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Abstract——The load demand and distributed generation (DG) 
integration capacity in distribution networks (DNs) increase 
constantly, and it means that the violation of security con‐
straints may occur in the future. This can be further worsened 
by short-term power fluctuations. In this paper, a scheduling 
method based on a multi-objective chance-constrained informa‐
tion-gap decision (IGD) model is proposed to obtain the active 
management schemes for distribution system operators (DSOs) 
to address these problems. The maximum robust adaptability of 
multiple uncertainties, including the deviations of growth pre‐
diction and their relevant power fluctuations, can be obtained 
based on the limited budget of active management. The system‐
atic solution of the proposed model is developed. The max term 
constraint in the IGD model is converted into a group of nor‐
mal constraints corresponding to extreme points of the max 
term. Considering the stochastic characteristics and correlations 
of power fluctuations, the original model is equivalently refor‐
mulated by using the properties of multivariate Gaussian distri‐
bution. The effectiveness of the proposed model is verified by a 
modified IEEE 33-bus distribution network. The simulation re‐
sult delineates a robust accommodation space to represent the 
adaptability of multiple uncertainties, which corresponds to an 
optional active management strategy set for future selection.

Index Terms——Active management, distribution network, mul‐
tiple uncertainties, information gap decision theory, chance con‐
straint.
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I. INTRODUCTION

WITH technological progress and social development, 
the load demand and distributed generation (DG) inte‐

gration capacity in distribution networks (DNs) increase con‐
stantly, and it means that the violation of security constraints 
(such as bus voltage constraints and branch thermal con‐
straints) may occur in the future. Moreover, short-term pow‐
er fluctuations of DGs and loads may result in a worse sce‐
nario for the stable operation of DNs. All these will bring 
significant challenges to distribution system operators 
(DSOs).

To tackle these difficulties, active management is one of 
the effective methods, which has been widely used in opti‐
mal DN scheduling [1], [2]. Many active management meth‐
ods such as demand response (DR) [3], [4], DG curtailment 
[5], reactive power compensation, and network reconfigura‐
tion, are effective for improving the controllability of DNs 
and mitigating security violations [6], [7]. There are various 
kinds of demand-side resources [8], [9] in DNs that have dif‐
ferent response characteristics such as reducible load [10] 

and transferable load [11]. DG output curtailment [5] is a 
significant measure of active management on the supply side 
because it can alleviate over-voltage problems during peak 
power periods. Capacitor bank (CB) is a classic and efficient 
reactive power compensation equipment to address low-volt‐
age issues [2]. Dynamic network reconfiguration based on re‐
motely controlled switches (RCSs) [12] can remove grid con‐
gestions in real time, and maintain branch thermal con‐
straints.

Therefore, DSOs may seek optimal dispatch schemes of 
active management elements to address the security violation 
problem in various future scenarios. The main uncertainties 
of the future scenarios in DNs include short-term power fluc‐
tuations and long-term deviations of growth prediction.

Many studies propose the methods to address the uncer‐
tainties of intraday/day-ahead instantaneous power fluctua‐
tion and prediction errors of DGs and loads [13], [14] as 
well as the uncertainties of demand-side resources [15]. 
Modeling this kind of uncertainty as random variables is an 
effective method which describes stochastic characteristics 
with probabilistic density functions (PDFs) [14].

Scenario-based stochastic programming [14], [16] and 
chance-constrained programming (CCP) [17], [18] are wide‐
ly used to formulate optimization problems with random 
variables. The scenario-based method considers possible real‐
izations via typical scenarios that can be derived from cer‐
tain empirical PDFs or data-driven discrete probability distri‐
butions. Reference [16] used a scenario-based method to ob‐
tain the optimal scheduling of DR in pre-emptive markets. 
However, the performance of scenario-based methods is usu‐
ally restricted by the scale of scenarios, but a considerable 
number of scenarios will increase the complexity of the cal‐
culation.

CCP requires that constraints hold with a certain probabili‐
ty [18]. For active management decisions, [15] proposed a 
distributionally robust chance constraint formulation of the 
frequency metrics to account for the uncertainty associated 
with noncritical load shedding, and the chance constraints 
are further effectively reformulated into second-order cone 
(SOC) form. Reference [19] proposed a chance-constrained 
model to find the optimal high-voltage alternating current 
(HVAC) operation schedule against the stochastic nature of 
electricity prices, solar power generations, and weather con‐
ditions. The model was solved based on a sampling-based 
method. Reference [20] modeled the stochastic controllabili‐
ty of DR resources in a unit commitment problem, and 
chance constraints were analytically reformulated as SOC 
constraints with high computational efficiency. But the corre‐
lation between random variables was not considered in [20]. 
It is significant to enhance other uncertainty addressing meth‐
ods by combining chance constraints. In this way, the com‐
prehensive characteristics of uncertainties can be considered.

Apart from power fluctuations, growth uncertainties in 
DGs and loads are essential. However, the method based on 
random variables cannot perform excellently in modeling 
growth uncertainties because they could be impacted by nu‐
merous potential influencing factors such as economic devel‐
opment and government policies [10], [17].
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Information-gap decision theory (IGDT) does not need to 
model the uncertain factor in a definite form. The essence of 
IGDT is to obtain the maximum accommodation (defined as 
information gaps) of uncertain factors with restricted resourc‐
es. Therefore, this is more appropriate for assessing the 
adaptability of growth uncertainties. In the practical pro‐
gram, the budget of distribution system operators (DSOs) for 
an engineering target is usually finite. IGDT-based methods 
can provide a series of schemes within a limited budget, 
which means that IGDT is more suitable for engineering 
practices.

In the aspect of planning, IGDT has been applied in mi‐
crogrid design [17], DN reinforcement [21], [22], etc. From 
an operation perspective, information-gap decision (IGD) 
models are formulated to tackle the optimal power flow 
(OPF) of high-voltage direct current (HVDC) system [23], 
unit commitment [24], DR trading strategies [10], virtual 
power plant scheduling [25], etc. Reference [17] proposed 
an IGDT-based multi-period planning framework combined 
with chance constraints. The authors addressed short-term un‐
certainty (such as fluctuations of DG output) with chance 
constraints and long-term uncertainty (such as load demand 

growth) with IGDT. However, multiple long-term uncertain‐
ties such as the growth of DGs and loads could not be con‐
sidered simultaneously in this framework.

Furthermore, it is difficult to solve the max/min term in 
the constraint of the IGD model [10]. References [21] and 
[23] simplified the max/min term by discussing the condi‐
tions of optimization. References [10], [17], [22] obtained 
the expression of the max/min term in the constraint by iden‐
tifying the monotonic relationship between uncertain factors 
and the robust/opportunistic function. In [25], the max/min 
term constraints were mathematically transformed as non-
convex additional constraints under the certain principles. 
Nevertheless, these methods depend on apriori knowledge, 
which may be difficult to implement when multiple uncer‐
tainties are considered and the monotonic relationships are 
not clear. Therefore, a tractable solving method for IGD 
models without apriori knowledge needs further research.

A comparison between recent studies and proposed meth‐
od about IGDT is provided in Table I, which includes objec‐
tive function, solution, and combination with other uncertain‐
ty addressing methods.

In this paper, an active management decision method 
based on a multi-objective chance-constrained IGD model is 
proposed to obtain the active management schemes (includ‐
ing DR, DG curtailment, reactive power compensation, and 
network reconfiguration) for DSOs. It aims to address the se‐
curity violation problem in various future scenarios of DGs 
and loads. The main contributions of this paper can be sum‐
marized as follows.

1) It proposes a multi-objective chance-constrained IGD 
model for active management. The maximum robust adapt‐
ability of multiple uncertainties, including deviations of 
growth prediction and power fluctuations, can be obtained 
based on the limited budget of active management. The devi‐
ations of growth prediction in loads and DGs are formulated 
as information gaps. To reflect the impact of short-term pow‐
er fluctuations under growth deviations, the chance con‐
straints are formulated to ensure the validity of operation se‐
curity constraints.

2) The systematic solution of the proposed model is devel‐
oped. Based on the linearized power flow and linear pro‐
gramming theory, the max term constraint is transformed in‐
to a group of normal constraints corresponding to extreme 
points of the max term. Then, the stochastic characteristics 

and correlations of power fluctuations in DGs, loads, and ac‐
tive management elements are adequately considered using 
the properties of the multivariate Gaussian distribution. As a 
result, the original model is reformulated as a tractable multi-
objective problem, which can be solved directly by the ε 
constraint algorithm.

3) The maximum robust accommodation space of multiple 
uncertainties is obtained. Each point in the space indicates 
an adaptable realization of uncertainties and relates to a 
scheduling scheme under the budget. Therefore, an optional 
scheduling strategy set can be constructed. DSOs can flexi‐
bly select the active management scheme from the set 
against the actual scenario in the future as long as the scenar‐
io is in the robust accommodation space.

The rest of this paper is organized as follows. Section II 
introduces the models of loads, DGs, and active manage‐
ment means with multiple uncertainties. The active manage‐
ment decision method based on the chance-constrained IGD 
model is proposed in Section III. Section IV presents the 
solving method of the proposed model. Section V presents 
case study to verify the effectiveness of the proposed model 
by a modified IEEE 33-bus DN. Section VI concludes the 
work in this paper.

TABLE I
COMPARISON BETWEEN RECENT STUDIES AND PROPOSED METHOD ABOUT IGDT

Reference

[10]

[17]

[21], [23]-[25]

[22]

This paper

Objective function

Single objective

√
√

Multiple objectives

√

√
√

Solution

Requiring apriori 
knowledge

√
√
√
√

Not requiring apri‐
ori knowledge

√

Combination with other uncertainty addressing methods

Combining but not consid‐
ering correlations

√

Combining and consider‐
ing correlations

√
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II. MODELS OF LOADS, DGS, AND ACTIVE MANAGEMENT 
MEANS WITH MULTIPLE UNCERTAINTIES

This section models load demands, DG outputs, and ac‐
tive management measures. Power fluctuations and devia‐
tions of growth prediction are analyzed, respectively.

A. Load Demands

1) Power Fluctuation
Random variables are usually used to describe power fluc‐

tuations. In this paper, random errors are added to the time-
series curves of prediction loads in the future scenario to rep‐
resent power fluctuations. The demand load at node i during 
period t is formulated as a bivariate Gaussian distribution 
[26] to consider the correlation between active and reactive 
power, which is shown in (1).
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can be formulated by bivariate Gaussian distributions as fol‐
lows.
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Coefficients ρP
Lijt and ρQ

Lijt reveal the correlations between 
load demands in different buses.

By combining (1) and (2) into matrix form, all loads dur‐
ing each period follow the 2N-dimensional multivariate 
Gaussian distribution in (3).
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The expressions of covariance matrices Σ LP
t , Σ LQ

t , and 
Σ LPQ

t  are shown in Appendix A (A1)-(A3).
2) Deviation of Growth Prediction

The growth of load demands is influenced by numerous 
factors such as economic development and government poli‐
cies. There may be an uncertain gap between prediction val‐
ue and actual value in the future. This kind of uncertain fac‐
tor is defined as the deviation of growth prediction, which is 
challenging to address precisely. To model the prediction er‐
ror, an envelope-bound uncertainty method [10] is employed 
in this paper to model the uncertain factors in IGDT.

UL( )αLφL = {φL: ||φL- 1 £αL;αL³ 0; }φLÎ [ ]( )1-αL ( )1+αL

(4)

The envelope-bound uncertainty set (4), which is defined 

as information gap UL, is used to represent the uncertainty 
of load growth. The proportion of actuality to prediction φL, 
which indicates the proportion of actuality to prediction in 
loads, is a realization of UL and represents a future scenario 
of load growth. αL is the width of the information gap, 
which indicates the maximum deviation between the actuali‐
ty and prediction.

B. DG Outputs

1) Power Fluctuation
Assuming that the power factor of DG outputs cos ϕDG re‐

mains the same, the DG outputs considering the correlation 
can be modeled as follows.
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Coefficient ρDGijt reveals the correlation between DG out‐
puts at bus i and bus j.

Rewriting (5) as matrix form, the active and reactive pow‐
er of DG outputs during each period follows the N-dimen‐
sional multivariate Gaussian distributions in (6).

ì
í
î

ïï

ïïïï

P͂DGt:NN( )P pre
DGtΣ

DG
t

Q͂DGt:NN( )KDG P pre
DGtKDGΣ

DG
t K T

DG

    "t (6)

The explicit expressions of covariance matrix Σ DG
t  and the 

coefficient matrix KDG in (6) are shown in Appendix A (A4) 
and (A5).
2) Deviation of Growth Prediction

The envelope-bound uncertainty method is also employed 
in the deviation of DG growth prediction as follows.

UDG(αDGφDG ) = {φDG: ||φDG - 1 £ αDG; αDG ³ 0;

}φDGÎ [ ]( )1 - αDG ( )1 + αDG (7)

An envelope-bound uncertainty set, which is defined as in‐
formation gap UDG, is used to represent the uncertainty of 
DG integration capacity growth. The proportion of actuality 
to prediction φDG, which indicates the proportion of actuality 
to prediction in DGs, is a realization of UDG and represents a 
future scenario of DG integration capacity growth. αDG is the 
width of the information gap, which indicates the maximum 
deviation between the actuality and the prediction.

C. Active Management Measures

1) DR and Its Uncertainty
This paper mainly considers the incentive DR [27]. The 

operation constraints and cost of transferable load and reduc‐
ible load are formulated.

Transferable load is a flexible DR mechanism [4], [28], 
which can be flexibly allocated within the allowable periods. 
There are several transferable loads in the industrial and 
commercial customers such as ice-storage systems and elec‐
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tric vehicle charging stations. Considering the potential of 
DR and power consumers’  comfort, the operation con‐
straints of transferable load are shown in (8)-(11).
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yi £N trans
max (10)

∑
tÎΩT

(P pre
Lit -P trans

it )Dt = ∑
tÎΩT

P pre
LitDt    "i (11)

If the transferring power P trans
it  is greater than 0, the energy 

consumption is reduced. If P trans
it  is smaller than 0, the energy 

consumption is increased. Constraint (8) ensures that P trans
it  is 

within the adjusting range of transferable load. Constraint 
(9) denotes the decision of the transferring range, which is 
restricted by binary variable yi (flag that allows this bus to 
implement load transferring) and the maximum transferring 

range [ -δ trans
iminδ̄

trans
imax ]. Constraint (10) indicates the largest num‐

ber of buses allowed to implement load transfer. Constraint 
(11) ensures that the sum of energy consumption after reduc‐
tions and increases is equal to that of energy consumption 
without implementing DR, since the energy demand of trans‐
ferable load (such as ice-storage system, electric vehicle 
charge) is constant.

The annual cost of DR includes incentive compensation 
and the cost of DR devices. The annual cost of transferable 
load in the bus i is shown as follows.

Ctrans = ∑
iÎΩbus

( )C trans
dev ( )δ̄trans

i + -δ
trans
i P premax

Li +∑
ΩY

C trans
price∑

tÎΩT

|| P trans
it

                                                                                                         "i
(12)

Reducible loads include temperature control loads, build‐
ing lighting loads, etc. Considering the potential of DR and 
power consumers’  comfort, the operation constraints of re‐
ducible load are shown in (13)-(15).
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Equation (13) ensures that P re
it is within the adjusting 

range of reducible load. Constraint (14) denotes the decision 
of the adjusting range, which is restricted by binary variable 
zi (flag that allows this bus to implement load curtailment) 
and the maximum adjusting ratios δ̄re

imax. Constraint (15) indi‐
cates the largest number of buses that are allowed to imple‐
ment load reduction.

The annual cost of reducible load at bus i is shown as fol‐

lows.

Cre = ∑
iÎΩbus

( )C re
dev δ̄

re
i P premax
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ΩY

C re
price∑

tÎΩT

P re
it     "i (16)

The implementation of DR depends on the willingness of 
customers, which implies uncertainty. This paper models the 
actual DR power as random variables following Gaussian 
distribution [29]. The variances change following the deci‐
sion variables. Considering the correlation between response 
power in bus i and bus j, the stochastic characteristics of DR 
can be modeled as follows.

ì

í

î

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

( )P͂ trans
it P͂ trans

jt :

Nbivariate( )P trans
it P trans

it ( )σtrans P trans
it

2
( )σtrans P trans

jt

2

ρ transijt

( )P͂ re
itP͂

re
jt :

Nbivariate( )P re
itP

re
jt( )σre P re

it

2
( )σre P re

jt

2

ρreijt

"ij"t (17)

Rewriting (17) as matrix form, the active and reactive 
power of two kinds of DR during each period follow the N-
dimensional multivariate Gaussian distributions in (18) and 
(19), respectively.
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The expressions of covariance matrices Σ trans
t , Σ re

t , and co‐
efficient matrix K L

t  are shown in Appendix A (A6)-(A8).
2) DG Curtailment and Its Uncertainty

The primary measure of supply-side management is DG 
curtailment. The peak of DG output can be curtailed to alle‐
viate the burden of system operation.
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Equation (20) ensures that P cur
it  is within the adjusting 

range. Constraint (21) indicates the decision of the adjusting 
range.

The annual cost of DG curtailment is shown as follows.

Ccur = ∑
iÎΩbus

(C cur
dev δ̄

cur
i P premax

DGi +∑
ΩY

C cur
price∑

tÎΩT

P cur
it )     "i (22)

Assuming that the DG operators act independently and in‐
voke the central limit theorem [29], we model the actual re‐
sponse of curtailment instructions as random variables that 
follow Gaussian distribution. The variances follow the 
change of decision variables. Considering the correlation be‐
tween curtailed DG outputs at bus i and bus j, the stochastic 
characteristics of DG curtailment can be modeled as follows.
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( P͂ cur
it P͂

cur
jt ):

Nbivariate(P cur
it P

cur
jt (σcur P

cur
it ) 2
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(23)

Rewriting (23) in matrix form, the active power and reac‐
tive power of DG curtailment during each period follow the 
N-dimensional multivariate Gaussian distributions in (24).
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The expression of the covariance matrix Σ cur
t  is shown in 

Appendix A (A9).
3) Reactive Power Compensation

In this paper, we use CBs to implement reactive power 
compensation [2]. The operation constraints about CBs are 
shown as follows.

Qcb
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Equation (25) denotes the discrete reactive power of CB. 
Constraint (26) indicates that each CB cannot increase and 
decrease reactive power simultaneously. Constraint (27) en‐
sures that the switching actions of each CB do not exceed 
the daily allowable number. Constraint (28) restricts the oper‐
ation range of CB considering the maximum bank numbers.

The annual cost of CB action is shown as follows.

Ccb =∑
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C cb
price∑

tÎΩT
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( )δcbin
it + δcbde

it (29)

4) Dynamic Network Reconfiguration
We focus on dynamic network reconfiguration based on 

RCS [12] to remove grid congestion in real time. The con‐
straints of reconfiguration in the Distflow model are shown 
as follows.
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Constraint (30) restricts the branch power flow by the big-
M method. Constraint (31) restricts voltages considering net‐
work reconfiguration. Equation (32) limits the action of RC‐
Ss. Equation (33) guarantees that the states of RCSs are con‐

sistent at the beginning and end of the typical day.
The annual cost of network reconfiguration is shown as 

follows.

Cnr =∑
ΩY

C nr
price∑

tÎΩT

∑
ijÎΩrcs

|| β nr
ijt - β

nr
ijt - 1 (34)

III. ACTIVE MANAGEMENT DECISION METHOD BASED ON 
CHANCE-CONSTRAINED IGD MODEL

In this section, an active management decision method is 
proposed. Firstly, a deterministic optimization model is pro‐
posed to obtain the optimal budget and active management 
strategy for the future scenario. Secondly, a chance-con‐
strained IGD model is proposed to obtain the robust adapt‐
ability of multiple uncertainties.

A. Deterministic Optimization of Active Management Strategy

The DSO utilizes active management schemes to support 
the integration of DGs and loads with the minimum annual 
comprehensive cost F, which includes the annual cost of ac‐
tive management and the annual energy loss cost of the DN. 
The objective function is formed as follows.

min F =Ctrans +Cre +Ccur +Ccb +Cnr +Closs (35)

The costs of active management schemes are discussed in 
(12), (16), (22), (29), and (34). Closs denotes the annual ener‐
gy loss cost of the DN.

Closs = λloss∑
NY

∑
tÎΩT

∑
ijÎΩbranch

lijt Rij DT (36)

The constraints are discussed as follows.
1) Power flow constraints of the DN are shown as follows.
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where end( j) denotes the head buses of some branches, and 
the end of these branches are bus j. head(j) denotes the end 
buses of some branches, and the head of these branches are 
bus j.

2) Constraints of active management include constraints 
(8)-(11), (13)-(15), (21), (22), (25)-(28), and (30)-(33).

3) Security constraints for the DN include bus voltage con‐
straints, branch thermal constraints [30], and substation ca‐
pacity constraints [26].
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The decision variables of the deterministic model can be 
concluded as follows.
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1) The decision variables related to transferable load are 
δ̄trans

i , -δ
trans
i , P trans

it , and yi.
2) The decision variables related to reducible load are δ̄re

i , 
P re

it, and zit.
3) The decision variables related to DG curtailment are 

δ̄cur
i  and P cur

it .
4) The decision variables related to reactive power com‐

pensation are δcbin
it  δcbde

it , and β cb
it .

5) The decision variable related to network reconfigura‐
tion is β nr

ijt.

B. Multi-objective Chance-constrained IGD Model for Active 
Management

A chance-constrained IGD model with random variables 
and information gaps is proposed based on the deterministic 
model. The uncertainties of power fluctuations and active 
management could be analyzed by chance constraints. The 
uncertain deviations of growth prediction are quantitatively 
measured by the IGD model.

In practical projects, DSO usually prefers to obtain active 
management schemes which adapt to the extreme scenario. 
Therefore, the IGD model in this paper is mathematically 
formulated in the robust function [17]. In this formulation, 
the information gaps UL and UDG indicate the robust adapt‐
ability of the uncertainties in loads and DGs. To obtain the 
maximum adaptability of growth uncertainties, the objective 
functions max αL and max αDG are set since they reveal the 
widths of information gaps. To analyze the mutually restrict‐
ed relationship between max αL and max αDG, we need to op‐
timize them simultaneously and consider them as a multi-ob‐
jective problem.

max
u

{ }αLαDG (44)

Besides the constraints in the deterministic model, a con‐
straint with a max term (robust function) needs to be added 
in the IGD model [10], [21] as follows.

   max
φLφDG

FAM £ (1 + ν) FAM0 (45)

FAM =Ep(Ctrans +Cre +Ccur +Ccb +Cnr ) (46)

Formulating FAM as the mathematical expectation Ep (×) is 
necessary because random variables are introduced into the 
model. FAM0 is the basic active management cost derived 
from the deterministic optimization in Section III-A in the 
basic predicted scenario.

Constraint (45) indicates that the robust function FAM in 
the worst future scenarios φL, φDG, belonging to information 
gaps UL(αLφL ), UDG(αDGφDG ), is still less than the given 
budget. Therefore, information gaps UL, UDG under maxi‐
mum  αL αDG are the assessment result of the maximum ro‐
bust adaptability of growth uncertainties.

In this paper, we use active management schemes to im‐
prove the controllability and uncertainty adaptability of DNs. 
It is meaningful to increase the budget of active manage‐
ment schemes to assess the improvement of controllability 
and adaptability. The increased budget of power loss cannot 
improve the controllability and adaptability of DNs. Thus, 
we select active management cost FAM without network pow‐
er losses as the objective function in (45).

However, the IGD model needs a reference value for ro‐
bust function in (45), which is usually obtained from the ba‐
sic scenario (the center of information gaps) [10], [21]. We 
select FAM0 as the reference value in (45) because it is a rea‐
sonable active management budget derived from optimal eco‐
nomic scheduling in the basic predicted scenario.

Then, the impact of growth deviations and power fluctua‐
tions in the deterministic model is analyzed. Considering the 
realizations of growth deviations derived from the IGD mod‐
el, the prediction value of DGs and loads should be multi‐
plied by φL and φDG, which is shown as follows.
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Considering the influence of short-term power fluctuations 
corresponding to the realizations of growth deviations in 
loads and DGs, the injections (38) in matrix form are updat‐
ed as:
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According to (47) and (48), the injections follow the 2N-
dimensional multivariate Gaussian distribution, which can be 
formulated as follows.
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Based on the information of related random variables in 
(3), (6), (18), (19), and (24), the expressions of the elements 
in (49) are shown in (50)-(52).

1) The elements related to active power are expressed as:
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2) The elements related to reactive power are expressed as:
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3) The correlations between active and reactive power in‐
jections are expressed as:
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The deducing process of (52) is shown in Appendix A 
(A10).

Since the state variables have been transformed as random 
variables, it is necessary to rewrite the security constraints 
(41)-(43) as chance constraints, which reflect the restrictions 
on the probability of exceeding the limits.

Pr{ }V 2
min £ v͂it £V 2

max ³ 1 - pV    "i"t (53)
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Pr{ }P͂ 2
ijt + Q͂2

ijt £ S 2
ijmax ³ 1 - pS      "ij"t (54)

Pr  {( P͂ SUB
it ) 2

+ (Q͂SUB
it ) 2

£ (S SUB
imax ) 2} ³ 1 - pSUB    "iÎΩSUB"t

(55)

where Pr{×} is the probability that the inequality constraint 
holds.

Therefore, the constraints of the multi-objective chance-
constrained IGD model include (4), (7)-(16), (20)-(22), (25)-
(34), (37), (39), (40), (45)-(48), and (53)-(55).

The decision variables of the proposed model include αL, 
αDG, φL, φDG, and decision variables u of active management 
schemes in the deterministic model.

IV. SOLVING METHOD

This section proposes the solving method of the chance-
constrained IGD model. Three crucial elements deserve atten‐
tion, including the IGD model, the chance constraints, and 
the multi-objective programming. ① A systematic solving 
method of the max term constraint is proposed. ② The 
chance constraints are rewritten as linear constraints and 
SOC constraints, which transform the original model into 
the multi-objective mixed-integer second-order cone pro‐
gramming (MISOCP) model. ③ The ε constraint algorithm 
is used so that the result of the whole model can be obtained 
by a commercial solver directly. The specific introduction is 
as follows.

A. Transformation of IGD Model

To the best of the authors’  knowledge, it is hard to tackle 
muti-objective programming with the max term constraints. 
The monotonic relationship between the deviations of 
growth prediction in loads and DGs and active management 
cost cannot be verified directly. Therefore, the max term 
transformation methods, which are proposed in [10], [17], 
[25], cannot achieve satisfying results in this paper. A sys‐
tematic solving method based on linearized power flow and 
linear programming is proposed.
1) A Linearized Power Flow Model

A linearized power flow model for DNs [31] is introduced 
in this paper. The power flow equations considering multiple 
uncertainties for period t at all the buses can be expressed as 
follows.
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(57)

where P, Q, θ, and V are the vectors of active and reactive 

power injections, voltage angles, and voltage magnitudes, re‐
spectively, except the reference bus; Bsub

1  and Bsub
2  are the 

sub-matrices of B1 and B2 excluding the first row and the 
first column; Bcol

1  and Bcol
2  are the first columns in B1 and B2 

without the first element, respectively; θ1 is the voltage an‐
gle of the reference bus and is equal to 0; and V1 is the volt‐
age magnitude of the reference bus. In this paper, we focus 
on the voltage magnitudes.

By application of the linearized power flow model, the 
IGD model can be solved within the linear programming 
framework.
2) Solving Method of Max Term Constraint

Based on the fundamental theorem of linear programming 
[32], a linear objective function defined over a polygonal 
convex set attains a maximum (or minimum) value at an ex‐
treme point (vertex) of the set.

The optimization of robust function in (45) based on the 
linearized power flow model belongs to the linear program‐
ming described in the theorem. Therefore, constraint (45) 
can be replaced by four constraints (58) about extreme points 

( )φL:1 ± αLφDG:1 ± αDG , i. e., ( )1 - αL1 - αDG , (1 + αL1 - αDG ), 
( )1 - αL1 + αDG , and ( )1 + αL1 + αDG . The maximum value of 

FAM( )φLφDG  achieves at one extreme point, while the values 
at the other extreme points are less than the maximum value.
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FAM( )uφL:1 - αLφDG:1 - αDG £ ( )1 + ρ FAM0

FAM( )uφL:1 - αLφDG:1 + αDG £ ( )1 + ρ FAM0

FAM( )uφL:1 + αLφDG:1 - αDG £ ( )1 + ρ FAM0

FAM( )uφL:1 + αLφDG:1 + αDG £ ( )1 + ρ FAM0

(58)

B. Transformation of Chance Constraints

For simplification of chance constraints, the expression of 
voltages is calculated first. Linear equation (56) is rewritten 
as follows.
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D = é
ë
êêêê ù

û
úúúúΒsub

2 Βsub
1

-Βsub
1 Βsub

2

-1

(60)

According to the aforementioned stochastic model of the 
injections, the voltages V͂t and θ͂t follow the multivariate 
Gaussian distribution as follows.
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(61)

The elements of the matrices in (61) have already been 
discussed in (50)-(52). For simplification, (45) can be sum‐
marized as follows.
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û
úúúúΣθt ΣθVt

ΣVθt ΣVt )     "t (62)

Based on the nature of normal distribution, the voltage 
amplitudes follow:

V͂t: ΣVt Φ + μVt    "t (63)
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Then, the transformations of various security constraints 
are proposed as follows.
1) Transformation of Bus Voltage Constraints

The chance constraint (53) can be rewritten as two parts 
because there is little probability of breaking the constraint 
from both sides.

ì
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ïï

ïïïï

Pr{ }V͂it £Vmax ³ 1 - pV

Pr{ }V͂it £Vmin £ pV

    "i"t (64)

Based on (63), chance constraints (64) can be transformed 
as:
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μVit +Φ
-1( )1 - pV ΣVt( )ii £Vmax

μVit -Φ
-1( )pV ΣVt( )ii ³Vmin

    "i"t (65)

where Φ-1 is the inverse function of a standardized Gaussian 
distribution. When pV is smaller than 0.5, (65) can be trans‐
formed as linear constraints (66) and SOC constraints (67).
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Φ-1( )1 - pV λVmaxit =Vmax - μVit

Φ-1( )1 - pV λVminit = μVit -Vmin

     "i"t (66)
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λ2
Vmaxit ³ΣVt( )ii

λ2
Vminit ³ΣVt( )ii

    "i"t (67)

The squares of these auxiliary variables are greater than 
or equal to the variances of bus voltages ΣVt(ii ). According 
to (62), ΣVt(ii ) represents linear combinations of constants 
and squared decision variables in the model.
2) Transformation of Branch Thermal Constraints

In [30], the branch thermal constraints are effectively ap‐
proximated by the circular constraint linearization method. 
We introduce this method to this paper, and the chance con‐
straints (54) are reformulated as follows.
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 (68)

In [31], the power flows through the power lines can be 
calculated as follows.
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( )θ͂ it - θ͂jt
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Xij

R2
ij +X 2
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( )V͂it - V͂jt

    "ij"t (69)

The difference in voltage amplitudes and the difference in 
voltage angles in (69) follow the bivariate Gaussian distribu‐
tion (70), which can be derived from (71).

(Vit -Vjtθit - θjt ):
Nbivariate(EVijtEθijtDVijtDθijtρVθijt )     "ij"t (70)

ρVθijt =
CovVθijt

DVijt Dθijt
(71)

The expressions of elements in (70) and (71) are shown in 
Appendix A (A11) and (A12). Based on (69) - (71), the 
branch power flows follow the distributions as follows.
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    "ij"t (72)

where σP, σQ, σP +Q, and σP -Q donate the standard deviations 
of the corresponding random variables; and μP, μQ, μP +Q, and 
μP -Q donate the expectations of the corresponding random 
variables. The expressions of aforementioned variables in 
(72) are shown in Appendix A. When pS is smaller than 0.5, 
(68) can be transformed as linear constraints (73) and SOC 
constraints (74) based on the properties of (72).
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The squares of these auxiliary variables are greater than 
or equal to the related variances. According to Appendix A 
(A13)- (A16), the variances represent linear combinations of 
constants and squared decision variables in the model.
3) Transformation of Substation Capacity Constraints

The substation capacity constraints limit the power injec‐
tions at the substation bus. They limit the power flow of 
branches that connect to the substation bus. Therefore, the 
chance-constrained substation capacity constraints (55) can 
be reformulated as follows.
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Thus, the tackling method is similar to the transformation 
process of branch thermal constraints, which is discussed in 
Appendix A (A17).

C. Solving Procedure

Based on the mathematical method mentioned in Section 
IV-A and IV-B, the original chance-constrained IGD model 
is transformed into a multi-objective MISOCP model. ε-con‐
straint method is a fast and effective method for solving 
multi-objective programming [33]. It can transform the multi-
objective MISOCP into several single-objective optimization 
problems, and the Pareto front is obtained by iteration.

V. CASE STUDY

In this section, a modified IEEE 33-bus DN [2] is chosen 
to validate the proposed model. The amount of load is 1.2 
times as large as the original value to represent the growth 
prediction in the future. The network structure of the modi‐
fied IEEE 33-bus DN is presented in Fig. 1. The broken 
lines indicate the RCSs in the open state. The available ca‐
pacity of the substation is 6 MVA. The predicted DG pene‐
tration level (proportion of max power) is 75%. The power 
factor of DGs is set to be 0.95.

Assuming that each load and DG can participate in active 
management and each branch has an RCS to implement re‐
configuration. Considering the comfort of power consumers, 
the number of buses participating in DR cannot be more 
than half. The prices of DR and DG curtailment are from [4] 
and [5], respectively. The limitations of the transfer rate 
range from -30% (-δ

trans
imin) to 30% (δ̄trans

imax) and the limitation of 

the reduction rate is 20% (δ̄re
imax). The prices of RCS and CB 

actions are from [2]. The step size of CBs is 0.05 Mvar, and 
there are 5 CBs in each CB bus. Confidence levels 1 - pV, 
1 - pS, and 1 - pSUB of chance constraints are 0.95, which in‐
dicates that the probabilities of the security constraint hold‐
ing are greater than 95%. The cost of active management 
reaches 1.5FAM0. For convenience, it is assumed that all coef‐
ficients of standard deviations are equal to 0.05. All correla‐
tion coefficients are set to be 0.5. The hourly variations of 
PV generation and load demands are obtained by prediction, 
which are shown in Fig. 2.

The simulation is carried out in MATLAB + YALMIP and 
commercial optimization solvers environment on an Intel-i5 
computer with 3.1 GHz basic frequency and 16 GB RAM.

A. Simulation Results

The Pareto front for multi-objective function (44) in the 
basic scenario is presented as follows.

As shown in Fig. 3, when the active management cost is 
1.5FAM0 (FAM0 is 177290 yuan (RMB), obtained from the de‐
terministic model by SOCP), the black line presents the Pare‐
to front formed by Pareto points from the ε-constraint meth‐
od. The Pareto front includes a series of (αLαDG ) groups 
with the same active management cost and describes the 
boundaries of adaptable growth uncertainties in DGs and 
loads. Under the effect of active management schemes, the 
DN can accommodate DG capacity ranging from 26.7% to 
173.3% (point P1 in Fig. 3) of prediction value at most. At 
this point, the DN cannot bear the deviations of the predict‐
ed load demand. Similarly, the DN can accommodate the 
loads ranging from 65.7% to 134.3% (point P3 in Fig. 3) of 
prediction value at most, while it is impossible to bear the 
deviations of predicted DG integration capacity.

The active management schemes of DR and DG curtail‐
ment at the marked point P2 (0.222,0.576) are shown in Ta‐
ble II, and the schemes of reactive power compensation and 
network reconfiguration at P2 are shown in Figs. 4 and 5, re‐
spectively. In Fig. 5, the red lines indicate the closed RCSs 
during the specified period and the red broken lines indicate 
the opened section switches.

Two future scenarios in Fig. 3 are analyzed to verify the 
effectiveness of the proposed method in addressing security 
violation issues. The first scenario is at point P3, which is 
with 1.2 × 134.3% times the nominal values of loads in origi‐
nal IEEE 33-bus DN and 75% DG penetration level (refer‐
ring to 1.2 times loads). Figure 6 shows the comparison of 
voltages at 18:00 with and without active management 
schemes at P3. The 90% confidence intervals (5% to 95%) 
of voltages at 18:00 are the lowest voltages during the day. 
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Fig. 2.　Hourly variations of PV generation and load demands.
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The active management schemes increase the voltages, and 
the voltage constraints hold with 95% probability.

The second scenario is at point P1 in Fig. 3, which is 
with 1.2 times the nominal values of loads in the original 
IEEE 33-bus DN and 75% × 173.3% DG penetration level 
(referring to 1.2 times loads). Figure 7 shows the compari‐
son of the voltages at 12:00 with and without active manage‐
ment schemes at P1. It shows 90% confidence intervals (5% 
to 95%) of voltages at 12:00, which are the highest voltages 
in the day. The active management schemes decrease the 
voltages, and voltage constraints hold with 95% probability.

The Pareto front and the coordinate axis of DGs and loads 
constitute the robust accommodation space Ωα with growth 
deviation (αL, αDG ). Furthermore, the Pareto front reveals a 
mutually restricted relationship between αDG and αL. This is 
because the expenditure is finite, and there exists a competi‐
tion in improving the DG accommodation and load adaptabil‐
ity.

TABLE II
ACTIVE MANAGEMENT SCHEME OF DR AND DG CURTAILMENT AT P2
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Fig. 4.　Scheme of reactive power compensation at P2.
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Fig. 5.　Scheme of network reconfiguration at P2. (a) Configuration at 00:
00-06:00 and 22:00-00:00. (b) Configuration at 06:00-10:00 and 16:00-22:
00. (c) Configuration at 10:00-16:00.
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Fig. 6.　Comparison of voltages at 18:00 with and without active manage‐
ment schemes at P3.
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Note that each point (αLαDG ) on the Pareto front means 
that the corresponding active management scheme can bur‐
den four extreme scenarios (1 - αL1 - αDG ), (1 + αL1 - αDG ), 
(1 - αL1 + αDG ), and (1 + αL1 + αDG ), which are related to 
(φLφDG ) in this paper. Therefore, Ωα (αLαDG ) can be extend‐
ed into Ωφ (φLφDG ) to describe the adaptability of growth 
uncertainties more intuitively. The robust accommodation 
space Ωφ of multiple uncertainties is shown in Fig. 8.

The black lines in Fig. 8 are the extended Pareto fronts 
and delineate the robust accommodation space Ωφ. Every 
point (φLφDG ) within the robust accommodation space Ωφ 
corresponds to a future scenario, and there can always be a 
related active management scheme with the cost equal to or 
less than the given budget value. Thus, the proposed method 
provides a “wait and see” active management strategy set in‐
stead of a “never be changed” planning scheme to confront 
the multiple uncertainties.

B. Effectiveness Analysis of Proposed Model

1) Validation for Characteristics of IGDT
The results illustrate the main characteristic of the IGD 

model. In the traditional optimization model (such as scenar‐
io-based stochastic programming and CCP), (αLαDG ) groups 
are inputs, and the active management cost is output. When 
enormous random (αLαDG ) groups are input, only a tiny part 
of them have the same cost as the given budget and become 
the points on the Pareto front, which is ineffective and con‐

fined. By contrast, the proposed model can systematically ac‐
quire the boundaries of adaptable growth uncertainties in 
DGs and loads. The comparison demonstrates that the pro‐
posed model is more appropriate for assessing the adaptabili‐
ty of uncertainties with limited cost.
2) Discussion on Pareto Front Form

The potential reasons for the Pareto front form are ana‐
lyzed. Four inequations in (58) represent four possible ex‐
treme scenarios. When the model is solved another four 
times by involving every inequation of (58) in sequence, 
four Pareto fronts are plotted in Fig. 3 with different colors. 
Each Pareto front delineates the robust accommodation spac‐
es of a corresponding possible extreme scenario. Constraint 
(58) demands that four inequalities hold at the same time. 
As a result, the robust accommodation space Ωα (αLαDG ) is 
an intersection set of four original accommodation spaces. 
The final Pareto front may be a broken line constituted by 
different parts from four Pareto fronts because it is the 
boundary of the intersection set. Figure 3 indicates that the 
Pareto fronts of (1 + αL1 + αDG ) and (1 + αL1 - αDG ) form the 
final Pareto front.

In Fig. 8, four Pareto fronts are plotted in the four quad‐
rants, respectively, with the same color series in Fig. 3. The 
worst scenario of four extreme scenarios can be analyzed by 
marking the corresponding boundaries. It is obvious that sce‐
narios (φL:1 + αLφDG:1 + αDG ) and (φL:1 + αLφDG:1 - αDG ) are 
the worst scenarios and shape the robust accommodation 
space Ωφ.
3) Comparison with Other IGDT Methods

The previous literature [10], [17], [25] transforms the max 
term in (45) by demonstrating the relationship between the 
objective function and decision variables. However, accord‐
ing to Fig. 3, we can find that the extreme scenario lies in 
(1 + αL1 + αDG ) from P1 to P2 and (1 + αL1 - αDG ) from P2 
to P3, and it means that the max term has different expres‐
sion in different parts of the Pareto front. This phenomenon 
cannot be analyzed in advance. Therefore, the previous meth‐
ods cannot obtain the results shown in this paper, and the ef‐
fectiveness of the proposed model is proven well.
4) Analysis of Worst Scenarios

In Fig. 3, the worst scenario about the deviation of DG 
growth shifts from 1 + αDG to 1 - αDG at P2. After analyzing 
this result in detail, we describe the cause as follows. ① 
When the positive deviation of load growth is slight, higher 
DG penetration levels tends to cause the overvoltage risk at 
noon, and 1 + αDG can be the worst scenario which needs the 
highest cost to implement active management. ② When the 
positive deviation of load growth is quite large, under-volt‐
age can be a main potential risk that requires more load re‐
duction or transfer, and lower DG penetration level will de‐
crease voltage so that 1 - αDG becomes the worst scenario.

C. Sensitivity Analysis

1) Budgets for Active Management
The original FAM0 (ν is equal to 0), which is the economic 

cost derived from the deterministic model, is input into the 
chance-constrained IGD model. However, the results show 
that the optimized αDG and αL are smaller than 0, and that 
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there is no Ωφ available. It means the mere deterministic bud‐
get of active management cannot support future scenarios 
with multiple uncertainties. Besides growth uncertainties in 
DGs and loads, adding chance constraints demands more ac‐
tive management resources, which means more cost.

Then, the robust accommodation space Ωφ is tested with 
varied budget (1 + ν)FAM0, as shown in Fig. 9. When the cost 
decreases from 1.5FAM0 to 1.3FAM0, the maximum αDG decreas‐
es from 0.733 to 0.401 and the maximum αL decreases from 
0.343 to 0.149. As a result, Ωφ extends while the budget 
gradually rises. The worst scenarios with different budgets 
are also shown in Fig. 9 by marking points with the same 
color in Figs. 3 and 8.

2) DG Penetration Level
By varying predicted DG penetration level from 75% to 

125% and remaining other parameters constant, different ac‐
commodation spaces Ωφ are obtained and illustrated as fol‐
lows. In Fig. 10, when the predicted DG penetration level in‐
creases, the form of Ωφ changes dynamically. The adaptabili‐
ty of DGs rapidly shrinks from 0.733 to 0.34 while αL en‐
larges from 0.343 to 0.678. This situation can be explained 
as the rising DG penetration level provides the power supple‐
ment for load accommodation.

Note that a part of the worst scenarios at 125% penetra‐
tion level is (φL: 1 - αL φDG: 1 + αDG ), which is different 
from other penetration conditions. When the DG power is 
higher than load demand, the power flow reverses, and over‐
voltage risk may appear in the daytime, and under-voltage 
may still happen at night. At 125% penetration level, the re‐
sult indicates the accommodation ability in scenario 1 - αL is 
less than the one in scenario 1 + αL, so that 1 - αL is the 
more robust scenario.
3) Standard Deviations of Random Variables

The impact of power fluctuations is further discussed. The 
standard deviations of random variables vary from 0.05 to 
0.1. The quantitative relationship between the robust accom‐
modation space Ωφ and different standard deviation coeffi‐
cients is illustrated clearly in Fig. 11. Ωφ becomes smaller 
(the maximum αDG decreases from 0.733 to 0.336 and the 
maximum αL decreases from 0.343 to 0.076) along with the 
enlargement of standard deviations.

It indicates that the stochastic characteristic of power fluc‐
tuations and actual response (measured by standard deviation 
coefficients) negatively influences the adaptability of growth 
uncertainties in DGs and loads.
4) Correlation Coefficients of Random Variables

To test the impact of correlations, the correlation coeffi‐
cients of random variables vary from 0.3 to 0.7. The quanti‐
tative relationship between the robust accommodation space 
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Ωφ and correlation coefficients is illustrated clearly in Fig. 
12. Ωφ becomes smaller (the maximum αDG decreases from 
0.373 to 0.261 and the maximum αL decreases from 0.811 to 
0.628) along with the increase of correlation coefficients. It 
demonstrates that voltage fluctuations are stronger in a high‐
er correlation coefficient scenario, which results in a smaller 
robust accommodation space.

VI. CONCLUSION

In this paper, a scheduling method based on a multi-objec‐
tive chance-constrained IGD model is proposed to obtain ac‐

tive management schemes for DSOs to address the security 
violation problem in various future scenarios. The maximum 
robust adaptability of multiple uncertainties, including the de‐
viations of growth prediction and their relevant power fluctu‐
ations, can be obtained based on the limited budget of active 
management. A systematic solution method is proposed to re‐
formulate the original model into a multi-objective MISOCP 
model by transforming the IGD model and chance con‐
straints.

The simulation result delineates a robust accommodation 
space Ωφ to represent the adaptability of multiple uncertain‐
ties. Every point (φL, φDG) within Ωφ represents a future sce‐
nario, and there can always be a related active management 
scheme under the given budget. It demonstrates that the pro‐
posed method provides an optional active management strate‐
gy set to confront multiple uncertainties. The sensitivity anal‐
ysis indicates that budget has a positive influence on the 
range of Ωφ while standard deviation coefficients and correla‐
tion coefficients have the opposite impact.

In the future, we will focus on the diverse growth uncer‐
tainties at different buses and data-driven distributions for 
random variables to propose a more practical model.

APPENDIX A 

A. Expressions of Covariance Matrices and Coefficient Ma‐
trices

The explicit expressions of the mentioned covariance matri‐
ces and coefficient matrices in Section II are given as follows.
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Fig. 12.　Quantitative relationship between robust accommodation space Ωφ 
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KDG = diag ( tan-1φDG )N ´N
(A5)
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B. Deducing Process of Covariance Matrix About Injections

The expression of covariance matrix ΣPQt is deduced by the 
following process. The covariance between the active power 
injection of bus i and reactive power injection of bus j can be 
calculated as follows.
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The summary of this expression in matrix form is shown 
in (52).

C. Details of Transformation of Chance Constraints About 
Branch Thermal Constraints.

The elements in (70) are shown in (A11).
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The mentioned variables and parameters in (70) are shown 
in (A12).
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The mentioned variables and parameters in (72) are shown 
in (A13)-(A16).
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D. Transformation of Substation Capacity Constraints

Based on the circular constraint linearization method, the 
chance constraint (75) is transformed as follows.
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The following process is similar to the transformation meth‐
od of branch thermal constraint in (70)-(74).
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