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Abstract—Accurate and timely fault diagnosis is of great sig-
nificance for the safe operation and power supply reliability of
distribution systems. However, traditional intelligent methods
limit the use of the physical structures and data information of
power networks. To this end, this study proposes a fault diag-
nostic model for distribution systems based on deep graph
learning. This model considers the physical structure of the
power network as a significant constraint during model train-
ing, which endows the model with stronger information percep-
tion to resist abnormal data input and unknown application
conditions. In addition, a special spatiotemporal convolutional
block is utilized to enhance the waveform feature extraction
ability. This enables the proposed fault diagnostic model to be
more effective in dealing with both fault waveform changes and
the spatial effects of faults. In addition, a multi-task learning
framework is constructed for fault location and fault type analy-
sis, which improves the performance and generalization ability
of the model. The IEEE 33-bus and IEEE 37-bus test systems
are modeled to verify the effectiveness of the proposed fault di-
agnostic model. Finally, different fault conditions, topological
changes, and interference factors are considered to evaluate the
anti-interference and generalization performance of the pro-
posed model. Experimental results demonstrate that the pro-
posed model outperforms other state-of-the-art methods.

Index Terms—Fault diagnosis, fault location, fault type analy-
sis, distribution system, deep graph learning, multi-task learn-
ing.

1. INTRODUCTION

ITH the expansion of modern distribution systems
and the increase in load access, distribution systems
are more likely to suffer from faults due to the occurrence

Manuscript received: April 6, 2022; revised: June 26, 2022; accepted: Octo-
ber 22, 2022. Date of CrossCheck: October 22, 2022. Date of online publica-
tion: December 23, 2022.

This work was supported by National Natural Science Foundation of China
(No. 52277083).

This article is distributed under the terms of the Creative Commons Attribu-
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

J. Hu, W. Hu (corresponding author), J. Chen, D. Cao, and Z. Zhang are with
the Sschool of Mechanical and Electrical engineering, University of Electronic
Science and Technology of China, Chengdu, China (e-mail: jx.hu@foxmail.com;
whu@uestc.edu.cn; chjj@std.uestc.edu.cn; caodi@std.uestc.edu.cn; zhangzhenyu-
an(@uestc.edu.cn).

Z. Liu is with the Siemens Gamesa Renewable Energy A/S, Lyngby, Den-
mark (e-mail: zhou.liu@siemensgamesa.com).

Z. Chen and F. Blaabjerg are with the Aalborg University, Aalborg, Denmark

(e-mail: zch@et.aau.dk; tbl@et.aau.dk).
DOI: 10.35833/MPCE.2022.000204
2‘1
MPCE

of stochastic events such as lightning strikes, insulation
breakdowns, and improper operations [1]. These affect the
production and livelihoods of people and even cause consid-
erable economic losses due to accidental power outages [2].
Therefore, effective fault location and fault type analysis are
critical to the safe and stable operation of distribution net-
works and the reliability of the power supply.

With the development of distribution automation (DA),
more operational data are obtained from intelligent electron-
ic devices [3] and other DA devices. The data can be ana-
lyzed for fault diagnosis and protection. Several studies have
contributed to this field of research. Traditional fault diagnos-
tic methods can be divided into impedance-based methods
[4], [5], voltage sag based methods [6], traveling wave based
methods [7], [8], and machine learning based methods [9].
For example, [4] proposes an impedance-based method to lo-
cate faults in distribution networks using an impedance ma-
trix. Reference [6] utilizes a voltage sag to determine the
fault location in a distribution network. Reference [7] exam-
ines fault locations using traveling waves. Reference [9] ex-
tracts fault features using wavelet transformation. Reference
[10] proposes a novel method for fault location, isolation,
and service restoration for active distribution networks based
on distributed processing. Reference [11] proposes a novel
two-stage localization method for single-phase earth faults in
resonant grounding systems. Reference [12] proposes a
smart protection scheme which utilizes micro-phasor mea-
surement units (uWPMUs) to obtain continuous rapid synchro-
nized phasor measurement data. Reference [13] proposes a
precise and rapid technique for identifying the fault section
in a low-voltage DC (LVDC) distribution system. These
methods skillfully utilize the network structure information
and fault characteristics to solve fault diagnostic tasks. How-
ever, the performances of some traditional methods are limit-
ed by their relatively weak feature extraction abilities and
complex analytical processes. Artificial intelligence (Al)
technology provides a new way to establish the mapping
from fault features to fault locations.

With the continuous development of Al technology, deep
learning methods are widely utilized in the field of fault di-
agnosis [14], [15] due to their powerful feature extraction
abilities from a large amount of fault information without hu-
man intervention. Reference [16] introduces an artificial neu-
ral network into the fault location of a distribution network.
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Reference [17] utilizes a neural network to extract features
and applies a support vector machine (SVM) to the classifi-
er. Reference [18] uses a convolutional neural network
(CNN) for fault identification and classification. Reference
[19] applies a CNN to deal with voltage dip and tests their
model using different datasets. Although these traditional
deep learning techniques can effectively extract fault fea-
tures from Euclidean space, they have limitations such as
low training efficiency, difficulty in extracting effective fea-
tures, and poor generalization ability when dealing with in-
creasingly complex information from distribution systems. In
addition, traditional deep learning technology cannot effec-
tively utilize the physical structural information of the power
network. Therefore, more powerful fault information process-
ing methods are required to solve these problems.

Graph neural network (GNN) is a type of novel neural net-
work model based on spatial structural information. The
physical structural relationship acts as a significant con-
straint during the model learning process. It makes the GNN
have stronger feature extraction ability and faster training
speed. The latest studies have implemented GNN for fault di-
agnosis [20]. For example, [21] applies graph learning to
fault diagnosis of power transformers. Reference [22] con-
structs a graph structure based on data similarities and ap-
plies it to bearing fault diagnosis. References [23] and [24]
utilize graph convolution networks (GCNs) for fault diagno-
sis of transmission and distribution networks. However,
these methods still have some limitations. For example,
some methods require accurate line parameter information,
which is difficult for the actual distribution network. The
fault waveform features are not effectively utilized due to
relatively weak feature extraction. In addition, these methods
do not consider the conditions of different fault resistances,
topological changes, and different data interferences. To
solve this problem, this paper proposes a novel fault diagnos-
tic model for distribution systems based on spatiotemporal
graph learning. The proposed model embeds topological in-
formation into the model learning process and operates with-
out line parameters. Compared with common data-driven
methods, the model can learn the deeper structural informa-
tion of data, making the proposed model more resistant to
abnormal data and condition changes. In addition, the spatio-
temporal convolutional blocks improve the feature extraction
ability of the fault diagnostic model. The process of the pro-
posed fault diagnostic model includes: (D constructing the
graph structure according to the structural relationship of the
measured data; @ collecting measurement data; 3 execut-
ing an offline training model; and @) detecting the fault type
and fault location in real time. Experiments show that the
proposed method has better generalization performance and
anti-interference ability under different fault resistances, topo-
logical changes, and different data interferences. The main
contributions of this study are as follows.

1) A novel fault diagnostic model based on spatiotemporal
graph learning is proposed to complete fault location and
fault classification in the distribution system. The measure-
ment information processing derives from the physical struc-
ture of distribution network. Compared with traditional data-

driven methods, the graph-based method can embed topologi-
cal information into the model learning process, which
makes the proposed model learn the deeper structure infor-
mation of data and be more resistant to abnormal data and
condition changes.

2) To improve the information processing capabilities of
the model, a special spatiotemporal convolutional block is
designed to extract fault features. This structure employs an
efficient process for dealing with waveform and spatial infor-
mation, which can combine the feature extraction of data nu-
merical features and data structural information. Compared
with the common GCNs, the proposed method has stronger
feature extraction and anti-interference abilities. The results
show that the proposed blocks improve the diagnostic results
and narrow the input data windows, which ensures the speed
and sensitivity of relay protection devices.

3) With the effective utilization of the structural informa-
tion and the enhancement of feature extraction ability, the
proposed model can deal with unknown system conditions.
Experiments show that the proposed model offers a better
generalization performance. It can maintain the performance
of fault diagnosis under different topologies, fault resistanc-
es, and noise interference conditions. The effectiveness of
the proposed model is verified using the IEEE 33-bus and
IEEE 37-bus test systems. In addition, other state-of-the-art
intelligent methods are utilized for comparative experiments.

The remainder of this paper is organized as follows. Sec-
tion II describes the significance of fault type analysis and
fault location in distribution network. Section III introduces
the proposed fault diagnostic framework in terms of theoreti-
cal basis and technical details of the implementation. Section
IV verifies the effectiveness of the proposed model through
case studies. Section V concludes the study.

II. SIGNIFICANCE OF FAULT TYPE ANALYSIS AND FAULT
LOCATION IN DISTRIBUTION NETWORK

Different handling techniques can be used for different
fault scenarios in distribution networks. For example, when
the neutral point is not effectively grounded, the single-
phase-to-ground fault is not necessary to be removed [25],
which means the system can continue to operate for a peri-
od. Phase-to-phase short-circuit faults in the distribution net-
works must be removed immediately. Although other metal-
lic short-circuit faults do not occur frequently, the fault diag-
nostic model can judge them correctly to reduce the influ-
ence range of the protective action. In addition, fast and ac-
curate fault locations are critical for the power supply reli-
ability of distribution networks. More effective measures
should be implemented to reduce the influence range of
faults according to fault location results. Therefore, based on
the judgment results of the fault type analysis and fault loca-
tion, the sectionalizer can selectively cut off the fault line in-
stead of all three-phase lines with larger ranges. Sectionaliz-
er is a relatively economical switchgear, which can be uti-
lized at the place where the feeder sectioning is required but
fault interruption capability is not required. Traditionally, a
sectionalizer is applied as the last automatic device on the
feeder and is set to coordinate with the circuit breaker (CB).
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A single operating principle for sectionalizers and fault loca-
tion [26] is illustrated using a simple example in Fig. 1.
When a fault occurs, the CB will be triggered and opened to
isolate the substation from the fault system. In addition, the
fault line is located by the fault location function of the pro-
tection system and is isolated by operating the normally
closed (N.C.) sectionalizers. In addition, the load may be
transferred from the fault line to the normal feeder by the ac-
tion of normally open (N.O.) sectionalizers. Finally, the sys-
tem will return to operate normally and wait for mainte-
nance personnel.

B CB
H N.C. sectionalizer
[J N.O. sectionalizer

:
0" O

Operating principle for sectionalizers and fault location.

Substation

Fig. 1.

In this case, accurate fault location and fault type analysis
reflect the higher automation level of the distribution sys-
tem. Fault type analysis and fault location can be combined
to determine the specific area affected by the fault and the
accurate fault diagnosis will make the loss caused by fault
as small as possible. In addition, narrowing the data window
can improve the performance of protection devices. A small-
er time window can make the protection device obtain a fast-
er response speed, which also means that the protection de-
vice needs to have a stronger information extraction ability.
To realize an intelligent fault diagnostic model using global
information for global judgment, a novel fault diagnostic
model based on deep graph learning is proposed in this
study. In addition, this study verifies the adaptability of the
proposed model under different conditions.

III. PROPOSED FAULT DIAGNOSTIC MODEL

In this section, the principles and structures of GNN and
spatiotemporal graph convolutional network (STGCN) are in-
troduced. The proposed fault diagnostic framework based on
the STGCN and multi-task learning is then illustrated in de-
tail.

A. Spectral Convolution on Graphs

The space-based GCN primarily originates from the con-
volutional operation of traditional CNNs [27]. A brief intro-
duction to spectral graph theory is presented in [28]. Consid-
er an undirected graph as G= (V,E), where V is the set of
nodes; and E is the set of edges. Its Laplacian matrix is de-
fined as L=D—-A, where A is the adjacency matrix of the
graph, D is a diagonal matrix, and D,= zA,.,. If the edges

J

have weights, 4 is converted to W, and the Laplacian matrix
is converted to L=D—W. Note that L has a series of impor-
tant properties which makes it play a major role in spectral
analysis. In addition, the traditional Fourier transform is simi-
lar to graph convolution in the structure, which can be de-
fined as:

Fo)=F[£(1)]= [f(n)e™d (1)

where the time-domain signal £ (#) is converted into the fre-
quency-domain signal F(w) by the basis function e,
which is the characteristic function of the Laplacian operator

. , o - .
and satisfies Ae7'= Feﬂ‘“’:—wzeﬂ“”. When the Laplacian
t

operator is extended to the graph structure with N nodes, the
function f is an N-dimensional vector denoted as f=
[f,,fz, ...,fN], where f; is the function value of f at node i.
The gain between nodes i and j in the weighted graph is
w; (f;—f;), and the operation of the Laplacian operator at

node i is given as:

Afi= Ewéf(fi_ﬁ) = (ng,»)f,-— EW::/JS'

This holds for any i=1,2,...,N, and we have:

(zwlj)fi_ zwljfj
(2W2j)fi_ zwz/'f/

@)

A,

A

w,

=(D-W)f=Lf (3)

(EWN/)ft_ zWN/f/

According to (2) and (3), the graph Fourier transform is
constructed as:

F(i) = D7 (ul) @

where 4, and u, are obtained from Laplacian analysis Lu,=
Au,. Here, u,(i) is the " element of u,. u, is derived from
the orthogonal matrix U, and U is obtained by eigenvalue de-
composition of the Laplacian matrix L=UAU", and 4 is a
diogonal matrix. The Fourier transform on graph f is repre-
sented by matrix multiplication as:

Al [w() u(2) w (N7,
7 f2 _ uzfl) uz(:Z) uz(:N) f2 )
fN uN(l) uN(z) uN(N) Sy

Therefore, the matrix form of the graph Fourier transform
can be expressed as f=U" £, and its inverse transform is f=
Uu" f= Uf. Based on graph convolutional theory, many stud-
ies have conducted extensive research on reducing the com-
putational burden and improving the performance [29]. The
approximation of Chebyshev polynomials is utilized as a
convolutional kernel, and the form of the graph convolution
within the neural network is:

1 1
Z=D 2AD >X0 (6)
where Ze RV is the signal matrix after convolution;
X e RV*C is the input signal, and C is the feature dimension;
and @ € R°*" is the parameter matrix of filter. The feature di-
mension C is changed to F by convolution. In this case, the

graph convolution is transformed into a learning neural net-
work 0.
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B. Spatiotemporal Graph Learning Method

STGCNs have already been used in human dynamic ac-
tion recognition [30] and traffic prediction [31]. It can aggre-
gate spatial and temporal features simultaneously during fea-
ture extraction. Spatiotemporal convolution is suitable for
the scenes with interrelated temporal and spatial features
[32]. In the power network, the voltage, current, and other
features present waveform variations along the time axis.
Waveform variation is a major source of information. GCN
is not sensitive to information related to time variations. In
the proposed method, the feature extraction of temporal in-
formation is combined with spatial feature aggregation. Tem-
poral feature extraction and spatial feature aggregation have a
special structure, i. e., spatiotemporal convolutional block,
which greatly improves the information processing of the pro-
posed method for power information.

1) GCN

The structure and feature-update mode of GCN [33] are il-

lustrated in Fig. 2.

Convolution
layer 2

Convolution
layer 1

Input w Relu

-QA : :

Graph structure
and node input
feature

Output

Node feature
embedding

Update of node feature

Fig. 2. Structure and feature-update mode of GCN.

The node connection relationship is considered to be a
constraint to update the node features in the graph. Each
node in the graph updates its information at each feature up-
date by gathering information from its neighbors, where the
closer neighbors have a greater effect on node features. This
forms the basic rule for node feature updates. The node fea-
ture update policy of GCN is given by:

H<z+1):0(/jH<z>W</>) 7)

where H" is the feature information at layer /; W is the
neural network weight at layer /; o (-) is the activation func-
tion of layer /; and A is the calculation rule derived from the
original adjacency matrix 4. The transformation process of
A is given as:

1 1
A=p A ®
where A=A +1, and I is the identity matrix; and D~[.l.: z/]il..

Adding a self-loop A+1 can integrate the information of
node. Introducing the degree matrix D can more effectively
deal with multiple connection relationships. Normalization
can transform the node feature values into a reasonable re-
gion. The processed adjacency matrix A reflects the rules of
information flow and has a constant value during the calcula-
tion operation at any layer. Here, the feature mapping ability

of the network derives from the learnable matrix W) of
each layer. However, when the number of GCN layers in-
creases, the features of nodes will show an average trend
called over-smoothing [34]. Therefore, significant restrictions
are placed on the number of GCN layers, which limits the
feature perception ability of GCN.
2) Spatiotemporal Convolutional Block

To improve its feature perception ability, the STGCN con-
tains a special spatiotemporal convolutional block. The tem-
poral convolution module extracts the node features along
the time axis before and after the spatial information aggre-
gation based on GCN rules, as illustrated in Fig. 3. The tem-

rq
poral convolution can be defined as conv, = zkv where
i=1

i

(x,y) is the input feature size of waveform, pg is the size of
convolution kernel, k& is the weight of convolution kernel,
and v is the waveform feature, i is the index of kernel
weight and feature. The convolution process is the inner
product of convolution kernel and input waveform feature.

Spatial convolution Temporal convolution:

kernel size is 1x3

Convolution on
waveform feature

Information flow
of node feature
K

HD = O'(AHU) WU))

Pq _—

Fig. 3. Calculation of spatiotemporal convolutional block.

In the spatiotemporal convolutional block, convolutional
kernels similar to one-dimensional convolution are utilized
to extract waveform features. The kernels can scan all wave-
form features along the time axis and map them into new
features with stronger expression. Different from the tradi-
tional GCN, the feature processing of STGCN is composed
of a type of temporal-spatiotemporal structure, and the first
temporal convolutional layer is expressed as:

HU=p(Relu( B+ hG D+ V) ) ©)
h “')—Szgmozd( ’)*y“”)) (10)
h(c12+|> (H 1)*y(1+1)) (11)

h1+l) H(l y1+l (12)

where H{!*" is the output feature of the first temporal convo-
lutional layer; H'" is the feature of layer / in the GNN, and
when /=0, H” indicates the input fault features of the mod-
el; yU+Y, pUsY and p!*" are three convolutional kernels with
the same shape; ¢(-) represents the batch normalization oper-
ation; and Sigmoid (-) and Relu(-) are the activation func-
tions. After the first temporal convolutional layer, the spatial
convolutional layer is expressed as:

Hﬁ“”zRelu(/ig“”)WS('“))

=g(l/+1)//g£l+l)//ggl+1)//g£1+1)

(13)
(14)

(1+1)

8
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(15)
(16)
(17)
(18)

where H!"*" is the output feature of the spatial convolution-
al layer; W/ -w{*D and b{*"-b!*" represent the learnable
parameters; and the sign // denotes the feature splicing opera-
tion. After the spatial convolutional layer, the temporal con-
volutional layer with the same structure as the first temporal
convolutional layer further extracts data features. The feature
operation process is expressed as:

H =g Relu (B0 +n )+ n ) )

””—Relu(H 1+1)W(l+1 +b (1+1) )
””—Relu(H 1+1>W (1+1) +b (1+1) )
( )
(

””—Relu H 1+1)Wiz+1)+b£‘1+1))

1+1)_Relu H 1+1)W(l+1)+b (1+1)

(19)
(20)

2n
h(séJrl):H I+l)*ybl+l) (22)

where H'*" is the output feature from the last temporal con-
volutional layer, which is also a feature of the /+1 layer in
the GNN; and y!*", y{*1 and p!/*! are three convolutional
kernels with the same shape.

l+1 Slngld(H(l-H *y<1+1 )

hizzﬂ):(/)(H(nl *y(1+1 )

C. Graph Structure of Distribution Network

Converting the power network into a graph structure is es-
sential to the application of the GNN. A power network con-
sists of transmission lines, power equipment, and buses. The
graph is composed of edges and nodes. During the operation
of GNN, the node message flows through the connection re-
lationships of the edges. In the power network, the effects of
state changes on the buses are also carried over to other bus-
es and electrical equipment along the lines. In this case, the
relationship between the power line and bus can be trans-
formed into the relationship between the edge and node. The
bus voltages, branch currents, and line impedances are the
basic features of power network. With buses as nodes and
lines as edges, distribution networks can be converted into
graph structures. Voltage can be considered as the node fea-
ture, and the current and line impedances are edge features.
However, it is not easy to obtain accurate line impedance on
a large scale. In addition, various distribution networks ex-
hibit different impedance characteristics. The fixed imped-
ance feature will reduce the generalization performance of
the model. Therefore, the line impedance feature is not uti-
lized in the proposed model. In addition, the current value
that flows into the node is considered as the node feature. In
this case, the information of each node includes the voltage
and current features converging to the bus. The features at
node i are denoted by N(V‘Jl)z(Vil’ViZ’ Vidydy1s) € RS,

where 1, 2, and 3 represent the three phases; and i€ 1,
2,...,m represents m observable nodes. All features are root
mean square (RMS) values and no features exist at the edg-
es. The input feature H® of the GNN model is the input
node feature NV, Iy The objective of the fault diagnostic mod-

el is to obtain the fault type and location information N,
. In addition, the
topology structure of distribution network is also the input
of the fault diagnostic model for embedding physical infor-

mation. The function of the fault diagnostic model is ex-
pressed as:

through the observed node information N,

N L):f(G,NW)) (23)

where f (G,N(K 1)) represents the fault diagnostic model.

Note that G is the connection relationship of the nodes,
which is derived from the structure of the distribution net-
work, and G specifies the feature update rules for the graph

convolutional layer. The model f (G,Nw ,)) maps the fault

features to the fault type and fault location information. The
algorithm in this study is constructed using a deep graph li-
brary and Pytorch deep learning framework.

D. Proposed Fault Diagnostic Framework

In this study, a fault diagnostic framework based on the
STGCN structure is proposed to combine fault type analysis
and fault location in the distribution network. During the
fault process, the fault impact spreads from the fault point to
the entire graph based on the connection between nodes and
edges. Different fault types generate different fault wave-
forms and affect the surrounding nodes. The spatiotemporal
convolutional block can effectively perceive differences in
node information and generate stronger feature expressions.
In this case, the proposed fault diagnostic framework outputs
accurate fault diagnostic results. The structure of the pro-
posed fault diagnostic framework using a simple circuit as
an example is shown in Fig. 4.

1) Multi-task Learning

Multi-task learning [35] can improve the generalization
performance of neural networks by weighing the input infor-
mation for different tasks. The proposed fault diagnostic
framework outputs the fault location and fault type. The
faults have the greatest effects on the nodes directly connect-
ed to the fault position, so that the task of fault location de-
pends more on the structural information of the network.
With the increasing distance of the node, the effect of fault
gradually decreases. However, the fault type analysis re-
quires more fault information about waveform feature chang-
es. In this case, a shared spatiotemporal convolutional block
is applied to extract the basic features of the proposed fault
diagnostic framework. In addition, independent spatiotempo-
ral convolutional blocks are constructed to further aggregate
the fault features required by both tasks. Finally, two special-
ly constructed classifiers are used to output the network clas-
sification results. It should be noted that the parallel struc-
ture W, is utilized in the fault diagnostic framework shown
in Fig. 4. This structure can expand the model capacity and
strengthen its feature-mapping ability.

2) Classifier and Label Design

Two independent classifiers are designed for the two tasks
because of different feature requirements of fault location
and fault type analysis. In the fault location task, the output
depends mainly on the spatial information of the nodes.
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Node 4 Node 6
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Fig. 4. Structure of proposed fault diagnostic framework.

The positional relationship between the input features and
output results is relatively regular. Therefore, the classifier
for the fault location task is constructed using fully connect-
ed layers. However, faults can occur at any line in the distri-
bution network. Therefore, the classification of fault types re-
quires a classifier to identify valid mapping features among
all nodes. CNN can search for effective features regardless
of their positions in the input information. Therefore, a CNN
is utilized to construct the fault type classifier for the fea-
tures extracted by STGCN. The fault directly affects the
edge and then severely affects the nodes connected to the
edge. Therefore, two nodes can be used to indicate that a
fault occurs on the edge between them in fault location task.
In this case, the two nodes with the largest activation values
represent the feature of the two buses are most severely af-
fected by the fault. This indicates that a fault occurs between
the two buses. In the fault type analysis, the information ex-
tracted from the blocks will be identified by a CNN-based
classifier. This can be considered as a common multi-classifi-
cation task.

IV. CASE STUDY

In this section, the fault data are obtained by simulated
test systems, and the structure of the proposed spatiotempo-
ral convolutional block is introduced in detail, and the diag-
nostic results of the model are presented and analyzed. In ad-
dition, different conditions such as fault resistance changes,
topological changes, and data interference are considered to
verify the performance of the proposed model.

A. Simulation and Data Collection

To obtain labeled transient fault samples, a simulated dis-
tribution network model based on the IEEE 33-bus test sys-
tem [36] is constructed to collect fault data. MATLAB/Simu-
link is used as the simulation software. The standard test sys-

Fully connected layer

Classifier 1

Spatial convolution

Temporal convolution

tem consists of 32 three-phase lines and loads. The graph
structure of the standard test system is constructed according
to the relationship between the bus and line, as shown in
Fig. 5.

19«20«21 22 18 17«16«15 14 <13
I —2 <3 <4 <5689 101112
232425 262728293031+ 32+33

<> Information transmission

Fig. 5. Graph structure of IEEE 33-bus test system for fault diagnosis.

Because of the mutual influence between buses, the infor-
mation transmission on the edge is set as bidirectional. In ad-
dition, because the current information in the distribution net-
work is attributed to node information, the edges in the
graph only play the role of indicating the direction of infor-
mation transmission during this task. In this case, the net-
work uses three-phase voltage and current data of all nodes
for global fault diagnosis.

The fault location task can be regarded as a 32-class clas-
sification task because of the 32 lines in the test system. In
addition, each fault point contains 10 types of faults, and
therefore the fault type analysis can be regarded as a 10-
class classification task. Thus, the total number of output cat-
egories of the proposed model is 32x10=320. When the
fault occurs, the three-phase voltage and current on the bus
are collected. Taking bus 9-bus 10 as an example, the volt-
age waveforms of different fault types are shown in Fig. 6.

The proposed model can accept a data window with fewer
sampling points instead of complete waveforms. In this
study, the transient metallic faults are implemented to verify
the proposed fault diagnostic model. During the simulation,
the total sampling time after the faults is 0.05 s.
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Fig. 6. Voltage waveforms of different fault types. (a) Phase-A-to-ground
(AN). (b) Phase-A-to-phase-B (AB). (c) Two-phases-to-ground (ABN). (d)
Three phases (ABC).

The sampling frequency is 1 kHz, and the original fault
data contain 50 time points. After downsampling, each fault
sample contains 21 time points. The entire fault waveform is
resampled repeatedly in steps at each sampling point. The 21
time points indicate that each fault sample for fault diagno-
sis obtains 0.02 s of fault data. In this case, the proposed
model could utilize any 0.02 s of fault data within 0.05 s af-
ter the fault to determine the fault type and location. The
length of the downsampling window refers to the fault infor-
mation contained in each sample. With a longer data win-
dow, the sample contains more fault information, and the dif-
ficulty of fault diagnosis will be reduced. Twenty five sub-
samples of each original fault sample are obtained for train-
ing and the number of samples for each fault resistance con-
dition is 32 x 10 x25=8000, where 70% of the samples are
selected for model training, and the remaining data are used
for model testing. The subsampling process of fault data is
suitable for real-time fault diagnosis. Therefore, the fault diag-
nostic model can be applied to real-time fault diagnosis. The
parameters of fault states for training are listed in Table I.

TABLE I
PARAMETERS OF FAULT STATES FOR TRAINING

Fault parameter Values or types

AN(1), BN(2), CN(3), AB(4), AC(5), BC(6),
ABN(7), CAN(8), BCN(9), ABC(10)

Midpoint of 32 lines

0.01, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 50, 100, 150,
200, 300, 400, 500, 600

Basic load

Fault type
Fault position
Fault resistance ()

Operating load

B. Construction of Spatiotemporal Convolutional Blocks

In the proposed fault diagnostic model, the per-unit values
of the voltage and current are directly utilized as the input

of the model without other data processing. The structure
and parameters of the proposed spatiotemporal convolutional
block are shown in Fig. 7, where W -W, are four groups of
learnable parameters that can convert the dimensions of the
features from 64 to 128; and W, causes a feature to return to
its original dimension.

(Feature input data shape is (33, 21, 6))
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Fig. 7. Proposed spatiotemporal convolutional block.

To improve the performance of the model, parallel struc-
tures and regularization techniques are implemented in both
temporal and spatial convolutions. For example, the data
shape of the fault samples is (33, 21, 6), where 33 indicates
that the number of buses is 33; 21 indicates that the samples
contains 21 time points; and 6 indicates the number of fea-
tures.

In the processing of features forward in a single spatiotem-
poral convolutional block, the samples first pass through the
temporal convolution. The shape of the 2D-convolutional
kernel size is (1, 3), and the filter channel is 64. Because the
convolutional kernels must scan the waveform information
on the time axis, it is necessary to adjust the dimensions of
the sample features. Accordingly, two temporal convolutions
and one spatial convolution form a spatiotemporal convolu-
tional block. Multi-channel feature extraction can make the
network easier to capture key fault features. The two types
of convolutional layers are combined to extract the fault fea-
tures in greater depth. In this case, the feature extraction ca-
pability of STGCN is improved by the extended learnable
parameters.
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C. Experiment Results with Fault Resistance of 0.1 Q Condi-
tion

The proposed fault diagnostic model has two main func-
tions: fault type analysis and fault location The accuracy of
the proposed model for the training process is illustrated in
Fig. 8, where Train-acc and Test-acc are the accuracies of
the model in the training and test datasets during model
training, respectively. It can be observed that the accuracy of
the proposed fault diagnostic model for fault location and
fault type analysis reaches over 98%, well demonstrating the
effectiveness of the proposed model. Therefore, the proposed
fault diagnostic model can accurately perform fault classifica-
tion and location tasks.
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Fig. 8. Accuracy of proposed model for training process. (a) Fault type

analysis. (b) Fault location.

In addition, GCN [24], CNN [18], and principal compo-
nent analysis SVM (PCA-SVM) [17] are used for compara-
tive validation, as shown in Table II.

TABLE 1T
COMPARASION RESULTS OF DIFFERENT MODELS

Accuracy
Model - -
Fault type analysis Fault location
Proposed 0.999 0.992
GCN [24] 0.973 0.917
CNN [18] 0.899 0.981
PCA-SVM [17] 0.920 0.870

The results show that the proposed model has a better per-
formance than other models. The improved spatiotemporal
convolution block can significantly improve the feature ex-
traction ability of the model.

In addition, the outputs of the penultimate layer from dif-
ferent models are extracted to represent the feature space for
the tasks. We utilize t-distributed stochastic neighbor embed-
ding (t-SNE) [37] to show the distribution of the feature
space. It can be illustrated from Fig. 9 that the proposed
model achieves better feature extraction results than GCN.

As shown in the two-dimensional space, the feature out-
puts of the proposed model have a more reasonable and ac-
curate distribution, illustrating that the proposed model has
higher accuracy and better generalization performance. Fig-
ure 9(a) and (c) shows that the output of GCN have many
confusion samples, resulting in incorrect fault diagnosis,
where the results are shown in Table II. In Fig. 9(a), there
are obvious confusion samples for different fault types.
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Fig. 9. Visualization of output of each task from GCN and proposed mod-
el. (a) Visualization of fault type output from GCN. (b) Visualization of

fault type output from proposed model. (¢) Visualization of fault location
from GCN. (d) Visualization of fault location from proposed model.
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In Fig. 9(c), the features of different fault locations are vi-
sualized using many confusing and scattered samples. In
Fig. 9(d), the feature output of the proposed model is more
concentrated for different fault locations, meaning that the
proposed model has a better feature extraction ability and
fault diagnosis performance.

Figure 10 shows the test accuracies of the proposed model
and CNN for the training process. The proposed model can
significantly reach a better performance after the parameter
initialization. In addition, the proposed model has faster con-
vergence than the traditional algorithms, which significantly
reduces the calculation costs. This means that the effective
use of physical structural information significantly improves
the feature processing ability and training efficiency of the
model. The improvement in training efficiency is also of
great significance for the practical application of deep learn-
ing models in relay protection devices. The model has a
greater possibility of online model updating using power op-
eration data.
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Fig. 10. Test accuracies of proposed model and CNN for training process.
(a) Fault type analysis. (b) Fault location.

D. Performance Verification for Signal Interference

In point of fact, the data acquisition devices are influ-
enced by different levels of noise or loss of data due to dif-
ferent working environments. In addition, the changes in
load also affect the performance of the fault diagnostic mod-
el. Therefore, the generalization ability of the model is a
core feature of the fault diagnostic model. In our study, dif-
ferent interference factors are considered to verify the gener-
alization and anti-interference performance of the model.

1) Effectiveness of Proposed Model Under Different Noise
Conditions

Electrical measurements are easily influenced by electro-
magnetic interference and other environmental factors. In
this study, Gaussian white noise is used to simulate the inter-
ference of environmental factors. The signal noise ratios
(SNRs) [38] of the data are set as 10, 15, 20, 25, 30, 35, and
40 dB. The model will be studied under seven types of noisy
environments. The effects of different SNRs on the waveform
of bus 9-bus 10 under AN fault are shown in Fig. 11.

The test accuracies for fault type analysis and fault loca-
tion of the proposed model, GCN, and PCA-SVM under dif-
ferent SNRs are shown in Fig. 12(a) and (b), respectively. It
can be observed that the traditional PCA-SVM is severely
disturbed by noise, whereas the proposed model can reach
satisfactory performance under the effects of noise.
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Fig. 11. Effects of different SNRs on waveform of bus 9-bus 10 under AN
fault. (a) SNR is 35 dB. (b) SNR is 25 dB. (c¢) SNR is 15 dB. (d) SNR is
10 dB.
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Fig. 12. Test accuracies for fault type analysis and fault location of pro-
posed model, GCN, and PCA-SVM under different SNRs. (a) Fault type
analysis. (b) Fault location.

2) Effectiveness of Proposed Model under Different Outlier
Conditions

Typically, the sampled signal may have outliers due to in-
accurate measurements and interference. Thus, eliminating
the interference of abnormal values is a major requirement
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of the fault diagnostic model. Outliers are simulated by mul-
tiplying the standard measurements and random numbers be-
tween 0.7 and 1.3. The numbers of outliers are set as 1%,
2%, 5%, 10%, and 20% of the total sampled data. The mod-
el will be verified under these five outlier conditions. The ef-
fect of different outlier rates on waveform of bus 9-bus 10 un-
der AN fault is shown in Fig. 13.
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Fig. 13. Effect of different outlier rates on waveform of bus 9-bus 10 un-
der AN fault. (a) Outlier rate is 10%. (b) Outlier rate is 20%.

The test accuracies for fault type analysis and fault loca-
tion of the proposed model, GCN, and PCA-SVM under dif-
ferent outlier rates are shown in Fig. 14(a) and (b), respec-
tively. It can be observed that the accuracy of traditional ma-
chine learning models decreases significantly with an in-
crease in the number of outlier rates. However, the proposed
model can resist the interference of outlier rates and main-
tain its original high performance.
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Fig. 14. Test accuracies for fault type analysis and fault location of pro-
posed model, GCN, and PCA-SVM under different outlier rates. (a) Fault
type analysis. (b) Fault location.

3) Effectiveness of Proposed Model Under Different Data
Missing Rates

In practice, smart meters package and upload collected in-
formation. In this process, missing data cannot be ignored
because of internet and equipment factors. Therefore, it is
highly probable that the information of each node will be
missing. When the meters fail to upload data, the voltage
and current values collected by the meter cannot be obtained
by the model. The model must diagnose the fault using the
remaining information. During the verification, the possibili-
ty of data missing at each node are set to be 0.5%, 1%, 2%,
5%, and 10%. In the worst case with data missing rate of
10%, each data window has only a (I —10%)*=3.1% proba-
bility of containing complete original data. The test accura-
cies for fault type analysis and fault location of the proposed
model, GCN, and CNN under different data missing rates
are shown in Fig. 15(a) and (b), respectively. It can be ob-
served that the proposed model has significant advantages in
terms of avoiding missing data. When the data missing rate
increases gradually, the performances of all models diminish
to different degrees. Compared with the original condition,
CNN is affected by data missing seriously. It may be due to
CNN cannot effectively use the structural information of da-
ta. By contrast, GCN has good robustness when input data
have missing condition. It indicates that the use of topology
information is effective for the model to resist data input
anomalies. The proposed model has better fault diagnostic
performance under data missing conditions.
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Fig. 15. Test accuracies for fault type analysis and fault location of pro-
posed model, GCN, and PCA-SVM under different data missing rates. (a)
Fault type analysis. (b) Fault location.

It can be observed from Fig. 15 that CNN is more affect-
ed by missing values because it relies more on the numerical
information of the data, which makes it greatly affected by
abnormal values. The graph-based models embed topological
information into the feature extraction process, which en-
ables the model to extract deeper data structural information
and makes it more resistant to abnormal values. In the worst
case with data missing rate of 10%, the proposed model
could still achieve a high performance, which is of great sig-
nificance for practical relay protection systems.

4) Effectiveness of Proposed Model Under Various Load
Conditions

Various load conditions are simulated by multiplying the
basic load value by a random number between 0.7 and 1.3.
The test accuracy for fault type analysis and fault location of
the proposed model under various load conditions is shown
in Fig. 16. The random number at each fault line is changed
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in the simulation, and the experiment is repeated 10 times.
Therefore, the load changes for 10x32=320 times, which
completely simulates the load wvariation within a certain
range. It can be observed from Fig. 16 that the load change
in the normal range has little effect on the proposed fault di-
agnostic model.
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Fig. 16. Test accuracies for fault type analysis and fault location of pro-
posed model under various load conditions.

E. Performance Verification Under Different Fault Resistanc-
es

In an actual distribution system, the fault resistances are

unknown and may differ from the fault conditions during
model training. In this case, fault diagnostic models need to
have a good adaptability to untrained fault resistance condi-
tions. To further verify the effectiveness of the model under
different unknown fault resistance conditions, the model
trained with a 0.1 Q fault resistance is directly applied to
other fault resistance conditions. In addition, CNN and GCN
are compared to verify the effectiveness of the proposed
model. The test results of the proposed model under differ-
ent fault resistances are presented in Table III.

Table III shows that all the models perform in a manner
similar to that of the training situation under low fault resis-
tance conditions. When the fault resistance increases gradual-
ly, the performance of all models decreases to various de-
grees. Table III shows that the fault classification perfor-
mance of CNN and the fault location performance of GCN
are both significantly affected by the increase in fault resis-
tance. Due to the spatiotemporal convolutional structure and
a series of parallel structures, the proposed model has a
stronger feature extraction ability, which means it can be ef-
fectively applied to different fault resistance conditions after
being trained under 0.1 Q fault resistance condition. The per-
formance of the proposed model is the least affected by fault
resistance changes. In other words, the proposed model ex-
hibits a stronger generalization performance under different
fault resistance conditions.

TABLE III
RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 0.1 Q FAULT RESISTANCE

Accuracy of proposed model

Accuracy of CNN Accuracy of GCN

Fault resistance (Q)

Fault type analysis Fault location

Fault type analysis

Fault location Fault type analysis Fault location

0.01 0.998 0.989
0.1 (train) 0.999 0.992
0.5 0.999 0.992
0.997 0.992

0.997 0.992

0.993 0.993

10 0.990 0.991

15 0.988 0.986

20 0.981 0.975

50 0.941 0.897

0.894
0.899
0.894
0.893
0.891
0.883
0.869
0.852
0.835
0.693

0.982 0.975 0.924
0.981 0.973 0.917
0.981 0.973 0915
0.983 0.974 0.908
0.983 0.969 0.884
0.981 0.970 0.831
0.976 0.971 0.739
0.965 0.955 0.640
0.955 0.932 0.584
0.879 0.789 0.414

In an actual distribution system, the performance of the
proposed model needs to be generalized to a specific range
of fault resistance. To verify the effectiveness of the pro-
posed model under a specific fault resistance range, the pro-
posed model is trained with 0.01 Q+50 Q fault resistance
and tested in the range from 0.01 Q to 50 Q. In addition,
CNN and GCN are used in comparative experiments to veri-
fy the effectiveness of the proposed model.

Table IV shows that the performances of CNN and GCN
decrease significantly when the fault resistance increases.
Even if the 50 Q fault resistance are utilized as the training
condition for model learning, CNN and GCN could not
adapt to the entire fault resistance range due to the lack of a

feature extraction ability. This indicates that the embedding
of topological information and the designed processing of
waveform features are effective with the fault diagnostic
model.

The higher fault impedances indicate weaker fault fea-
tures, which affect the performance and generalization abili-
ty of the fault diagnostic model. To verify the performance
and generalization ability of the proposed model under a
high-impedance fault, fault data with a 300 Q fault resis-
tance are selected for model training, and 100-600 Q fault re-
sistances are selected for model testing. The comparative re-
sults of the proposed model, CNN, and GCN experiments
are presented in Table V.
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TABLE IV
RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 0.01 Q+50 Q FAULT RESISTANCE

Accuracy of proposed model

Accuracy of CNN Accuracy of GCN

Fault resistance (£2)

Fault type analysis Fault location

Fault type analysis

Fault location Fault type analysis Fault location

0.01 (train) 0.998 0.991 0.893 0.981 0.972 0.910
0.1 0.997 0.991 0.894 0.981 0.974 0.901
0.5 0.999 0.992 0.894 0.979 0.973 0.901

1 0.999 0.993 0.896 0.979 0.974 0.900
2 0.999 0.992 0.896 0.978 0.973 0.871
5 0.998 0.995 0.896 0.977 0.975 0.844
10 0.998 0.996 0.895 0.979 0.973 0.799
15 0.998 0.996 0.893 0.979 0.971 0.765
20 0.999 0.996 0.893 0.981 0.969 0.763
50 (train) 0.996 0.994 0.890 0.945 0.968 0.802
TABLE V

RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 300 Q FAULT RESISTANCE

Accuracy of proposed model

Accuracy of CNN Accuracy of GCN

Fault resistance (Q)

Fault type analysis Fault location

Fault type analysis

Fault location Fault type analysis Fault location

100 0.973 0.960 0.867 0.676 0.881 0.429
150 0.989 0.991 0.912 0.817 0.932 0.551
200 0.994 0.999 0.934 0.905 0.967 0.677
300 (train) 0.999 0.999 0.960 0.956 0.978 0.739
400 0.999 0.999 0.947 0.931 0.969 0.650
500 0.996 0.998 0.905 0.883 0.960 0.496
600 0.993 0.993 0.853 0.832 0.934 0.385

It can be observed from Table V that the proposed model
outperforms other models under different fault resistances.
The accuracy of GCN could not meet the requirements of di-
agnosis when the fault resistance increases.

It may be owing to that representation ability of GCN is
insufficient, which make it not extract key features under dif-
ferent fault resistances. The proposed model has a better
fault diagnostic and generalization performances under a
high-resistance fault because of its stronger feature extrac-
tion ability and physical information embedding.

F. Performance Verification Under Different Topological
Structures

In an actual distribution system, the topology of the distri-
bution network can be changed because of different operat-
ing states. To test the performance of the proposed diagnos-
tic model for topological changes, three types of mesh distri-
bution networks and different fault resistance conditions are
modeled. Three mesh topological structures are obtained
from the original IEEE 33-bus topology by connecting differ-
ent branches. It should be noted that to verify the effective-
ness of the model on a weak mesh distribution network, the
line impedance parameters in the experiments are five times
that of the original system. The topology numbers and con-
nection methods of three mesh topological structures are list-
ed in Table VI.

To verify the generalization performance of the proposed

model for mesh topologies and topological changes, the data
under the G1 topology are utilized as the training dataset,
and the data under the G2 and G3 topologies are utilized as
the verification dataset. The fault state parameters utilized
for the collected data are listed in Table VII.

TABLE VI
TOPOLOGY NUMBERS AND CONNECTION METHODS OF
THREE MESH TOPOLOGICAL STRUCTURES

Connection method
Connect bus 8-bus 21, bus 9-bus 15, bus 12-bus 22,

Topology number

Gl bus 18-bus 33, and bus 25-bus 29

&2 Connect bus 9-bus 15, bus 12-bus 22, bus 18-bus 33,
and bus 25-bus 29

3 Connect bus 8-bus 21, bus 12-bus 22, bus 18-bus 33,

and bus 25-bus 29

TABLE VII
FAULT STATE PARAMETERS UTILIZED FOR COLLECTED DATA

Fault parameter Values or types

AN(1), BN(2), CN(3), AB(4), AC(5), BC(6),
ABN(7), CAN(8), BCN(9), ABC(10)

The midpoint of length at bus 1-bus 2,
bus 2-bus 3, bus 3-bus 23, bus 6-bus 7,
bus 8-bus 9, bus 11-bus 12, bus 14-bus 15,
bus 17-bus 18, bus 21-bus 22, bus 26-bus 27,
bus 29-bus 30, and bus 32-bus 33

0.01, 0.1, 1, 10, 20, 50, 100, 200, 300, 500

Fault type

Fault position

Fault resistance (L)
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For the G1, G2, and G3 topologies, 10 types of fault resis-
tance conditions are set. The fault resistances of 1 Q+200 Q
in the G1 topology will be utilized as the training environ-
ment of the model. Other fault resistance conditions in the
G2 and G3 topologies will be utilized as the test environ-
ment. The graph structure of Gl topology is shown in
Fig. 17.
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Fig. 17. Graph structure of G1 topology.

CNN and GCN are utilized in comparative experiments to

show the effectiveness of the proposed model. The perfor-
mances of different models for G1 topology in the training
case of 1 Q+200 Q fault resistances are presented in Table
VIIL

TABLE VIII
PERFORMANCES OF DIFFERENT MODELS FOR G1 TOPOLOGY IN TRAINING
CASE OF 1 Q+200 ©Q FAULT RESISTANCE

Accuracy
Model - -
Fault type analysis Fault location
Proposed 0.998 0.999
GCN [24] 0.973 0.899
CNN [18] 0.799 0.984

Table VIII shows that the proposed model performs better
on the training data of the mesh topological structure. The
fault location accuracy of the proposed model is 10.0% high-
er than that of GCN. To verify the effectiveness of the pro-
posed model when the topology changes, each type of mod-
el will be tested using the data of the G2 and G3 topologies
under different fault resistances without other training pro-
cesses. The results of the proposed model, CNN, and GCN
are listed in Table IX.

TABLE IX
RESULTS OF DIFFERENT MODELS USING DATA OF G2 AND G3 TOPOLOGIES UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE
OF 1 Q+200 Q FAULT RESISTANCES

Accuracy of pro-

Accuracy of GCN

Accuracy of proposed Accuracy of CNN Accuracy of GCN

refii;‘tl;:we posed model (G2) ~ AAccuracy of CNN (G2) G2) model (G3) G3) (G3)

Q) Fault Faul.t Fault Faul't Fault Fau%t Fault Faul.t Fault Faul.t Fault Faul.t
type location type location type location type location type location type location

0.01 0.998 0.989 0.789 0.801 0.970 0.912 0.999 0.993 0.794 0.913 0.970 0.907
0.1 0.999 0.990 0.795 0.804 0.971 0.911 0.997 0.990 0.794 0.912 0.971 0.916
1 (train) 0.997 0.991 0.796 0.802 0.977 0.917 0.998 0.993 0.795 0.913 0.975 0.912
10 0.999 0.988 0.797 0.795 0.964 0.914 0.999 0.988 0.792 0.913 0.968 0.879
20 0.999 0.988 0.797 0.791 0.968 0.809 0.999 0.985 0.791 0.907 0.967 0.803
50 0.999 0.985 0.785 0.792 0.968 0.761 0.999 0.977 0.776 0.898 0.969 0.776
100 0.998 0.986 0.764 0.775 0.963 0.766 0.998 0.972 0.768 0.862 0.964 0.788
200 (train) 0.992 0.981 0.726 0.724 0.936 0.790 0.993 0.976 0.744 0.791 0.930 0.816
300 0.968 0.984 0.697 0.679 0.913 0.775 0.979 0.982 0.729 0.740 0.867 0.801
500 0.898 0.971 0.656 0.642 0.823 0.724 0.912 0.965 0.709 0.685 0.787 0.721

It can be observed that the proposed model performs bet-
ter when directly generalized to similar topologies because
of its stronger feature extraction ability. In addition, CNN is
most affected by topological changes. It may be due to that
the fault diagnostic models based on CNN cannot embed
physical topological information so that CNN extracts more
numerical features of data but could not learn the deeper
structure information. When dealing with changes in data,
the reliability of CNN is significantly reduced. The graph-
based models could learn the structural information of the
data, which makes the models have reliable performance un-
der different topology change conditions. With improved spa-
tiotemporal convolutional operations, the proposed model
shows more effective generalization performance during to-

pological change conditions, which means the model could
be implemented in existing distribution systems.

In an actual distribution system with lower voltage levels,
the R/X values of the line parameters may be larger. In addi-
tion, the three-phase load may be unbalanced due to differ-
ent operating conditions and load levels. The structure of
IEEE 37-bus test system for fault diagnosis is shown in Fig.
18. The fault parameters are listed in Table X.

The fault resistance of 0.1 Q is utilized as the training en-
vironment, and other fault resistance conditions are utilized
as the test conditions. The results are listed in Table XI.

Table XI shows that the proposed model has a better per-
formance in the training environment with a 0.1 Q fault re-
sistance. The accuracy of GCN could not satisfy the require-
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ments of diagnosis when fault resistance increases. The pro-
posed model still has better performances under different re-
sistances on the IEEE 37-bus system. The verification on dif-
ferent systems further show that the proposed model has
stronger generalization performance and adaptability. The ef-
fective utilization of fault waveform and data structural infor-
mation are thus critical to the proposed model.
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Fig. 18. Structure of IEEE 37-bus test system for fault diagnosis.

TABLE X
FAULT PARAMETERS IN IEEE 37-BUS TEST SYSTEM

Values or types

AN(1), BN(2), CN(3), AB(4), AC(5), BC(6),
ABN(7), CAN(8), BCN(9), ABC(10)

The midpoint of fault lines
0.01, 0.1, 1, 10, 20, 30, 40, 50, 100

Fault parameter

Fault type

Fault position

Fault resistance (€2)

G. Fault Diagnostic Model for Practical Application

In an actual distribution network, the system scale is rela-
tively large, and measuring devices may be scarce for all
buses. The topology of the distribution network can be sim-
plified to a smaller topology by the key buses. In this man-
ner, the proposed model can realize fault analysis of the en-
tire distribution network through limited measurement data.
The fault diagnostic model can locate a fault in a specific
subregion through the key nodes. In this study, the experi-
mental results verify the fault type analysis and fault loca-
tion performances of the proposed model for subregions.
Eleven key nodes are selected from the IEEE 33-bus test sys-
tem, and 10 subregions are divided to verify the effective-
ness of the proposed model. This verifies the capability of
the proposed fault diagnostic framework under less measure-
ment data and topological simplification.

TABLE XI
RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 0.1 Q FAULT RESISTANCE

Accuracy of proposed model

Accuracy of CNN Accuracy of GCN

Fault resistance ()

Fault type analysis Fault location

Fault type analysis

Fault location Fault type analysis Fault location

0.01 0.998 0.998 0.878 0.971 0.980 0.923

0.1 (train) 0.999 0.999 0.881 0.970 0.977 0.923

1 0.998 0.999 0.881 0.971 0.978 0.919

10 0.979 0.994 0.877 0.933 0.957 0.797

20 0.959 0.959 0.854 0.853 0.905 0.602

30 0.925 0.924 0.812 0.778 0.845 0.603

40 0.895 0.871 0.785 0.709 0.774 0.548

50 0.887 0.822 0.706 0.617 0.738 0.501
TABLE XII

The structure of simplified topology of IEEE 33-bus test
system is presented in Fig. 19, where the nodes 0-10 refer to
the 11 selected key nodes, and edges refer to the subregions.
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Fig. 19. Structure of simplified topology of IEEE 33-bus test system.

The fault diagnostic model utilizes the information of
these key nodes. The data sources of the nodes and the defi-
nitions of edges are presented in Table XII. The fault loca-
tion labels in the original topology are replaced with the la-
bels in the simplified topology.

DATA SOURCES OF NODES AND DEFINITIONS OF EDGES

Location label

Node No.  Data source Edge (IEEE 33-bus test system)

0 1 0-1 Bus 1-bus 2

1 2 1-2 Bus 2-bus 3

2 3 2-3 Bus 3-bus 6

3 6 3-4 Bus 6-bus 11

4 11 4-5 Bus 11-bus 14

5 14 5-6 Bus 14-bus 18

6 18 1-7 Bus 2-bus 19, bus 19-bus 22
7 22 2-8 Bus 3-bus 23, bus 23-bus 25
8 25 3-9 Bus 6-bus 26, bus 26-bus 29
9 29 9-10 Bus 29-bus 33
10 33
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For the simplified system, the required measurement infor-
mation is the data from the key nodes. The proposed fault di-
agnostic model can determine the fault type and locate the
fault in the subregion between these key nodes. For exam-

ple, if the model output edge is 9-10, the sub-region be-
tween buses 29 and 33 in the original IEEE 33-bus system
has experienced a fault. CNN and GCN are utilized for com-
parative experiments, as shown in Table XIII.

TABLE XIII
RESULTS UNDER DIFFERENT FAULT RESISTANCES ON SIMPLIFIED TOPOLOGY

Fault Accuracy of proposed model Accuracy of CNN Accuracy of GCN
resistance (€2) Fault type analysis Fault location Fault type analysis Fault location Fault type analysis Fault location
0.01 0.999 0.990 0.973 0.926 0.910 0.976
2 0.999 0.980 0.966 0.922 0.888 0.952
50 0.954 0.923 0.751 0.760 0.770 0.855

Table XIII shows that the proposed model performs better
in terms of fault classification and fault location under the
simplified topology. The proposed model shows stronger gen-
eralization ability and adaptability under unknown fault resis-
tances. The results show that the proposed model not only
has a stronger fitting ability with the training dataset but has
a stronger generalization ability under different fault resis-
tance conditions. The proposed model performs well on the
simplified topology, suggesting that the proposed model is
promising for application in actual distribution systems. For
larger systems, key buses that provide data information for
the proposed model can be varied to adjust the sub-regions
of the fault location.

The measurement information of the bus is represented by
the RMS values of the voltage and current. PMUs can be im-
plemented as measuring devices for bus data. The sampling
frequency of a PMU can reach 10 kHz, and its real-time da-
ta transmission is within 20 ms. Accordingly, PMUs can be
applied to the actual measurements of the proposed fault di-
agnostic framework. In addition, the proposed fault diagnos-
tic framework is based on Al technology. The input sample
length, sampling frequency, and fault detection interval can
be determined based on actual situations.

V. CONCLUSION

In this study, a combined fault type analysis and fault lo-
cation model based on spatiotemporal graph learning is pro-
posed to perform fault diagnostic tasks for distribution sys-
tems. Based on the excellent feature processing ability of the
spatiotemporal convolutional block, fault type analysis, and
fault location can be performed accurately in multi-task
learning models. The topological information of the distribu-
tion network could be embedded to act as a significant con-
straint during model training, enabling the model to learn
the deeper structural information of the fault data and giving
it stronger resistance to abnormal data. Meanwhile, the wave-
form features and structural information are effectively com-
bined by the spatiotemporal convolutional block, significant-
ly improving the performance of the fault diagnostic model.
Thus, the proposed fault diagnostic model has higher accura-
cy and stronger generalization ability under topological
changes, unknown fault resistance conditions, and different

types of signal interference. The effectiveness of the pro-
posed framework is verified under different test system and
fault conditions. The results show that the proposed frame-
work has better performance and generalization ability than
GCN and other intelligent models.
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