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Optimal Network Partition and Edge Server 
Placement for Distributed State Estimation

Lyuzerui Yuan, Jie Gu, Jinghuan Ma, Honglin Wen, and Zhijian Jin

Abstract——This paper investigates network partition and edge 
server placement problem to exploit the benefit of edge comput‐
ing for distributed state estimation. A constrained many-objec‐
tive optimization problem is formulated to minimize the cost of 
edge server deployment, operation, and maintenance, avoid the 
difference in the partition sizes, reduce the level of coupling be‐
tween connected partitions, and maximize the inner cohesion of 
each partition. Capacities of edge server are constrained against 
underload and overload. To efficiently solve the problem, an im‐
proved non-dominated sorting genetic algorithm III (NSGA-III) 
is developed, with a specifically designed directed mutation op‐
erator based on topological characteristics of the partitions to 
accelerate convergence. Case study validates that the proposed 
formulations effectively characterize the practical concerns and 
reveal their trade-offs, and the improved algorithm outper‐
forms existing representative ones for large-scale networks in 
converging to a near-optimal solution. The optimized result con‐
tributes significantly to real-time distributed state estimation.

Index Terms——Network partition, edge server placement, dis‐
tributed state estimation, edge computing, non-dominated sort‐
ing genetic algorithm (NSGA).

I. INTRODUCTION 

AS an essential task for monitoring and controlling pow‐
er systems, state estimation should provide a real-time 

estimate of system states, where real-time means that the re‐
sponse time of estimation operation is within two seconds 
[1]. This requirement, however, is hardly satisfied in a large-
scale network, as its control center spends considerable com‐
putational time on dealing with high-dimensional state vari‐
ables. To address the issue, a mainstream countermeasure is 
distributed state estimation (DSE), which divides the overall 
estimation problem into many low-dimensional subproblems 
and then solves them in parallel [2] - [8]. Although the con‐
trol center is capable of parallel computing, it still suffers 
from great communication burdens caused by the massive 

measurements transmitted from remote data sources. This 
will result in long delays to increase the response time of 
DSE [9].

Fortunately, the emerging edge computing can provide 
strong technical support for the real-time DSE [10]. It 
moves the estimation subproblems from the control center in‐
to multiple edge servers (ESs) that are distributed near data 
sources, to deliver low communication delays and timely da‐
ta processing [11]. Based on this, we should decompose a 
large-scale network into several subareas, where an ES is 
placed in each subarea as the local controller to acquire in‐
formation and perform DSE [12]. In this scenario, the net‐
work partition and the ES placement are two critical factors 
to facilitate the real-time performance of DSE, as the net‐
work partition can balance the sizes of subareas to shorten 
the runtime of DSE [13], and the ES placement aims to 
shorten the average distance between ES and data sources to 
reduce communication delays [11].

Existing works have studied the network partition with 
fixed network size [13] - [15] or the ES placement based on 
potential locations [16]-[18], while coupling of the two fac‐
tors, as a non-negligible impact on the performance of DSE, 
has not be fully addressed. Specifically, a partition scheme 
that ignores ES placement is unfavorable for reducing delays 
of servers, since the potential ES locations in subareas could 
be remote from some data sources. In contrast, without con‐
sidering network partition, the determined ES locations may 
be unevenly distributed to result in unbalanced partition siz‐
es. Hence, their coupling should be considered to enhance re‐
al-time DSE operation.

In this paper, we propose to combine the two factors to 
form an integrated optimization problem of network partition 
and edge server placement (NPESP). Concerns on network 
partition are characterized by the coupling of subareas and 
the state variable balance. The coupling of subareas indicates 
the extent of connections between subareas, which is mini‐
mized to reduce exchanged information and communication 
burden [15]. We also minimize the state variable balance 
that refers to the difference in sizes of subareas, to lead to 
shorter runtime of DSE [13]. Next, a metric named cohesion 
of served nodes, i.e., the ratio of subarea density and the av‐
erage distance between ESs and data sources, is used to rep‐
resent the timeliness of communication in a subarea. It is 
maximized to reduce delays of ESs. Economic concern, 
which refers to the costs of purchasing, operating and main‐
taining ESs, is also characterized by a metric of cost. The 
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metric is minimized for obtaining economical ES placement 
scheme. In addition, we constrain capacities of ES within a 
range to prevent underload and overload. Hence, coupling of 
the two factors, i.e., trade-off between the network partition 
and the ES placement, can be indicated by a negative corre‐
lation between the number of subareas and the cost of ES re‐
lated issues, the impact of partitions on the determination of 
ES locations, and the restriction on the size of subareas 
posed by capacities of ES.

Based on the above-mentioned four criteria, we formulate 
a many-objective optimization problem (MaOP), which re‐
fers to the optimization problem with more than three objec‐
tives [19], constrained by the maximum and minimum capac‐
ities of ES, of which the objectives are to minimize the cost, 
the coupling of subareas, and the state variable balance, 
while maximizing the cohesion of served nodes. The pro‐
posed MaOP is a non-convex mixed-integer nonlinear pro‐
gram that is not tractable by continuous relaxation [19]. 
Thus, we choose the non-dominated sorting genetic algo‐
rithm III (NSGA-III), which has competitive convergence 
and diversity for MaOPs, as a basic solution algorithm [20], 
[21]. To enhance the efficiency of NSGA-III in dealing with 
large-scale MaOPs, we modify the basic NSGA-III to an im‐
proved one. Specifically, the real-number encoding is ap‐
plied to map the decision variable matrix for saving compu‐
tational resources. Conforming to topological characteristics 
of partitions, we design a directed mutation operator for ac‐
celerating convergence. Besides, a gene restriction is estab‐
lished to readily guarantee the feasiblility of offspring solu‐
tions.

Experiments are implemented on the IEEE 118-bus sys‐
tem [22] and the Polish 2383-bus system [23]. The results il‐
lustrate that there are trade-offs among the four objectives, 
whereas the proposed MaOP can provide various sub-opti‐
mal NPESP schemes to achieve a compromise between ob‐
jectives without degrading any of them. Under NPESP 
schemes, the runtimes of distributed weighted least squares 
(DWLS) [7], distributed unscented Kalman filter (DUKF) 
[3], [4], and distributed particle filter (DPF) [6] are short‐
ened. Moreover, the exceptional convergence, diversity, and 
evenness of the improved NSGA-III for large-scale networks 
are testified by two popular metrics, i.e., inverse generation‐
al distance (IGD) and spacing [21].

The main contributions of this study are summarized as 
follows. ① We present an integrated NPESP problem in the 
scenario where DSE is supported by edge computing. ② We 
formulate the NPESP problem as a constrained MaOP, in 
which the coupling between network partition and ES place‐
ment is considered. ③ We design an improved NSGA-III 
with rapid convergence for the proposed MaOP in large-
scale networks. ④ The trade-offs between objectives are 
demonstrated, i. e., the four criteria are indispensable for 
NPESP to acquire a compromise scheme without sacrificing 
any one of the real-time DSE, the economy of ESs, or the 
strength of partition.

This paper is organized as follows. Section II reviews the 
related work. Section III introduces the DSE model based on 
edge computing framework. A constrained NPESP MaOP is 
proposed in Section IV. Section V presents the solution algo‐

rithm. Section VI uses case study to evaluate the proposed 
MaOP and show the performance of the improved NSGA-
III. Conclusion is drawn in Section VII.

II. RELATED WORK 

Network partition is a basic problem in multiple distribut‐
ed scenarios such as distributed optimal power flow [24], 
[25], distributed energy resource aggregation [26], DSE, etc. 
Since real time is a main concern on state estimation, re‐
searchers mostly focus on state variable balance. Reference 
[14] adopts the branch-line layer method and postorder-tra‐
versal algorithm to develop a graph-based partition approach 
that can ensure balance of subarea sizes. Reference [15] pro‐
poses a single-objective optimization problem solved by ge‐
netic algorithm (GA) to obtain size-balanced subareas. In ad‐
dition, the effect of coupling between subareas on communi‐
cation time of DSE is mentioned in [27]. To balance subarea 
sizes and reduce coupling level, the studies in [13] and [28] 
use K-means and spectral clustering to cluster nodes into sev‐
eral subareas, respectively. Nevertheless, the interaction be‐
tween coupling and the number of subareas is ignored due 
to the predetermined number of clusters. For observable net‐
works, [29] develops a heuristic method which combines the 
integer-linear-programming eigenvector based approach and 
interchange method to obtain several observable subareas. In 
[30], a network is transformed into a spanning tree that is 
traversed and partitioned based on Markov chains to guaran‐
tee the observability of subareas. However, the partition strat‐
egies are invalid in case of unobservable networks.

The ES placement has been investigated in communica‐
tion field recently. The concerns mainly include cost of ser‐
vice, delay, and communication network robustness. In [16], 
the service cost is represented by the sum of resource usage 
cost and one-time deployment cost. Then a constrained sin‐
gle-objective optimization problem is formulated to address 
the trade-off between cost and user coverage. Reference [17] 
proposes a prediction-mapping optimization heuristic algo‐
rithm to minimize the user cost that consists of calculation 
cost and migration cost. For delay reduction, [18] aims to 
minimize the response time and maximize the response time 
fairness of base stations through a game-theory-based meth‐
od, where the response time is calculated as the sum of com‐
munication delays and task execution delays. Reference [31] 
formulates a multi-objective constraint optimization problem 
to minimize communication delays and to balance the work‐
load difference between ESs, which is solved by GA and lo‐
cal search algorithm. Communication network robustness is 
proposed in [32], which is assessed by a metric that refers to 
the number of mobile users co-covered by two ESs, and a 
compromise programming is formulated to trade off commu‐
nication network robustness and user coverage. In these stud‐
ies, some concerns (e.g., user coverage [16], [32], response 
time fairness [18], and migration cost [17]) on the basis of 
mobile edge computing, are non-essential in the scenario pre‐
sented in this paper, since power system has high-speed fi‐
ber-optic private network and fixed workload [33].

Furthermore, the coupling between network partition and 
ES placement is disregarded in aforementioned studies. This 
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paper will take it into consideration to formulate a con‐
strained NPESP MaOP. However, the above-mentioned solu‐
tion methods such as GA and K-means are not adept in deal‐
ing with MaOPs. The reason is that more than one objective 
have to be changed into a single objective by weighted sum‐
mation, which may result in non-equivalence between the 
original MaOP and weighted single-objective problem [34]. 
Hence, an efficient solution method for the proposed MaOP 
needs to be developed.

III. DSE MODEL BAESD ON EDGE COMPUTING FRAMEWORK 

In this section, we integrate DSE into a general three-level 
framework of edge computing in [11]. As shown in the left 
side of Fig. 1, the left part of the three-level framework is 
the perceptual layer, where abundant edge devices, e.g., pha‐

sor measurement unit (PMU) and feeder terminal unit 
(FTU), are deployed on nodes to collect measurements for 
DSE. The middle is the edge layer with several ESs distribut‐
ed near edge devices. An ES can receive measurements from 
its associated edge devices, communicate with other ESs, ex‐
ecute DSE algorithms, etc. There is a significant reduction 
of communication delays because of the ES close to data 
sources. In addition, some sensitive information such as resi‐
dential electricity consumption can be processed by ESs rath‐
er than being sent to the remote data center, which means 
better data security and privacy. The right part is the cloud 
layer with a large data center to perform global applications, 
e. g., power system security analysis, based on all DSE re‐
sults. Since global applications in the cloud layer are not the 
focus of this paper, they are not mentioned below.

As shown in the right side of Fig. 1, a tripartite IEEE 118-
bus test system [22] is considered as the intended scenario. 
Three ESs, denoted as ESi (i = 123), are located at node 
17, 49, and 100 as local controllers of subareas 1, 2, and 3, 
respectively. In terms of DSE approaches [2]-[8], ESi should 
receive local measurements z i in subarea i and shareable 
measurements zcj ( j ¹ i) from ESj. Then, it calculates the opti‐
mal estimation x̂ i of state variable vector x i in two steps. 
Firstly, the local estimation x̂ l

i is acquired by minimizing the 
error between measurement functions hi (x i ) (i.e., power flow 
equations [7]) and local measurements z i, i.e.,

x̂ l
i = arg min

xi

r i (x i ) (1)

r i (x i )= z i - hi (x i ) (2)

Secondly, x̂ l
i is corrected into the optimal estimation x̂ i, 

i.e.,

x̂ i = x̂ l
i +Dx i (3)

Dx i = g i (χi )    χiÎ{zcjx̂
l
j Θj = 123} (4)

where Θ is the other shareable information except measure‐
ments; and g i (×) is the function mapping χi to Dx i. The di‐

mension of x̂ i, which has a significant impact on DSE run‐
time, is determined by network partition. The ES placement 
influences communication delays of ESs receiving or deliver‐
ing z i and χi. To realize real-time DSE under edge comput‐
ing, NPESP problem should be paid attention to.

Before formulating the problem, we present some basic 
notations. An undirected graph G ={VE} is applied to de‐
scribe the topology of a network. V ={vi|i = 12n} is the 
set of nodes, where vi represents node i and n is the total 
number of nodes. Y = (yij )n ´ n is the adjacency matrix of G. 
We denote the distance matrix of G as D = (dij )n ´ n, where dij 
calculated by Dijkstra’s algorithm is the minimum number 
of edges between vi and vj. In addition, the workload vector 
of the network is represented as W =[w1w2wn ]T, where 
wi (i = 12n) is the amount of measurements in vi at a 
timestamp. To indicate partitions and ES locations, a binary 
matrix A = (aij )n ´ n named NPESP matrix is defined, i.e.,

aij =
ì
í
î

1 vi is served by the ES at  vj

0 vi is not served by the ES at  vj

(5)

When i = j, aii = 1 means that vi has an ES. Thus, the num‐
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ber of ESs is represented by the trace of A, i. e., trace(A)=

∑
i = 1

n

aii.

IV. CONSTRAINED NPESP MAOP 

In this section, a constrained NPESP MaOP is proposed, 
in which the objectives and constraints characterize essential 
practical concerns on NPESP. To simply deliver the basic 
idea, we make three assumptions: ① the partition is non-
overlapping and each subarea has one ES; ② referring to 
[31], [32], the price, capacity, and hardware performance of 
ESs are supposed to be the same, as they have little influ‐
ence on problem formulation; ③ since measurement devices 
are usually inadequate for DSE in large-scale power sys‐
tems, both actual and pseudo measurements are considered 
as the workload to meet the observability of network.

A. Cost Minimization

Economic concerns on purchasing, operating, and main‐
taining ESs can be represented by a cost minimization. The 
purchasing cost contains the prices of an ES and related 
hardware accessories and application softwares. The operat‐
ing cost and maintaining cost refer to the discounted values 
of daily operation expenses and estimated breakdown mainte‐
nance costs within service life of an ES, respectively. We de‐
note the sum of three costs of an ES as P  cost . The cost mini‐
mization function is expressed as:

min F1 =∑
i = 1

n

P  cost i aii =P  cost  × trace(A) (6)

where P  cost i is the sum of the purchasing, operating, and 
maintaining costs of the ith ES.

B. High Cohesion

The topology of each subarea is required to be connected 
and preferably densely connected [14]. In addition, we 
should shorten the average distance between an ES and the 
served nodes [11]. A metric named cohesion of served nodes 
(called cohesion hereafter) is designed to judge both the den‐
sity of topology and the average distance. Inspired by the in‐
tra-cluster density [34], the density of subarea topology is de‐
fined as:

ρ i =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

1
2∑j = 1

n ( )∑
k = 1

n

aki ykj aji

∑
k = 1

n

aki

    aii = 1

0                                      aii = 0

(7)

Nodes in the subarea with larger ρ i are denser. The aver‐
age distance between an ES and its served nodes is calculat‐
ed as:

γi =

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

∑
k = 1

n

aki dki

∑
k = 1

n

aki

    aii = 1

¥                   aii = 0

(8)

A smaller γi represents that the ES at vi is closer to its da‐
ta sources. Consequently, the cohesion can be defined as:

δi =
ì

í

î

ïïïï

ïïïï

ρ i

γi

    aii = 1

0       aii = 0
(9)

To make subareas cohesive and reduce communication de‐
lays, we minimize the reciprocal of the average cohesion, 
i.e.,

min F2 =
trace(A)

∑
i = 1

n

δi
(10)

C. Low Coupling

The coupling of subareas (called coupling hereafter), 
which is a criterion for network partition, estimates the ex‐
tent to which the subareas are connected. Based on inter-
cluster density [34], the coupling is measured by the number 
of tie lines that equals the total number of lines in the net‐
work minus the number of internal lines. Since the low level 
of coupling indicates less exchanged information and com‐
munication resource consumption [27], the third objective is 
to minimize the coupling, i.e.,

min F3 =
1
2∑i = 1

n∑
j = 1

n

yij -
1
2∑i = 1

n∑
j = 1

n ∑
k = 1

n

aki ykjaji =

1
2

trace(Y TY )-
1
2

trace(ATYA) (11)

D. State Variable Balance

State variables refer to voltage magnitudes and phase an‐
gles estimated in the DSE. Thus, the number of state vari‐
ables are twice that of nodes. For improving the real-time 
performance of DSE, a network should be partitioned into 
several similarly-sized subareas to balance the computational 
burden of subareas. We use a metric named state variable 
balance, i.e., the largest difference between subarea sizes, to 
evaluate the impact of network partition on the runtime of 
DSE. Thus, the last objective is to minimize state variable 
balance, i.e.,

min F4 = max
jÎΨ (∑i = 1

n

aij) - min
jÎΨ ( )∑

i = 1

n

aij (12)

where Ψ ={ j|ajj = 1j = 12n} is the set of node numbers 
for ES locations.

E. Constraints

1)　Partition Constraints
Considering non-overlapping subareas, each row of the 

NPESP matrix has one and only one element equal to 1, i.e.,

ì

í

î

ïïïï

ïïïï

∑
j = 1

n

aij = 1

aijÎ{01}    ij = 12n
(13)

In each column, we need to ensure aij = 0  (" viÎV ) when 
no ES is deployed at vj and ajj = 1 when the measurements 
of vi are allocated to the ES at vj. The other partition con‐
straint can be expressed as:
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ajj - aij ³ 0    ij = 12n (14)

2)　Capacity Constraints
Due to finite measurements received by an ES in a time‐

stamp, the maximum workload capacity Cmax and the mini‐
mum workload capacity Cmin are set to prevent overload and 
underload of ES, respectively, i.e.,

ajj∑
i = 1

n

wi aij £ αCmax    j = 12n (15)

ajj∑
i = 1

n

wi aij ³(βCmin + 1)ajj - 1    j = 12n (16)

where α (0 < α < 1) and β (β > 0) are the maximum and mini‐
mum capacity margins, respectively.

V. SOLUTION ALGORITHM 

This section presents an improved NSGA-III with a de‐
signed directed mutation for the proposed MaOP.

A. Basic NSGA-III

NSGA-III, as a variant of GA, is one of the best heuristic 
algorithms for MaOPs [20], [21]. It has the same procedures 
as GA, i.e., encoding, crossover, mutation, and selection, in 
which the selection operator is quite different from GA. 
Thus, its selection operator is introduced briefly. We denote 
an MaOP as F ={min fi (x)i = 12kk > 3}, where fi (x) is 
the ith objective function. The three basic definitions about 
the MaOP are given below.

1) Definition 1: Pareto domination. Supposing there are 
two different feasible solutions (πa, πb) for F, we deem that 
πa dominates πb if πa and πb satisfy the following conditions:

ì
í
î

ïï fi (πa )£ fi (πb )    "fiÎF

fj (πa )< fj (πb )    $fjÎF
(17)

2) Definition 2: non-dominated solutions. Let Π denote 
the feasible solution set of F. We deem that π* is a non-dom‐
inated solution, i.e., Pareto solution, of F when π* dominates 
π, given the condition of "πÎΠ and π ¹ π*.

3) Definition 3: non-dominated level. Based on k objectives, 
the members, each of which represents a solution of F, are 
sorted in accordance with Pareto domination. The final non-
dominated solutions are recorded as a non-dominated level.

The selection operator of NSGA-III classifies members of 
the population into different non-dominated levels by refer‐
ence-point-based non-dominated sorting and then selects 
elite members. Specifically, the parent population with z 
members in the tth generation is denoted as P t ={p t

ii =
12z}, and the offspring population Ot with z members is 
created from P t by crossover and mutation operators. To gen‐
erate the next generation P t + 1, we should select z elite mem‐
bers from the combined parent and offspring population Rt =
P tOt (with size of 2z). First, we sort Rt into different non-
dominated levels Rt

1R
t
2Rt

r, where the members of Rt
i 

dominate anyone of Rt
i + 1. Next, superior members are select‐

ed into P t + 1 starting from Rt
1, until the size of P t + 1 equals z. 

There is no extra work when the size of Rt
S =

Rt
1Rt

2Rt
s (s < r) is equal to z. In most situations, how‐

ever, the size of Rt
S - 1 denoted as u is smaller than z, while 

the size of Rt
S is larger than z. Therefore, z - u members have 

to be chosen from the last accepted level Rt
s. To maximize di‐

versity of members in the sth level, the elitist selection strate‐
gy based on the reference point is proposed. For further de‐
tails, please refer to [35].

B. Improved NSGA-III

The basic NSGA-III converges slowly when solving 
MaOPs with high-dimensional decision variables. Hence, an 
improved NSGA-III is presented. We use real-number encod‐
ing to compress the sparse NPESP matrix. The capacity and 
partition constraints are easily calculated by penalty function 
and gene restriction, respectively. To accelerate convergence, 
a directed mutation operator is designed with regard to topo‐
logical characteristic of partitions.
1)　Real-number Encoding

Since the NPESP matrix A has numerous zero elements to 
occupy storage and computing resources, we adopt real-num‐
ber encoding to compress it into one-dimensional sequence 
with n real numbers. The chromosome of a member in P t, i.e., 
a real-coded form of A, is represented as:

p t
i = (pt

ij )1 ´ n    p
t
ijÎΩi = 12zj = 12n (18)

where pt
ij = l means that vj is served by the ES at vl; and Ω is 

the set of potential ES locations. In this paper, we set the 
nodes with more than three degrees as the potential ES loca‐
tions.
2)　Penalty Function

The capacity constraints in (15) and (16) are represented 
by the penalty function, i.e.,

PF =

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

0    "ajj(βCmin + 1)ajj - 1 £ ajj∑
i = 1

n

wi aij £ αCmax

¥    $ajjajj∑
i = 1

n

wi aij <(βCmin + 1)ajj - 1 or ajj∑
i = 1

n

wi aij > αCmax

(19)

As a result, the final objectives of the proposed MaOP are 
to minimize F1F2F3F4, and PF.
3)　Gene Restriction

The gene restriction is used to simplify the partition con‐
straints, which makes pt

ij equal to j on condition of pt
il =

j (vlÎV ). It only corresponds to the constraint in (14), as the 
constraint in (13) is naturally satisfied by the real-number en‐
coding. We perform the gene restriction after each mutation 
operator.
4)　Directed Mutation

There are multiple mutation operators, e.g., uniform muta‐
tion and inversion mutation, which randomly mutate mem‐
bers to lead to slow evolution. Therefore, we design a new 
mutation operator named directed mutation based on the to‐
pological characteristic of partitions. For the directed muta‐
tion of a chromosome, we randomly select an initial muta‐
tion node vi and sort its distance sequence {dijj = 12n} 
in ascending order to get the corresponding node number se‐
quence Na (vi ). Next, the potential ES location vnf

 closest to 

vi is found according to Na (vi ) and Ω. Finally, the genes cor‐
responding to the first η nodes in Na (vi ) are changed into nf, 
where the mutation scale η determines the number of mutat‐
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ed genes. This step ensures that the η nodes closest to vi are 
assigned to the same subarea. Through directed mutation oper‐
ator, partial genes of the chromosome are mutated purposely, 
accelerating the evolution of population towards the targets. 
Algorithm 1 conducts the procedure of the directed mutation 
for the tth generation. The flowchart of the improved NSGA-III 
is shown in Fig. 2. Furthermore, we present an analysis of the 
computational complexity of the algorithm in Appendix A.

VI. CASE STUDY 

In this section, the test results based on IEEE 118-bus sys‐
tem and Polish 2383-bus system are used to validate the en‐
hancement in real-time DSE by the NPESP schemes and re‐
veal trade-offs among four objectives of the proposed MaOP. 
The performance of the improved NSGA-III for large-scale 
networks is illustrated as well. The simulations are run on a 
computer with Intel-i5-10400F CPU and 16 GB memory.

A. Metrics

The four proposed objectives in (6), (10), (11), and (12) 
are considered as metrics for NPESP schemes. To measure 
the impact of NPESP schemes on real-time performance of 
DSE, the time to perform a DSE approach is used, i.e.,

tDSE » tareamax + tcorrection (20)

where tareamax is the runtime of local state estimation in the 
largest subarea; and tcorrection is the execution time to correct 
local estimations. Besides, a popular metric in community 
detection, i.e., modularity Q [36], is applied to evaluate the 
strength of partition of a network into subareas, which can 
be calculated as:

Q =
1

2m∑i ¹ j ( )yij -
kikj

m
δij (21)

where m =∑
ij

yij; kj =∑
i

yij; and ki =∑
j

yij. The situation that 

vi and vj are in the same subarea is represented by δij = 1; 
otherwise, by δij = 0. The partitions with higher Q have more 
internal lines but less tie lines.

To assess performance of the improved NSGA-III, we se‐
lect two metrics named IGD and spacing [21]. The IGD can 
be used to estimate both convergence and diversity of solu‐
tions to MaOP, i.e.,

IGD(PP* )=
1

|P*|
∑
xÎP*

( )min
yÎP

dis(xy) (22)

where dis(xy)= ||x - y||2; and P and P* are the obtained solu‐
tions and the target points uniformly distributed on Pareto-
optimal surface, respectively. We approximate P* with all ob‐
tained solutions after ten times of optimization. The smaller 
IGD indicates the better convergence and diversity of solu‐
tions. The spacing measures the standard deviation of the 
minimum distance from each solution to other solutions, i.e.,

Spacing(P)=
1

|P| - 1∑m = 1

|P|

(d̄P - dm )2 (23)

dm = min
j

ì
í
î
∑
i = 1

k

|| fi (xm )- fi (x j ) xmx jÎP
ü
ý
þ

(24)

d̄P =
1

|P|∑dm (25)

The smaller spacing represents the better evenness of solu‐

Algorithm 1: directed mutation for the tth generation

Input: parent population P t ={pt
ii = 12z}; mutation rate ζÎ(01); mu‐

tation scale ηÎ{12n}; set of potential ES locations Ω; distance ma‐
trix D

Output: filial population P t + 1

1: k = 0

2: repeat

3:   k = k + 1

4:   generate a random integer ω from [01]

5:   if ω > ζ then

6:     pt + 1
k = pt

k

7:   else

8:     generate a random number i from [1n] as the initial mutation node 
number

9:     find the potential ES location closest to vi and record its number as 
nf

10:    sort {dijj = 12n} in ascending order to get the corresponding se‐
quence of node numbers Na (vi )

11:     j = 0

12:     repeat

13:       j = j + 1, l =Na (vi )[ j], pt + 1
kl = nf, where Na (vi )[ j] is the jth element 

of Na (vi )

14:     until j = η

15:   end if

16: until k = z

Start

End

N

Y

 

Crossover

 
Directed mutation

Initialize population through real-number

encoding to get first generation Pt, t=1

Gene restriction

Obtain offspring population Ot

Obtain the combined parent and offspring population Rt

Non-dominated sorting 

Non-dominated sorting 

Implement elitist selection strategy based on reference point

Obtain the next generation P t+1, t=t+1 

Is t less than the

maximum iteration?

Obtain Pareto solutions

Fig. 2.　Flowchart of impoved NSGA-III.
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tions.

B. IEEE 118-bus System

The IEEE 118-bus system integrated with five distributed 
generators (DGs), as shown in Fig. 1, is selected as a test 
network. With reference to [37], its hybrid measurement sys‐
tem consists of 54 PMUs and a supervisory control and data 
acquisition (SCADA) system. PMUs acquire voltage phasors 
of buses and current phasors of branches, and the SCADA 
system can collect voltage magnitudes, injection power of 
buses, and power flow of branches. We assume that the mea‐
surements from SCADA system cover 50% buses and 
branches, whereas the pseudo injection power measurements 
are generated for the remaining 50% buses to guarantee the 
observability of subareas. The total workload in the test net‐
work is 728.

Three popular partition schemes of IEEE 118-bus network 
are chosen as benchmarks, i. e., three partitions in [22], six 
partitions in [8], and eight partitions in [3], which are denot‐
ed as REF118-3, REF118-6, and REF118-8, respectively. 
However, the locations of ESs, i.e., local control centers, are 
not specified in [3] or [8]. For the convenience of compari‐
son, we consider the node with the shortest average distance 
in each subarea as the ES location. Table I provides the de‐
tails of the three benchmarks. To compare runtimes of DSE 
under different NPESP schemes, three DSE algorithms, i. e., 
DWLS [7], DUKF [3], [4], and DPF [6], are adopted as test‐
ing algorithms. The maximum iterations for each DWLS esti‐
mation is 10, and the number of particles in DPF are 100. 
We apply the finite-time average consensus to modify local 
estimations [3]. Other parameters for the three algorithms 
can be referred to [3].

In terms of the workload, Cmax Cmin α, and β of an ES 
are set to be 500, 50, 0.9, and 1.1, respectively, which are 
appropriate to obtain NPESP schemes with the same number 
of partitions as benchmarks. Without loss of generality, P  cost  
is set to be 1. An NPESP scheme is represented as 
NPESP118-j, where j is the number of subareas. In the im‐
proved NSGA-III, we apply the partial-mapped crossover op‐
erator [20], and set the mutation rate and scale of directed 
mutation operator to be 0.8 and 10, respectively. The popula‐
tion size can be three to six times the network size, and 
more than 40 iterations are recommended via extensive simu‐
lations. To obtain robust solutions, the test cases are iterated 
100 times with 700 members.
1)　NPESP Scheme Analysis

The non-dominated solutions to the proposed MaOP con‐

tain 21 NPESP schemes, from which six schemes are select‐
ed for comparison. The details about the six schemes are giv‐
en in Appendix B. As shown in Table II, the real-time perfor‐
mance of DWLS, DUKF, and DPF under NPESP schemes 
exceeds that under the corresponding benchmarks, e. g., the 
runtimes of DWLS under NPESP118-3, NPESP118-6, and 
NPESP118-8 are reduced by 19.25%, 36.93%, and 20.00% 
compared with those under REF118-3, REF118-6, and 
REF118-8, respectively. Besides, NPESP118-5 outperforms 
REF118-6 by 11.50%, 17.72%, and 11.08% on runtimes of 
DWLS, DUKF, and DPF, respectively, while it costs less 
than REF118-6 according to their F1 values. A similar situa‐
tion occurs in NPESP118-7 and REF118-8. Hence, the pro‐
posed MaOP can provide cost-effective schemes to facilitate 
real-time DSE.

In case of the same ES costs (F1), most NPESP schemes 
have higher cohesion (F2) and lower coupling (F3) compared 
with benchmarks, e.g., F2 and F3 values of NPESP118-8 are 
12.8% and 31.25% less than those of REF118-8, respective‐
ly. This indicates that NPESP schemes are stronger with en‐
hanced connectivity within a subarea and weakened connec‐
tions between subareas. It is further testified by the modulari‐
ty Q, as Q values of NPESP118-3, NPESP118-6, and 
NPESP118-8 are 1.62%, 5.88%, and 16.05% better than 
those of REF118-3, REF118-6, and REF118-8, respectively. 
Nevertheless, we find that the modularity increases with larg‐
er F1, which implies a trade-off between the ES cost and the 
strength of partition. From the perspective of state variable 
balance, F4 values in NPESP118-3, NPESP118-6, and 
NPESP118-8 are reduced by 60.00%, 45.45%, and 66.67% 
compared with those in REF118-3, REF118-6, and REF118-
8, respectively. With the fixed number of subareas, the pro‐
posed MaOP has the ability to balance the computational 
burdens of ESs. This is the main reason why the runtimes of 
DSE in NPESP schemes are shorter than those in the corre‐
sponding benchmarks. To sum up, the proposed MaOP pro‐
vides a set of near-optimal NPESP schemes, in which we 
can select a suitable one to satisfy a single or weighted tar‐
get without degrading other objectives.
2)　Trade-offs Among Four Objectives

We use the ordinary least square method to fit Pareto 
front of the proposed MaOP. As shown in Fig. 3, there are 

TABLE I
DETAILS OF THREE BENCHMARKS

Benchmark

REF118-3

REF118-6

REF118-8

ES location

S1: v17; S2: v49; S3: v100

S1: v12; S2: v28; S3: v37; S4: 
v80; S5: v59; S6: v100

S1: v12; S2: v19; S3: v27; S4: 
v49; S5: v59; S6: v80; S7: v89; 

S8: v103

Subarea size

S1: 35; S2: 38; S3: 45

S1: 16; S2: 10; S3: 32; S4: 
18; S5: 17; S6: 25

S1: 16; S2: 17; S3: 13; S4: 
16; S5: 19; S6: 13; S7: 14; 

S8: 10

TABLE II
COMPARISON OF SIX NPESP SCHEMES AND BENCHMARKS

Scheme

NPESP118-3

REF118-3

NPESP118-4

NPESP118-5

NPESP118-6

REF118-6

NPESP118-7

NPESP118-8

REF118-8

Runtime (s)

DWLS

0.495

0.613

0.373

0.254

0.181

0.287

0.011

0.008

0.010

DUKF

0.264

0.282

0.190

0.130

0.109

0.158

0.007

0.006

0.007

DPF

1.870

2.111

1.492

1.035

0.702

1.164

0.318

0.157

0.306

F1

3

3

4

5

6

6

7

8

8

F2

1.71

1.74

1.70

1.61

1.60

1.63

1.45

1.43

1.64

F3

9

8

20

22

27

29

28

32

48

Q

0.62

0.61

0.64

0.67

0.68

0.64

0.69

0.70

0.59

F4

4

10

9

11

12

22

6

3

9
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linear correlations among the ES cost (F1), the cohesion 
(F2), and the coupling (F3). Although the state variable bal‐
ance (F4) is not significant correlated with other objectives ac‐
cording to Fig. 3(d), (e) and (f), it has an effect on them, e.g., 
one NPESP scheme has small F2 (1.452), F4 (2) but large F1 (8), 
F3 (32), whereas another NPESP scheme has small F1 (5), 
F2 (1.618), F3 (19) but large F4 (30). To further demonstrate 
their trade-offs, we remove one objective of the proposed 
MaOP in turn to generate four multi-objective optimization 
problems (MoOPs), i. e., T1 ={F2F3F4 }, T2 ={F1F3F4 }, 
T3 ={F1F2F4 }, and T4 ={F1F2F3 }. Through the improved 
NSGA-III, the Pareto fronts of T1, T2, T3, and T4 are ob‐
tained as illustrated in Fig. 4.

In Fig. 4(a), F1 values are quite dense in the range of 8 to 
14, whereas those in Fig. 3 vary between 1 and 10. Thus, F1 
is not well optimized in T1. The Pareto front in Fig. 4(b) is 

lack of diversity, as F1 values are equal to 3 and those of F2 
are greater than 2. We can infer that T2 fails to trade off the 
cost against the cohesion. Compared with Fig. 3, Fig. 4(c) 
shows smaller F2 but larger F3, which indicates that the co‐
hesion and the coupling are not balanced in T3. In Fig. 4(d), 
the solutions are sparse and perform poorly on F4. In sum‐
mary, the solutions to each MoOP are unsatisfactory on the 
abandoned objective, i. e., the four objectives are indispens‐
able in the NPESP problem due to their trade-offs.
3)　Performance of Improved NSGA-III

We compare the improved NSGA-III with three evolution‐
ary algorithms, i. e., traditional GA [15], GA with directed 
mutation (GADM), and the basic NSGA-III. Since GA and 
GADM are single-objective GAs, their objective is set to be 
min FGA =F1 + 4F2 + 0.5F3 +F4 +PF, where 4 and 0.5 are co‐
efficients to modify the order of magnitude differences. 
Based on the number of non-dominated solutions, we regard 
the first 100 members with the smallest FGA as solutions of 
GA and GADM. The changes in IGD and spacing of four al‐
gorithms, as illustrated in Fig. 5, validate that the solutions 
solved by the improved NSGA-III have the best conver‐
gence, diversity, and evenness, followed by GADM.

C. Polish 2383-bus Test System

To verify effectiveness of the improved NSGA-III for 
large-scale networks, the Polish 2383-bus system in Matpow‐
er [23] is selected as a test network. It has six zones, in 
which there are only 8 buses in the sixth zone. We assign 
the 8 buses to other five zones with regard to electrical con‐
nections. It is assumed that PMUs are only placed on the 
buses with generators or DGs. The proportions of SCADA 
measurements and pseudo measurements are the same with 
those in IEEE 118-bus system. Table III provides the details 
about the modified zones. For the improved NSGA-III, the 
population sizes and iterations in zones 1, 2, and 5 are set to 
be 1500 and 150, respectively, whereas those in zones 3 and 
4 are 3000 and 150, respectively. Others are referred to the 
parameter setting in IEEE 118-bus network.

Figure 6 demonstrates the performance of the four evolu‐
tionary algorithms in the largest zone, i.e., zone 3. In terms 
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of IGD and spacing, the improved NSGA-III still has the 
fastest convergence and its solutions are the most diverse 
and well-distributed, compared with other three algorithms. 
Furthermore, GA and the basic NSGA-III fail to converge 
within 150 iterations, while GADM and the improved NS‐
GA-III have found local optimal solutions after 106 and 75 
iterations, respectively. This indicates that the directed muta‐
tion operator can remarkably promote convergence of high-
dimensional NPESP MaOP.

Trade-offs among the four objectives, which have been 
demonstrated in Section VI-B, are further proven by Pareto 
fronts of the five zones, as shown in Figs. 7 and 8. Specifi‐
cally, in addition to the remarkable correlations between F1, 
F2, and F3, Fig. 8(d) and (f) presents that F4 is negatively 
correlated with F1 and F3, respectively. The relationship be‐
tween F2 and F4 is not obviously illustrated, which may re‐
sult from the complex and discontinuous expressions of F2 
and F4 on decision variables.

VII. CONCLUSION 

Based on DSE supported by edge computing, this paper pro‐
posed an NPESP problem to find satisfactory partitions and 
ES locations in a large-scale network. We formulated NPESP 
as a constrained MaOP which considers the economy of ES 
placement, cohesion within each subarea, coupling of subar‐
eas, and state variable balance. Then, an improved NSGA-III 
was developed for the proposed problem in large-scale net‐
works. The experiments, which were implemented on IEEE 
118-bus system and Polish 2383-bus system, testified that the 
solutions to the proposed problem can trade off the objectives 
and significantly reduce the runtime of DSE. Finally, we evalu‐
ated the excellent convergence, diversity, and evenness of the 
improved NSGA-III by two popular metrics, i. e., IGD and 
spacing. In future, we will take the convergence of DSE and 
the reliability of ESs into account in the proposed NPESP 
problem, and demonstrate the impacts of edge computing on 
the scalability and response time of DSE.

TABLE III
MODIFIED ZONES OF POLISH 2383-BUS TEST SYSTEM

Zone

1

2

3

4

5

Bus number

367 buses with 1875 workloads: 1-22, 187-195,197-299, 301-312, 
314-398, 400-423, 425-429, 431-469, 471-538

283 buses with 1587 workloads: 23-55, 181, 183, 300, 424, 430, 
539-656, 658-774, 776-785

887 buses with 4651 workloads: 56-110, 180, 184, 185, 399, 470, 
657, 775, 786-1601, 1745, 1802, 1803, 1872, 2043, 2083, 2088, 
2089, 2092

570 buses with 3122 workloads: 111-154, 182, 186, 196, 1602-
1744, 1746-1801, 1804-1871, 1873-2042, 2044-2082, 2084-2087, 
2090, 2091, 2093-2115, 2176, 2192, 2197, 2201, 2202, 2215, 
2217, 2237, 2244, 2247, 2253, 2273, 2274, 2278, 2289, 2310, 
2333, 2346, 2376, 2383

276 buses with 1482 workloads: 155-179, 313, 1842, 2054, 2116-
2175, 2177-2191, 2193-2196, 2198-2200, 2203-2214, 2216, 2218-
2236, 2238-2243, 2245, 2246, 2248-2252, 2254-2272, 2275-2277, 
2279-2288, 2290-2309, 2311-2332, 2334-2345, 2347-2375, 2377-
2382
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APPENDIX A 

For the basic NSGA-III with the population of size z and 
k (k ³ 3) objective functions, its worst-case complexity at one 
generation is O(z2k) or O(z(lg z)k - 2 ), whichever is larger [35]. 
The presented solution method modifies the basic NSGA-III 
by adding real-number encoding and gene restriction, and re‐
placing the random mutation operator with the designed muta‐
tion operator. Hence, we should analyze the computational 
complexity of the modified parts, and compare it with O(z2k) 
and O(z(lg z)k - 2 ). The real-number encoding and the gene re‐
striction require O(z) and O(z2 ) computations, respectively. 
The directed mutation operator with the maximum mutation 
scale, i. e, η = n in Algorithm 1, requires O(zn2 lg n) computa‐
tions, where n is equal to the number of genes of a chromo‐
some. The value of z is generally several times that of n. With  
all above computations considered, the worst-case complexity 

of the improved NSGA-III is O(z(lg z)k - 2 ) or O(zn2 lg n), 
whichever is larger.

The proposed NPESP problem has four objectives and one 
penalty function, i. e., k = 5. To solve it, the basic NSGA-III 
and the improved NSGA-III require no more than O(z2 ) and 
O(zn2 lg n) computations at each generation, respectively. The 
improved NSGA-III has larger computational complexity, 
since the worst-case complexity of its directed mutation opera‐
tor is O(zn2 lg n), which is larger than O(z2 ). Hence, rapid con‐
vergence of the improved NSGA-III is achieved by sacrificing 
the computational complexity.

APPENDIX B 

Table BI shows the partitions and ES locations of the six 
competitive NPESP schemes for IEEE 118-bus system.

TABLE BI
PARTITIONS AND ES LOCATIONS OF SIX COMPETITIVE NPESP SCHEMES FOR IEEE 118-BUS SYSTEM

Scheme

NPESP118-3

NPESP118-4

NPESP118-5

NPESP118-6

NPESP118-7

NPESP118-8

Subarea

1

2

3

1

2

3

4

1

2

3

4

5

1

2

3

4

5

6

1

2

3

4

5

6

7

1

2

3

4

5

6

7

8

Node number

1-33, 71-73, 113-115, 117

34-69, 116

70, 74-112, 118

1-20, 33-37, 117

18, 21-32, 38, 69, 70-76, 113-115, 118

39-68, 77, 78, 116

79-112

1-16, 33, 36, 117

17-32, 113-115

34, 35, 37-45, 49-67

46-48, 68-84, 96, 97, 116, 118

85-95, 98-112

1-20, 117

21-23, 25-32, 38, 65, 113-115

24, 33-37, 43-48, 68-75, 116

39-42, 49-64, 66, 67

76-82, 95-99, 118

83-94, 100-112

1-16, 117

17, 20-23, 25-32, 113-115

18, 19, 33-44

48-67

24, 45-47, 68-75, 116, 118

76-87, 94-97, 99

88-93, 98, 100-112

1-12, 14, 16, 117

13, 15, 17-20, 30, 33-39

21-29, 31, 32, 72, 113-115

40-49, 65-,68, 81, 116

50-64

69-71, 73-80, 82, 96, 97, 118

83-95, 101, 102

98-100, 103-112

ES location

v17

v49

v100

v12

v32

v49

v94

v12

v32

v49

v69

v100

v12

v25

v47

v49

v80

v100

v12

v32

v37

v49

v69

v77

v100

v12

v15

v32

v49

v56

v75

v92

v100

Subarea size

40

37

41

25

26

33

34

19

19

30

24

26

21

16

21

22

13

25

17

16

14

20

14

17

20

15

14

15

16

15

15

15

13

Number of tie lines

5

7

6

9

13

14

4

7

8

10

13

6

7

10

15

8

9

5

5

7

8

7

11

11

7

4

12

6

14

6

11

6

5
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