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Abstract——Accurate and timely fault diagnosis is of great sig‐
nificance for the safe operation and power supply reliability of 
distribution systems. However, traditional intelligent methods 
limit the use of the physical structures and data information of 
power networks. To this end, this study proposes a fault diag‐
nostic model for distribution systems based on deep graph 
learning. This model considers the physical structure of the 
power network as a significant constraint during model train‐
ing, which endows the model with stronger information percep‐
tion to resist abnormal data input and unknown application 
conditions. In addition, a special spatiotemporal convolutional 
block is utilized to enhance the waveform feature extraction 
ability. This enables the proposed fault diagnostic model to be 
more effective in dealing with both fault waveform changes and 
the spatial effects of faults. In addition, a multi-task learning 
framework is constructed for fault location and fault type analy‐
sis, which improves the performance and generalization ability 
of the model. The IEEE 33-bus and IEEE 37-bus test systems 
are modeled to verify the effectiveness of the proposed fault di‐
agnostic model. Finally, different fault conditions, topological 
changes, and interference factors are considered to evaluate the 
anti-interference and generalization performance of the pro‐
posed model. Experimental results demonstrate that the pro‐
posed model outperforms other state-of-the-art methods.

Index Terms——Fault diagnosis, fault location, fault type analy‐
sis, distribution system, deep graph learning, multi-task learn‐
ing.

I. INTRODUCTION 

WITH the expansion of modern distribution systems 
and the increase in load access, distribution systems 

are more likely to suffer from faults due to the occurrence 

of stochastic events such as lightning strikes, insulation 
breakdowns, and improper operations [1]. These affect the 
production and livelihoods of people and even cause consid‐
erable economic losses due to accidental power outages [2]. 
Therefore, effective fault location and fault type analysis are 
critical to the safe and stable operation of distribution net‐
works and the reliability of the power supply.

With the development of distribution automation (DA), 
more operational data are obtained from intelligent electron‐
ic devices [3] and other DA devices. The data can be ana‐
lyzed for fault diagnosis and protection. Several studies have 
contributed to this field of research. Traditional fault diagnos‐
tic methods can be divided into impedance-based methods 
[4], [5], voltage sag based methods [6], traveling wave based 
methods [7], [8], and machine learning based methods [9]. 
For example, [4] proposes an impedance-based method to lo‐
cate faults in distribution networks using an impedance ma‐
trix. Reference [6] utilizes a voltage sag to determine the 
fault location in a distribution network. Reference [7] exam‐
ines fault locations using traveling waves. Reference [9] ex‐
tracts fault features using wavelet transformation. Reference 
[10] proposes a novel method for fault location, isolation, 
and service restoration for active distribution networks based 
on distributed processing. Reference [11] proposes a novel 
two-stage localization method for single-phase earth faults in 
resonant grounding systems. Reference [12] proposes a 
smart protection scheme which utilizes micro-phasor mea‐
surement units (µPMUs) to obtain continuous rapid synchro‐
nized phasor measurement data. Reference [13] proposes a 
precise and rapid technique for identifying the fault section 
in a low-voltage DC (LVDC) distribution system. These 
methods skillfully utilize the network structure information 
and fault characteristics to solve fault diagnostic tasks. How‐
ever, the performances of some traditional methods are limit‐
ed by their relatively weak feature extraction abilities and 
complex analytical processes. Artificial intelligence (AI) 
technology provides a new way to establish the mapping 
from fault features to fault locations.

With the continuous development of AI technology, deep 
learning methods are widely utilized in the field of fault di‐
agnosis [14], [15] due to their powerful feature extraction 
abilities from a large amount of fault information without hu‐
man intervention. Reference [16] introduces an artificial neu‐
ral network into the fault location of a distribution network. 
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Reference [17] utilizes a neural network to extract features 
and applies a support vector machine (SVM) to the classifi‐
er. Reference [18] uses a convolutional neural network 
(CNN) for fault identification and classification. Reference 
[19] applies a CNN to deal with voltage dip and tests their 
model using different datasets. Although these traditional 
deep learning techniques can effectively extract fault fea‐
tures from Euclidean space, they have limitations such as 
low training efficiency, difficulty in extracting effective fea‐
tures, and poor generalization ability when dealing with in‐
creasingly complex information from distribution systems. In 
addition, traditional deep learning technology cannot effec‐
tively utilize the physical structural information of the power 
network. Therefore, more powerful fault information process‐
ing methods are required to solve these problems.

Graph neural network (GNN) is a type of novel neural net‐
work model based on spatial structural information. The 
physical structural relationship acts as a significant con‐
straint during the model learning process. It makes the GNN 
have stronger feature extraction ability and faster training 
speed. The latest studies have implemented GNN for fault di‐
agnosis [20]. For example, [21] applies graph learning to 
fault diagnosis of power transformers. Reference [22] con‐
structs a graph structure based on data similarities and ap‐
plies it to bearing fault diagnosis. References [23] and [24] 
utilize graph convolution networks (GCNs) for fault diagno‐
sis of transmission and distribution networks. However, 
these methods still have some limitations. For example, 
some methods require accurate line parameter information, 
which is difficult for the actual distribution network. The 
fault waveform features are not effectively utilized due to 
relatively weak feature extraction. In addition, these methods 
do not consider the conditions of different fault resistances, 
topological changes, and different data interferences. To 
solve this problem, this paper proposes a novel fault diagnos‐
tic model for distribution systems based on spatiotemporal 
graph learning. The proposed model embeds topological in‐
formation into the model learning process and operates with‐
out line parameters. Compared with common data-driven 
methods, the model can learn the deeper structural informa‐
tion of data, making the proposed model more resistant to 
abnormal data and condition changes. In addition, the spatio‐
temporal convolutional blocks improve the feature extraction 
ability of the fault diagnostic model. The process of the pro‐
posed fault diagnostic model includes: ① constructing the 
graph structure according to the structural relationship of the 
measured data; ② collecting measurement data; ③ execut‐
ing an offline training model; and ④ detecting the fault type 
and fault location in real time. Experiments show that the 
proposed method has better generalization performance and 
anti-interference ability under different fault resistances, topo‐
logical changes, and different data interferences. The main 
contributions of this study are as follows.

1) A novel fault diagnostic model based on spatiotemporal 
graph learning is proposed to complete fault location and 
fault classification in the distribution system. The measure‐
ment information processing derives from the physical struc‐
ture of distribution network. Compared with traditional data-

driven methods, the graph-based method can embed topologi‐
cal information into the model learning process, which 
makes the proposed model learn the deeper structure infor‐
mation of data and be more resistant to abnormal data and 
condition changes.

2) To improve the information processing capabilities of 
the model, a special spatiotemporal convolutional block is 
designed to extract fault features. This structure employs an 
efficient process for dealing with waveform and spatial infor‐
mation, which can combine the feature extraction of data nu‐
merical features and data structural information. Compared 
with the common GCNs, the proposed method has stronger 
feature extraction and anti-interference abilities. The results 
show that the proposed blocks improve the diagnostic results 
and narrow the input data windows, which ensures the speed 
and sensitivity of relay protection devices.

3) With the effective utilization of the structural informa‐
tion and the enhancement of feature extraction ability, the 
proposed model can deal with unknown system conditions. 
Experiments show that the proposed model offers a better 
generalization performance. It can maintain the performance 
of fault diagnosis under different topologies, fault resistanc‐
es, and noise interference conditions. The effectiveness of 
the proposed model is verified using the IEEE 33-bus and 
IEEE 37-bus test systems. In addition, other state-of-the-art 
intelligent methods are utilized for comparative experiments.

The remainder of this paper is organized as follows. Sec‐
tion II describes the significance of fault type analysis and 
fault location in distribution network. Section III introduces 
the proposed fault diagnostic framework in terms of theoreti‐
cal basis and technical details of the implementation. Section 
IV verifies the effectiveness of the proposed model through 
case studies. Section V concludes the study.

II. SIGNIFICANCE OF FAULT TYPE ANALYSIS AND FAULT 
LOCATION IN DISTRIBUTION NETWORK 

Different handling techniques can be used for different 
fault scenarios in distribution networks. For example, when 
the neutral point is not effectively grounded, the single-
phase-to-ground fault is not necessary to be removed [25], 
which means the system can continue to operate for a peri‐
od. Phase-to-phase short-circuit faults in the distribution net‐
works must be removed immediately. Although other metal‐
lic short-circuit faults do not occur frequently, the fault diag‐
nostic model can judge them correctly to reduce the influ‐
ence range of the protective action. In addition, fast and ac‐
curate fault locations are critical for the power supply reli‐
ability of distribution networks. More effective measures 
should be implemented to reduce the influence range of 
faults according to fault location results. Therefore, based on 
the judgment results of the fault type analysis and fault loca‐
tion, the sectionalizer can selectively cut off the fault line in‐
stead of all three-phase lines with larger ranges. Sectionaliz‐
er is a relatively economical switchgear, which can be uti‐
lized at the place where the feeder sectioning is required but 
fault interruption capability is not required. Traditionally, a 
sectionalizer is applied as the last automatic device on the 
feeder and is set to coordinate with the circuit breaker (CB). 
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A single operating principle for sectionalizers and fault loca‐
tion [26] is illustrated using a simple example in Fig. 1. 
When a fault occurs, the CB will be triggered and opened to 
isolate the substation from the fault system. In addition, the 
fault line is located by the fault location function of the pro‐
tection system and is isolated by operating the normally 
closed (N. C.) sectionalizers. In addition, the load may be 
transferred from the fault line to the normal feeder by the ac‐
tion of normally open (N.O.) sectionalizers. Finally, the sys‐
tem will return to operate normally and wait for mainte‐
nance personnel.

In this case, accurate fault location and fault type analysis 
reflect the higher automation level of the distribution sys‐
tem. Fault type analysis and fault location can be combined 
to determine the specific area affected by the fault and the 
accurate fault diagnosis will make the loss caused by fault 
as small as possible. In addition, narrowing the data window 
can improve the performance of protection devices. A small‐
er time window can make the protection device obtain a fast‐
er response speed, which also means that the protection de‐
vice needs to have a stronger information extraction ability. 
To realize an intelligent fault diagnostic model using global 
information for global judgment, a novel fault diagnostic 
model based on deep graph learning is proposed in this 
study. In addition, this study verifies the adaptability of the 
proposed model under different conditions.

III. PROPOSED FAULT DIAGNOSTIC MODEL 

In this section, the principles and structures of GNN and 
spatiotemporal graph convolutional network (STGCN) are in‐
troduced. The proposed fault diagnostic framework based on 
the STGCN and multi-task learning is then illustrated in de‐
tail.

A. Spectral Convolution on Graphs

The space-based GCN primarily originates from the con‐
volutional operation of traditional CNNs [27]. A brief intro‐
duction to spectral graph theory is presented in [28]. Consid‐
er an undirected graph as G = ( )VE , where V is the set of 
nodes; and E is the set of edges. Its Laplacian matrix is de‐
fined as L =D -A, where A is the adjacency matrix of the 
graph, D is a diagonal matrix, and Dii =∑

j

Aij. If the edges 

have weights, A is converted to W, and the Laplacian matrix 
is converted to L =D -W. Note that L has a series of impor‐
tant properties which makes it play a major role in spectral 
analysis. In addition, the traditional Fourier transform is simi‐
lar to graph convolution in the structure, which can be de‐
fined as:

F ( )ω =F [ ]f ( )t = ∫ f ( )t e-jωtdt (1)

where the time-domain signal f (t ) is converted into the fre‐
quency-domain signal F (ω) by the basis function e-jωt, 
which is the characteristic function of the Laplacian operator 

and satisfies De-jωt =
¶2

¶t2
e-jωt =-w2e-jωt. When the Laplacian 

operator is extended to the graph structure with N nodes, the 
function f is an N-dimensional vector denoted as f =
[ ]f1f2fN , where fi is the function value of f at node i. 
The gain between nodes i and j in the weighted graph is 
wij ( fi - fj ), and the operation of the Laplacian operator at 
node i is given as:

Dfi =∑
j

wij( )fi - fj = ( )∑
j

wij fi -∑
j

wij fj (2)

This holds for any i = 12N, and we have:
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According to (2) and (3), the graph Fourier transform is 
constructed as:

F ( )λk =∑
i = 1

N

f ( )i uk( )i (4)

where λk and uk are obtained from Laplacian analysis Luk =
λkuk. Here, uk( )i  is the ith element of uk. uk is derived from 
the orthogonal matrix U, and U is obtained by eigenvalue de‐
composition of the Laplacian matrix L =UΛU T, and Λ is a 
diogonal matrix. The Fourier transform on graph f̂ is repre‐
sented by matrix multiplication as:
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Therefore, the matrix form of the graph Fourier transform 
can be expressed as f̂ =U T f, and its inverse transform is f =
UU T f =Uf̂. Based on graph convolutional theory, many stud‐
ies have conducted extensive research on reducing the com‐
putational burden and improving the performance [29]. The 
approximation of Chebyshev polynomials is utilized as a 
convolutional kernel, and the form of the graph convolution 
within the neural network is:

Z =D
-

1
2 AD

-
1
2 Xθ (6)

where ZÎRN ´F is the signal matrix after convolution; 
XÎRN ´C is the input signal, and C is the feature dimension; 
and θÎRC ´F is the parameter matrix of filter. The feature di‐
mension C is changed to F by convolution. In this case, the 
graph convolution is transformed into a learning neural net‐
work θ.

S CB

Substation
N.C. sectionalizer

N.O. sectionalizer

Fig. 1.　Operating principle for sectionalizers and fault location.
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B. Spatiotemporal Graph Learning Method

STGCNs have already been used in human dynamic ac‐
tion recognition [30] and traffic prediction [31]. It can aggre‐
gate spatial and temporal features simultaneously during fea‐
ture extraction. Spatiotemporal convolution is suitable for 
the scenes with interrelated temporal and spatial features 
[32]. In the power network, the voltage, current, and other 
features present waveform variations along the time axis. 
Waveform variation is a major source of information. GCN 
is not sensitive to information related to time variations. In 
the proposed method, the feature extraction of temporal in‐
formation is combined with spatial feature aggregation. Tem‐
poral feature extraction and spatial feature aggregation have a 
special structure, i. e., spatiotemporal convolutional block, 
which greatly improves the information processing of the pro‐
posed method for power information.
1)　GCN

The structure and feature-update mode of GCN [33] are il‐
lustrated in Fig. 2.

The node connection relationship is considered to be a 
constraint to update the node features in the graph. Each 
node in the graph updates its information at each feature up‐
date by gathering information from its neighbors, where the 
closer neighbors have a greater effect on node features. This 
forms the basic rule for node feature updates. The node fea‐
ture update policy of GCN is given by:

H ( )l+ 1 = σ ( )ÂH ( )l W ( )l (7)

where H (l) is the feature information at layer l; W (l) is the 
neural network weight at layer l; σ ( )×  is the activation func‐
tion of layer l; and Â is the calculation rule derived from the 
original adjacency matrix A. The transformation process of 
Â is given as:

Â = D͂
-

1
2 A͂D͂

-
1
2 (8)

where A͂ =A + I, and I is the identity matrix; and D͂ii =∑
j

A͂ij. 

Adding a self-loop A + I can integrate the information of 
node. Introducing the degree matrix D͂ can more effectively 
deal with multiple connection relationships. Normalization 
can transform the node feature values into a reasonable re‐
gion. The processed adjacency matrix Â reflects the rules of 
information flow and has a constant value during the calcula‐
tion operation at any layer. Here, the feature mapping ability 

of the network derives from the learnable matrix W ( )l  of 
each layer. However, when the number of GCN layers in‐
creases, the features of nodes will show an average trend 
called over-smoothing [34]. Therefore, significant restrictions 
are placed on the number of GCN layers, which limits the 
feature perception ability of GCN.
2)　Spatiotemporal Convolutional Block

To improve its feature perception ability, the STGCN con‐
tains a special spatiotemporal convolutional block. The tem‐
poral convolution module extracts the node features along 
the time axis before and after the spatial information aggre‐
gation based on GCN rules, as illustrated in Fig. 3. The tem‐

poral convolution can be defined as convxy =∑
i = 1

pq

kivi, where 

(xy) is the input feature size of waveform, pq is the size of 
convolution kernel, k is the weight of convolution kernel, 
and v is the waveform feature, i is the index of kernel 
weight and feature. The convolution process is the inner 
product of convolution kernel and input waveform feature.

In the spatiotemporal convolutional block, convolutional 
kernels similar to one-dimensional convolution are utilized 
to extract waveform features. The kernels can scan all wave‐
form features along the time axis and map them into new 
features with stronger expression. Different from the tradi‐
tional GCN, the feature processing of STGCN is composed 
of a type of temporal-spatiotemporal structure, and the first 
temporal convolutional layer is expressed as:

H ( )l+ 1
T1 = φ (Relu (h( )l+ 1

c1 + h( )l+ 1
c2 + h( )l+ 1

c3 ) ) (9)

h( )l+ 1
c1 = Sigmoid (H ( )l *y( )l+ 1

c1 ) (10)

h( )l+ 1
c2 = φ (H ( )l *y( )l+ 1

c2 ) (11)

h( )l+ 1
c3 =H ( )l *y( )l+ 1

c3 (12)

where H ( )l+ 1
T1  is the output feature of the first temporal convo‐

lutional layer; H ( )l  is the feature of layer l in the GNN, and 
when l = 0, H (0) indicates the input fault features of the mod‐
el; y( )l+ 1

c1 , y( )l+ 1
c2 , and y( )l+ 1

c3  are three convolutional kernels with 
the same shape; φ ( )·  represents the batch normalization oper‐
ation; and Sigmoid ( )·  and Relu ( )·  are the activation func‐
tions. After the first temporal convolutional layer, the spatial 
convolutional layer is expressed as:

H ( )l+ 1
s =Relu ( Âg( )l+ 1 W ( )l+ 1

5 ) (13)

g( )l+ 1 = g ( )l+ 1
1  g ( )l+ 1

2  g ( )l+ 1
3  g ( )l+ 1

4 (14)

Relu ReluInput

Convolution

layer 1

Convolution

layer 2

Output

Graph structure

and node input

feature

 Node feature

embedding

 

Update of node feature

… …

…

Fig. 2.　Structure and feature-update mode of GCN.
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Fig. 3.　Calculation of spatiotemporal convolutional block.
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g ( )l+ 1
1 =Relu (H ( )l+ 1

T1 W ( )l+ 1
1 + b( )l+ 1

1 ) (15)

g ( )l+ 1
2 =Relu (H ( )l+ 1

T1 W ( )l+ 1
2 + b( )l+ 1

2 ) (16)

g ( )l+ 1
3 =Relu (H ( )l+ 1

T1 W ( )l+ 1
3 + b( )l+ 1

3 ) (17)

g ( )l+ 1
4 =Relu (H ( )l+ 1

T1 W ( )l+ 1
4 + b( )l+ 1

4 ) (18)

where H ( )l+ 1
s  is the output feature of the spatial convolution‐

al layer; W (l+ 1)
1 -W (l+ 1)

5  and b(l+ 1)
1 -b(l+ 1)

4  represent the learnable 
parameters; and the sign  denotes the feature splicing opera‐
tion. After the spatial convolutional layer, the temporal con‐
volutional layer with the same structure as the first temporal 
convolutional layer further extracts data features. The feature 
operation process is expressed as:

H ( )l+ 1 = φ (Relu (h( )l+ 1
s1 + h( )l+ 1

s2 + h( )l+ 1
s3 ) ) (19)

h( )l+ 1
s1 = Sigmoid (H ( )l+ 1

s *y( )l+ 1
s1 ) (20)

h( )l+ 1
s2 = φ (H ( )l+ 1

s *y( )l+ 1
s2 ) (21)

h( )l+ 1
s3 =H ( )l+ 1

s *y( )l+ 1
s3 (22)

where H ( )l+ 1  is the output feature from the last temporal con‐
volutional layer, which is also a feature of the l + 1 layer in 
the GNN; and y( )l+ 1

s1 , y( )l+ 1
s2 , and y( )l+ 1

s3  are three convolutional 
kernels with the same shape.

C. Graph Structure of Distribution Network

Converting the power network into a graph structure is es‐
sential to the application of the GNN. A power network con‐
sists of transmission lines, power equipment, and buses. The 
graph is composed of edges and nodes. During the operation 
of GNN, the node message flows through the connection re‐
lationships of the edges. In the power network, the effects of 
state changes on the buses are also carried over to other bus‐
es and electrical equipment along the lines. In this case, the 
relationship between the power line and bus can be trans‐
formed into the relationship between the edge and node. The 
bus voltages, branch currents, and line impedances are the 
basic features of power network. With buses as nodes and 
lines as edges, distribution networks can be converted into 
graph structures. Voltage can be considered as the node fea‐
ture, and the current and line impedances are edge features. 
However, it is not easy to obtain accurate line impedance on 
a large scale. In addition, various distribution networks ex‐
hibit different impedance characteristics. The fixed imped‐
ance feature will reduce the generalization performance of 
the model. Therefore, the line impedance feature is not uti‐
lized in the proposed model. In addition, the current value 
that flows into the node is considered as the node feature. In 
this case, the information of each node includes the voltage 
and current features converging to the bus. The features at 
node i are denoted by N( )ViIi

= ( )Vi1Vi2Vi3Ii1Ii2Ii3 ÎR6, 

where 1, 2, and 3 represent the three phases; and iÎ 1 
2m represents m observable nodes. All features are root 
mean square (RMS) values and no features exist at the edg‐
es. The input feature H ( )0  of the GNN model is the input 
node feature N( )VI . The objective of the fault diagnostic mod‐

el is to obtain the fault type and location information N( )TL  

through the observed node information N( )VI . In addition, the 

topology structure of distribution network is also the input 
of the fault diagnostic model for embedding physical infor‐
mation. The function of the fault diagnostic model is ex‐
pressed as:

N( )TL = f (GN( )VI ) (23)

where f ( )GN( )VI  represents the fault diagnostic model. 

Note that G is the connection relationship of the nodes, 
which is derived from the structure of the distribution net‐
work, and G specifies the feature update rules for the graph 

convolutional layer. The model f ( )GN( )VI  maps the fault 

features to the fault type and fault location information. The 
algorithm in this study is constructed using a deep graph li‐
brary and Pytorch deep learning framework.

D. Proposed Fault Diagnostic Framework

In this study, a fault diagnostic framework based on the 
STGCN structure is proposed to combine fault type analysis 
and fault location in the distribution network. During the 
fault process, the fault impact spreads from the fault point to 
the entire graph based on the connection between nodes and 
edges. Different fault types generate different fault wave‐
forms and affect the surrounding nodes. The spatiotemporal 
convolutional block can effectively perceive differences in 
node information and generate stronger feature expressions. 
In this case, the proposed fault diagnostic framework outputs 
accurate fault diagnostic results. The structure of the pro‐
posed fault diagnostic framework using a simple circuit as 
an example is shown in Fig. 4.
1)　Multi-task Learning

Multi-task learning [35] can improve the generalization 
performance of neural networks by weighing the input infor‐
mation for different tasks. The proposed fault diagnostic 
framework outputs the fault location and fault type. The 
faults have the greatest effects on the nodes directly connect‐
ed to the fault position, so that the task of fault location de‐
pends more on the structural information of the network. 
With the increasing distance of the node, the effect of fault 
gradually decreases. However, the fault type analysis re‐
quires more fault information about waveform feature chang‐
es. In this case, a shared spatiotemporal convolutional block 
is applied to extract the basic features of the proposed fault 
diagnostic framework. In addition, independent spatiotempo‐
ral convolutional blocks are constructed to further aggregate 
the fault features required by both tasks. Finally, two special‐
ly constructed classifiers are used to output the network clas‐
sification results. It should be noted that the parallel struc‐
ture Wi is utilized in the fault diagnostic framework shown 
in Fig. 4. This structure can expand the model capacity and 
strengthen its feature-mapping ability.
2)　Classifier and Label Design

Two independent classifiers are designed for the two tasks 
because of different feature requirements of fault location 
and fault type analysis. In the fault location task, the output 
depends mainly on the spatial information of the nodes. 
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The positional relationship between the input features and 
output results is relatively regular. Therefore, the classifier 
for the fault location task is constructed using fully connect‐
ed layers. However, faults can occur at any line in the distri‐
bution network. Therefore, the classification of fault types re‐
quires a classifier to identify valid mapping features among 
all nodes. CNN can search for effective features regardless 
of their positions in the input information. Therefore, a CNN 
is utilized to construct the fault type classifier for the fea‐
tures extracted by STGCN. The fault directly affects the 
edge and then severely affects the nodes connected to the 
edge. Therefore, two nodes can be used to indicate that a 
fault occurs on the edge between them in fault location task. 
In this case, the two nodes with the largest activation values 
represent the feature of the two buses are most severely af‐
fected by the fault. This indicates that a fault occurs between 
the two buses. In the fault type analysis, the information ex‐
tracted from the blocks will be identified by a CNN-based 
classifier. This can be considered as a common multi-classifi‐
cation task.

IV. CASE STUDY 

In this section, the fault data are obtained by simulated 
test systems, and the structure of the proposed spatiotempo‐
ral convolutional block is introduced in detail, and the diag‐
nostic results of the model are presented and analyzed. In ad‐
dition, different conditions such as fault resistance changes, 
topological changes, and data interference are considered to 
verify the performance of the proposed model.

A. Simulation and Data Collection

To obtain labeled transient fault samples, a simulated dis‐
tribution network model based on the IEEE 33-bus test sys‐
tem [36] is constructed to collect fault data. MATLAB/Simu‐
link is used as the simulation software. The standard test sys‐

tem consists of 32 three-phase lines and loads. The graph 
structure of the standard test system is constructed according 
to the relationship between the bus and line, as shown in 
Fig. 5.

Because of the mutual influence between buses, the infor‐
mation transmission on the edge is set as bidirectional. In ad‐
dition, because the current information in the distribution net‐
work is attributed to node information, the edges in the 
graph only play the role of indicating the direction of infor‐
mation transmission during this task. In this case, the net‐
work uses three-phase voltage and current data of all nodes 
for global fault diagnosis.

The fault location task can be regarded as a 32-class clas‐
sification task because of the 32 lines in the test system. In 
addition, each fault point contains 10 types of faults, and 
therefore the fault type analysis can be regarded as a 10-
class classification task. Thus, the total number of output cat‐
egories of the proposed model is 32 ´ 10 = 320. When the 
fault occurs, the three-phase voltage and current on the bus 
are collected. Taking bus 9-bus 10 as an example, the volt‐
age waveforms of different fault types are shown in Fig. 6.

The proposed model can accept a data window with fewer 
sampling points instead of complete waveforms. In this 
study, the transient metallic faults are implemented to verify 
the proposed fault diagnostic model. During the simulation, 
the total sampling time after the faults is 0.05 s. 

21 3 4 5 6 7 8 9 10 11 12

1314151617

26 27 28 29 30 31 32 3323 24 25

19 20 21 22 18

Information transmission

Fig. 5.　Graph structure of IEEE 33-bus test system for fault diagnosis.

G

Z1

Z2

Z3 Z5

Z4 Z6

L1

L2

L3 L5

L4 L6

Bus 1

Bus 2

Bus 5

Bus 6

Bus 3

Bus 4

Exampled circuit

\
Node 1

Node 2

Node 4 Node 6

Node 3 Node 5

Global information

N(Vi, Ii)

Shared block

Fault position:

Bus 1-bus 2
Bus 2-bus 3

Fault type

classfier:

AN
BN

Global judgment

Spatial convolution

W4 W3 W2 W1

W5

Temporal convolution

Temporal convolution

Spatial convolution

W4 W3 W2 W1

W5

Temporal convolution

Temporal convolution

Convolution layer

Convolution layer

Classifier 2

Fully connected layer

Temporal convolution

Convolution layer

Convolution layer

Classifier 1

Fully connected layer

Temporal convolution

Spatial convolution

W4 W3 W2 W1

W5

Temporal convolution

Temporal convolution

…
…

Spatio temperal

convolutional block

Spatiotemporal

convolutional block

Fig. 4.　Structure of proposed fault diagnostic framework.

40



HU et al.: FAULT LOCATION AND CLASSIFICATION FOR DISTRIBUTION SYSTEMS BASED ON DEEP GRAPH LEARNING METHODS

The sampling frequency is 1 kHz, and the original fault 
data contain 50 time points. After downsampling, each fault 
sample contains 21 time points. The entire fault waveform is 
resampled repeatedly in steps at each sampling point. The 21 
time points indicate that each fault sample for fault diagno‐
sis obtains 0.02 s of fault data. In this case, the proposed 
model could utilize any 0.02 s of fault data within 0.05 s af‐
ter the fault to determine the fault type and location. The 
length of the downsampling window refers to the fault infor‐
mation contained in each sample. With a longer data win‐
dow, the sample contains more fault information, and the dif‐
ficulty of fault diagnosis will be reduced. Twenty five sub-
samples of each original fault sample are obtained for train‐
ing and the number of samples for each fault resistance con‐
dition is 32 ´ 10 ´ 25 = 8000, where 70% of the samples are 
selected for model training, and the remaining data are used 
for model testing. The subsampling process of fault data is 
suitable for real-time fault diagnosis. Therefore, the fault diag‐
nostic model can be applied to real-time fault diagnosis. The 
parameters of fault states for training are listed in Table I.

B. Construction of Spatiotemporal Convolutional Blocks

In the proposed fault diagnostic model, the per-unit values 
of the voltage and current are directly utilized as the input 

of the model without other data processing. The structure 
and parameters of the proposed spatiotemporal convolutional 
block are shown in Fig. 7, where W1-W4 are four groups of 
learnable parameters that can convert the dimensions of the 
features from 64 to 128; and W5 causes a feature to return to 
its original dimension.

To improve the performance of the model, parallel struc‐
tures and regularization techniques are implemented in both 
temporal and spatial convolutions. For example, the data 
shape of the fault samples is (33, 21, 6), where 33 indicates 
that the number of buses is 33; 21 indicates that the samples 
contains 21 time points; and 6 indicates the number of fea‐
tures.

In the processing of features forward in a single spatiotem‐
poral convolutional block, the samples first pass through the 
temporal convolution. The shape of the 2D-convolutional 
kernel size is (1, 3), and the filter channel is 64. Because the 
convolutional kernels must scan the waveform information 
on the time axis, it is necessary to adjust the dimensions of 
the sample features. Accordingly, two temporal convolutions 
and one spatial convolution form a spatiotemporal convolu‐
tional block. Multi-channel feature extraction can make the 
network easier to capture key fault features. The two types 
of convolutional layers are combined to extract the fault fea‐
tures in greater depth. In this case, the feature extraction ca‐
pability of STGCN is improved by the extended learnable 
parameters.
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Fig. 6.　Voltage waveforms of different fault types. (a) Phase-A-to-ground 
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Three phases (ABC).

TABLE I
PARAMETERS OF FAULT STATES FOR TRAINING

Fault parameter

Fault type

Fault position

Fault resistance (Ω)

Operating load

Values or types

AN(1), BN(2), CN(3), AB(4), AC(5), BC(6), 
ABN(7), CAN(8), BCN(9), ABC(10)

Midpoint of 32 lines

0.01, 0.1, 0.5, 1, 2, 5, 10, 15, 20, 50, 100, 150, 
200, 300, 400, 500, 600

Basic load

Batch normalization

Batch normalization

W1 W2 W3

W5
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Fig. 7.　Proposed spatiotemporal convolutional block.
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C. Experiment Results with Fault Resistance of 0.1 Ω Condi‐
tion

The proposed fault diagnostic model has two main func‐
tions: fault type analysis and fault location The accuracy of 
the proposed model for the training process is illustrated in 
Fig. 8, where Train-acc and Test-acc are the accuracies of 
the model in the training and test datasets during model 
training, respectively. It can be observed that the accuracy of 
the proposed fault diagnostic model for fault location and 
fault type analysis reaches over 98%, well demonstrating the 
effectiveness of the proposed model. Therefore, the proposed 
fault diagnostic model can accurately perform fault classifica‐
tion and location tasks.

In addition, GCN [24], CNN [18], and principal compo‐
nent analysis SVM (PCA-SVM) [17] are used for compara‐
tive validation, as shown in Table II.

The results show that the proposed model has a better per‐
formance than other models. The improved spatiotemporal 
convolution block can significantly improve the feature ex‐
traction ability of the model.

In addition, the outputs of the penultimate layer from dif‐
ferent models are extracted to represent the feature space for 
the tasks. We utilize t-distributed stochastic neighbor embed‐
ding (t-SNE) [37] to show the distribution of the feature 
space. It can be illustrated from Fig. 9 that the proposed 
model achieves better feature extraction results than GCN.

As shown in the two-dimensional space, the feature out‐
puts of the proposed model have a more reasonable and ac‐
curate distribution, illustrating that the proposed model has 
higher accuracy and better generalization performance. Fig‐
ure 9(a) and (c) shows that the output of GCN have many 
confusion samples, resulting in incorrect fault diagnosis, 
where the results are shown in Table II. In Fig. 9(a), there 
are obvious confusion samples for different fault types. 
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TABLE II
COMPARASION RESULTS OF DIFFERENT MODELS

Model

Proposed

GCN [24]

CNN [18]

PCA-SVM [17]

Accuracy

Fault type analysis

0.999

0.973

0.899

0.920

Fault location

0.992

0.917

0.981

0.870
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Fig. 9.　Visualization of output of each task from GCN and proposed mod‐
el. (a)　Visualization of fault type output from GCN. (b) Visualization of 
fault type output from proposed model. (c) Visualization of fault location 
from GCN. (d) Visualization of fault location from proposed model.

42



HU et al.: FAULT LOCATION AND CLASSIFICATION FOR DISTRIBUTION SYSTEMS BASED ON DEEP GRAPH LEARNING METHODS

In Fig. 9(c), the features of different fault locations are vi‐
sualized using many confusing and scattered samples. In 
Fig. 9(d), the feature output of the proposed model is more 
concentrated for different fault locations, meaning that the 
proposed model has a better feature extraction ability and 
fault diagnosis performance.

Figure 10 shows the test accuracies of the proposed model 
and CNN for the training process. The proposed model can 
significantly reach a better performance after the parameter 
initialization. In addition, the proposed model has faster con‐
vergence than the traditional algorithms, which significantly 
reduces the calculation costs. This means that the effective 
use of physical structural information significantly improves 
the feature processing ability and training efficiency of the 
model. The improvement in training efficiency is also of 
great significance for the practical application of deep learn‐
ing models in relay protection devices. The model has a 
greater possibility of online model updating using power op‐
eration data.

D. Performance Verification for Signal Interference

In point of fact, the data acquisition devices are influ‐
enced by different levels of noise or loss of data due to dif‐
ferent working environments. In addition, the changes in 
load also affect the performance of the fault diagnostic mod‐
el. Therefore, the generalization ability of the model is a 
core feature of the fault diagnostic model. In our study, dif‐
ferent interference factors are considered to verify the gener‐
alization and anti-interference performance of the model.
1)　Effectiveness of Proposed Model Under Different Noise 
Conditions

Electrical measurements are easily influenced by electro‐
magnetic interference and other environmental factors. In 
this study, Gaussian white noise is used to simulate the inter‐
ference of environmental factors. The signal noise ratios 
(SNRs) [38] of the data are set as 10, 15, 20, 25, 30, 35, and 
40 dB. The model will be studied under seven types of noisy 
environments. The effects of different SNRs on the waveform 
of bus 9-bus 10 under AN fault are shown in Fig. 11.

The test accuracies for fault type analysis and fault loca‐
tion of the proposed model, GCN, and PCA-SVM under dif‐
ferent SNRs are shown in Fig. 12(a) and (b), respectively. It 
can be observed that the traditional PCA-SVM is severely 
disturbed by noise, whereas the proposed model can reach 
satisfactory performance under the effects of noise.

2)　Effectiveness of Proposed Model under Different Outlier 
Conditions

Typically, the sampled signal may have outliers due to in‐
accurate measurements and interference. Thus, eliminating 
the interference of abnormal values is a major requirement 
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of the fault diagnostic model. Outliers are simulated by mul‐
tiplying the standard measurements and random numbers be‐
tween 0.7 and 1.3. The numbers of outliers are set as 1%, 
2%, 5%, 10%, and 20% of the total sampled data. The mod‐
el will be verified under these five outlier conditions. The ef‐
fect of different outlier rates on waveform of bus 9-bus 10 un‐
der AN fault is shown in Fig. 13.

The test accuracies for fault type analysis and fault loca‐
tion of the proposed model, GCN, and PCA-SVM under dif‐
ferent outlier rates are shown in Fig. 14(a) and (b), respec‐
tively. It can be observed that the accuracy of traditional ma‐
chine learning models decreases significantly with an in‐
crease in the number of outlier rates. However, the proposed 
model can resist the interference of outlier rates and main‐
tain its original high performance.

3)　Effectiveness of Proposed Model Under Different Data 
Missing Rates

In practice, smart meters package and upload collected in‐
formation. In this process, missing data cannot be ignored 
because of internet and equipment factors. Therefore, it is 
highly probable that the information of each node will be 
missing. When the meters fail to upload data, the voltage 
and current values collected by the meter cannot be obtained 
by the model. The model must diagnose the fault using the 
remaining information. During the verification, the possibili‐
ty of data missing at each node are set to be 0.5%, 1%, 2%, 
5%, and 10%. In the worst case with data missing rate of 
10%, each data window has only a (1 - 10%)33 = 3.1% proba‐
bility of containing complete original data. The test accura‐
cies for fault type analysis and fault location of the proposed 
model, GCN, and CNN under different data missing rates 
are shown in Fig. 15(a) and (b), respectively. It can be ob‐
served that the proposed model has significant advantages in 
terms of avoiding missing data. When the data missing rate 
increases gradually, the performances of all models diminish 
to different degrees. Compared with the original condition, 
CNN is affected by data missing seriously. It may be due to 
CNN cannot effectively use the structural information of da‐
ta. By contrast, GCN has good robustness when input data 
have missing condition. It indicates that the use of topology 
information is effective for the model to resist data input 
anomalies. The proposed model has better fault diagnostic 
performance under data missing conditions.

It can be observed from Fig. 15 that CNN is more affect‐
ed by missing values because it relies more on the numerical 
information of the data, which makes it greatly affected by 
abnormal values. The graph-based models embed topological 
information into the feature extraction process, which en‐
ables the model to extract deeper data structural information 
and makes it more resistant to abnormal values. In the worst 
case with data missing rate of 10%, the proposed model 
could still achieve a high performance, which is of great sig‐
nificance for practical relay protection systems.
4)　Effectiveness of Proposed Model Under Various Load 
Conditions

Various load conditions are simulated by multiplying the 
basic load value by a random number between 0.7 and 1.3. 
The test accuracy for fault type analysis and fault location of 
the proposed model under various load conditions is shown 
in Fig. 16. The random number at each fault line is changed 
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in the simulation, and the experiment is repeated 10 times. 
Therefore, the load changes for 10 ´ 32 = 320 times, which 
completely simulates the load variation within a certain 
range. It can be observed from Fig. 16 that the load change 
in the normal range has little effect on the proposed fault di‐
agnostic model.

E. Performance Verification Under Different Fault Resistanc‐
es

In an actual distribution system, the fault resistances are 

unknown and may differ from the fault conditions during 
model training. In this case, fault diagnostic models need to 
have a good adaptability to untrained fault resistance condi‐
tions. To further verify the effectiveness of the model under 
different unknown fault resistance conditions, the model 
trained with a 0.1 Ω fault resistance is directly applied to 
other fault resistance conditions. In addition, CNN and GCN 
are compared to verify the effectiveness of the proposed 
model. The test results of the proposed model under differ‐
ent fault resistances are presented in Table III.

Table III shows that all the models perform in a manner 
similar to that of the training situation under low fault resis‐
tance conditions. When the fault resistance increases gradual‐
ly, the performance of all models decreases to various de‐
grees. Table III shows that the fault classification perfor‐
mance of CNN and the fault location performance of GCN 
are both significantly affected by the increase in fault resis‐
tance. Due to the spatiotemporal convolutional structure and 
a series of parallel structures, the proposed model has a 
stronger feature extraction ability, which means it can be ef‐
fectively applied to different fault resistance conditions after 
being trained under 0.1 Ω fault resistance condition. The per‐
formance of the proposed model is the least affected by fault 
resistance changes. In other words, the proposed model ex‐
hibits a stronger generalization performance under different 
fault resistance conditions.

In an actual distribution system, the performance of the 
proposed model needs to be generalized to a specific range 
of fault resistance. To verify the effectiveness of the pro‐
posed model under a specific fault resistance range, the pro‐
posed model is trained with 0.01 Ω +50 Ω fault resistance 
and tested in the range from 0.01 Ω to 50 Ω . In addition, 
CNN and GCN are used in comparative experiments to veri‐
fy the effectiveness of the proposed model.

Table IV shows that the performances of CNN and GCN 
decrease significantly when the fault resistance increases. 
Even if the 50 Ω fault resistance are utilized as the training 
condition for model learning, CNN and GCN could not 
adapt to the entire fault resistance range due to the lack of a 

feature extraction ability. This indicates that the embedding 
of topological information and the designed processing of 
waveform features are effective with the fault diagnostic 
model.

The higher fault impedances indicate weaker fault fea‐
tures, which affect the performance and generalization abili‐
ty of the fault diagnostic model. To verify the performance 
and generalization ability of the proposed model under a 
high-impedance fault, fault data with a 300 Ω fault resis‐
tance are selected for model training, and 100-600 Ω fault re‐
sistances are selected for model testing. The comparative re‐
sults of the proposed model, CNN, and GCN experiments 
are presented in Table V.

1.00

0.97

0.95

0.93

0.91

0.90

0.98

0.99

0.96

0.94

0.92

A
cc

u
ra

cy

1 32 54 6 7 8 9 10
Experiment times

Fault type analysis; Fault location

Fig. 16.　Test accuracies for fault type analysis and fault location of pro‐
posed model under various load conditions.

TABLE III
RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 0.1 Ω FAULT RESISTANCE

Fault resistance (Ω)

0.01

0.1 (train)

0.5

1

2

5

10

15

20

50

Accuracy of proposed model

Fault type analysis

0.998

0.999

0.999

0.997

0.997

0.993

0.990

0.988

0.981

0.941

Fault location

0.989

0.992

0.992

0.992

0.992

0.993

0.991

0.986

0.975

0.897

Accuracy of CNN

Fault type analysis

0.894

0.899

0.894

0.893

0.891

0.883

0.869

0.852

0.835

0.693

Fault location

0.982

0.981

0.981

0.983

0.983

0.981

0.976

0.965

0.955

0.879

Accuracy of GCN

Fault type analysis

0.975

0.973

0.973

0.974

0.969

0.970

0.971

0.955

0.932

0.789

Fault location

0.924

0.917

0.915

0.908

0.884

0.831

0.739

0.640

0.584

0.414
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It can be observed from Table V that the proposed model 
outperforms other models under different fault resistances. 
The accuracy of GCN could not meet the requirements of di‐
agnosis when the fault resistance increases. 

It may be owing to that representation ability of GCN is 
insufficient, which make it not extract key features under dif‐
ferent fault resistances. The proposed model has a better 
fault diagnostic and generalization performances under a 
high-resistance fault because of its stronger feature extrac‐
tion ability and physical information embedding.

F. Performance Verification Under Different Topological 
Structures

In an actual distribution system, the topology of the distri‐
bution network can be changed because of different operat‐
ing states. To test the performance of the proposed diagnos‐
tic model for topological changes, three types of mesh distri‐
bution networks and different fault resistance conditions are 
modeled. Three mesh topological structures are obtained 
from the original IEEE 33-bus topology by connecting differ‐
ent branches. It should be noted that to verify the effective‐
ness of the model on a weak mesh distribution network, the 
line impedance parameters in the experiments are five times 
that of the original system. The topology numbers and con‐
nection methods of three mesh topological structures are list‐
ed in Table VI.

To verify the generalization performance of the proposed 

model for mesh topologies and topological changes, the data 
under the G1 topology are utilized as the training dataset, 
and the data under the G2 and G3 topologies are utilized as 
the verification dataset. The fault state parameters utilized 
for the collected data are listed in Table VII.

TABLE VII
FAULT STATE PARAMETERS UTILIZED FOR COLLECTED DATA 

Fault parameter

Fault type

Fault position

Fault resistance (Ω)

Values or types

AN(1), BN(2), CN(3), AB(4), AC(5), BC(6), 
ABN(7), CAN(8), BCN(9), ABC(10)

The midpoint of length at bus 1-bus 2, 
bus 2-bus 3, bus 3-bus 23, bus 6-bus 7, 

bus 8-bus 9, bus 11-bus 12, bus 14-bus 15, 
bus 17-bus 18, bus 21-bus 22, bus 26-bus 27, 

bus 29-bus 30, and bus 32-bus 33

0.01, 0.1, 1, 10, 20, 50, 100, 200, 300, 500

TABLE V
RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 300 Ω FAULT RESISTANCE

Fault resistance (Ω)

100

150

200

300 (train)

400

500

600

Accuracy of proposed model

Fault type analysis

0.973

0.989

0.994

0.999

0.999

0.996

0.993

Fault location

0.960

0.991

0.999

0.999

0.999

0.998

0.993

Accuracy of CNN

Fault type analysis

0.867

0.912

0.934

0.960

0.947

0.905

0.853

Fault location

0.676

0.817

0.905

0.956

0.931

0.883

0.832

Accuracy of GCN

Fault type analysis

0.881

0.932

0.967

0.978

0.969

0.960

0.934

Fault location

0.429

0.551

0.677

0.739

0.650

0.496

0.385

TABLE IⅤ
RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 0.01 Ω+50 Ω FAULT RESISTANCE 

Fault resistance (Ω)

0.01 (train)

0.1

0.5

1

2

5

10

15

20

50 (train)

Accuracy of proposed model

Fault type analysis

0.998

0.997

0.999

0.999

0.999

0.998

0.998

0.998

0.999

0.996

Fault location

0.991

0.991

0.992

0.993

0.992

0.995

0.996

0.996

0.996

0.994

Accuracy of CNN

Fault type analysis

0.893

0.894

0.894

0.896

0.896

0.896

0.895

0.893

0.893

0.890

Fault location

0.981

0.981

0.979

0.979

0.978

0.977

0.979

0.979

0.981

0.945

Accuracy of GCN

Fault type analysis

0.972

0.974

0.973

0.974

0.973

0.975

0.973

0.971

0.969

0.968

Fault location

0.910

0.901

0.901

0.900

0.871

0.844

0.799

0.765

0.763

0.802

TABLE VI
TOPOLOGY NUMBERS AND CONNECTION METHODS OF

 THREE MESH TOPOLOGICAL STRUCTURES

Topology number

G1

G2

G3

Connection method

Connect bus 8-bus 21, bus 9-bus 15, bus 12-bus 22, 
bus 18-bus 33, and bus 25-bus 29

Connect bus 9-bus 15, bus 12-bus 22, bus 18-bus 33, 
and bus 25-bus 29

Connect bus 8-bus 21, bus 12-bus 22, bus 18-bus 33, 
and bus 25-bus 29
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For the G1, G2, and G3 topologies, 10 types of fault resis‐
tance conditions are set. The fault resistances of 1 Ω+200 Ω 
in the G1 topology will be utilized as the training environ‐
ment of the model. Other fault resistance conditions in the 
G2 and G3 topologies will be utilized as the test environ‐
ment. The graph structure of G1 topology is shown in 
Fig. 17.
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Fig. 17.　Graph structure of G1 topology.

CNN and GCN are utilized in comparative experiments to 

show the effectiveness of the proposed model. The perfor‐
mances of different models for G1 topology in the training 
case of 1 Ω+200 Ω fault resistances are presented in Table 
VIII.

Table VIII shows that the proposed model performs better 
on the training data of the mesh topological structure. The 
fault location accuracy of the proposed model is 10.0% high‐
er than that of GCN. To verify the effectiveness of the pro‐
posed model when the topology changes, each type of mod‐
el will be tested using the data of the G2 and G3 topologies 
under different fault resistances without other training pro‐
cesses. The results of the proposed model, CNN, and GCN 
are listed in Table IX.

It can be observed that the proposed model performs bet‐
ter when directly generalized to similar topologies because 
of its stronger feature extraction ability. In addition, CNN is 
most affected by topological changes. It may be due to that 
the fault diagnostic models based on CNN cannot embed 
physical topological information so that CNN extracts more 
numerical features of data but could not learn the deeper 
structure information. When dealing with changes in data, 
the reliability of CNN is significantly reduced. The graph-
based models could learn the structural information of the 
data, which makes the models have reliable performance un‐
der different topology change conditions. With improved spa‐
tiotemporal convolutional operations, the proposed model 
shows more effective generalization performance during to‐

pological change conditions, which means the model could 
be implemented in existing distribution systems.

In an actual distribution system with lower voltage levels, 
the R/X values of the line parameters may be larger. In addi‐
tion, the three-phase load may be unbalanced due to differ‐
ent operating conditions and load levels. The structure of 
IEEE 37-bus test system for fault diagnosis is shown in Fig. 
18. The fault parameters are listed in Table X.

The fault resistance of 0.1 Ω is utilized as the training en‐
vironment, and other fault resistance conditions are utilized 
as the test conditions. The results are listed in Table XI.

Table XI shows that the proposed model has a better per‐
formance in the training environment with a 0.1 Ω fault re‐
sistance. The accuracy of GCN could not satisfy the require‐

TABLE VIII
PERFORMANCES OF DIFFERENT MODELS FOR G1 TOPOLOGY IN TRAINING 

CASE OF 1 Ω+200 Ω FAULT RESISTANCE

Model

Proposed

GCN [24]

CNN [18]

Accuracy

Fault type analysis

0.998

0.973

0.799

Fault location

0.999

0.899

0.984

TABLE IⅩ
RESULTS OF DIFFERENT MODELS USING DATA OF G2 AND G3 TOPOLOGIES UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE 

OF 1 Ω+200 Ω FAULT RESISTANCES

Fault 
resistance

(Ω)

0.01

0.1

1 (train)

10

20

50

100

200 (train)

300

500

Accuracy of pro‐
posed model (G2)

Fault 
type

0.998

0.999

0.997

0.999

0.999

0.999

0.998

0.992

0.968

0.898

Fault 
location

0.989

0.990

0.991

0.988

0.988

0.985

0.986

0.981

0.984

0.971

Accuracy of CNN (G2)

Fault 
type

0.789

0.795

0.796

0.797

0.797

0.785

0.764

0.726

0.697

0.656

Fault 
location

0.801

0.804

0.802

0.795

0.791

0.792

0.775

0.724

0.679

0.642

Accuracy of GCN 
(G2)

Fault 
type

0.970

0.971

0.977

0.964

0.968

0.968

0.963

0.936

0.913

0.823

Fault 
location

0.912

0.911

0.917

0.914

0.809

0.761

0.766

0.790

0.775

0.724

Accuracy of proposed 
model (G3)

Fault 
type

0.999

0.997

0.998

0.999

0.999

0.999

0.998

0.993

0.979

0.912

Fault
 location

0.993

0.990

0.993

0.988

0.985

0.977

0.972

0.976

0.982

0.965

Accuracy of CNN 
(G3)

Fault 
type

0.794

0.794

0.795

0.792

0.791

0.776

0.768

0.744

0.729

0.709

Fault 
location

0.913

0.912

0.913

0.913

0.907

0.898

0.862

0.791

0.740

0.685

Accuracy of GCN 
(G3)

Fault 
type

0.970

0.971

0.975

0.968

0.967

0.969

0.964

0.930

0.867

0.787

Fault 
location

0.907

0.916

0.912

0.879

0.803

0.776

0.788

0.816

0.801

0.721
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ments of diagnosis when fault resistance increases. The pro‐
posed model still has better performances under different re‐
sistances on the IEEE 37-bus system. The verification on dif‐
ferent systems further show that the proposed model has 
stronger generalization performance and adaptability. The ef‐
fective utilization of fault waveform and data structural infor‐
mation are thus critical to the proposed model.
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Fig. 18.　Structure of IEEE 37-bus test system for fault diagnosis.

G. Fault Diagnostic Model for Practical Application

In an actual distribution network, the system scale is rela‐
tively large, and measuring devices may be scarce for all 
buses. The topology of the distribution network can be sim‐
plified to a smaller topology by the key buses. In this man‐
ner, the proposed model can realize fault analysis of the en‐
tire distribution network through limited measurement data. 
The fault diagnostic model can locate a fault in a specific 
subregion through the key nodes. In this study, the experi‐
mental results verify the fault type analysis and fault loca‐
tion performances of the proposed model for subregions. 
Eleven key nodes are selected from the IEEE 33-bus test sys‐
tem, and 10 subregions are divided to verify the effective‐
ness of the proposed model. This verifies the capability of 
the proposed fault diagnostic framework under less measure‐
ment data and topological simplification. 

The structure of simplified topology of IEEE 33-bus test 
system is presented in Fig. 19, where the nodes 0-10 refer to 
the 11 selected key nodes, and edges refer to the subregions.

The fault diagnostic model utilizes the information of 
these key nodes. The data sources of the nodes and the defi‐
nitions of edges are presented in Table XII. The fault loca‐
tion labels in the original topology are replaced with the la‐
bels in the simplified topology.

TABLE X
FAULT PARAMETERS IN IEEE 37-BUS TEST SYSTEM

Fault parameter

Fault type

Fault position

Fault resistance (Ω)

Values or types

AN(1), BN(2), CN(3), AB(4), AC(5), BC(6), 
ABN(7), CAN(8), BCN(9), ABC(10)

The midpoint of fault lines

0.01, 0.1, 1, 10, 20, 30, 40, 50, 100

TABLE XI
RESULTS UNDER DIFFERENT FAULT RESISTANCES IN TRAINING CASE OF 0.1 Ω FAULT RESISTANCE

Fault resistance (Ω)

0.01

0.1 (train)

1

10

20

30

40

50

Accuracy of proposed model

Fault type analysis

0.998

0.999

0.998

0.979

0.959

0.925

0.895

0.887

Fault location

0.998

0.999

0.999

0.994

0.959

0.924

0.871

0.822

Accuracy of CNN

Fault type analysis

0.878

0.881

0.881

0.877

0.854

0.812

0.785

0.706

Fault location

0.971

0.970

0.971

0.933

0.853

0.778

0.709

0.617

Accuracy of GCN

Fault type analysis

0.980

0.977

0.978

0.957

0.905

0.845

0.774

0.738

Fault location

0.923

0.923

0.919

0.797

0.602

0.603

0.548

0.501

10 2 3 4 5 6

9 108

7

Fig. 19.　Structure of simplified topology of IEEE 33-bus test system.

TABLE XII
DATA SOURCES OF NODES AND DEFINITIONS OF EDGES

Node No.

0

1

2

3

4

5

6

7

8

9

10

Data source

1

2

3

6

11

14

18

22

25

29

33

Edge

0-1

1-2

2-3

3-4

4-5

5-6

1-7

2-8

3-9

9-10

Location label 
(IEEE 33-bus test system)

Bus 1-bus 2

Bus 2-bus 3

Bus 3-bus 6

Bus 6-bus 11

Bus 11-bus 14

Bus 14-bus 18

Bus 2-bus 19, bus 19-bus 22

Bus 3-bus 23, bus 23-bus 25

Bus 6-bus 26, bus 26-bus 29

Bus 29-bus 33
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For the simplified system, the required measurement infor‐
mation is the data from the key nodes. The proposed fault di‐
agnostic model can determine the fault type and locate the 
fault in the subregion between these key nodes. For exam‐

ple, if the model output edge is 9-10, the sub-region be‐
tween buses 29 and 33 in the original IEEE 33-bus system 
has experienced a fault. CNN and GCN are utilized for com‐
parative experiments, as shown in Table XIII.

Table XIII shows that the proposed model performs better 
in terms of fault classification and fault location under the 
simplified topology. The proposed model shows stronger gen‐
eralization ability and adaptability under unknown fault resis‐
tances. The results show that the proposed model not only 
has a stronger fitting ability with the training dataset but has 
a stronger generalization ability under different fault resis‐
tance conditions. The proposed model performs well on the 
simplified topology, suggesting that the proposed model is 
promising for application in actual distribution systems. For 
larger systems, key buses that provide data information for 
the proposed model can be varied to adjust the sub-regions 
of the fault location.

The measurement information of the bus is represented by 
the RMS values of the voltage and current. PMUs can be im‐
plemented as measuring devices for bus data. The sampling 
frequency of a PMU can reach 10 kHz, and its real-time da‐
ta transmission is within 20 ms. Accordingly, PMUs can be 
applied to the actual measurements of the proposed fault di‐
agnostic framework. In addition, the proposed fault diagnos‐
tic framework is based on AI technology. The input sample 
length, sampling frequency, and fault detection interval can 
be determined based on actual situations.

V. CONCLUSION 

In this study, a combined fault type analysis and fault lo‐
cation model based on spatiotemporal graph learning is pro‐
posed to perform fault diagnostic tasks for distribution sys‐
tems. Based on the excellent feature processing ability of the 
spatiotemporal convolutional block, fault type analysis, and 
fault location can be performed accurately in multi-task 
learning models. The topological information of the distribu‐
tion network could be embedded to act as a significant con‐
straint during model training, enabling the model to learn 
the deeper structural information of the fault data and giving 
it stronger resistance to abnormal data. Meanwhile, the wave‐
form features and structural information are effectively com‐
bined by the spatiotemporal convolutional block, significant‐
ly improving the performance of the fault diagnostic model. 
Thus, the proposed fault diagnostic model has higher accura‐
cy and stronger generalization ability under topological 
changes, unknown fault resistance conditions, and different 

types of signal interference. The effectiveness of the pro‐
posed framework is verified under different test system and 
fault conditions. The results show that the proposed frame‐
work has better performance and generalization ability than 
GCN and other intelligent models.
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