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Two-stage Optimization for Active Distribution 
Systems Based on Operating Ranges of Soft 

Open Points and Energy Storage System
Can Wang, Jianjun Sun, Meng Huang, Xiaoming Zha, and Wei Hu

Abstract——Due to the lack of flexible interconnection devices, 
power imbalances between networks cannot be relieved effec‐
tively. Meanwhile, increasing the penetration of distributed gen‐
erators exacerbates the temporal power imbalances caused by 
large peak-valley load differences. To improve the operational 
economy lowered by spatiotemporal power imbalances, this pa‐
per proposes a two-stage optimization strategy for active distri‐
bution networks (ADNs) interconnected by soft open points 
(SOPs). The SOPs and energy storage system (ESS) are adopt‐
ed to transfer power spatially and temporally, respectively. In 
the day-ahead scheduling stage, massive stochastic scenarios 
against the uncertainty of wind turbine output are generated 
first. To improve computational efficiency in massive stochastic 
scenarios, an equivalent model between networks considering 
sensitivities of node power to node voltage and branch current 
is established. The introduction of sensitivities prevents viola‐
tions of voltage and current. Then, the operating ranges (ORs) 
of the active power of SOPs and the state of charge (SOC) of 
ESS are obtained from models between networks and within 
the networks, respectively. In the intraday corrective control 
stage, based on day-ahead ORs, a receding-horizon model that 
minimizes the purchase cost of electricity and voltage deviations 
is established hour by hour. Case studies on two modified ADNs 
show that the proposed strategy achieves spatiotemporal power 
balance with lower cost compared with traditional strategies.

Index Terms——Active distribution system, operating range, 
sensitivity, soft open point (SOP), power imbalance.
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tor bank (SCB)

Vectors of difference of node active and reac‐
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Reactive power of SCB at node i during peri‐
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during period t in scenario ω

Charging and discharging active power of 
ESS at node i during period t in scenario ω

Purchased active power during period t in net‐
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Purchased active power during period t in net‐
work m

Active power loss of SOP at node i during pe‐
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Reactive power of series var compensator 
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Active power and active power losses of SOP 
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Substituted variable for the absolute value be‐
tween 1 and the square of voltage magnitude 
of node i during period in network m

Square of voltage of node i during period t in 
scenario ω

Voltage of node i during period t in scenario 
ω

I. INTRODUCTION 

WITH the higher penetration of wind turbines (WTs) 
and other distributed generators (DGs) [1], uncertain‐

ties in their outputs exacerbate power imbalances between 
different networks in the space dimension and expand peak-
valley differences in net load within a network in the time 
dimension [2]. Under this context, soft open points (SOPs) 
[3], which can transfer active power between networks and 
compensate reactive power spatially, and energy storage sys‐
tems (ESSs) [4], which can shift peak power to valley pow‐
er temporally, have been widely studied. Combined with oth‐
er regulatory devices, better system operation states can be 
achieved in active distribution networks (ADNs) [5].

SOPs were originally proposed in [3] and consist of volt‐
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age source converters (VSCs) connected by capacitors. A 
simulation case composed of three IEEE standard networks 
was analyzed in [5], where a five-terminal SOP worked as 
an energy hub that transferred active power between net‐
works. To cope with the complex uncertainties imposed by 
photovoltaic generations, a real-time scheduling method with 
SOPs via a multi-timescale framework was proposed in [6], 
where SOPs were coordinated with on-load tap changer 
(OLTC), shunt capacitor bank (SCB), and series voltage reg‐
ulator (SVR). A two-stage robust model was established in 
[7] to address the uncertainties of photovoltaic outputs, 
where SOPs were adopted to eliminate voltage violations 
and reduce the power losses. For a three-phase unbalanced 
condition in an ADN, an SOP-based operation strategy was 
proposed in [8], where power losses were reduced and the 
three-phase unbalance was mitigated. A data-driven opera‐
tion strategy of SOP was proposed in [9] with inaccurate pa‐
rameters and frequent changes of operation states, where 
multiple SOPs were used to connect different areas inside a 
single ADN. SOPs integrated with ESS were proposed in 
[10] to improve the flexibility in ADNs, where losses of 
SOP with energy storage were modeled considering its sub‐
systems. In addition, two IEEE 33-node networks were con‐
nected via a SOP with ESS in [10]. Considering the flexible 
interconnection and multiple application conditions intro‐
duced by SOPs, balancing power between different ADNs 
with the active power transfer of SOPs is another application 
scope.

To assess the power imbalance condition [11] and other 
existing problems in ADNs [5], the coordination of multiple 
regulatory devices has been studied. To mitigate the imbal‐
ance condition of feeder loads, an enhanced SOCP-based 
method via a multiterminal SOP was proposed in [11]. In ad‐
dition, SOPs were also applied in the load balance of differ‐
ent feeders in an ADN in [12], which performed better than 
the network reconfiguration. Aiming at the power flow fluc‐
tuation and load imbalance condition caused by the large-
scale integration of DGs, a multiterminal SOP was coordinat‐
ed in [13] with DGs, OLTC, and controllable loads, where 
the SOP flexibly connected feeders in the distribution net‐
work. In sum, SOPs together with other devices are able to 
balance power spatially and temporally.

Optimization results from the day-ahead stage can provide 
promising references for the intraday stage with the coordina‐
tion of the day-ahead stage and the intraday stage. Based on 
day-ahead load forecast data, the hourly reactive power of 
DGs was determined in [12] in coordination with switching 
operations of OLTC and SCBs. Differences between actual 
and forecast load data were assumed to be small in [12], the 
strategy of which lacked reference for the intraday stage. A 
multi-timescale framework for volt/var optimization was pro‐
posed in [13], which coordinated the tap changer on a slow 
timescale (hourly basis) and the ESS on a fast timescale (15-
min basis). The ESS power setpoints obtained in the first 
stage had no connection to the results in the second stage. 
The operation curve for the state of charge (SOC) of ESS 
was predetermined in a day-ahead model in [14], which was 
unchangeable in the intraday dispatch stage. Since the intra‐

day hourly forecast data may differ greatly from day-ahead 
data, the intraday rescheduling of an ESS based on day-
ahead schemes should be studied. Moreover, in the day-
ahead stage, optimization results of SOPs that may provide 
beneficial references for intraday corrective control are al‐
ways omitted [14]. An ESS in the intraday stage was dis‐
patched hourly within the optimized SOC limits obtained 
from the day-ahead stage in [15], where the limits worked as 
operating ranges (ORs) for the ESS. Therefore, two stages 
should be coordinated optimally, where the optimal decisions 
of the intraday stage should be based on the day-ahead 
schedule.

To cope with the uncertainties of loads and outputs of 
DGs, robust optimization and stochastic optimization have 
been widely studied. To ensure the robustness of dispatch de‐
cisions under the uncertainties of DGs, a distributionally ro‐
bust real-time power dispatch model for a coupled transmis‐
sion grid and ADNs was proposed in [16]. The proposed sto‐
chastic framework in [17] considered the uncertainties of 
DGs, which were converted to deterministic problems with 
probabilities. A stochastic model was established to mini‐
mize power losses and avoid voltage violations in [18], tak‐
ing load forecast errors into account. Nevertheless, stochastic 
programming relies heavily on the accurate formulation of 
the probability density function, which may be difficult to 
obtain, while conservativeness can only be reduced but not 
eliminated in the robust model.

The alternating direction multiplier method (ADMM) is a 
promising distributed method that can be applied to the opti‐
mization of power systems [19]. For a large-scale ADN with 
a given division of areas, an ADMM was used to carry out a 
distributed reactive optimization in [20]. For large numbers 
of scenarios, it will take the method like the ADMM more 
time to complete the whole optimization if specific power 
flow constraints such as DistFlow constraints are included in 
the model. In this context, a sensitivity-based method can ac‐
celerate the computation but with a loss of accuracy. A 
straightforward analytical derivation of node voltage and line 
current sensitivities was provided in [21] based on the sparse 
compound matrix Y. The sensitivities of node voltages with 
respect to the OLTC were calculated to estimate the voltage 
in [22]. Similarly, an efficient sensitivity calculation method 
was used in [23] to update the voltage sensitivities online 
with respect to the settings of discrete-acting devices. Conse‐
quently, to improve the computational efficiency of optimal 
power flow in massive scenarios, the sensitivity-based opti‐
mization method can be adopted.

Motivated by the above facts, to work against spatial pow‐
er imbalances between networks and temporal power imbal‐
ances inside a network and offer a flexible intraday regula‐
tion strategy for SOPs and ESSs, this paper focuses on pre‐
senting an optimization strategy for flexibly interconnected 
ADNs under WT uncertainty, including the day-ahead sched‐
uling and intraday corrective control stages. The main contri‐
butions of this paper are summarized as follows.

1) To address the limitations of the day-ahead scheduling 
stage, which provides reference curves for the intraday cor‐
rective control stage, ORs of active power of SOPs and the 
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SOC of ESS are constructed from optimization results of 
large numbers of stochastic scenarios generated by WT un‐
certainty, of which the total cost is less than that of fixed op‐
eration curves in ADNs.

2) To improve the computational efficiency of ORs ob‐
tained from the results in large numbers of stochastic scenari‐
os, each network-connected SOP is equivalent to an entity 
with net loads. Then, current and voltage sensitivities with 
respect to node power to prevent violations are considered 
rather than specific power flow constraints, which guarantees 
the effectiveness of ORs.

The rest of this paper is organized as follows. Section II 
outlines the framework of spatiotemporal power balance. 
Sections III and IV formulate the power balancing models in 
the day-ahead scheduling stage and intraday corrective con‐
trol stage, respectively. Section V provides the implementa‐
tion algorithm. Section VI presents the numerical results and 
an analysis of two modified flexibly interconnected ADNs. 
Finally, Section VII concludes the paper.

II. FRAMEWORK OF SPATIOTEMPORAL POWER BALANCE 

A. Flexibly Interconnected ADNs

A flexible network consisting of multiple ADNs intercon‐
nected by SOPs has been studied in this paper. An example 
is shown in Fig. 1, where a two-terminal SOP connects two 
IEEE 33-node ADNs. ESS is applied to regulate active pow‐
er while SCBs and static var compensator (SVC) are applied 
to regulate reactive power within network.

B. Coordination of Two Stages

A two-stage optimization strategy for spatiotemporal pow‐
er balancing in flexibly interconnected ADNs is proposed in 
this paper. The timescales for the two stages are 24 hours 
and 1 hour, respectively. The framework of the proposed 
strategy is shown in Fig. 2, where x1 is the purchase cost of 
electricity; x2 is the voltage deviation; x3 is the computing 
time; and x4 is the voltage or current violation.
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Different from continuous-acting devices such as SOPs 
and ESSs, SCBs are discrete-acting devices. SCB schedules 
are generated through stochastic optimization.

First, large numbers of stochastic scenarios are generated 
through the Monte Carlo method according to the day-ahead 
forecast error of WT power, denoted as Ωsto

sen. Then, the K-
means cluster algorithm is adopted to generate several typi‐
cal scenarios, denoted as Ωtyp

sen. Finally, SCB schedules are ob‐
tained through stochastic optimization based on typical sce‐
narios. In addition, the SCB schedules will not be changed 
in the intraday corrective control stage.

In the day-ahead scheduling model between networks, each 
ADN is equivalent to an entity only with net active and reac‐
tive loads to improve computation efficiency in massive sce‐
narios. Meanwhile, sensitivities are introduced to prevent vio‐
lations of voltage and current in ADNs with the integration of 
an SOP instead of specific power flow constraints. Since ac‐
tive power can be transferred through the SOP, the SOP is ap‐
plied to balance power spatially. In the day-ahead scheduling 
stage, with the objective of minimizing the sum of the pur‐
chased active power in 24 hours from all networks, the opti‐
mal active power of SOP in each scenario is obtained.

For the generation of OR, the forecast error range is divid‐
ed equally into several error intervals considering WT uncer‐
tainty first. Then, considering Ωsto

sen, power flow optimization 
is carried out in each scenario. Based on the optimization re‐
sults, the upper and lower limits of the active power of SOP 
and the SOC of ESS are chosen as the OR in each error in‐
terval. The whole OR consists of the ORs in all error inter‐
vals. To apply ORs in the intraday stage, the error interval in 
which the forecast error of WT power is located is determined 
first. Then, the OR in this interval is selected as the OR for the 
active power of SOP and the SOC of ESS.

In the day-ahead scheduling model within a single net‐
work, considering detailed power flow constraints, the power 
of the ESS and SVC is optimized with the objective of mini‐
mizing the weighted sum of peak-valley differences of pur‐
chased active power based on the optimal active power of 
the SOP. Similarly, ORs of the SOC of ESS can be con‐
structed. Because the purchase cost of electricity is the main 
focus of the power balance and the reactive power has little 
effect on it, the reactive power of the SVC is omitted in the 
day-ahead scheduling stage.

In the intraday corrective control stage, the optimization 
model is established and solved by the ADMM hourly. First, 
specific ORs of the SOP and ESS should be determined 
based on hourly forecast errors compared with day-ahead 
forecast data. Then, with the objective of minimizing the 
weighted sum of the purchase cost of electricity and voltage 
deviations, the active power of SOP and the SOC of ESS are 
optimized in determined ORs, while the reactive power of 
SOP and SVC is regulated within capacity. Finally, according 
to the optimization results, the power of the SOP, ESS, and 
SVC is adjusted hourly by the distribution network operator.

The final optimization results indicate that the proposed 
strategy using ORs performs better than the traditional strate‐
gy. Meanwhile, it takes the equivalent model less time than 
the detailed model to complete optimization in massive sce‐

narios. In addition, voltage or current violations never occur 
in the equivalent model when considering sensitivities. By 
comparison, voltage violations occur in the equivalent model 
without considering sensitivities.

III. POWER BALANCING MODEL IN DAY-AHEAD 
SCHEDULING STAGE 

A. Determination of Schedule for Discrete-acting Devices

1)　Objective Function
The model to determine the schedule for discrete-acting 

devices such as SCB minimizes the weighted total purchase 
cost of electricity from the upstream grid in all typical sce‐
narios Ωtyp

sen.
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3)　SOP Constraints
Active power can be transferred between different termi‐

nals through the SOP, and reactive power can be compensat‐
ed by the SOP. The SOP operation constraints can be written 
as:
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4)　ESS Constraints
During one period, active power can only be charged into 

the ESS or discharged from the ESS. In addition, the SOC 
of ESS is also constrained.
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5)　SVC Constraints
The reactive power of the SVC can be adjusted continuous‐

ly, and the operation constraint of the SVC is expressed as:

QSVC
imin £QSVC

itω £QSVC
imax (5)

6)　SCB Constraints
Different from the SVC, the reactive power of the SCB is 

adjusted by switching discrete banks on or off.

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

QSCB
it =N SCB

it qSCB

0 £N SCB
it £N SCB

max

∑
t = 1

T

|| N SCB
it -N SCB

it - 1 £ ∆SCB
max

(6)

7)　Security Constraints
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The decision variables of P0 are shown in (8).

xda = {N SCB
it } (8)

Since optimizing SCB schedules is not the main focus of 
this paper, algorithm details for solving the model will not 
be included here. If power flow constraints and SOP con‐
straints are transformed into convex constraints, a mixed-in‐
teger second-order cone programming (MISOCP) algorithm 
can be applied here. The transformation of nonconvex power 
flow constraints can be reviewed in [16]. Otherwise, a heu‐
ristic algorithm such as the particle swarm optimization 
(PSO) algorithm is another choice.

B. Equivalent Power Balancing Model Between Networks

1)　Objective Function
The power balancing model between networks minimizes 

the total purchased active power from the upstream grid. Ac‐
cording to the power flow calculation formulas, the pur‐
chased active power equals the sum of net active loads and 
active power loss in an ADN. Consequently, the objective 
function in scenario ω from Ωsto

sen is expressed as:

(P1)  min f dao
ω =∑

m = 1

N ∑
t = 1

T ( )P nl
mtω -P SOP

mtω + ∑
ijÎΦm

br

imijtωrijm (9)

2)　Sensitivity Constraints
To prevent voltage and current violations, the sensitivities 

of node power to voltage and current are considered. The 
computation of sensitivities can be reviewed in [24].

The power flow calculation formula of the Newton-Raph‐
son method is shown in (10).
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According to (10), the deviation of node voltage with re‐
spect to node power can be written as:
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Therefore, the computation of the updated node voltage 
can be expressed as:

U ′tω =U 0
tω -DUtω (12)

For the sensitivity of branch current with respect to node 
active power, the computation formula of branch current can 
be expressed as:

Iijtω =
U 2

itω +U 2
jtω - 2UitωUjtω cos θijtω

r 2
ij + x2

ij

(13)

According to the full differential formula, the sensitivity 
of the branch current with respect to the node active power 
and node reactive power is shown in (14).
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Formula (14) can be transformed into matrix form, which 
is expressed as:
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Therefore, the calculation formula of elements in the sensi‐
tivity matrix is shown in (16).
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The updated branch current with sensitivity is expressed 
as:
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Moreover, the node voltage magnitude and branch current 
must comply with the security constraint (7).

The decision variables of P1 are shown as:

xdao
ω = {P SOP

itωQ
SOP
itω} (18)

3)　ORs of SOP
In the day-ahead scheduling stage, ORs are composed of 

ORs in each hour. It should be emphasized that the ORs of 
the active power of SOP are constraints about its active pow‐
er, designed for intraday hourly optimization. For period t, 
the whole forecast interval is equally divided into several 
small intervals. The minimum and maximum values of P SOP

itω 
in each small interval are chosen as the bounds for the OR. 
An example of the ORs of active power of the SOP can be 
found in Fig. 2. Formulas of the ORs of active power of 
SOP are shown as:
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C. Power Balancing Model Within Network

1)　Objective Function and Constraints
To further obtain the ORs of the SOC of ESS for the sub‐

sequent intraday stage, each network has to be optimized 
separately. For each single network, the power balancing 
model minimizes the sum of purchased active power and its 
weighted sum of peak-valley differences, which is shown in 
(20). The research subject is network m in scenario ω 
from Ωsto

sen.

(P2)  min f dai
mω =∑

t = 1

T

P up
mtω + ∑

t 1
c t

2
c ÎΘ

up
c

αmcω
|
|

|
| P

up
mt 1

c ω
-P up

mt 2
c ω  (20)

The hourly purchased active power before optimization, 
denoted as P upb

mtω, is sorted in ascending order. Then, by pair‐
ing the head and tail active power, 12 pairs are formed. 
Each pair is weighted from high to low to show that reduc‐
ing the maximum valley-peak difference is the most impor‐
tant step. The formula of weight is shown in (21).
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mt 2
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(21)

To transform the objective to the linear form of decision 
variables, variable substitutions are made, and related con‐
straints are added, as shown in (23).

min f dai
mω =∑

t = 1

T

P up
mtω + ∑

t 1
c t

2
c ÎΘ
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αmcωDP up
mωt 1

c t
2
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(22)

s.t.
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Constraints of P2 mainly include (3), (4), (5), and (7). 
The decision variables of P2 are shown as:

xdai
ω = {P ch

itωP
dis
itωEitω} (24)

2)　ORs of ESS
Similar to the above steps, we can obtain the ORs of SOC 

of ESS as:
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IV. POWER BALANCING MODEL IN INTRADAY CORRECTIVE 
CONTROL STAGE 

The ORs of the active power of SOP and the SOC of ESS 
are constructed in the day-ahead scheduling stage, which pro‐
vides operating bounds for the SOP and ESS in the intraday 
hourly optimization model.

Generally, day-ahead forecast data are not the same as in‐
traday hourly forecast data. Herein, corrective control must 

be performed on the power of the SOP and ESS hourly 
based on day-ahead schedules. Since optimization is carried 
out hourly during the day, a detailed model can be estab‐
lished. Meanwhile, the objective function minimizes the 
weighted sum of the hourly purchase cost of electricity from 
the upstream grid and the voltage deviations.

(P3)  min f in = αup∑
m = 1

N ∑
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T
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t P up

mt
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+ αvd∑
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N
∑
iÎΨ m

nd

∑
t = 1

T

||uimt - 1

f vd
m

(26)

αup and αvd are obtained by the analytical hierarchy pro‐
cess (AHP) method. Variable substitution is applied to trans‐
form the objective function into a linear form.

min f in = αup∑
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s.t.
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u′imt ³ uimt - 1

u′imt ³ 1 - uimt
(28)

For the intraday model, the constraints of the active pow‐
er of SOP and the SOC of ESS must be extracted from the 
ORs. First, the intraday forecast error is calculated and com‐
pared with the day-ahead forecast data in period t. Then, the 
small interval that the error locates is determined and denot‐
ed as kt. The ranges for P SOP

it  and Eit are the constraints, as 
shown in (29).
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Considering the above, other constraints of power flow 
and regulatory resources in each network are included, 
which are described in Section III-A. The decision variables 
of P3 are shown as:

xin = {P SOP
itωQ

SOP
itωP

ch
itωP

dis
itωEitω} (30)

V. IMPLEMENTATION ALGORITHM 

A. Transformation of Nonconvex Constraints

Conic relaxation is applied to transform the nonconvex 
constraints of the sixth constraint in (2) and the third con‐
straint in (3). The transformed constraints are shown as:

 [2Pijtω 2Qijtω iijtω - uitω ]
T

2
£ iijtω + uitω (31)

(P SOP
itω ) 2

+ (QSOP
itω ) 2

£ ( P SOPL
itω

ASOP
i ) 2

(32)

B. ADMM for Flexibly Interconnected ADNs

Flexibly interconnected ADNs can be partitioned and 
bounded by the DC side of the SOP. Each independent ADN 
with the AC side of the SOP comprises one control area. 
The ADMM blends the decomposability of dual ascent with 
the superior convergence properties of the method of multi‐
pliers, which is applicable here [25].

The active power balance constraint of the SOP should be 
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ensured between different areas. As observed from constraint 
(3), only boundary active power is exchanged between areas. 
Taking SOP1 in Fig. 1 as an example, the first constraint in 
(3) can be rewritten as:
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For the flexibly interconnected ADN in Fig. 1, the objec‐
tive function for the spatial power balance in the day-ahead 
stage can be expressed as:
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(34)

Taking Network 1 in Fig. 1 as an example, let λ denote 
the Lagrange multiplier for the active power balance con‐
straint between areas and ρ denote the penalty factor. Then, 
the objective function of Network 1 can be rewritten as:

LADMM
NW1 = f1 +

ρ
2 (P SOP

it +P SOPL
it -P link ) 2

+

λ (P SOP
it +P SOPL

it -P link ) (35)

Operation optimization is carried out for each network. 
The optimization results of the regulatory devices and bound‐
ary active power are obtained. The global value of the 
boundary data between areas should be updated according 
to (36).

P link
l + 1 =

P SOP
itl + 1 +P SOPL

itl + 1 -P SOP
jtl + 1 +P SOPL

jtl + 1

2
(36)

After obtaining the global value, the computation formu‐
las of the raw residual and the dual residual can be ex‐
pressed as:
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(37)

Then, based on the boundary active power, the Lagrange 
multiplier should be updated as:

λl + 1 = λl + ρ (P link
l + 1 -P SOP

itl + 1 -P SOPL
itl + 1 ) (38)

The detailed process of the distributed coordination optimi‐
zation for flexibly interconnected ADNs with SOPs is sum‐
marized below.

Step 1: initialization. The power flow results of the net‐
work without regulatory devices are set as initial values. 
Then, obtain P link

0  based on the initial values. Set the initial 
Lagrange multiplier as 0 and l = 0.

Step 2: optimization. Power flow optimization is carried 
out for each network, and decision variables and interactive 
variables are obtained.

Step 3: update. Update the global value according to (36). 
Then, the corresponding Lagrange multiplier is updated ac‐
cording to (38).

Step 4: iteration. Obtain the raw residual and the dual re‐
sidual of each network according to (37). If the infinite 

norm of the residual is less than the convergence threshold, 
stop the iteration and output optimal results. Otherwise, let 
l = l + 1 and return to Step 2.

Following the details mentioned above, the implementa‐
tion process of the proposed two-stage optimization strategy 
for spatiotemporal power balancing in flexibly interconnect‐
ed ADNs is summarized in Algorithm 1, where the day-
ahead scheduling stage is shown in lines 2-8, the intraday 
corrective control stage is shown in lines 9-16, and the prob‐
lem transformations are shown in lines 15-17.

VI. CASE STUDY 

A. Simulation Setups

The case shown in Fig. 1 is denoted as Case 1. The load 
curves in the two networks are set to be different, while the 
WT power curves are the same. The normalized load curves 
and day-ahead and intraday hourly forecast active power of 
the WT are depicted in Fig. 3. The day-ahead forecast error 
ε for WT is set to be ±20%. The day-ahead hourly forecast 
data are considered to conform to a uniform distribution 
within the error range. The parameters for integrated devices 
are shown in Table I. The parameter settings are shown in 
Table II.

In Table I, S denotes the capacity of each device. The pro‐

Algorithm 1

1: Input: parameters of networks and devices and forecast data

2: Generate large numbers of stochastic scenarios Ωsto
sen based on day-ahead 

forecast data of WT through Monte Carlo method

3: Generate several typical scenarios Ωtyp
sen through K-means cluster algo‐

rithm

4: Formulate the model to determine schedules for SCB as P0 (1) and 
solve it

5: Formulate the equivalent day-ahead spatial power balancing model be‐
tween networks and approximate it as P1 (9) via problem transforma‐
tions (lines 15-17)

6: Obtain the ORs of the active power of SOP with the forecast error in 
each hour

7: Formulate the day-ahead temporal power balancing model within the 
network and approximate it as P2 (20) via problem transformations 
for each network

8: Obtain ORs of the SOC of ESS with the forecast error in each hour

9: for t = 1:T do

10: Collect hourly forecast data of WT

11: Extract the ORs of the active power of SOP and the SOC of ESS ac‐
cording to the hourly forecast error of WT

12: Formulate the intraday corrective control model

13: Execute problem transformations for P3 (26)

14: Solve the above problem via ADMM and the power of SOP, ESS, and 
SVC is finally determined

15: t: = t + 1

16: end for

17: Linearize the objective function through variable substitution

18: Transform nonconvex constraints into second-order conic constraints

19: P1 and P3 are reformulated as second-order cone programming 
(SOCP) problems, while P2 is reformulated as an MISOCP problem

20: Output: hourly scheduling strategies for SOPs, ESSs, SVCs, and 
SCBs
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posed model was implemented in MATLAB R2017b scripts 
and solved with CPLEX 12.8. The numerical experiments 
were performed on a PC with an Intel CPU i5-8300h and 16 
GB of RAM.

B. Result Analysis for Day-ahead Equivalent Model Consid‐
ering Sensitivity

1)　Error Analysis for Equivalent Model Considering Sensitiv‐
ity

To analyze the errors of optimization results such as node 
voltage and branch current, power flow calculation is carried 
out after the optimization based on the active power of SOP 
obtained from the equivalent model. Consequently, the aver‐
age errors and maximum errors of the node voltage and 
branch current are shown in Table III.

In Table III, we can observe that the maximum errors are 
less than 0.1, respectively, which is acceptable. In addition, 
the average errors of node voltage and branch current are at 

the 10-4 and 10-3 levels, which indicates that the proposed 
equivalent model is highly accurate. It is also verified that 
none of the scenarios violate the voltage or current limit, 
which proves that the equivalent model is sufficiently reli‐
able.

2)　Analysis of Security Constraint Violations
To verify the superiority of the adoption of sensitivities, 

an equivalent model without sensitivity-based security con‐
straints is considered as a comparison. Two models with and 
without consideration of sensitivity are denoted as Model A 
and Model N, respectively. The results of the violation per‐
cent of different scenarios are shown in Table IV. It shows 
that although branch current violations do not occur in Mod‐
el N, node voltages in all scenarios exceed the limits. The re‐
sults indicate that the adoption of sensitivity-constrained 
node voltage and branch current in the equivalent model is 
necessary.

3)　Comparison with Detailed Model
In this part, another day-ahead scheduling model between 

networks is established considering detailed power flow con‐
straints (denoted as detailed model). The ADMM is used to 
solve the detailed model. The results show that the average 
computation time in 1000 scenarios using the equivalent 
model is 1.24 s, while the average computation time in 100 
scenarios using the detailed model is 14 s. More than 24 
hours are consumed if 1000 scenarios are optimized using 
the detailed model, which is unacceptable even in the day-
ahead scheduling stage. Combined with the analysis of er‐
rors, it can be concluded that the equivalent model consider‐
ing sensitivities computes faster with acceptable accuracy.

C. Result Analysis of ORs

1)　Intraday Optimization Results Under Different Conditions
Different conditions are set to compare the optimization 

results and ORs in different scenarios and error intervals. 
Six numbers are set for N S, which are 200, 500, 1000, 1500, 
2000, and 3000, while four numbers are set for N E, which 
are N S /2, N S /20, N S /50, and N S /100. In sum, 24 conditions 
are composed from all combinations. The contours of total 
costs and voltage deviations in the intraday stage under 24 
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Fig. 3.　Normalized load curves and day-ahead and intraday hourly forecast 
active power of WT.

TABLE III
ERRORS OF NODE VOLTAGE AND BRANCH CURRENT

Parameter

Node voltage

Branch current

Average error

Network 1

0.000600

0.003582

Network 2

0.009000

0.006195

Maximum error

Network 1

0.01196

0.04219

Network 2

0.01966

0.09042

TABLE IV
VIOLATION PERCENT OF DIFFERENT SCENARIOS

Parameter

Node voltage

Branch current

Violation percent of model 
A (%)

Network 1

0

0

Network 2

0

0

Violation percent of model 
N (%)

Network 1

0

0

Network 2

100

0

TABLE I
PARAMETERS FOR INTEGRATED DEVICES

Device

WT

ESS

SVC

SOP

SCB

Location

Nodes 10 and 25 in Net‐
work 1 and Node 15 in 

Network 2

Node 15 in Network 1 
and Node 33 in Network 2

Node 33 in Network 1 
and Node 9 in Network 2

Node 30 in Network 1 
and Node 18 in Network 2

Node 8 in Network 1 and 
Node 29 in Network 2

Parameter

SWT = 500 kW

SESS = 800 kWh, P ESSC
max =

P ESSD
max =200 kW/h, ηC = ηD =
0.9, Emin = 0.2, Emax = 0.9

SSVC = 500 kvar

SSOP = 2 MVA, ASOP = 0.02

qSCB = 100 kvar, N SCB
max =10, 

ΔSCB
max =3

TABLE II
PARAMETER SETTINGS

Parameter

cpur
t

Umin, Umax

Value

01:00-07:00: 61 $/MWh; 08:00-10:00, 16:00-18:00, 22:00-
23:00: 138 $/MWh; 09:00-15:00, 19:00-21:00: 220 $/MWh

0.93 p.u., 1.07 p.u.
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conditions are shown in Figs. 4 and 5, respectively.

In Fig. 4, we can observe that all results are close to each 
other. There are two valleys, where one valley is for N S = 2000 
and N E = N S /2 and the other is composed of data for N S = 200, 
N E = N S /20, N E = N S /50 and N S = 1000, N E = N S /20. Figure 4 
indicates that cost will not decrease with more N S and more 
N E. In Fig. 5, we can also observe that all results are simi‐
lar. With a smaller N S and a smaller N E, the voltage devia‐
tions are smaller.
2)　ORs Under Different Conditions

The OR of the active power of SOP in period 19 when 
N S = 1500 and N E = N S /2 is shown in Fig. 6. Taking ESS1 as 
an example, the OR of the SOC of ESS1 in period 15 when 
N S = 1500 and N E = N S /2 is shown in Fig. 7. The orange 
parts in the two figures are the final ORs in this period ac‐
cording to the intraday hourly forecast error. Combined with 
ORs in other periods, the final intraday ORs in the time se‐
ries are obtained, of which examples are shown in Figs. 8 
and 9.

The lower and upper bounds of ORs of the active power 
of SOP in different numbers of scenarios when N E = N S /50 
are shown in Fig. 8(a) and (b), respectively. The lower and 
upper bounds of ORs of the active power of SOP under dif‐
ferent numbers of error intervals when N S = 2000 are shown 

in Fig. 8(c) and (d), respectively. Similar to Fig. 8, the lower 
and upper bounds of ORs of the SOC of ESS under differ‐
ent numbers of scenarios when N E = N S /20 are shown in 
Fig. 9(a) and (b), respectively. The lower and upper 
bounds of ORs of the SOC of ESS under different num‐
bers of error intervals when N S = 1000 are shown in Fig. 9
(c) and (d), respectively.

In Fig. 8(a) and (b), we can observe that when N S /N E is 
constant, in more scenarios, the lower bound of the OR in‐
creases while the upper bound decreases. This is because the 
scale of the optimization results becomes larger with more 
scenarios. Then, with higher data density, it is more likely 
that smaller or larger values are included and bounds be‐
come narrower. Conditions and explanations are also applied 
to Fig. 9(a) and (b). With more scenarios, the gaps between 
ORs in different scenarios are smaller.

However, the computation time for the generation of ORs 
remarkably increases with an increasing number of scenari‐
os. In the day-ahead scheduling stage, the computation time 
for six scenarios is 2008 s, 7051 s, 11345 s, 15688 s, 20035 s, 
and 28723 s, respectively.
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Figure 8(c) and (d) shows that when N S is constant, the 
lower bounds gradually decrease and the upper bounds in‐

crease with smaller N E, which also applies to Fig. 9(c) 
and (d).

Considering the above analysis, it would be suitable to set 
N S = 1500 and N E = N S /2.
3)　Comparison of Different Schemes

The ORs of the active power of SOP and the SOC of ESS 
compose a whole, which means that comparisons cannot be 
implemented on only one aspect. Consequently, four differ‐
ent schemes for the day-ahead scheduling stage are set to 
demonstrate the advantages of the ORs. The intraday models 
for each scheme are the same.

Scheme 1: deterministic day-ahead scheduling model with‐
out considering the uncertainty of WT power.

Scheme 2: stochastic day-ahead scheduling model consid‐
ering the uncertainty of WT power.

Scheme 3: robust day-ahead scheduling model considering 
the uncertainty of WT power.

Scheme 4: the proposed day-ahead planning model consid‐
ering sensitivities and the uncertainty of WT power.

In Scheme 4, N S = 1500 and N E = N S /2. Additionally, regu‐
lation strategies for the SCB and ESS are planned day-ahead 
and irrevocable during the day in Schemes 1, 2, and 3. Com‐
parison of intraday optimization results under different 
schemes is shown in Table V. The SOP applied in Case 1 
consists of two VSCs. For simplicity, the active power of on‐
ly one terminal, i. e., 1-30, under four schemes is shown in 
Fig. 10. Taking ESS1 as an example, the corresponding 
SOCs under four schemes are shown in Fig. 11.
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TABLE V
COMPARISON OF INTRADAY OPTIMIZATION RESULTS

Scheme

Before 
optimization

1

2

3

4

Purchase cost of electricity ($)

Network 
1

8637

12308

12410

12410

8212

Network 
2

4625

2567

2706

2723

5019

Sum

13262

14875

15116

15133

13231

Voltage deviation

Network 
1

52.816

51.312

50.900

52.609

25.005

Network 
2

24.099

11.287

12.595

11.766

13.668

Sum

76.915

62.599

63.495

64.375

38.673

76



WANG et al.: TWO-STAGE OPTIMIZATION FOR ACTIVE DISTRIBUTION SYSTEMS BASED ON OPERATING RANGES OF SOFT OPEN...

Table V shows that the purchase cost of electricity from 
the upstream grid only decreases under Scheme 4. Com‐
bined with the active power of SOP in Fig. 10, different 
from the other three schemes, active power is transferred 
from Network 1 to Network 2 due to the limitations of ORs, 
which indicates that intraday operation economy can be im‐
proved by day-ahead power balancing. The cost of Scheme 
1 is the lowest of Schemes 1-3. However, the application of 
Scheme 1 is limited because forecast error is not considered. 
The cost of Scheme 3 is the highest due to the inclusion of 
the worst scenario in the robust optimization. Furthermore, 
we can observe that the voltage deviation of Scheme 4 is far 
smaller than that of the other schemes in Table V, indicating 
the superiority of the ORs.

As observed in Fig. 10, curves of the active power of 
SOP are similar in Schemes 1-3, and more active power is 
transferred than that in Scheme 4.

Figure 11 shows that the overall trends of the four 
schemes are similar. Specifically, the rising stages of 
Schemes 1-3 are similar, while the descending stages of 
Schemes 1 and 2 are similar. As ESS1 is installed in Net‐
work 1, combined with Fig. 3, it can be inferred that ESS1 
is charged during the valley-load periods while discharged 
during the peak-load periods. In addition, considering the 
unit purchase cost of electricity in Table II, when the unit 
purchase cost of electricity is low, active power is charged 
into ESS, and when the unit purchase cost of electricity is 
high, active power is discharged from ESS, which decreases 
the total intraday operation cost.

D. Algorithm Evaluation

1)　Test on a Large System
Case 2 is based on a demonstration project of SOP in 

Hangzhou, China. A three-terminal SOP connects three net‐
works, which comprise the 105-node system shown in Fig. 
12. The ESS capacity is 1 MWh, and the maximum charg‐
ing/discharging power is 300 kW. Other ESS parameters and 
other devices are the same as those in Case 1, as shown in 
Tables I and II. The day-ahead and intraday hourly forecast 
active power of the WT and the active loads of the three net‐
works are shown in Fig. 13.

In the day-ahead scheduling stage, the maximum voltage 
and current errors of the equivalent model considering sensi‐
tivities are shown in Fig. 14. We can observe that the volt‐
age error during each period is very small, while the current 
error seems larger but still less than 0.1. Furthermore, volt‐
age or current violations never occur in all stochastic scenari‐
os.

The purchase costs of electricity from the upstream grid 
and the voltage deviations of the three networks are depicted 
in Figs. 15 and 16, respectively. In Fig. 15 and Fig. 16, we 
can observe that the Scheme 4 performs better than the other 
three schemes. From the above test results and analysis, we 
can conclude that the proposed optimization strategy for spa‐
tiotemporal power balancing considering ORs of the active 
power of SOPs and the SOC of ESSs exhibits a good scal‐
ability performance in applications on larger systems.
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2)　Computation Efficiency
The complexities and computation time of three models, i.e., 

day-ahead model between networks (P1), day-ahead model 
within a single network (P2), and intraday corrective control 
model (P3), are summarized in Table VI to demonstrate the 
computation performance of the proposed strategy.

Specifically, the number of constraints and variables in the 
day-ahead scheduling stage corresponds to each stochastic 
scenario, while that in the intraday corrective control stage 
corresponds to each hour. Additionally, the computation time 
for day-ahead models is the average value in 1000 scenarios, 
while the computation time for the intraday model is the av‐
erage value in 24 hours.

In Table VI, the computation time for the day-ahead mod‐
el within the network is obviously more than that between 
networks because the former is a detailed model with power 
flow constraints. Meanwhile, the computation time for the in‐
traday corrective control model is far less than 1 hour, 
which means that the obtained intraday strategy can be easi‐
ly implemented in the hourly regulation.

VII. CONCLUSION 

In this paper, a two-stage optimization strategy for spatio‐
temporal power balancing in flexibly interconnected ADNs 
is proposed. In the day-ahead scheduling stage, considering 
the uncertainty of WT power, stochastic optimization is car‐
ried out to obtain schedules for an SCB with typical scenari‐
os. Then, the ORs of the active power of SOP and the SOC 
of ESS are obtained from the optimization results in large 
numbers of stochastic scenarios. To improve computation ef‐
ficiency, an equivalent model between networks is estab‐
lished, which suppresses violations of system security con‐
straints with sensitivities. In the intraday corrective control 
stage, different from the existing fixed schedule of ESS regu‐
lation, the hourly charging/discharging power of the ESS is 
flexibly regulated with ORs. The test results reveal that the 
proposed equivalent model considering sensitivities com‐
putes faster than the detailed model, and its error is also ac‐
ceptable. The power flow calculation result considering the 
active power of SOP after the optimization proves that volt‐
age or current violations indeed never occur. Meanwhile, the 
intraday model considering ORs performs better than sto‐
chastic optimization and robust optimization, which indicates 
the superiority of the proposed strategy. For further work, un‐
certainties in photovoltaic power and loads will be consid‐
ered. In addition, different settings for the location and ca‐
pacity of the SOP may affect the power balancing, which is 
another research topic.
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