the kth cluster, respectively. It is well known 
that, even for K = 2, (6) is an NP-hard problem [24]. To this 
end, the K-means clustering approach is a greedy algorithm 
that seeks for a local optimum. However, the K-means clus‐
tering approach could converge to the global optimum when 
clusters are well separated [25].

We emphasize several implementation issues of using the 
K-means to conduct the classification of nodal net load data, 
while additional details are in [24] and [25].

1) Initial number of clusters K: as shown in Algorithm 1, 
the number of clusters K is updated iteratively, and the final 
classification results are guided by the feasibility and opti‐

Algorithm 1: nodal net load classification

Input and initialization:
Step 1: Collect historical and simulated nodal net load data into 

set Ω, set threshold ε, and initialize the solution set C as 
null

Step 2: Compute the optimal objective value of UC problem (1)-
(3) for each nodal net load data in set Ω

Step 3: Analyze nodal net load data and their UC solutions to set 
a proper initial classification number K

Classify data:
Step 4: Classify nodal net load data in set Ω into K categories via 

the K-means clustering approach
Step 5: Calculate nodal net load interval of each category
Assess feasibility and optimality:
Step 6: Set n = 0
Step 7: for k = 1:K
Step 8:   Calculate the unique UC solution corresponding to the 

nodal net load interval of category k by ASF UC ap‐
proach (8)-(13)

Step 9:     If a feasible UC solution is obtained, go to Step 10; 
otherwise, set n = n + 1 and go to Step 7

Step 10:  Compute objective values of the ED problem (4), (5) 
for all nodal net load data in this category

Step 11:    Calculate the difference between ED objective from 
Step 10 and UC objective from Step 2 for all nodal 
net load data in this category

Step 12:  If the differences of all nodal net load data are smaller 
than ε, save the UC solution and nodal net load inter‐
val of this category to the solution set C , and remove 
all nodal net load data in this category from set Ω; oth‐
erwise, set n = n + 1

Step 13: End for
Step 14: If n > 0, set K = n + 1 and go to Step 4; otherwise, out‐

put C
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mality principles stated at the beginning of Section III. Thus, 
the initial number of clusters K shall have limited influence 
on the final classification results of Algorithm 1, and it can 
be set as a small integer value based on the experience.

2) Algorithm stability: although the K-means clustering ap‐
proach is usually unstable, the stability of Algorithm 1 can 
be guaranteed because the classification results of Algorithm 
1 are guided by the feasibility and optimality principles. Be‐
sides, the interval expansion and merging will further help 
mitigate the potential impacts of classification samples and 
algorithms on the offline database results. Thus, the stability 
of Algorithm 1 could be effectively guaranteed.

3) Comparison with other clustering algorithms: K-means 
clustering approach, as the most widely applied approach in 
the industry, is applied in this paper because of its simple 
principle and fast convergence speed. It is also noted that, 
the proposed classification algorithm of nodal net load can 
be implemented via other clustering approaches such as hier‐
archical clustering [26] and density-based spatial clustering 
of applications with noise [27], in which the depth of hierar‐
chy and cluster radius, instead of the number of clusters, 
will be used as the input parameter. These approaches may 
present better stability performance than K-means clustering 
approach purely from the perspective of clustering, i. e., in 
terms of Step 4 of Algorithm 1.
3) ASF UC Approach

For each classified nodal net load interval, the ASF UC 
approach [28]-[30] is applied to calculate a unique UC solu‐
tion that meets the feasibility and optimality principles for 
any load profile contained in this nodal net load interval.

Considering a clustered nodal net load category containing 
M samples of nodal net load profiles, the maximum and min‐
imum hourly nodal net load levels are used to build the nod‐
al net load intervals -d it and d̄ it for this load category, i. e., 

-d it = min
m

(dmit ) and d̄ it = max
m

(dmit ) (m = 12M, "ti), 

where t and i are the indices of time periods and nodal net 
loads, respectively. Constraint (7) describes the box set for 
the ASF UC approach, ensuring that the unique UC solution 
D is feasible for any realization of nodal net load containing 
the nodal net load interval.

D ={d it|-d it £ d it £ d̄ it } (7)

In the ASF UC approach, the key idea is to build a scenar‐
io set S, composed of selective vertex scenarios, and adopt 
nonanticipative constraints to guarantee the feasibility of the 
UC solution against the box set (7). As for the selective ver‐
tex scenarios, if only one node is associated with the vari‐
ability, i. e., containing loads and/or renewable energy, the 
scenarios with the minimum and maximum nodal net load 
levels constitute the selective vertex scenarios. While for the 
multi-node uncertainty situation, the selective vertex scenari‐
os shall include the combinations of these minimum and 
maximum nodal net load levels. The detailed procedure to 
design vertex scenarios and the proof for the UC solution 
feasibility are given in [28]-[30].

The ASF UC formulation is established as in (8)-(12) and 
(3). The objective (8) is to minimize the weighted total costs 
of all scenarios in set S. Constraint (9) includes power bal‐

ance limits, transmission capacity limits, generation capacity 
limits, and so on. Nonanticipative constraints (10)-(12) guar‐
antee the feasibility of UC solutions.

J ASFUC = min
zpspmaxpmin

(S(z)+ βsC(psz)) (8)

s.t.

Aps +Bz +Ed s £F    "sÎS  (9)

pmin
t £ ps

t £ pmax
t     "tÎ T  sÎS  (10)

pmax
t - pmin

t - 1 £ δ
+ (z tz t - 1 )    "tÎ T (11)

pmin
t - pmax

t - 1 ³-δ
- (z tz t - 1 )    "tÎ T (12)

where the superscript s denotes the scenario s; the super‐
scripts max and min denote the maximum and minimum of 
allowable outputs of thermal units in the actual operation; 
the subscripts t and t - 1 denote the time periods; βs is the 
weighting factor of scenario s; pmin and pmax are the auxiliary 
variables; and δ+ and δ- are the ramp-up and ramp-down ca‐
pabilities, respectively.

In order to accelerate the calculation of large-scale ASF 
UC models, a time-decoupled decomposition (TDD) algo‐
rithm [31] is introduced. As shown in Fig. 3, the TDD algo‐
rithm presents a two-level structure; and the superscript * de‐
notes the calculated valued of each variable. The master 
problem (MP) represents the ASF UC formulation (8) - (12) 
and (3) with respect to a few representative scenario set 
 S  rep from S  ; the SP checks the feasibility of this UC deci‐
sion against the entire box set (7) and adds new scenarios 
with the largest violation into S  rep of MP. The MP and SP 
are solved iteratively until the stopping criterion is satisfied, 
i. e., the maximum violation is no larger than tolerance σ. 
Complete descriptions of MP and SP could be found in [31]. 
It is noteworthy that the setup of the initial S   rep would influ‐
ence the convergence of the overall algorithm of nodal net 
load interval classification, and certain scenarios such as 
those with the maximum and minimum nodal net loads 
could be included in S   rep to reduce the number of iterations.

The ASF UC approach presents two major advantages: ① 
ASF UC can guarantee the feasibility of UC solutions 
against the box set (7), and meet the actual operation needs 

Solve MP and obtain the optimal solution

(z*, p*max, p*min)

Solve SP (z*, p*max, p*min) and obtain the maximum

violation and corresponding scenario d*

N

Y

Add scenario d*

into S
rep

Is the maximum

violation less than σ?

Output UC solutions

Initialize S
rep

 and σ

Start

End

Fig. 3.　Framework of TDD algorithm.
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on the robustness and nonanticipativity of UC solutions 
against nodal net load variabilities. Indeed, it is clearly point‐
ed out in [28]-[30] that traditional approaches such as two-
stage robust optimization cannot simultaneously guarantee 
the robustness and nonanticipativity of UC solutions, induc‐
ing potential infeasibility in actual operations; and ② instead 
of the “min-max” or “min-max-min” structure of the two-
stage robust optimization, ASF UC approach presents a sin‐
gle-level MILP structure that can effectively mitigate compu‐
tational complexity and solution over-conservativeness. Not‐
ed that the multi-stage stochastic programming and robust 
optimization approaches [32] could achieve similar effects as 
the ASF UC approach, but with higher computational bur‐
den. The proposed classification algorithm of nodal net load 
presents good adaptability and computational efficiency.

SP(z*p*maxp*min ):V *SP = max
dÎD

min
pu1u2
∑
mt

(u1
mt + u2

mt )   (13)

s.t.

Ap +Bz +E(d + u1 - u2 )£F (14)

pmin
t £ p t £ pmax

t     "tÎ T (15)

{u1 ³ 0
u2 ³ 0

(16)

where m = 1, 2, ..., M; V *SP is the violation gap between MP 
and SP; and u1 and u2 are the non-negative slack variables.

C. Expanding and Merging Feasible Nodal Net Load Intervals

Some classified nodal net load intervals out of Algorithm 
1 may not be the optimal (i.e., the largest) ones that the cor‐
responding UC solution can handle, i.e., satisfying feasibility 
and optimality principles, due to the limited samples of nod‐
al net load data. To this end, the interval expansion and 
merging processes are further conducted offline to refine the 
derived intervals. The interval expansion strategies could al‐
so alleviate the potential impacts of the instability issue of 
the K-means clustering approach on the final database estab‐
lished in this paper.
1)　Interval Expansion

The unique UC solution of a certain classified nodal net 
load interval could potentially handle a larger interval than 
the one identified as in (7). To this end, an interval expan‐
sion model is established to calculate the largest possible 
nodal net load interval, as shown in (17)-(20).

max
d max

it  d min
it pmax

t pmin
t

∑
tÎ T 
∑
iÎ I

[ ](d max
it - d̄ it )+ (-d it - d min

it )   (17)

s.t.

Aps +Bz* +Ed s (d max
it d min

it )£F    "sÎS  (18)

(10)-(12) with respect to known z*

-d
min
it £ d min

it £ -d it £ d̄ it £ d max
it £ d̄ max

it     "iÎ ItÎ T (19)

S(z* )+C(ps )£(1 + ε%)J UC (d s )    "sÎS typ (20)

where d max
it  and d min

it  are the decision variables describing the 
newly expanded nodal net load interval; d̄ and -d are the orig‐
inal nodal net load intervals calculated from Algorithm 1; 
S typ is the scenario set; and d̄ max and -d

min are the pre-speci‐

fied upper and lower bounds on the interval expansion to 
guarantee solution boundedness, respectively. 

The objective (17) is to maximize the difference between 
the newly expanded nodal net load intervals and the original 
ones, i.e., identifying the largest nodal net load interval that 
z* can handle. Constraint (18) guarantees the feasibility of z* 
against the expanded nodal net load intervals. The scenario 
set S is the same as that described in the ASF UC model. 
Constraint (19) describes the relationship between the origi‐
nal and expanded nodal net load intervals. Constraint (20) re‐
stricts the economic efficiency of UC solution against the ex‐
panded nodal net load intervals, which is evaluated via set  
S typ. As too many scenarios would lead to higher computa‐
tional burden of the interval expansion problem (17) - (20), 
S typ could only include typical scenarios such as those with 
the maximum and minimum nodal net loads.
2)　Interval Merging

After expanding the nodal net load interval via (17)-(20), 
certain nodal net load intervals may essentially belong to the 
same category and thus can be merged. For instance, when 
one interval is fully contained in another, it does not need to 
be kept in the database. That is, for two nodal net load inter‐
vals [d min1

it d max1
it ] and [d min2

it d max2
it ] derived from (17)-(20), 

if d min1
it ⩽ d min2

it  and d max1
it ⩾ d max2

it , only [d min1
it d max1

it ] and its 
UC solution remain in the database.

IV. ONLINE FAST TCUC CALCULATION WITH STRATEGIC 
VARIABLE FIXING SCHEMES 

A. Overall Procedure of Online Fast TCUC Calculation

Essentially, the offline algorithm of nodal net load classifi‐
cation establishes a comprehensive database that describes 
the relationship of nodal net load intervals and correspond‐
ing TCUC solutions. Thus, the database can be used to 
guide binary variable fixing strategies, i.e., certain on/off sta‐
tuses of thermal units, of new TCUC instances, reducing the 
number of binary variables and improving the efficiency of 
online calculations.

The online fast TCUC calculation includes three main 
steps as follows.

Step 1: identify a trail UC solution for the new TCUC in‐
stance based on the offline database. The deviation degree θ 
defined in (22) is used to identify the nodal net load interval 
that could potentially best cover the nodal net load profile 
d new of the new TCUC instance. It quantifies the distance be‐
tween d new and the median value of classified nodal net load 
intervals. The UC solution corresponding to the nodal net 
load interval with the smallest deviation degree is taken as 
the trail solution of this new TCUC instance.

θ =∑
it

||0.5(-d it + d̄ it )- d new
it ∑

it
||0.5(-d it + d̄ it ) (21)

Step 2: strategically fix certain on/off statuses of the units 
based on the trail UC solution. Because parameters of the 
new TCUC instance, e.g., initial on/off statuses of units and 
transmission capacity limits, could differ from those used in 
building the database, the full trail UC solution may be in‐
feasible to the new TCUC instance. To this end, we only fix 
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certain on/off decisions of units according to the trail UC so‐
lution, while others remain as decision variables to be opti‐
mized. The strategy for selecting on/off status variables to 
be fixed is detailed in Section IV-B, in order to reduce com‐
putational complexity while guaranteeing solution quality of 
the new TCUC instance.

Step 3: check the feasibility of the TCUC problem with 
the fixed on/off statuses. If it is feasible, solve this TCUC 
problem with the remaining binary variables. Otherwise, go 
back to Step 2 and update the fixed on/off statuses of units. 
The checking approach is detailed in Section IV-C.

B. Fixing Strategies for On/off Statuses of Units

Units are split into two categories based on their on/off 
statuses in the trail UC solution: ① the first one satisfies the 
initial minimum on/off time constraints; and ② the second 
one violates these constraints.

The units in the first category will be arranged in a de‐
scending order of their minimum on/off time limits. Then, 
we select the top units according to the pre-determined radio 
(PDR) and fix their on/off statuses based on the trail UC so‐
lution. PDR, as calculated in (22), determines the ratio of 
units whose statuses are to be fixed. PDR is a preset parame‐
ter that can be adjusted according to the needs of power sys‐
tem operators. Specifically, PDRmin and PDRmax are the pre-
specified lower and upper bounds of PDR, respectively. ρ is 
the correlation coefficient, which could be set according to 
the requirements of system operators. Larger PDRmax and 
PDRmin mean more binary variables are fixed. The deviation 
degree θ represents the similarity between new UC instances 
and the database. PDR is negatively correlated with devia‐
tion degree. Furthermore, PDR could be further dynamically 
tuned as discussed in Section IV-C, ensuring that the binary 
variable fixing strategy will not compromise the feasibility 
of new TCUC instances.

PDR =
ì
í
î

PDRmin + ρ/θ    θ ³ ρ/(PDRmax -PDRmin )

PDRmax              otherwise
(22)

The units in the second category are also arranged in a de‐
scending order of their minimum on/off time limits, and we 
select the top units according to PDR, i. e., the same as in 
(22), but with different values of PDRmin and PDRmax. The ef‐
fects of PDRmin and PDRmax of this category are the same as 
those of the first category, and are set to be 0.1 and 0.025 in 
the numerical tests of this paper, respectively. Enough time 
periods are reserved for these units according to their initial 
on/off statuses, allowing them to flexibly adjust on/off status‐
es for satisfying the initial minimum on/off time require‐
ments. The fixing strategy is depicted in Fig. 4, where G/O 
is the number of time periods that the unit shall be kept on/
off as prescribed by its initial on/off statuses and the mini‐
mum up/down time limits; and τon /τoff is the minimum up/
down time limit of thermal units. 

The on/off statuses during the period [1, G/O] will be de‐
termined according to the initial minimum on/off time re‐
quirements; the on/off statuses during the period [G + 1G +
τon ] or [O + 1O + τoff ] will be optimized to offer flexible ad‐
justability of UC solutions; and on/off statuses of the remain‐
ing periods will be fixed based on the trail UC solution.

With the above fixing strategy, the TCUC model with a re‐
duced number of binary variables can be solved to acceler‐
ate the calculation of the new TCUC instance. Particularly, 
when the initial minimum on/off time constraints are fully 
satisfied and the nodal net load profile of a new UC instance 
is completely contained in a certain classified nodal net 
load interval, i.e., d new

it Î[-d itd̄ it ], the offline UC solution for 

this nodal net load interval is a good feasible solution for 
the new TCUC instance, i. e., it is within ε difference from 
the true optimal solution. That is, a good-enough UC solu‐
tion of the new UC instance could be directly obtained with‐
out solving the new MILP problem.

C. Feasibility Check and PDR Settings

Considering potential differences of system parameters be‐
tween the offline database and online calculations, the set‐
tings of PDR may cause infeasibility to the new TCUC in‐
stances, if certain on/off status variables are fixed improper‐
ly. One solution is to run multiple instances in parallel with 
different PDR values, and adopt the solution with the best 
optimality gap.

In addition, a feasibility proposition is proposed to prompt‐
ly check the feasibility of the new TCUC instances with 
fixed binary variables against the changes of system parame‐
ters. This fast feasibility-check ability allows us to efficient‐
ly tune PDR (or lower/upper bounds of PDR) online and dy‐
namically adjust the on/off status variables to be fixed, guar‐
anteeing the existence of a feasible UC solution, even under 
system structure changes.

We first define the whole on/off statuses of units as z =
[z fixzunfix ], where z fix denotes the on/off statuses of units that 
are fixed according to the strategies discussed in Section IV-
B; and zunfix denotes the on/off statuses of units that remain 
unfixed. We relax the original TCUC problem and establish 
a constraint satisfaction problem (23)-(25).

Anew p +Bnew [z fixzunfix ]+Enewd new £F new (23)

0 £ p £[z fixzunfix ]P̄new (24)

z fixzunfixÎX new (25)

where Anew, Bnew, Enew, F new, d new, and X new are the new 
TCUC instances; and P̄new is the upper bound of thermal out‐
put.

Proposition 1: the necessary condition for the existence of 
a feasible solution to the original TCUC problem (1) - (3) 
with new system parameters and nodal net loads is that the 
constraint satisfaction problem (23)-(25) with zunfix = 1 is fea‐
sible.

Proof: with z fix, the constraint satisfaction problem (23) -
(25) is obtained by relaxing the original inequality 
[z fixzunfix ]-P

new £ p £[z fixzunfix ]P̄new to constraint (24), where  

-P
new is the lower bound of thermal output. Therefore, it is 

PeriodT1 G/O

τ on /τ off

FixedFlexible

Fig. 4.　Fixing strategy for on/off statuses.
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obvious that the existence of a solution to the relaxation 
problem is a necessary condition for the existence of a solu‐
tion to the original problem.

In the online calculation of a new TCUC instance with 
given system parameters such as network constraints, one 
can tune PDR iteratively to adjust z fix to be fixed, guarantee‐
ing that a feasible UC solution exists. Specifically, because 
fixing more on/off status variables would impact the feasibil‐
ity of the new TCUC problem more significantly, we first 
set an initial PDR and check the feasibility according to 
Proposition 1. If the constraint satisfaction problem (23)-(25) 
is infeasible, we reduce PDR according to (26) and check 
the feasibility again until a feasible PDR is found.

PDRnew =PDR ×(1 -ω%) (26)

where ω is the reduction ratio. 
Specially, if the system parameter difference between the 

daily new UC instances is not significant, the PDR value 
from the previous day could be used. This tuning process 
with Proposition 1 can be efficiently conducted, as the con‐
straint satisfaction problem (23)-(25) does not involve binary 
variables and thus can be solved quickly. Proposition 1 can 
also be used in the offline part to set a proper initial PDR 
value, reducing the updating iterations in the online part.

D. Online Update of Database

After solving the new TCUC instance online, the new nod‐
al net load profile and its TCUC solution can also be used 
to dynamically update the database, providing more accurate 
information for future online TCUC calculations. Two updat‐
ing strategies can be adopted as follows: ① when a new 
nodal net load profile is covered by the upper bound of one 
nodal net load interval and the lower bound of another, nod‐
al net load samples in these two intervals and the new nodal 
net load data are reclassified to obtain new nodal net load in‐
tervals and UC solutions; and ② when a new nodal net load 
profile is not contained in any classified nodal net load inter‐
val of the database, net load data samples contained in low 
probability intervals and the new nodal net load profile are 
reclassified. Low probability intervals refer to the nodal net 
load intervals which contain significantly fewer net load data 
samples than others, i.e., smaller than a prespecified thresh‐
old of the overall number of net load data samples.

V. NUMERICAL TESTS 

The proposed data-driven variable reduction approach for 
fast TCUC is tested on the IEEE 6-bus, IEEE 118-bus, and 
Polish 2383-bus systems. Based on the data of ERCOT, 
1825 (i.e., 365×5) historical and simulated samples of nodal 
net loads are used to establish the database offline, and the 
nodal net load data of one year are used to test the efficien‐
cy of the proposed approach for online UC calculation. All 
tests are implemented via MATLAB R2014a and Gurobi 
7.5.2 on a desktop with Intel i7-7700 3.60 GHz CPU and 16 
GB RAM.

A. Characteristic Analysis on Classification Results and Inte‐
val Expansion

The characteristic analysis of the proposed approach is 

conducted on the IEEE 6-bus system, with 3 thermal units and 
3 nodal net loads [33]. Capacities of 3 thermal units are 220, 
100, and 100 MW, respectively. Other system data can be 
found in [34].
1) Analysis on Classification Results

K is initially set to be 10 in the K-means clustering ap‐
proach, and the threshold of low probability intervals is set 
as α= 0.5%. The final number of nodal net load categories is 
37, in which 8 categories are low probability intervals, i. e., 
the number of net load data samples in each of these 8 cate‐
gories is less than 10 (i.e., 365×5×0.5%). Figure 5 shows the 
results of four classified load category examples after the 
first K-means clustering calculation with K = 10, and Fig. 6 
shows the final classification results via Algorithm 1. Note 
that Loads 1-3 in Figs. 5-7 are representative nodal net loads 
selected in this paper.

Figures 5 and 6 show that the final classification results 
of the proposed classification algorithm of nodal net load are 
thinner than those of the first K-means clustering calcula‐
tion. This can be clearly observed by comparing Fig. 5(b) 
and Fig. 6(b). The reason is that the K-means clustering ap‐
proach is a clustering approach based on data density, which 
only reflects class spacing and data characteristics. In com‐
parison, the proposed classification algorithm, besides em‐
bedding K-means clustering approach to reflect class spacing 
and data characteristics, also guarantees the feasibility and 
optimality of unique UC solutions for individual nodal net 
load intervals, thus deriving finer load categories. We further 
note that the net load data samples in Figs. 5 and 6 may not 
necessarily be one-to-one correspondence.

The numbers of net load data samples in Fig. 5(a)-(d) and 
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Fig. 5.　Results of four classified load category examples after the first K-
means clustering calculation. (a) Results of classification No. 1. (b) Results 
of classification No. 2. (c) Results of classification No. 3. (d) Results of 
classification No. 4.
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Fig. 6(a) - (d) are 136, 298, 145, 175, 197, 127, 87, and 82, 
respectively. One interesting observation is that although the 
nodal net load interval in Fig. 6(a) is thinner than that in 
Fig. 5(a), it indeed contains more samples. The reason is 
that the proposed classification algorithm does not simply di‐
vide the results of K-means, but reclassifies the samples 
with respect to UC characteristics. In addition, the final clas‐
sification results indicate that the proposed classification al‐
gorithm of nodal net load effectively identifies 37 UC solu‐
tions, which are regarded as the most relevant optimal opera‐
tion schemes of this system as implicated by the historical 
and simulated nodal net load data.

2) Analysis on Interval Expansion
The interval expansion is to find the maximum nodal net 

load intervals that the corresponding UC solutions could han‐
dle without the feasibility and optimality of comprising solu‐
tion. Four expanded nodal net load intervals are shown in Fig. 
7, and the numbers of net load data samples contained in these 
four intervals are 197, 127, 82, and 11, respectively.

The expanded nodal net load intervals in Fig. 7(a) and (b) 
are the same as the original ones; the expanded nodal net 
load intervals in Fig. 7(c) are slightly larger than the original 
ones; and the expanded nodal net load intervals in Fig. 7(d) 
are significantly larger than the original ones. Corresponding‐
ly, the number of net load data samples in the first nodal net 
load interval is the largest, while that in the fourth interval is 
the smallest. The reason is that more net load data samples 
would bring more information to help explore the maximum 
interval boundaries that the corresponding UC solutions can 
handle. Conversely, the intervals containing fewer net load 
data samples may be expanded more significantly.

B. Validation of Efficiency and Effectiveness

The IEEE 118-bus and Polish 2383-bus systems with 
1825 net load data samples [33] are used to test the effec‐
tiveness of the proposed data-driven variable reduction ap‐
proach. The 118-bus system includes 54 thermal units and 
91 uncertain nodal net loads [34], and the Polish 2383-bus 
system includes 179 thermal units, 182 renewable plants, 
and 1789 loads [35]. The initial upper and lower bounds of 
PDR are set to be 0.5 and 0.05 for the first-category units 
discussed in Section IV-B, and 0.1 and 0.025 for the second-
category units, respectively.
1) Analysis on Computational Efficiency

The computational time for IEEE 118-bus and Polish 
2383-bus systems is analyzed. Testing results are shown in 
Figs. 8 and 9 and Tables I and II.
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Fig. 8.　Computational time of TCUC for IEEE 118-bus system.

Figures 8 and 9 show that computational time of the pro‐
posed data-driven variable reduction approach for fast 
TCUC are much shorter than the original MILP-based ap‐
proach for both systems. 
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Fig. 6.　Final classification results via Algorithm 1. (a) Results of classifica‐
tion No. 1. (b) Results of classification No. 2. (c) Results of classification 
No. 3. (d) Results of classification No. 4.
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tion No. 1. (b) Interval of classification No. 2. (c) Interval of classification 
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Besides, the proposed approach performs more stably, i.e., 
standard deviation (STD) of computational time among dif‐
ferent TCUC instances, than directly solving the original 
TCUC problem. Tables I and II report statistical results of 
computational time, where the reduction ratio represents re‐
duced time of the proposed approach in percentage against 
computational time of solving the original TCUC problem. 
These tests clearly show that the proposed approach is supe‐
rior to directly solve the original TCUC problem, in terms of 
both average time and maximum time.

In addition, the comparison between the IEEE 118-bus 
system and the Polish 2383-bus system indicates that compu‐
tational benefits of the proposed approach are more signifi‐
cant on larger systems. The reason is that the locations of 
units with larger minimum on/off time limits could influence 
the computational performance, when certain on/off deci‐
sions of these units are fixed during the online calculation. 
Units with larger minimum on/off time limits are more con‐
centrated on the IEEE 118-bus system. Thus, when on/off 
statuses of these units are first fixed, power flow constraints 
of certain transmission lines are very likely to be binding, 
which affects the computational efficiency. For instance, the 
computational time of the proposed approach for several 
new TCUC instances is even longer than the original UC 
problem, as shown in Fig. 8. The locations of certain units 
and capacities of certain transmission lines could be consid‐
ered in the proposed approach to further improve the effi‐
ciency of fast TCUC in the future.

2) Analysis on Solution Quality
Table III analyzes the economic efficiency and reduced 

number of binary variables of the proposed approach. The 
maximum relative errors and average relative errors repre‐
sent the maximum and average relative errors of the TCUC 
objective value, respectively. The average reduction number 
and reduction ratio represent the average number and reduc‐
tion ratio of reduced binary variables by the proposed ap‐
proach, respectively. With the average relative errors of only 
0.47% and 0.67%, the proposed approach shows good eco‐
nomic efficiency on both systems. Moreover, significant bi‐
nary variables are fixed by the proposed approach, i.e., with 
the average reductions of 57.33% and 58.82%, with guaran‐
teed solution quality.

Figure 10 compares UC solutions of the proposed ap‐
proach and the original MILP-based approach for the 118-
bus system. It shows that only 27 out of 1296 (i.e., 54×24) 
on/off statuses are different. The proposed approach per‐
forms well in identifying the optimal UC solutions.

3) Influence of Generator Bidding Price Changes
Bidding price change is among the most significant fac‐

tors that influence economic performance. Different levels of 
bidding price changes in the new TCUC instance against the 
values used in the database are compared to show the im‐
pacts on the proposed approach. The testing results are de‐
scribed in Table IV, which are the average values of 365 
days. In Table IV, price change represents the deviation level 
of bidding prices between the offline database and online cal‐
culation.

Table IV shows that, with the increase in the change level, 
the average computational time is almost the same, and the 
economic efficiency gets worse. Because the on/off statuses 
of certain thermal units are fixed in the proposed approach, 
when the bidding prices become higher/lower, these thermal 
units can only reduce/increase power output levels to mini‐
mize the total cost. To this end, the economic efficiency 
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Fig. 9.　Computational time of TCUC for Polish 2383-bus system.

TABLE II
TIME-RELATED RESULTS OF POLISH 2383-BUS SYSTEM

Approach

Original MILP-
based approach

Proposed approach

Average time 
(s)

28.44

7.48

STD of average 
time (s)

3.59

0.41

Reduction ratio 
(%)

73.70

TABLE III
OBJECTIVES AND VARIABLE REDUCTION RELATED RESULTS

System

118-bus

2383-bus

The maximum 
relative error

(%)

1.32

2.40

Average rela‐
tive error (%)

0.47

0.67

Average re‐
duction num‐

ber

743

2527

Reduction 
ratio (%)

57.33

58.82

TABLE I
TIME-RELATED RESULTS OF IEEE 118-BUS SYSTEM

Approach

Original MILP-based 
approach

Proposed approach

Average time 
(s)

1.59

0.79

STD of average 
time (s)

0.32

0.16

Reduction ratio 
(%)

50.31
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Fig. 10.　UC solutions of IEEE 118-bus system. (a) Proposed approach. (b) 
Original MILP-based approach.
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would become worse than the original optimal TCUC solu‐
tions. However, it is noted that with the 25% bidding price 
fluctuation, the average relative error in the total cost is still 
less than 1%, indicating acceptable economic performance of 
the proposed approach against the bidding price changes.

4) Influence of Data Scale
The data scale refers to the amount of historical and simu‐

lated data used to build the database offline, which could in‐
fluence classification results and in turn computational per‐
formance of the online calculation. Five data scales, i. e., 1 
year to 5 years, are compared to analyze the impact. The 
tests are implemented on the IEEE 118-bus system and re‐
sults are reported in Table V. The results in Table V are the 
average values of 365 days.

Table V shows that the average solution time and average 
relative error of 365 new TCUC instances are almost the 
same with different data scales. Thus, one-year data are 
enough to reach good performance for this system.
5) Comparison of Different Data-driven Approach

Since different data-driven approaches would bring vary‐
ing computational performance, we further compare the pro‐
posed approach in this paper with the data-driven approach‐
es in [17] and [18]. As the actual performance of data-driven 
approaches also highly depends on the sophisticated imple‐
mentation strategies and parameter tuning skills, for the fair 
comparison, we directly cite the results reported in [17] and 
[18] instead of reproducing their studies. Table VI lists the 
relative errors, relative reduction time, infeasible rate, reduc‐
tion variable, and system scale of references [17] and [18], 
which is benchmarked with the original MILP-based ap‐
proach.

Table VI shows that, although the data-driven approach in 
[17] shows the best performance, it cannot guarantee 100% 
feasibility for new TCUC instances. Compared with the ap‐
proach in [18], the proposed approach performs a 17.3% eco‐
nomic advantage while with an economic disadvantage of 

0.57%. Besides, compared with the reduction variables, the ap‐
proach in [17] is to reduce constraints rather than binary vari‐
ables, so the reduction variable is empty. Since the proposed 
approach has higher computational efficiency with a lower re‐
duction variable rate, it shows its greater potential in accelerat‐
ing the computation. In a word, the proposed approach shows 
good computational efficiency and acceptable economic effi‐
ciency on the premise of guaranteeing 100% feasibility.

6) Influence of PDR Settings
The settings of PDR influence the fixed on/off statuses of 

thermal units, and then influence the computational efficien‐
cy and economic performance for new TCUC instances. To 
this end, the influence of PDR on computational perfor‐
mance is investigated in Table VII.

In Table VII, PDR setting represents that the values of 
PDRmax and PDRmin are always set to be 5%. Table VII 
shows that relative errors, relative reduction time, and rela‐
tive reduction number all increase with the value of PDR. 
When the PDR settings are larger than 50%, the change rate 
of relative reduction time becomes lower while damaging 
similar economic efficiency. Therefore, considering the calcu‐
lation efficiency and economic benefits, the 50% setting is a 
better choice for this case.

VI. CONCLUSION 

This paper presents a new data-driven variable reduction 
approach to accelerate the calculation of TCUC problems for 
large-scale systems. It includes an offline data-driven ap‐
proach to build a database that explores the relationship of 
nodal net load intervals and corresponding UC solutions, 

TABLE IV
INFLUENCE OF BIDDING PRICE CHANGE

Price 
change (%)

10

15

20

25

30

Average 
time (s)

0.80

0.80

0.79

0.79

0.80

The maximum 
time (s)

1.52

1.64

1.45

1.46

1.33

Average error 
(%)

0.50

0.57

0.67

0.88

1.13

The maximum 
error (%)

1.68

2.02

2.05

2.09

3.55

TABLE VI
COMPARISONS OF DIFFERENT ACCELERATION APPROACHES

Approach

Approach 
in [17]

Approach 
in [18]

Proposed 
approach

Relative 
error (%)

0.02

0.10

0.67

Relative 
reduction 
time (%)

95.4

56.4

73.7

Infeasible 
rate (%)

0.06

0.00

0.00

Reduction 
variable (%)

68.7

58.8

System 
scale

2000-bus

2848-bus

2383-bus

TABLE V
INFLUENCE OF DATA SCALE

Data scale (year)

1

2

3

4

5

Average time (s)

0.79

0.76

0.78

0.79

0.79

Average error (%)

0.55

0.50

0.49

0.50

0.47

TABLE VII
COMPARISONS OF DIFFERENT PDR SETTINGS

PDR setting 
(%)

30

40

50

60

70

80

90

Relative 
error (%)

0.32

0.49

0.67

0.67

0.89

1.04

1.13

Relative reduction 
time (%)

59.26

68.26

73.30

72.76

75.10

76.21

76.43

Relative reduction 
number of binary 

variable (%)

30.00

40.00

50.00

60.00

69.94

79.63

88.69

264



ZHOU et al.: A DATA-DRIVEN VARIABLE REDUCTION APPROACH FOR TRANSMISSION-CONSTRAINED UNIT COMMITMENT...

and an online approach to promptly calculate UC instances 
by strategically fixing on/off statuses of considerable units 
via the information of the database. By making full utiliza‐
tion of historical and simulated nodal net load information, 
it can essentially reduce the number of binary variables and 
improve the computational efficiency of TCUC problems.

Numerical tests illustrate the effectiveness of the proposed 
data-driven variable reduction approach, which could greatly 
reduce the computational time and present high computation‐
al stability. Future works could extend the fast solution ap‐
proach to solve stochastic TCUC problems with heteroge‐
neous uncertainty factors such as renewable energy and de‐
mand response assets. The fast solution approach may also 
be extended to include other key parameters relevant to the 
optimal TCUC solutions such as generation bids, for further 
improving the computational performance and solution quality.
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