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Two-stage Stochastic Programming for 
Coordinated Operation of Distributed Energy 
Resources in Unbalanced Active Distribution 

Networks with Diverse Correlated Uncertainties
Ruoxuan Leng, Zhengmao Li, and Yan Xu

Abstract——This paper proposes a stochastic programming 
(SP) method for coordinated operation of distributed energy re‐
sources (DERs) in the unbalanced active distribution network 
(ADN) with diverse correlated uncertainties. First, the three-
phase branch flow is modeled to characterize the unbalanced 
nature of the ADN, schedule DER for three phases, and derive 
a realistic DER allocation. Then, both active and reactive power 
resources are co-optimized for voltage regulation and power 
loss reduction. Second, the battery degradation is considered to 
model the aging cost for each charging or discharging event, 
leading to a more realistic cost estimation. Further, copula-
based uncertainty modeling is applied to capture the correlations 
between renewable generation and power loads, and the two-
stage SP method is then used to get final solutions. Finally, numer‐
ical case studies are conducted on an IEEE 34- bus three-phase 
ADN, verifying that the proposed method can effectively reduce 
the system cost and co-optimize the active and reactive power.

Index Terms——Active distribution network (ADN), two-stage 
stochastic programming (SP), uncertainties, voltage/var control 
(VVC), battery degradation.
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Unit power loss cost
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ing power

Decay rate, charging efficiency, and discharging 
efficiency of ESS

Start-up and shut-down costs of each DE unit

Degradation cost of battery ESS

Rated depth of discharge (DoD)

The minimum and maximum energy stored in 
each ESS unit

Rated battery ESS capacity

Unit investment cost of ESS

Electricity purchasing and selling prices

Number of battery ESS life cycle

The minimum and maximum power output 
rates of DE

Active and reactive power demands

Available energy resources from WT and PV

Hourly maximum three-phase active power un‐
balance limit

The minimum and maximum allowed reactive 
power of capacitor bank (CB)
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power of PV
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Parameters of life cycle curve fitting 
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Gas emission and battery aging costs

Power transaction and maintenance costs

Start-up and shut-down costs
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Active and reactive power flowing on the lateral 
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Reactive power output from CB

WT and PV reactive power outputs
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b
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c
j ]TÎ 
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Line impedance from buses i to j

z ij Line impedance matrix, denoted by the com‐
plex form of line resistance r ij and reactance 
x ij, z ijÎC 3 ´ 3

I. INTRODUCTION

CURRENTLY, the optimal operation of active distribu‐
tion networks (ADNs) plays an essential role in the ef‐

fective integration of renewable-based generators, optimal en‐
ergy management, power loss reduction as well as cost sav‐
ing [1]. However, with the increasing penetration of renew‐
able energy sources (RESs) and the utilization of energy stor‐
age systems (ESSs) in real life, it is increasingly important 
to derive a practical ADN operation, close to the real indus‐
trial application. In this regard, developing an effective ap‐
proach to support and improve ADN operation has turned in‐
to a critical concern in both academia and industry.

In practice, ADNs are generally unbalanced. For instance, 
the unbalanced line configuration including two- or single-
phase laterals downstream of feeder backbones is common 
in ADN. meanwhile, the unbalanced demand consisting of 
single or two phases loads is prevalent [2]. Further, the ex‐
cessive installation of renewable-based distributed generators 
(DGs) could also exacerbate power imbalance [3]. However, 
the existing ADN operation methods usually assume a bal‐
anced ADN where the power balance will be satisfied by 
equally allocated DG on each phase [4]. This assumption 
gives the ideal solution for DG scheduling, but it is impracti‐
cal and insufficient for real-world unbalanced ADNs.

To characterize the unbalanced ADN, it is necessary to im‐
plement the three-phase power flow on the scheduling frame‐
work. In [5], a non-linear branch flow model for both mesh 
and radial networks is demonstrated by convexification and 
relaxation techniques. Reference [6] obtains the unbalanced 
three-phase power flow solutions via an iterative load flow 
method. The three-phase power flow model in both [5] and 
[6] would lead to a high computational burden and compli‐
cate the application process. In this case, the linearized three-
phase power flow model with several assumptions developed 
in [7] could be utilized and the effectiveness of this method 
has also been validated by [3].

In addition, based on the three-phase unbalanced system 
structure, active and reactive power flows for the three-phase 
system are supposed to be co-optimized. However, tradition‐
ally, the active and reactive power for ADN operation is opti‐
mized separately [8] or the focus is on the active power 
scheduling only [9]. Nevertheless, the reactive power dis‐
patch cannot be neglected as the renewable-based DGs criti‐
cally affect bus voltage due to the high resistance-to-reac‐
tance ratio of distribution lines [10]. In this sense, to deal 
with the reactive power dispatch and regulate the voltage, 
the centralized voltage/var control (VVC) method can be em‐
ployed. The centralized VVC permits the coordination of the 
heterogenous VVC devices on account of the system-wide 
information to meet voltage constraints [11]. Reference [12] 
mitigates the voltage rise problem brought by excessive so‐
lar photovoltaic (PV) integration by a multi-objective VVC 
method in the ADN considering the  tap movements of the 
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transformers and active power curtailment of RES. In [13], 
the VVC scheme on multiple timescales is applied for ESS 
dispatch in the ADN. It aims to coordinate multiple power 
electronic assets. Similarly, [14] presents a multi-objective 
VVC for ADN with RES uncertainties. The solution is ob‐
tained through a three-step method, including global/local 
search and user preference.

Apart from the comprehensive active and reactive power 
modeling, the key components in the ADN should also be 
characterized precisely. The ESS is a critical component in 
the ADN for both peak shaving and cost saving [11]. To 
model ESS comprehensively, the degradation process should 
be considered since the aging impact will be induced from 
each charging or discharging event [15]. Besides, the igno‐
rance of ESS aging might lead to an underestimated system 
operation cost. Thus, the ESS degradation cost should be 
modeled for a more comprehensive and accurate ADN opera‐
tion. The study in [16] formulates the nonlinear ESS degra‐
dation cost based on the depth of discharge (DoD) and life‐
time. In [17], the influence of the ambient temperature is al‐
so modeled in the ESS degradation cost model. References 
[16] and [17] show that ESS aging has a significant impact 
on the system operation cost.

Finally, the uncertainties brought by RES and power load 
should be tackled in ADN operation. Broadly speaking, ro‐
bust optimization (RO) and stochastic programming (SP) are 
the two main methods to address diverse uncertainties. The 
RO benefits from high computing efficiency, but the robust 
decisions hedging against the worst cases may suffer from 
over-conservativeness [18]. The SP, in contrast, covers a 
wide range of scenarios and optimizes the decisions by eval‐
uating the expected operation cost of numerous samples 
[11]. Reference [19] studies the scheduling problems in 
ADN via the SP method considering the realistic load model 
and voltage security. The stochastic unit commitment in [20] 
coordinates both day-ahead and real-time decisions and con‐
siders the continuity among numerous periods when generat‐
ing uncertain scenarios. However, the SP methods used in 
[19] and [20] generate scenarios and address the uncertain‐
ties separately with only independent distributions. Different 
from the large-scale utility network, ADN operation is usual‐
ly conducted in the same region, where the accumulation of 
the loads has general features and strenuous correlations 
with RES output [21]. To capture the correlations of multi‐
ple-site RES generations and power load precisely, the copu‐
la theory has been verified to be effective in ADN operation, 
planning, and voltage stability problems [22]. Reference [21] 
employs the Gumbel copula family to deliberate the stochas‐
tic interdependence of wind turbine (WT) generation and 
load uncertainties for SP-based operation, in which the corre‐
lation structure in the same region is recognized by histori‐
cal data. Reference [22] tackles the uncertainties of WT and 
load on each candidate bus by applying copula theory. To 
further reveal the interdependence accurately, they utilize the 
multivariate D-vine copula to alter the copula family case-by-
case, suiting each scenario. It can be observed from [21] and 
[22] that considering the correlations among all uncertainty 
sources is necessary for deriving accurate solutions.

Given the insights above, this paper studies a two-stage 
SP method for the coordinated operation of the DER in un‐
balanced ADN considering diverse correlated uncertainties. 
The main research contributions are summarized as follows.

1) A comprehensive operation model for unbalanced 
AND, involving the linearized three-phase branch flow mod‐
el, is proposed to schedule the DG generation separately 
among three phases and calculate the system cost more prac‐
tically and precisely.

2) The unbalanced ADN operation method can optimally 
dispatch the active and reactive power simultaneously by ap‐
plying the VVC scheme and regulating the voltage to derive 
a more realistic operation. In addition, the ESS degradation 
model is also included to model the aging cost through each 
charging/discharging event to obtain more accurate solutions.

3) Diverse uncertainties from the RES generation and 
power loads are addressed via the copula theory to capture 
the correlation relationship between the output from PVs, 
WTs, and the demand of each phase. Then all the uncertain‐
ties are tackled via the two-stage SP method.

The rest of this paper is organized as follows. The pro‐
posed unbalanced ADN model is presented in Section II. 
The mathematical formulation and solution methodology are 
discussed in Section III and Section IV, respectively. Numeri‐
cal case studies are demonstrated in Section V, and finally, 
the conclusion is drawn in Section VI.

II. UNBALANCED ADN MODEL 

A. Framework of Unbalanced ADN

The framework of unbalanced ADN is provided in Fig. 1, 
involving both active and reactive power flows. The active 
power load can be supplied by diesel generator (DE), WT, 
PV, and the power transaction with the main grid. The reac‐
tive power can be supported by capacitor bank (CB), on-
load top changer (OLTC), and electronic converter of renew‐
able-based DG. For the ESS, we focus only on battery stor‐
age in this paper, which enables load shifting and dispatch 
flexibility enhancement through each charging or discharging 
event [11].

B. Linear Three-phase Power Flow Model

In general, the ADN is unbalanced. The relatively high de‐
gree of unbalance is caused by the naturally transposed archi‐
tecture of three-phase distribution lines, the existence of sin‐
gle-phase laterals, single- and double-phase loads, or unbal‐

ESS

DE

WT

PV
 

Active power flow; Reactive power flow

Load

Main grid

(with OLTC capacity)

CB

Fig. 1.　Framework of unbalanced ADN.
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anced three-phase loads [2]. The increasing installation of 
single-phase or double-phase renewable DG also induces sev‐
eral impacts on ADN such as voltage rise, reverse power 
flow, and voltage imbalance. However, most of the research 
outcomes of ADN operation in [16]-[21] assume that a sin‐
gle-phase system for simplicity is not as accurate as the ef‐
fects of system imbalance are regarded as negligible. This 
could result in underestimating system operation cost and an 
idealistic scheduling result. Based on the insight above, it is 
necessary to develop a three-phase system for the study of 
unbalanced ADN operation.

In this paper, the linearized three-phase branch flow mod‐
el developed in [7] is incorporated into the proposed model 
as part of the network operation constraints. The effective‐
ness of this model has been validated by the application of 
ADN hosting capacity improvement [3], distribution system 
restoration [23], and VVC [24] problems. The detailed three-
phase power flow model is illustrated as follows.

In this model, we first apply Kirchhoff’s voltage law for 
each line connected to an ordered buses pair (ij)ÎÁ and the 
voltage relationship can be obtained as:

Vj =Vi - z ij I ij (1)

I ij is expressed in (2), and * dentoes conjugate.

I ij = S *
ij ⊘V *

i (2)

Substituting (2) into (1) and multiplying both sides by 
their complex conjugate, we can obtain (3), where Sij =[P a

ij +
jQa

ij P
b
ij + jQb

ij P
c
ij + jQc

ij ]
TÎC 3 ´ 1 is the apparent branch pow‐

er of bus pair (ij)ÎÁ. Operators ⊘ and  in the model de‐
note the elementwise division and multiplication, respective‐
ly.

VjV *
j =ViV *

i - z ij (S
*
ij ⊘V *

i )V *
i -

z *
ij (S ij⊘Vi )Vi + cij (S ijViz ij ) (3)

where the last term cij (S ijViz ij ) is the higher-order term. To 
conduct the linear approximation of power flow, the follow‐
ing two assumptions are made in [7] and applied.

1) Line power losses are small, i. e., cij (S ijViz ij ) Sij, 
which can be neglected in the model.

2) Voltages are nearly balanced, so we have:

V a
i V b

i » V b
i V c

i » V c
i V a

i » ej2π/3 (4)

Therefore, substituting (4) into (3) and omitting the higher-
order term cij, (3) can be simplified as:

Uj =Ui - z̄ ij S
*
ij - z̄ *

ij S ij (5)

The impedance matrix z̄ ij = ¶z ijÎC 3 ´ 3, and ¶ is denoted as:
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Combined with the power balance constraints for the pro‐
posed unbalanced ADN operation model, the linearized three-
phase power flow can be formulated in (7)-(9).
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Equations (7) and (8) denote the active and reactive power 
flows of the distribution network, respectively. Equation (9) 
calculates the square of the three-phase bus voltage magnitude.

C. ESS Degradation Modeling

The life cycle of ESS units can be used to evaluate the 
ESS degradation through each charging or discharging pro‐
cess [11]. For ESS operation, the influential factors include 
cycle depth, charging/discharging power, and state of charge. 
The life cycle of each ESS unit, or the number of charging/
discharging cycles within its useful life, can be denoted by 
effective cumulative ampere-hours throughput at the rated 
discharged rate and rated DoD before its capacity drops be‐
low 80% of its rated capacity [15]. As an essential factor, 
DoD indicates the discharging percentage of the battery rela‐
tive to its total capacity, as shown in (10). The rated charg‐
ing life of ESS is represented in (11).

DoDpit = 1 -E pit
ESS /E pi

ESSR (10)

Γ pit
R = Lpit

ESS·DoDpi
R ·E pi

ESSR (11)

The relationship between expected average cycle and DoD 
for the Li-ion battery is shown in Fig. 2, which can be ob‐
tained via the curve fitting method, based on the data provid‐
ed by a different manufacturer. The detailed curve fitting 
method can be referred to [25] and the mathematical expres‐
sion for the ESS life cycle is represented in (12), which can 
be applied to other batteries with different fitting parame‐
ters [15].

Based on the definitions above, the ESS degradation cost 
model for each charging/discharging event can be identified 
in (13).

LDoD
ESS = Lpi

ESSR( DoDpi
R

DoDpi
ESS ) χ0
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R ×E pi
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III. PROBLEM FORMULATION 

The mathematical formulation of the proposed method is 
described based on a typical unbalanced ADN. The active 
power scheduling of DE, WT, PV, and ESS can be opti‐
mized, for the reactive power dispatch, operation schedules 

0.5

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

1.0

1.5

2.0

2.5

DoD

E
x

p
ec

te
d

 a
v

er
ag

e 
cy

cl
e

Fig. 2.　Relationship between expected average cycle and DoD.
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of the CB, OLTC, and the electronic converters for WT and 
PV would be decided. The overall deterministic ADN opera‐
tion model is given as follows.

1) Objective function: the proposed unbalanced ADN oper‐
ation aims at minimizing the system operation cost as:

Csystem =min∑
tÎNt

C t
TotalDt (14)

C t
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ex +C t
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C t
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Equation (14) is the objective function of the proposed 
model indicating the minimization of system operation cost. 
Equation (15) denotes the operation cost including power ex‐
change cost with the main grid (16), maintenance cost of 
each DER unit (17), gas emission cost of DE (18), ESS deg‐
radation cost (19), RES curtailment cost (20), power loss 
cost (21), start-up cost (22) , and shut-down cost of DE (23).

2) Constraints:

Λpti
de P min

DE £P pti
DE £Λpti

de P max
DE (24)

Rdown
DE Dt £P pti

DE -P pt - 1i
DE £Rup

DEDt (25)

[P pti
WT P

pti
PV ]£[P pti

WTREALP
pti
PVREAL ] (26)

ì
í
î

[Qpti
WT Q

pti
PV ]³[Qpi

WTminQ
pi
PVmin ]

[Qpti
WT Q

pti
PV ]£[Qpi

WTmaxQ
pi
PVmax ]

(27)

ì
í
î

[P pti
ESC P

pti
ESD ]³[λmin

esc λ
min
esd ]E pi

ESS

[P pti
ESC P

pti
ESD ]£[λmax

esc λ
max
esd ]E pi

ESS

(28)

P pti
ESC P pti

ESD = 0 (29)

E min
ESS £E pti

ESS £E max
ESS (30)

E pti
ESS = (1 - τes )E pt - 1i

ESS + (P pti
ESCφesc -P pti

ESD /φesd )Dt (31)

E p0i
ESS =E pNtDti

ESS (32)

ì

í

î

ïïïï

ïïïï

|P t1
flwa -P t1

flwb| £P t
unb £P max

unb

|P t1
flwb -P t1

flwc| £P t
unb £P max

unb

|P t1
flwc -P t1

flwa| £P t
unb £P max

unb

(33)

∑
tÎNt

P t
unb £Unbmax

total (34)

(P pt1
flw )2 + (Qpt1

flw )2 £(S max
sub )2 (35)

V t0
bus =Vsub + Tapt ×Utap (36)

Tapmin £ Tapt £ Tapmax (37)

Qpti
CB = I pt

CBU pi
CB (38)

Qpi
CBmin £Qpti

CB £Qpi
CBmax (39)

V 2
min £[U ti

a U ti
b U ti

c ]£V 2
max (40)

Formulas (24) and (25) are the operation constraints for 
DEs to ensure the power boundary and ramping rate within 
the allowed range; (26) denotes that the RES generation can‐
not exceed the available resources; (27) shows the reactive 
power limits of RES units; (28)-(32) are the operation con‐
straints for ESS; (28) and (29) denote that the charging and 
discharging power should be within the capacity boundary; 
meanwhile, the charging and discharging events of the ESS 
cannot happen at the same time; (30) denotes the ESS ener‐
gy capacity limits and (31) builds the relationship of the en‐
ergy stored in ESS and its charging/discharging power; (32) 
ensures the same ESS scheduling flexibility of each dispatch 
period where the starting energy should be equal to the end‐
ing energy [11]; (33) and (34) are the constraints of three-
phase power unbalance, indicating the root branch unbalance 
at each time interval and the overall power unbalance should 
be within the pre-defined limits; (35) denotes that the root 
branch apparent power should be within the power limit of 
substation; (36) - (39) are the constraints related to VVC 
scheme [10]; (36) denotes that the voltage of the reference 
bus is defined based on the tap position of OLTC; (37) indi‐
cates the tap position limits of OLTC; (38) indicates the reac‐
tive output from CB units, which is discreetly relying on its 
tap position; (39) shows the reactive output limits of CB 
units; and (40) limits the bus voltage of each phase within 
the safety range [3].

IV. SOLUTION METHODOLOGY 

A. Model Linearization and Relaxation

The mathematical function of the proposed model in (14)-
(40) is nonlinear due to the nonlinear constraints (12), (13), 
and (21) - (23). Solving the nonlinear term directly is time-
consuming and ineffective. To release the computation bur‐
den and improve the solution accuracy, the linearization and 
relaxation methods are adopted in this paper.
1) Piecewise Linearization

Equations (19) and (21) are nonlinear functions that can 
be linearized by introducing a number of sampling coordi‐
nates on the x-axis within an independent variable domain. 
To make it clear, taking the nonlinear function in Fig. 3 for 
illustration, it can be approximated by the summation of lin‐
ear segments [(xif (xi ))(xi + 1f (xi + 1 ))] in which iÎ[1n - 1], x 
is the decision variable, and f (x) is the objective function.

fobj =∑
i = 1

n

(ki x + μibi ) (41)
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ki = ( f (xi + 1 )- f (xi )) (xi + 1 - xi ) (42)

ì

í

î

ïïïï

ïïïï

μ i xi £ x £ μi + 1 xi + 1

∑
i = 1

n

μi £ 1
(43)

In (41), each linear segment can be expressed by the slope 
ki and intercept bi. The binary variable μi denotes the binary 
state of each linear block, as shown in (43).

2) Max Function Relaxation
The start-up cost (22) and shut-down cost (23) functions 

are max functions. The linear relaxation of the max function 
is obtained by splitting the max function into two individual 
expressions, seeking for their supremum as:

ì

í

î

ïïïï

ï
ïï
ï

C t
st ³ ∑

pÎNp

∑
iÎNi

(Λpti
de -Λpt - 1i

de )Cup
DE    C t

st ³ 0

C t
sd ³ ∑

pÎNp

∑
iÎNi

(Λpt - 1i
de -Λpti

de )Cdown
DE     C t

sd ³ 0
(44)

B. Copula-based Uncertainty Description Method

To describe the stochastic interdependence between uncer‐
tain variables (WT, PV, and power load), the copula function 
is demonstrated here to capture the correlations between 
them. The stochastic scenarios are then involved in the un‐
balanced ADN operation model to address uncertainties.

The copula is a multivariate cumulative distribution with 
uniform marginals of each variable on the interval [0, 1] 
[26]. According to Sklar’s theorem [27], [28], the founda‐
tion of copula theory defines that any K-dimensional random 
input variables {x1x2xK} with marginals {F1 (x1 ), 
F2 (x2 )FK (xK )} link by a copula c to express their joint 
cumulative distribution function FK, as shown in (45).

FK (x)=C(F1 (x1 )F2 (x2 )...FK (xK )) (45)

Hence, differentiating (45), the joint probability distribu‐
tion function of variables x1x2xK can be obtained, as 
shown in (46), in which the copula density function is for‐
mulated as (47). The conditional density functions can be ex‐
pressed as (48).

f (x)=C(F1 (x1 )F2 (x2 )...FK (xK ))∑
k = 1

K

fk (xk ) (46)

C(x)=C(x1x2...xK )=
δKC(x1x2...xK )
δx1x2...xK

(47)

f (x1|x1x2...xK )= f (x) ∑
k = 1

K

fk (xk ) =

c(F1 (x1 )F2 (x2 )...FK (xK )) f1 (x1 ) (48)

For the high-dimensional models, various pair copulas 
will be constructed for scenario generation to reveal the hid‐
den association of uncertain variables. In this paper, the 
Gaussian and Gumbel copula families are utilized whose cu‐
mulative distribution functions are expressed as (49) and 
(50). φ is the univariate standard normal distribution; φ2; θ is 
the bivariate normal distribution with zero means; θ is the 
unit variance and correlation parameter [26]; and inf is the 
general term to show infinity.

CGau = φ2; θ (φ-1 (α)φ-1 (β))(ν)    θÎ(-11) (49)

CGum = exp(-((-lg α)θ + (-lg β)θ )
1
θ )    θÎ [1inf ) (50)

C. Two-stage Coordinated Structure

To handle the various uncertainties, the proposed opera‐
tion model is converted to a two-stage SP problem indicated 
in Fig. 4, which includes both day-ahead (first-stage) and in‐
tra-day (second-stage) timeframes.

The day-ahead ADN operation covers a longer timescale, 
with the given information of input prediction and operation 
parameters. In this paper, the day-ahead decisions include 
ESS charging/discharging power, on/off status of DEs, tap 
position of OLTC, and position levels of CB.

The intra-day ADN dispatch is conducted in a much short‐
er operation timescale, normally no more than one hour. The 
intra-day decisions will be made after the realization of vari‐
ous uncertainties and the operational decisions from the day-
ahead stage [11]. The decisions for intra-day operation in‐
clude active/reactive power dispatch of DEs, power ex‐
change with the main grid, reactive power of WT and PV, 
active/reactive power flow, root branch power flow, and 
three-phase power unbalance. These decisions would be 
hourly updated and then executed to compensate for the day-
ahead ADN operation.

The classification of the two stages depends on the differ‐
ent roles each unit plays and its response speed. ESS sched‐
ule is decided in the first stage since it mainly contributes to 
peakshaving and flexibility improvement over long-time peri‐
ods. Besides, charging or discharging frequently would incur 
a higher degradation cost (19) and shorten its lifespan. The 
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Fig. 3.　Piecewise linear relaxation of a convex quadratic function.
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CB status and OLTC status are also scheduled in the first 
stage, as they cannot respond fast and the frequent move‐
ments could reduce their lifetime dramatically [10].

D. Two-stage SP Method

To deal with diverse uncertainties, massive scenarios can 
be generated considering correlations among all the uncer‐
tainty sources in Section III-A. However, too many scenarios 
would lead to an excessively high computational burden. To 
improve the solution efficiency, the scenario reduction meth‐
od and simultaneously backward reduction (SBR) technique 
can be utilized to select a rather small but representative sce‐
nario set [10]. Detailed information on the SBR method can 
be found in [29]. Afterward, the overall two-stage SP prob‐
lem can be formulated as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

obj = min
my1y2...ys ( )D(m)+∑

s = 1

Ns

ρs L(ys )

s.t.  mÎCDm| z
       ysÎCL(mΨs )

       "sÎNs

(51)

In (51), D(m) is the objective of the day-ahead stage relat‐
ed to (17), (19), (22), and (23), and m denotes all the corre‐
sponding decisions discussed in Section III-B; s is the index 
of the representative scenarios; CDm is the constraint set, in‐
cluding (28)-(32) and (36)-(39), related to the decision m; Ns 
is the number of total scenarios; ρs is the probability of sce‐
nario; L(ys) is the object of intra-day ADN dispatch after re‐
vealing the uncertainties, consisting of (16), (18), (20), and 
(21), in which ys is the intra-day decision variable; and 
CL(mΨs ) is the constraint set, involving (7) - (9), (24)- (27), 
and (33)-(35), corresponding to the decision ys. It is notewor‐
thy that the proposed two-stage SP method has some limita‐
tions, including the fixed stochastic variations and limited 
scenario numbers, which can be regarded as the future re‐
search direction of the SP method.

V. CASE STUDY 

A. Test System

The proposed method is validated via an IEEE 34-bus dis‐
tribution system, whose topology is shown in Fig. 5 and the 
detail of the system data can be found in [30] and [31]. The 
detailed parameter of unbalanced load for each phase in the 
IEEE 34-bus distribution system can be referred to [31], [32].

The bus voltage limit is set to be [0.95 p. u., 1.05 p. u.]; 
the substation voltage Vsub is 1 p.u.; the tap range of substa‐
tion is set to be 5% with 20 tap positions, so Tapmin =-10 
and Tapmax = 10. There are five CBs installed at all three 
phases of the buses 812, 850, 824, 862, and 834, with the 
same capacity of 300 kvar for each unit [10]. DE and ESS 
are installed at the buses 808, 832, 840, and 860 and the bus‐
es 808, 840, 848, and 860 [3]. Their locations are presented 
in Fig. 5, indicating they are installed in three phases, while 
RES is installed in either single or double phases shown by 
the different colors of the circle in Fig. 5. The capacity of 

each DE is 150 kW with a ramping rate of 15 kW/min [33], 
[34]. The capacity of each ESS module is 120 kW/240 kWh, 
whose charging/discharging rate and decay rate are set to be 
95% and 99.9%, respectively [3], [34]. The unit degradation 
cost for each charging and discharging events of ESS is 0.03 
$/kWh [25]. Furthermore, the maximum allowable power un‐
balances P max

unb  is set to be 0.18 p. u. and the overall system 
unbalance limit Unbmax

total is 1.07 p.u. [3].

The energy tariffs [11] and other cost parameters are pro‐
vided in Table I [35], [36]. The ESS degradation parameters 
are Lpi

ESSR = 2190, χ0 = 4580, χ1 = 1.98, and DoDpi
R = 0.8 [15]. 

The stochastic variations of RES generations and power 
loads are set to be 30% and 10%, respectively [11], [37]. 
The predictions of RES generation and power demands are 
given in Fig. 6. The day-ahead operation horizon is 24 hours 
with 1 hour granularity, and the timescale of intra-day dis‐
patch is 1 hour.

All the case studies are conducted on an Intel(R) Core(TM) 
i5-10500U CPU @ 3.10 GHz PC with 16 GB RAM and 
solved by Gurobi through Pyomo (version 6.0.1) package on 
Python.

B. Day-ahead Operation Results

Based on the historical data of RES generation and power 
loads, 1000 scenarios are generated by applying copula theo‐
ry and reduced to 10 representative scenarios by the SBR 
technique [29]. To show the correlation among WT, PV, and 
demand, a comparison of 300 samples and 500 samples via 
copula theory is presented in Fig. 7. All the samples are gen‐
erated when PV generation is almost at the peak of the day 
(12:00 a.m.). It is obvious from Fig. 7 that, at a single time 
point, whether we generate 300, 500, or 1000 samples, there 
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Fig. 5.　Topology of IEEE 34-bus distribution system.

TABLE I
ENERGY TARIFFS AND OTHER COST PARAMETER

Parameter

DE maintenance cost

RES maintenance cost

RES curtailment cost

Power transaction

Price ($/kW)

0.0288

0.0093

0.0050

0.0768 (during 00:00-06:00, 23:00-24:00)

0.1276 (during 06:00-08:00, 11:00-17:00)

0.1696 (during 08:00-11:00, 17:00-22:00)
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is an area in the scatter plot where all the samples cluster, 
showing the strenuous correlations among WT, PV, and 
loads.

The OLTC tap positions and the voltage profile of the ref‐
erence bus are presented in Fig. 8. The results indicate that 
the tap position is positive at most of the time, implying that 
the primary bus voltage is a bit higher than the nominal volt‐
age level. This is reasonable as the system has high demand 
but not much RES injection. If the primary bus voltage is 
higher, the system can avoid the voltage falling below 0.95 
p.u., while meeting a great amount of demand.

To demonstrate the impact of an unbalanced ADN on day-
ahead operation decisions, the power output results of ESS 
are shown in Fig. 9, where the charging/discharging event of 
ESS on each phase happens during the same dispatch period 
to attain cost-saving goals and meet the demand. However, 
since most RESs are installed in phase a and phase c, the 
magnitude of power during each charging/discharging event 
of ESS is greater than the power in phase b. The ESS charg‐
ing/discharging on phases a and c can also limit the voltage 

rise induced by RES injection and mitigate the power unbal‐
ance.

The solution time of the proposed day-ahead operation is 
1656.41 s, which indicates that the proposed method is com‐
patible with real-world applications and efficient enough for 
the day-ahead operation.

C. Intra-day ADN Dispatch Results

The intra-day ADN dispatch is conducted on hourly bases 
with the realization of RES and load uncertainties. The simu‐
lation results are demonstrated in Figs. 10 to 13.

Figure 10 indicates that all the generation units are sched‐
uled optimally based on the objective while meeting the op‐
erational constraints. Since RES generation cannot fully 
meet the demand based on the input prediction, DE contrib‐
utes to supplying the rest of the demand. For the periods 
from hour 17 to hour 22, DE reaches its maximum output so 
that the system is allocated to purchase the power from the 
main grid. The ESS could attain the goals of peakshaving 
and operation cost saving of the power load. ESS charges 
during the periods from hour 2 to hour 5 when both the de‐
mand and power transaction price are the lowest of the day. 
ESS discharges during high power transaction periods from 
hour 17 to hour 21 to meet the peak demand. Additionally, 
with the consideration of the battery degradation effect in 
(19), charging/discharging events of ESS cannot happen fre‐
quently over the entire dispatch horizon since numerous ESS 
operations would induce high degradation costs.

The reactive power balance is presented in Fig. 11. Com‐
pared with phase a and phase c, phase b has the lowest RES 
installation, hence, the reactive power balance is supplied by 
CB most of the time, even during the peak time of PV gener‐
ation. For phase a and phase c, the reactive power from the 
RES inverters is the priority of reactive power balance. The 
rest of the reactive loads is mainly satisfied by CB, while 
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the reactive power support from the main grid is almost ze‐
ro. This is because the local reactive power supply contrib‐
utes to loss reduction.

Moreover, the hourly root branch three-phase active pow‐
er unbalance are depicted in Fig. 12, which illustrate that 
critical power unbalance occurs at nighttime during ESS 
charging. It is worth noting that the power unbalances of all 
the scenarios are within the predefined limits. To further 
demonstrate the impact of an unbalanced ADN on intra-day 
ADN dispatch results, the DE power outputs are shown in 
Fig. 13. It shows that DE generation in phase b is apparently 
lower than in the other two phases, as the demand in phase 
b is lower than in phase a and phase c.

The intra-day ADN dispatch results verify the effective‐
ness of the proposed method of coordination of all the DER 
units and reactive power devices to attain both optimal ac‐
tive and reactive power managements. The final cost of intra-
day ADN dispatch over 24 hours is $8978.32 and the solv‐
ing time for the intra-day operation is 6.24 s for each hour. 
This solution performance also validates that the proposed 
method is compatible with the intra-day operation.

D. Comparison with Other Methods

To illustrate the validness and effectiveness of the pro‐
posed method, other unbalanced distribution system opera‐
tion benchmarks are compared.

Method A (MA): this is the deterministic operation meth‐
od and the forecast of the RES generation and load are re‐
garded as accurate [2], [38].

Method B (MB): the centralized VVC scheme is not in‐
volved. This means the coordination between active and reac‐
tive power dispatch does not exist and all the reactive power 
is satisfied by only renewable inverters and the main grid 
[3], [18], [35].
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Method C (MC): the ESS degradation is not considered 
where the ESS capacity assumes to be constant during each 
charging/discharging event [18], [35].

The optimization results of these benchmarks are demon‐
strated in Table II. Besides, one of the comparing criteria 
called the hourly unbalance rate Unbavg, which is the average 
of three-phase unbalance P t

unb, is defined in (52).

Unbavg =
1
Nt
∑
tÎNt

P t
unb (52)

From the comparison of simulation results in Table II, it 
can be inferred that:

1) For MA, the system operation cost and power loss cost 
are lower compared with all methods with the least solution 
time. This is rational as only one scenario is considered with 
a smaller problem dimension. However, for this method, it is 
not practical because in reality, the accuracy of uncertainty 
predictions cannot be guaranteed completely.

2) For MB, without the modeling of the VVC scheme, the 
reactive power balance is only supported by the main utility. 
The transmission of a great amount of power to a single bus 
will scarify higher power loss costs. It can be observed that 
the power loss cost in MB is twice as high as the proposed 
method. Hence, to reduce the power losses and build up a 
cost-effective model, the coordination of active and reactive 
power is necessary to be considered in the ADN operation.

3) For MC, the constraints in terms of ESS degradation 
are ignored, and the operation cost is lower than the pro‐
posed method with a better computational performance since 
the linearization of ESS degradation involves many binary 
variables. However, the neglection of ESS degradation leads 
to imprecise and idealistic results.

4) Compared with MA to MC, the proposed method has 
lower power loss and reasonable operation costs. Unbavg of 
the proposed method is similar to those of MB and MC. Be‐
cause the three-phase imbalance is mainly about active pow‐
er dispatch and if the reactive power optimization is ignored 
in MB, it would not influence the active power scheduling 
and the three-phase unbalanced power. From Table II, the ob‐
tained results for the second stage are slightly higher than 
the first-stage operation cost results. Those differences are 
brought by the impact of the individual scenario in the sec‐
ond-stage simulation. The results from the first stage are the 
expected value of all the various covered scenarios, while 
the second stage is significantly affected by the revealed un‐
certainty.

E. Sensitivity Analysis for Number of Different Scenarios

To further indicate the effectiveness of the proposed meth‐
od, the sensitivity analysis is conducted based on different 
numbers of scenarios. As the proposed method is solved 
with 10 scenarios reduced from 1000 scenarios, for the com‐
parison, 5, 15, and 20 scenarios are utilized. The comparison 
of different numbers of scenarios is listed in Table III, where 
S5 to S20 means we use 5 to 20 scenarios for simulation.

The results show that there is a significant difference in 
system operation cost and power loss cost between S5 and 
S10. This is because for fewer scenario cases, each scenario 
has a critical impact on the simulation results and a single 
extreme case will greatly affect the system cost. With the in‐
creasing number of scenarios, the results are similar but a 
longer solution time is taken. From the sensitivity analysis 
results, it can be observed that 10 scenarios can be enough 
to balance the solution accuracy and solution time.

F. Sensitivity Analysis for Three-phase Unbalanced Limits

To illustrate the impact of changing the power unbalance 
limits on the system operation, we have selected four extra 
cases (cases 1-4) whose three-phase power unbalances are 
20% and 10% lower than the proposed method; and 20% 
and 10% higher than the proposed method, for which P max

unb =
0.18 p.u. and  Unbmax

total = 1.07 p.u.. Taking case 1 as an exam‐
ple, P max

unb  and Unbmax
total are set to be 20%, which are lower 

than the proposed method, and P max
unb1 = 0.144 p.u. Unbmax

total1 =
0.856 p.u.. The results of this sensitivity analysis are present‐
ed in Fig. 14, where the proposed method is also involved to 
make the best comparison. The indicator of hourly average 
unbalance is in (52). 

From Fig. 14, with the decrease of P max
unb , the hourly unbal‐

ance rate is reduced as well to meet the system constraints. 
However, the solution time gradually increases as the system 
limits become narrower. The dramatic rise of the solving 

TABLE Ⅲ
COMPARISON OF DIFFERENT NUMBERS OF SCENARIOS

Item

S5

S10

S15

S20

Power loss cost ($)

327.76

244.86

246.94

248.82

Hourly unbalance (p.u.)

0.0443

0.0421

0.0417

0.0435

Solution time (s)

598

1656

19519

65499

TABLE Ⅱ
COMPARISON OF SIMULATION RESULTS

Method

MA

MB

MC

Proposed

First stage

Operation
 cost ($)

8395

8835

8534

8633

Solution 
time (s)

23

812

424

1656

Second stage

Operation 
cost ($)

8778

9128

8856

8978

Power 
loss cost

($)

244

458

243

244

Hourly 
unbalance 
rate (p.u.)

0.023

0.045

0.039

0.042

Solution 
time (s)

6.37

6.72

6.08

6.24
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Fig. 14.　 Results of sensitivity analysis for three-phase power unbalance 
limits.
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time with the increase of P max
unb  is witnessed by cases 3 and 4. 

Considering that the limits of the root branch three-phase un‐
balance are broadened, it would enlarge the range of other 
decision variables and bring a significant effect on the com‐
puting performance. Despite the large changes in the solving 
time, relatively small differences are found in terms of 
Unbavg between cases 3 and 4. Even though (the limits of 
widened root branch three-phase unbalance) are considered, 
the system should still meet the voltage and power flow lim‐
its to guarantee the safe operation of the ADN. Based on the 
analysis above, the proposed method marginally outperforms 
the other methods by the minimum solving time and accept‐
able hourly unbalance.

VI. CONCLUSION 

This paper proposes an optimal coordinated operation 
method for the unbalanced ADN. The active and reactive 
power can be jointly optimized by utilizing the VVC scheme 
to regulate the voltage and reduce the power losses. The 
ESS degradation model is also considered to characterize the 
aging impact of each charging/discharging event. Copula the‐
ory is applied for handling uncertainty by recognition of cor‐
relations of all the uncertainty sources. Finally, numerical 
case studies are conducted to illustrate the following aspects.

1) The linearized three-phase branch flow model can 
schedule DER output differently among three phases and de‐
rive a more precise and realistic operation cost. The ESS ag‐
ing cost also verifies that the degradation process has a ne‐
glectable impact on system cost.

2) The proposed method enables the joint optimization of 
the active and reactive power effectively in the unbalanced 
ADN. Besides, the power losses can be effectively reduced.

3) The copula-based two-stage SP method could correctly 
reveal the correlation between dependent uncertain variables, 
which effectively addresses the diverse uncertainties.
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