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Abstract——This paper proposes a voltage stability constrained 
optimal power flow (VSC-OPF) for an unbalanced distribution 
system with distributed generators (DGs) based on semidefinite 
programming (SDP). The AC optimal power flow (ACOPF) for 
unbalanced distribution systems is formulated as a chordal re‐
laxation-based SDP model. The minimal singular value (MSV) 
of the power flow Jacobian matrix is adopted to indicate the 
voltage stability margin. The Jacobian matrix can be explicitly 
expressed by ACOPF state variables. The nonlinear constraint 
on the Jacobian MSV is then replaced with its maximal convex 
subset using linear matrix inequality (LMI), which can be incor‐
porated in the SDP-based ACOPF formulation. A penalty tech‐
nique is leveraged to improve the exactness of the SDP relax‐
ation. Case studies performed on several IEEE test systems vali‐
date the effectiveness of the proposed method.

Index Terms——Voltage stability, semidefinite programming, Ja‐
cobian matrix, optimal power flow.

I. INTRODUCTION

POWER systems are the backbone of our economy. Now‐
adays, the increasing load and stochastic disturbances 

from renewable energy have driven some systems to operate 
near their limit, including the voltage stability margin 
(VSM) [1]-[3]. Voltage stability refers to the ability of pow‐
er system to sustain steady acceptable voltages at all buses 
under normal operating conditions and possible external dis‐
turbances [4]. Traditionally, optimal power flow (OPF) mod‐
els enforce security constraints such as voltage magnitude 
limits and line flow limits. Nevertheless, it is insufficient to 
guarantee the secured operation in modern power systems by 
only enforcing the thermal and voltage magnitude limits [5]. 

By including constraints on voltage stability, voltage stability 
constrained OPF (VSC-OPF) models can ensure steady-state 
voltage stability and maintain a sufficient loading margin. 
Owing to these benefits, there is a growing interest in VSC-
OPF.

VSC-OPF involves the constraints on voltage stability in‐
dex (VSI). One way to define the VSI is to use the propor‐
tional increase of load. To formulate a VSC-OPF model, the 
model in [6] defines the maximum loading value as an index 
to measure the distance of a system to collapse and incorpo‐
rate that into an OPF problem. In [7], OPF is performed to 
ensure that the operating point exists at the desired load lev‐
el given a VSM. In [8], voltage stability is considered in a 
wind power planning problem. To enhance the steady-state 
stability of smart distribution system, [9] suggests a multi-
timescale voltage stability constrained volt/var optimization 
model. Support from the natural gas subsystem in an energy 
hub is shown to help maintain the voltage stability in the 
power system [10]. Despite wide application of load margin, 
with this VSI, only one direction of load variation is consid‐
ered for the load margin.

Based on the equivalent model of a two-bus system, the 
maximum loadability of a line can be calculated, which 
leads to many heuristic VSIs [11]. Reference [12] enhances 
the distribution system voltage stability by reconfiguration. 
A VSI is proposed in [13], and its ability to detest the onset 
of voltage instability is verified. Reference [14] proposes a 
line-wise power flow formulation and the corresponding volt‐
age collapse index, and [15] integrates the index in the opti‐
mal power flow. The L-index is adopted in a microgrid unit 
commitment problem in [16]. These indices are local indi‐
ces, which can help identify critical lines and buses, but are 
not directly connected to a global VSM.

Previous studies have found that the collapse point of the 
voltage can be correlated with the saddle-node bifurcation or 
limit induced bifurcation; in each case, at the collapse point, 
the power flow Jacobian matrix is either singular or close to 
singular [6]. Thus the steady-state voltage stability can be 
evaluated by analyzing the singularity of the power flow Ja‐
cobian matrix. The power flow Jacobian matrix is the linear‐
ized relationship between power injection and voltage devia‐
tion. As the matrix becomes singular, a small load change 
will lead to a substantial voltage change and instability [17]. 
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In [18], an index based on a sufficient condition for the non‐
singularity of power flow Jacobian matrix is proposed to rep‐
resent the distance between the operating point to the solv‐
ability boundary. Reference [5] further extends the work in 
[18] and proposes a second-order conic representation of the 
condition and incorporate it into the OPF model of a trans‐
mission system. On the basis of the widely-adopted branch 
flow OPF model, [19] proposes the determinant of the Jaco‐
bian matrix as a VSI.

The minimum singular value (MSV) of the power flow Ja‐
cobian matrix indicates its closeness to singularity [20]. 
Therefore, [17] and [21] use the MSV of power flow Jacobi‐
an matrix as an index for voltage stability assessment. The 
MSV threshold is incorporated as a constraint to ensure stat‐
ic voltage stability in [22]-[24]. Reference [1] addresses the 
issues of non-explicit and non-convex of MSV constraints 
and formulates the MSV constraint as an SDP constraint. A 
computationally tractable iterative linear programming solu‐
tion using singular value sensitivities is proposed in [25]. In 
summary, MSV is an implicit function of the optimization 
variables, and the integration of MSV constraint remains a 
challenge for OPF.

The voltage stability can be analyzed by the steady-state 
OPF disregarding the system dynamics because the long-
term voltage stability problem is essentially loadability prob‐
lem. In contrary, the transient stability deals with the short-
term stability issues of contingency, and transient-stability 
constrained OPF (TSC-OPF) is a nonlinear optimization 
problem with differential-algebraic equation (DAE) con‐
straints [26]. Previous research efforts focus on dealing with 
differential equations in the TSC-OPF through numerical op‐
timization methods, including discretization [27] and integra‐
tion of time-domain simulation in OPF [28]. Another branch 
of TSC-OPF drops the DAE, and TSC-OPF problems are re‐
duced to nonlinear OPF with a transient stability constraint, 
similar to the formulation of VSC-OPF. Then the meta-heu‐
ristic optimization methods can be used to solve the dynam‐
ic stability constrained problems [29], [30] and steady volt‐
age stability constrained problems [31]. Reference [32] takes 
one step further and presents an OPF framework that can si‐
multaneously consider the dynamic and steady-state voltage 
stabilities. Aiming to approximate the nonlinear relationship 
between state variables and voltage stability margin, [33], 
[34] and [35], [36] report progress using neural network to 
estimate transient stability and steady-state stability margin, 
respectively. The above works illustrate that the TSC-OPF 
and VSC-OPF are both nonlinear optimization problems and 
can benefit from the research breakthroughs of each other.

While traditionally, voltage stability analysis is carried out 
for transmission systems, recent research works recognize 
that voltage stability issues exist in the distribution system 
[18] or even microgrids [16]. According to [18], the ability 
to assess and maintain the security margins within the opera‐
tional context of growing deployment of distributed genera‐
tors (DGs) is essential to modernized power distribution sys‐
tems. The integration of DGs further complicates the prob‐
lems of power flow solvability and voltage stability. Accord‐

ing to [7], the voltage instability of distribution systems can 
spread to the corresponding transmission grid. In [37] and 
[38], voltage stability is improved from DG planning. The 
method in [18] is also extended to the microgrid level in 
[39]. VSC-OPF is carried out for different topics such as re‐
al-time voltage stability assessment [40], reconfiguration 
[12], wind power integration [13], and DG installation [19]. 
These works demonstrate that the distribution system awaits 
more efforts on VSC-OPF investigation.

Another limitation of the existing works is that most of 
the VSC-OPF methods deal with the single-phase system 
models. Concerning three-phase unbalanced systems, a volt‐
age stability analysis method based on the continuation pow‐
er flow method is proposed in [3]. Reference [41] presents a 
nonlinear OPF method for the unbalanced transmission sys‐
tem, which maximizes the load demand at a specified bus, 
and this maximum loading point is regarded as the VSM. 
The maximum loading point is extended in [42] to a multi-
stage and probabilistic framework. The works mentioned 
above show that the approximation of unbalanced system 
with its single-phase equivalent provides unreliable voltage 
stability assessment results. Furthermore, none of the exist‐
ing works addresses the economic operation of power sys‐
tem while maintaining the VSM above a given threshold at 
the same time.

Based on these observations, the contributions of this pa‐
per can be summarized as follows.

1) A VSC-OPF framework is proposed for the unbalanced 
distribution power system with DGs. The AC power flow of 
the unbalanced distribution system is formulated as a chord‐
al relaxation-based SDP model; and the proposed method 
can be incorporated into the daily economic dispatch of the 
distribution system.

2) In the VSC-OPF, the voltage stability constraint is en‐
forced through the MSV of the power flow Jacobian matrix. 
The MSV is expressed explicitly by the state variables of 
the OPF. The nonlinear constraint on power flow MSV is re‐
placed by a linear matrix inequality constraint (LMI), and 
the LMI constraint can be easily incorporated in the convexi‐
fied OPF formulation.

3) A penalty technique is leveraged to improve the exact‐
ness of the SDP relaxation.

4) The proposed multi-period operation framework and 
case studies thoroughly exemplify the contribution of energy 
storage system (ESS).

The rest of the paper is organized as follows. Section II 
gives the SDP-based ACOPF formulation. Section III details 
the SDP-based VSC-OPF formulation. Simulation results are 
provided in Section IV. Finally, conclusions are drawn in 
Section V.

II. SDP-BASED ACOPF FORMULATION

In this section, the SDP models are derived for an unbal‐
anced distribution system. For the SDP-based ACOPF formu‐
lation, we leverage the bus injection model (BIM) provided 
in [43]. We will use the ACOPF state variables to explicitly 
express the power flow Jacobian matrix.
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A. ACOPF Model for Unbalanced Distribution System

In a distribution system, we use N ={12n + 1} to de‐
note the set of buses. The system contains a single substa‐
tion connected to the upstream system that acts as the slack 
bus. Without the loss of generality, we number the buses so 
that the set of PQ bus is {12...m}, the set of PV bus is {m +
1m + 2...n}, and the (n + 1)th bus is the slack bus.

In this subsection, we will first introduce the BIM for an 
unbalanced system. Let Φ i be the set of phases of bus i, and 
Φ ij be the phases of the line i® j. The ordered pair (ij)ÎE 
denotes the set of lines, and we assume that their direction 
i® j follows Φ j =Φ ijÍΦ i. For example, if a double-phase 
line (ij) connects a three-phase bus and double-phase bus, 
then we will number the buses so that Φ i={abc}, Φ ij = Φ j =
{bc}. We use i  j to denote either i® j or j® i. ViÎC|Φi| is 
the complex voltage vector of bus i. z ijÎC|Φij| ´ |Φij| is the line 
impedance of (ij), and the line admittance yij = z-1

ij . Let Y be 
the system admittance matrix, and Yij indicates the sub-ma‐
trix corresponding to buses i and j, which has components 
Y φϕ

ij =Gφϕ
ij + jBφϕ

ij .
The complex power injection to bus i will be:

p it + jq it =∑
jÎN

diag{ }V Φij

i (YijV
Φij

j )H      iÎN (1)

where the superscript H indicates the Hermitian conjugate.
Concerning power sources, the distribution system is sup‐

plied by the upstream network, and within it there are DGs 
and ESSs. Let pφ

g and qφ
g be the active power and reactive 

power provided by DGs at bus i of phase φÎΦ i, respective‐
ly. Similarly, we can define pφ

b + jqφ
b for the active power and 

reactive power from the upstream network. The discharging 
active power and charging active power from the ESSs are 
disφ

s  and chφ
s , respectively; and ESSs can also provide reac‐

tive power jqφ
s .

In the daily operation, the objective is to minimize the op‐
eration costs of distribution system within the prediction ho‐
rizon. Rolling-horizon optimization is employed to make op‐
timal operation decisions, which is illustrated in Fig. 1. The 
optimization is performed for the look-ahead window, but 
only the first interval results are preserved. The above pro‐
cess is repeated for the whole day. We assume perfect predic‐
tions for the locational marginal price (LMP), load, and re‐
newable output for the look-ahead window, and therefore, 
the proposed OPF is a deterministic optimization problem.

Equations (2)-(23) give the complete ACOPF formulation.

min∑
t = t0

t0 + Tpé

ë

ê
êê
ê ù

û

ú
úú
ú

pbtcbt +∑
gÎG

pgt cg +∑
sÎS

(chst + disst ) cs Dt (2)

s.t.

pφ
it =∑

jÎN
∑

ϕÎΦij

(Gφϕ
ij Â(V φ

itV
ϕ

jt )+Bφϕ
ij Á(V φ

itV
ϕ

jt )) (3)

qφ
it =∑

jÎN
∑

ϕÎΦij

(-Bφϕ
ij Â(V φ

itV
ϕ

jt )+Gφϕ
ij Á(V φ

itV
ϕ

jt )) (4)

V min
i £V φ

it £V max
i     "i"φ"t (5)

S min
ij £

|
|
||||

|
|
||||diag{ }V Φij

it [ ]Yij (V
Φij

it -Vjt )
H

£ S max
ij     "i  j"t (6)

pφ
it =∑

bÎUi

pφ
bt +∑

gÎGi

pφ
gt +∑

sÎSi

(disφ
st - chφ

st ) - pd φ
it (7)

qφ
it =∑

bÎUi

qφ
bt +∑

gÎGi

qφ
gt +∑

sÎSi

qφ
st - qd φ

it (8)

pbt = ∑
φÎΦb

pφ
bt (9)

pgt = ∑
φÎΦg

pφ
gt (10)

qbt = ∑
φÎΦb

qφ
bt (11)

qgt = ∑
φÎΦg

qφ
gt (12)

pmin
gt £ pgt £ pmax

gt (13)

qmin
gt £ qgt £ qmax

gt (14)

chst = ∑
φÎΦs

chφ
st (15)

disst = ∑
φÎΦs

disφ
st (16)

qst = ∑
φÎΦs

qφ
st (17)

SOCst - (1 - αs )SOCst - 1 = (chst × ηs - disst /ηs )Dt (18)

SOC min
s £ SOCst £ SOC max

s (19)

chmin
s £ chst £ chmax

s (20)

dismin
s £ disst £ dismax

s (21)

(disst - chst )
2 + q2

st £ dismax
s (22)

σmin (JPFt0
)³ σref (23)

where t0 and Tp are the starting time and look-ahead win‐
dow, respectively; cbt, cg, and cs are the linear prices for 
buying power from the upstream system, DG output, and 
ESS charging/discharging, respectively; pd φ

it and qd φ
it are the 

nodal active and reactive loads, respectively; Â(x) and Á(x) 
are the real and imaginary parts of the complex number x, 
respectively; pφ

it and qφ
it are the elements in power injection 

vector p it and q it, respectively; U i, Gi, and S i are the sets of 
the upstream system connection point, DGs, and ESSs at 
node i, respectively, and can be an empty set if they do not 
exist; V min

i  V max
i  S min

ij  S max
ij  are the lower and upper limits 

of voltage and line flow, respectively; pmin
gt  p

max
gt  q

min
gt  q

max
gt  

are the the lower and upper limits of active and reactive 
power of DGs, respectively; ηs is the charging/discharging ef‐

T=24

00�00 01�00 01�00

Look-ahead window

02�00 02�0003�00 24�00

Fig. 1.　Illustration of rolling-horizon optimization.
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ficiency coefficient; SOC is the state of charge variable; αs 
is the energy storage self-discharging ratio; chmin

s , chmax
s , 

dismin
s , dismax

s  are the lower and upper limits of charging and 
discharging power, respectively; σmin (JPFt0

) is the MSV of 

the power flow Jacobian matrix JPF; and σref is the given 
voltage stability margin. Equations (3) and (4) are the power 
injection constraints that indicate the nodal power balance; 
(5) and (6) are the constraints for voltage amplitude and line 
capacity, respectively; (9) - (14) are the constraints on power 
output from power resources; and (15) - (19) are the con‐
straints on ESS.

It should be noted that the ESSs can provide reactive pow‐
er support to the distribution system. Variables on the left 
side in (9)-(12) and (15)-(17) represent the summation of the 
variables on the right side over all the possible phases, e.g., 
pbt is the total active power injection from the upstream net‐
work over phases {abc}.

In this paper, we treat the MSV of JPF as a signal of volt‐
age stability, that is, we would operate the power system 
with a pre-defined VSM, which gives rise to (23). Concrete‐
ly, (23) constrains the MSV of JPF above σref. In the rolling-
horizon scheme, only the result of the first interval will be 
used. We thus only enforce (23) in the first interval to de‐
crease the computation burden.

B. SDP-based ACOPF Relaxation

The nonlinear constraints (3) and (4) can be convexified 
by SDP formulation. The standard SDP relaxation introduces 
a symmetric matrix W [43]:

W =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
V1

V2


Vn + 1

[V H
1 V H

2  V H
n + 1 ] (24)

Shift the nonconvexity from (1) to W≽ 0 rank(W )= 1, 
and then remove the rank constraint. Notice that only blocks 
corresponding to lines (i j) appear in other constraints be‐
sides W≽ 0. We can perform chordal relaxation by only de‐
fining the blocks Wij in W that corresponds to real lines in 
the system:

W ij =
é

ë

ê
êê
ê ù

û

ú
úú
úuΦij

i Xij

Xji uj

=
é

ë

ê
êê
ê ù

û

ú
úú
úV Φij

i

Vj

é

ë

ê
êê
ê ù

û

ú
úú
úV Φij

i

Vj

H

    (ij)ÎE (25)

where uiÎ|Φi| ´ |Φi|; and XijÎC|Φij| ´ |Φij|. It should be noted that 

Xji =X H
ij  "(ij)ÎE; and 

é

ë

ê
êê
ê ù

û

ú
úú
úuΦij

i Xij

Xji uj

≽ 0 is rank one, "(ij)ÎE.

It is common practice to replace W≽ 0 with 
é

ë

ê
êê
ê ù

û

ú
úú
úuΦij

i Xij

Xji uj

≽ 

0 "(ij) to exploit the radial network topology to reduce 
computation burden [43], [44]. For unbalanced distribution 
systems with a radial network, the graphs of their OPF prob‐
lems are chordal, and the above replacement is based on 
chordal relaxation. For the meshed networks whose graphs 
are no longer chordal, this replacement can be interpreted as 
requiring the principal submatrices of W to be positive semi‐
definite, which is the necessary condition for W≽ 0 [45]. 
Therefore, our formulation is also applicable to the meshed 

networks, but replacing W≽ 0 with its necessary conditions 
might be less numerically tractable.

We can now replace the elements of complex voltage vec‐
tors in (3) and (4) by elements in Wij. We further define 
dummy variables cφϕ

ij  and sφϕ
ij  for the real and reactive parts 

of matrix Wij.

cφϕ
ii =Â(V φ

i V ϕ
i )=Â(uφϕ

i ) (26)

sφϕ
ii =-Á(V φ

i V ϕ
i )=-Á(uφϕ

i ) (27)

cφϕ
ij =Â(V φ

i V ϕ
j )=Â(X φϕ

ij ) (28)

sφϕ
ij =-Á(V φ

i V ϕ
j )=-Á(X φϕ

ij ) (29)

ì
í
î

ïï
ïï

cϕφ
ji = cφϕ

ij

sϕφ
ji =-sφϕ

ij

(30)

ì
í
î

ïï
ïï

cϕφ
ji = cφϕ

ij

sϕφ
ji =-sφϕ

ij

(31)

It should also be noted that sφφ
ii = 0. Now we can reformu‐

late the power flow constraints using s and c. The complete 
formulation of the SDP-based ACOPF is described by the 
objective (2) with (7)-(22) and the following constraints.

pφ
i = ∑

ϕÎΦi

(cφϕ
ii Gφϕ

ii - sφϕ
ii Bφϕ

ii ) +∑
j:i  j
∑

ϕÎΦij

(cφϕ
ij Gφϕ

ij - sφϕ
ii Bφϕ

ij ) (32)

qφ
i = ∑

ϕÎΦi

(-cφϕ
ii Bφϕ

ii - sφϕ
ii Gφϕ

ii ) +∑
j:i  j
∑

ϕÎΦij

(-cφϕ
ij Bφϕ

ij - sφϕ
ii Gφϕ

ij )

(33)

(V min
i )2 £ cφφ

iit £(V max
i )2    "i"φ"t (34)

S min
ij £ |

|
|
|diag{ }(uΦij

it -Xijt )Y
H

ij £ S max
ij     "i  j"t (35)

é

ë

ê
êê
ê ù

û

ú
úú
úuΦij

i Xij

X H
ij uj

≽ 0    "(ij)ÎE (36)

The above SDP-based ACOPF formulation is convex ex‐
cept for constraint (23). To convexify this constraint, we 
need to first obtain an explicit formulation of JPF using state 
variables s and c, which will be introduced in the next sub‐
section.

C. JPF for Unbalanced System

The power flow Jacobian matrix of the unbalanced system 
is used to study the voltage stability level of the distribution 
system, which can be expressed in (37), where the sub-ma‐
trix Jxy (x =PQ, y = θV) corresponds to x on the left vector 
and y on the right vector.

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê
êêê
ê

ê

ê

ê

ê

ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú
úúú
ú

ú

ú

ú

ú

ú

ú

ú

ú
Dpφ

1

Dpφ
2


Dpϕ

n

Dqφ
1

Dqφ
2


Dqϕ

m

= é
ë
êêêê ù

û
úúúúJPθ JPV

JQθ JQV

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú

ú

ú

ú
Dθ φ

1

Dθ φ
2


Dθ ϕ

n

D|V φ
1 |/|V φ

1 |

D|V φ
2 |/|V φ

2 |


D|V ϕ

m |/|V ϕ
m |

(37)

The elements of Jacobian matrix are obtained by taking 
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derivatives of the nodal power injection over voltage angle θ 
and amplitude |V |. Note that we introduce c and s to repre‐
sent power injection in (32) and (33), respectively, and the 
relationships can be derived as:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

¶cφϕ
ij

¶θ ϕ
j

=-sφϕ
ij

¶sφϕ
ij

¶θ ϕ
j

= cφϕ
ij

(38)

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

¶cφϕ
ij

¶θ φ
i

= sφϕ
ij

¶sφϕ
ij

¶θ φ
i

=-cφϕ
ij

(39)

Thus, the Jacobian matrix can be explicitly formulated in 
terms of the state variables.

The elements in the Jacobian matrix are categorized into 
different categories.
1)　Off Diagonal Elements for i ¹ j

¶DP φ
i

¶θ ϕ
j

=Gφϕ
ij sφϕ

ij +Bφϕ
ij cφϕ

ij (40)

¶DP φ
i

¶|V ϕ
j |

|V ϕ
j | =-Gφϕ

ij cφϕ
ij +Bφϕ

ij sφϕ
ij (41)

¶DQφ
i

¶θ ϕ
j

=Gφϕ
ij cφϕ

ij -Bφϕ
ij sφϕ

ij (42)

¶DQφ
i

¶|V ϕ
j |

|V ϕ
j | =Gφϕ

ij sφϕ
ij +Bφϕ

ij cφϕ
ij (43)

2)　Off Diagonal Elements for i = jφ ¹ ϕ

¶DP φ
i

¶θ ϕ
i

=Gφϕ
ii sφϕ

ii +Bφϕ
ii cφϕ

ii (44)

¶DP φ
i

¶|V ϕ
i |

|V ϕ
i | =-Gφϕ

ii cφϕ
ii +Bφϕ

ii sφϕ
ii (45)

¶DQφ
i

¶θ ϕ
i

=Gφϕ
ii cφϕ

ii -Bφϕ
ii sφϕ

ii (46)

¶DQφ
i

¶|V ϕ
i |

|V ϕ
i | =Gφϕ

ii sφϕ
ii +Bφϕ

ii cφϕ
ii (47)

3)　Diagonal Elements

¶DP φ
i

¶θ φ
i

=∑
ϕ ¹ φ

( )-Gφϕ
ii sφϕ

ii -Bφϕ
ii cφϕ

ii -

∑
j:i  j
∑

ϕÎΦij

( )Gφϕ
ij sφϕ

ij +Bφϕ
ij cφϕ

ij = qφ
it +Bφφ

ii cφφ
ii (48)

¶DP φ
i

¶|V φ
i |

|V φ
i | =-2Gφφ

ii cφφ
ii +∑

ϕ ¹ φ
( )-Gφϕ

ii cφϕ
ii +Bφϕ

ii sφϕ
ii +

∑
j:i  j
∑

ϕÎΦij

( )-Gφϕ
ij cφϕ

ij +Bφϕ
ij sφϕ

ij =-pφ
it -Gφφ

ii cφφ
ii (49)

¶DQφ
i

¶θ φ
i

=∑
ϕ ¹ φ

(-Gφϕ
ii cφϕ

ii +Bφϕ
ii sφϕ

ii ) -

∑
j:i  j
∑

ϕÎΦij

(-Gφϕ
ij cφϕ

ij +Bφϕ
ij sφϕ

ij ) =-pφ
it +Gφφ

ii cφφ
ii (50)

¶DQφ
i

¶|V φ
i |

|V φ
i | = 2Bφφ

ii cφφ
ii +∑

ϕ ¹ φ

(Gφϕ
ii sφϕ

ii +Bφϕ
ii cφϕ

ii ) +

∑
j:i  j
∑

ϕÎΦij

(Gφϕ
ij sφϕ

ij +Bφϕ
ij cφϕ

ij ) =-qφ
it +Bφφ

ii cφφ
ii (51)

Therefore, the elements in the Jacobian matrix are explicit‐
ly formulated with state variables c and s. In the next sec‐
tion, we will show how to replace the nonlinear constraint 
(23) with an LMI constraint, which can be incorporated in 
the general SDP-based ACOPF framework.

III. SDP-BASED VSC-OPF FORMULATION

A. Controlling Singular Values with SDP

Constraint (23) requires the MSV of the JPF over a given 
value. This constraint is nonlinear and cannot be directly ex‐
pressed by the state variables of the ACOPF. Different meth‐
ods are designed in previous works to solve this problem 
[1], [23]. In general, it is nontrivial to explicitly embed the 
MSV of JPF into the optimization framework.

In this subsection, we adopt the method to control the 
MSV of a matrix using SDP optimization proposed by [46]. 
This method is mostly used in computer graphics, and in 
this paper, we extend it to the power system. According to 
[46], the subset of matrices whose MSV is at least a con‐
stant λ ³ 0 is:

Iλ = { }AÎRn ´ n| σmin (A)³ λ (52)

Iλ is not convex. However, it is possible to derive its max‐
imal convex subset using simple LMI and incorporate it in 
the SDP formulation. The basic formulation of the maximal 
convex subset of Iλ is:

Cλ =
ì
í
î

ü
ý
þ

AÎRn ´ n
|

|
|
||
| A +AT

2
≽ λI (53)

By the definition of positive semidefinite matrix, Cλ is 
equivalent to:

Cλ = { }A|
| xT Ax ³ λ" x

2
= 1xÎRn (54)

To verify that it is a subset of Iλ, let x be the unit norm 
eigenvector of AT A corresponding to its eigenvalue σ 2

min (A), 
and we can obtain:

 Ax
2
= (Ax)T Ax = xT (σ 2

min (A)x) = σmin (A) x
2

(55)

By Cauchy-Schwartz inequality, we can deduce:

 Ax
2
=  x

2
 Ax

2
³ xT Ax ³ λ (56)

Since AT A is symmetric, x is orthogonal,  x
2
= 1, and 

we can conclude that its MSV is larger than λ:

σmin (A)³ λ (57)

Cλ is the basic formulation for the convex subset of Iλ. So 
we can rewrite constraint (23) as:
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JPFt0
+ J T

PFt0

2
≽ σref I (58)

It should be noted that Cλ does not cover the entire space 
of Iλ, and the optimization can be performed on rotated cop‐
ies of Cλ. The rotation matrix can be obtained by polar de‐
composition JPF =RS. The updated constraint will be:

RT JPFt0
+ J T

PFt0
R

2
≽ σref I (59)

Note that the singular value of JPF is an absolute proximi‐
ty indicator to voltage collapse without any assumption re‐
garding load or generator change pattern [6]. Nevertheless, 
the operators should be able to detect emergencies from the 
analysis of this value.

B. Finding Low-rank Solution for SDP Relaxation

In the ACOPF, we remove the rank-1 constraint to obtain 
the standard SDP relaxation. If the result of (37) is a rank-1 
matrix, a unique solution of V can be recovered. The exis‐
tence of a global optimal rank-1 solution can be proven for 
single-phase radial networks; however, no sufficient condi‐
tion for exact relaxation in the unbalanced system exists 
[47]. Although numerical simulations in previous research 
have achieved exact results in many standard IEEE test sys‐
tems, when energy storage or voltage stability constraints are 
considered, it cannot be guaranteed that SDP relaxation will 
be exact. This phenomenon is usually termed as the “rank-1 
conundrum”. To improve the exactness of SDP, we adopt the 
penalty technique from [48] to recover the low-rank solu‐
tion. The original ACOPF can be reformulated as:

ì

í

î

ïïïï

ï
ïï
ï

min
X

é

ë

ê
êê
ê
ê
ê ù

û

ú
úú
ú
ú
ú

fc + γ ( )qbt0
+∑

gÎG
qgt0

+∑
sÎS

qst0

s.t. (7)-(22) (32)-(36) (59)

(60)

where fc is the objective function in (2); and γ is a given pos‐
itive weight. The introduction of the penalty term in the ob‐
jective function aims to increase the off-diagonal entries W, 
which, therefore, decreases the principal minors of 2-by-2 
submatrices of W. The effectiveness of this technique in an 
unbalanced distribution system can be found in [47].

The final flowchart of the proposed VSC-OPF is drawn in 
Fig. 2. In each optimization interval, the original VSC-OPF 
of (2), (7)- (22), (32)-(36) is first solved to obtain the rota‐
tion matrix R. Then the VSC-OPF with the rotated VSC con‐
straints (7)-(22), (32)-(36), (59), and (60) is solved. The re‐
sult is saved for that interval and the iteration proceeds.

IV. CASE STUDY 

In this section, case studies are carried out for the modi‐
fied IEEE 13-bus, 34-bus, 37-bus, and 123-bus systems with 
DG, ESSs, and a non-dispatchable PV. The proposed method 
is first validated, and then the impact of VSC on the OPF re‐
sults is studied. The optimization problem is implemented in 
YALMIP in MATLAB with Mosek as the SDP solver [49]. 
The test system data can be found in [50]. The computation‐
al tasks are performed on a personal computer with Intel 
Core i7 Processor (2.80 GHz) and 32 GB RAM.

A. Feasibility of Proposed Method

We assume that the test system is connected to an upper-
level main grid through bus 1 where the test system can buy 
power at LMP.

Bus 1 acts as the slack bus, and the other buses are all 
PQ buses. The proposed method models constant power 
loads and can be easily extended to constant impedance load 
as well. The operation cost is concerned with the test sys‐
tem, consisting of energy purchase cost from the main grid, 
the DG cost, and ESSs charging/discharging cost.

For validation purposes, we choose the peak-load hour 
and test the proposed method with a 1-hour look-ahead win‐
dow. The proposed VSC-OPF method, termed “VSC”, are 
compared with two methods.

1) “OPF”: the OPF without VSC is solved as a base case.
2) “VSC”: the VSC-OPF is then solved by increasing σref 

slightly over the original MSV from “OPF”.
3) “ITER”: an alternative iteration based VSC-OPF from 

[23] is adopted as a benchmark method for comparison. The 
inner problem of the iterative method is also solved by the 
SDP formulation.

The results are listed in Table I. It can be observed that 
the costs in VSC for all systems are higher than the base 
case due to the effect of MSV on operation costs. The im‐
pacts of VSC on the OPF dispatch results are investigated in 
detail in the following subsections. With the same MSV 
threshold, the proposed method can achieve smaller costs 
than the iterative method. However, the iterative method us‐
es a heuristic approach to reformulate constraint (23), which 
encounters numerical issues in case 34 and slow convergen‐
ces in all cases unless the MSV threshold is only slightly 
higher than the original MSV.

To evaluate the exactness of SDP relaxation, we adopt a 
parameter λl, which equals to the ratio between the second 

Start

t=t+1

Output results

End

Y

N

N

Y

Input data, t=1, look-ahead window Tp=3 hours, T=24 hours

t≤T?

Optimize (2), (32)-(37) and obtain R

Optimize (32)-(37), (60), and (61)

Save the result of interval t

σmin(JPF, t0)≥σref?

Fig. 2.　Flowchart of proposed VSC-OPF.
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largest and the largest eigenvalue of the matrix of (37). The 
average of λl over all the lines is 

-
λ, and the maximum of λl 

of all lines is λmax. The original OPF result can be consid‐
ered exact because λmax is lower than 10-6. The proposed 
method is able to improve MSV while obtaining a low-rank 
result. The effectiveness and scalability of the proposed 
method are validated.

B. Impact of VSC on DG Dispatch

In this subsection, we investigate the impact of VSC on 
active/reactive power output in IEEE 13-bus and 37-bus sys‐
tems. We apply the proposed method for 24 hours with a 3-
hour look-ahead window. As a basic case, we run OPF with‐
out VSC and calculate the average MSV σ0 of 24 hours. We 
then run additional cases where σ indicates the percentage in‐
crease of the voltage stability margin σref in (60) over σ0. 
The simulation results for IEEE 13-bus and 37-bus systems 
are given in Table II and Table III, respectively.

1) Case 1: no VSC constraint is enforced (σ = 0%).
2) Case 2: VSC-OPF is run with σ = 5%.
3) Case 3: VSC-OPF is run with σ = 10%.
4) Case 4: VSC-OPF is run with σ = 13%.
In both test systems, we start with Case 1, and obtain σ0 

in each system, and use this value multiplied by (1 + σ) as 
σref in (60) for the rest of cases.

As can be observed from Table II and Table III, increas‐
ing the VSM generally leads to higher operation cost, e. g., 
when σ = 5%, the total cost increases by 0.40% and 3.7% for 
the IEEE 13-bus and 37-bus systems, respectively; when σ =
13%, the total costs increase by 4.8% and 32% for the two 
systems. While the distribution of active power among differ‐
ent power resources is determined by the configuration of 
the individual system, it is clear that for both systems, after 
the introduction of VSC, ESS costs are reduced and DG 
costs are increased. To investigate the effect of VSC on the 
power dispatch, we plot the active and reactive power ex‐
change with the main grid, DG outputs, as well as the ESS 
charging/discharging in Fig. 3 and Fig. 4 regarding different 
cases.
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TABLE III
SIMULATION RESULT FOR IEEE 37-BUS SYSTEM

Case

1

2

3

4

Cost ($)

Total

512.12

531.11

611.35

678.15

Main grid

328.46

318.26

373.04

437.49

DG

169.03

201.98

232.17

235.53

ESSs

14.74

10.87

5.13

5.12

σref

0.3391

0.3560

0.3730

0.3832

λmax

2.70 ´ 10-6

4.08 ´ 10-6

1.00 ´ 10-2

2.50 ´ 10-2

-
λ

5.66 ´ 10-7

5.80 ´ 10-7

1.05 ´ 10-3

3.65 ´ 10-3

TABLE I
VALIDATION OF PROPOSED METHOD ON DIFFERENT IEEE TEST SYSTEMS

Sys‐
tem

13-bus

34-bus

37-bus

123-
bus

Cost ($)

OPF

13.50

14.23

3.18

47.87

VSC

13.51

14.25

3.19

48.07

ITER

13.51

3.19

48.06

MSV

OPF

0.560

0.180

0.344

0.072

VSC

0.570

0.190

0.347

0.074

ITER

0.570

0.347

0.074

λmax

OPF

1×10-8

1×10-6

1×10-8

1×10-7

VSC

1×10-9

1×10-5

1×10-8

1×10-6

ITER

1×10-9

1×10-8

1×10-6

TABLE II
SIMULATION RESULT FOR IEEE 13-BUS SYSTEM

Case

1

2

3

4

Cost ($)

Total

802.64

805.92

827.45

841.43

Main grid

500.71

500.70

426.40

429.20

DG

283.15

288.01

392.38

404.61

ESSs

18.77

17.22

8.67

7.61

σref

0.5635

0.5927

0.6198

0.6367

λmax

5.98 ´ 10-7

1.71 ´ 10-6

1.49 ´ 10-5

6.97 ´ 10-3

-
λ

6.16 ´ 10-8

1.22 ´ 10-7

4.42 ´ 10-7

9.46 ´ 10-4
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It is evident that the increased voltage stability margin can 
influence both the active and reactive power dispatches. In 
particular, ESSs can harness the volatility of the LMP 
throughout the day for energy arbitrage. However, as charg‐
ing ESSs act as a load, higher charging power will negative‐
ly impact the voltage stability level. As σ increases, the 
charging power of ESSs drops, and the reactive power dis‐
charged from ESSs increases. The VSC constraint will also 
change the voltage profile. Figure 5 shows the voltage ampli‐
tude of the IEEE 13-bus and 123-bus systems at the 18th 
hour. As σ increases, the voltage profile of the 13-bus sys‐
tem is improved accordingly. The voltage profile of the 
IEEE 123-bus system shows that the mean voltage ampli‐
tude over all buses is improved by VSC but not all bus volt‐
age amplitudes are increased. The average voltage amplitude 
can be obtained through the matrix ui. Suppose that for bus 
i, Φ i ={abc}, then the diagonal elements of ui correspond to:

diag(ui )= [ ]|V a
i |2|V b

i |2|V c
i |2 (62)

The voltage amplitude of phase φ is:

|V φ
i | = |V φ

i |2 (63)

Here we take the average of the voltage amplitude over 
the cardinality of Φ i to show the average voltage profile:

|V̄i| = ∑
φÎΦi

|V φ
i |

|Φ i|
(64)

For the reactive power, we can observe that the increase 
of VSC leads to a significant change in the pattern of the re‐
active power dispatch. As σ increases, the reactive power 
from the ESS increases, and the main grid also absorbs 
more reactive power.

For all cases, as the VSC is increased by σ, the second 
largest eigenvalue is still significantly smaller than the larg‐
est eigenvalue, so the SDP can be considered approximately 

exact or at least low-rank. However, the exactness of the 
SDP relaxation is reduced as the voltage stability margin is 
increased.

C. Influence of Load Variation on VSM

In this subsection, we investigate the effect of load levels 
on the results of the IEEE 13-bus system. Figure 5 gives the 
hourly load profile for one day and the corresponding hourly 
MSV from case 1 to case 4. When there is no VSC con‐
straint, it can be observed that the trend of MSV in case 1 is 
inversely proportional to the load level. In general, a higher 
load level usually means a lower MSV, and vice versa. For 
hours 3-6, the MSV of the original OPF result already satis‐
fies the requirement of σ = 5%, and the costs of two systems 
coincide for that period in Fig. 6(b). This demonstrates that 
VSC-OPF can be performed only at peak load hours when 
the VSM is small, and the risk of voltage instability is high. 
When σ = 10%, the MSV throughout the day is increased, 
and the hourly cost is also higher than the cost of the system 
with no VSC or a lower σ.

The system cost is also influenced by the LMP from the 
main grid, which is the blue dashed line in Fig. 6(b). The 
three-hour look ahead window allows ESSs to detect LMP 
fluctuation, and ESSs will be charged at a lower LMP and 
discharge later. As shown in the previous subsection, when 
VSC is employed, the charging power of ESSs is reduced. 
This trend is also reflected in the hourly cost plot. The sys‐
tem without VSC will have higher costs during low-LMP pe‐
riods due to ESSs charging and lower costs later. As σ in‐
creases, the overall costs increase, while the costs at lower 
LMPs drop because the charging cost of ESSs is reduced.

D. Influence of ESSs on VSM

As shown in the previous subsection, ESSs can achieve 
energy arbitrage. However, VSC may limit the active charg‐
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ing power of ESSs. Thus, when VSC is considered, the ener‐
gy charged by the ESSs is reduced. However, another impor‐
tant function of ESSs is to provide reactive power support to 
the system. We rerun the VSC-OPF for test systems without 
ESSs, and the results are shown in Tables IV and V. The av‐
erage MSV values in case 1 for the two systems are 0.5510 
and 0.3380, respectively, less than those with ESSs. This 
demonstrates that even without VSC, the existence of ESSs 
can help improve the overall VSM. The hourly cost and reac‐
tive power dispatch for the IEEE 37-bus system without ES‐
Ss are plotted in Fig. 7. There is a clear trend that higher 
VSM leads to higher costs. Without reactive power support 
from ESSs, the main-grid has to provide reactive power 
from the 11th hour to 22nd hour.

E. Influence of Unbalanced Operation on VSM

One of the characteristics of the power distribution system 
is its unbalanced operation. In this subsection, we set up 
three cases of different balanced levels for comparison.

1) “Original”: IEEE 13-bus case 1 from Section IV-B.
2) “Balanced”: based on the “Original”, the loads are 

evenly redistributed among the phases.
3) “More unbalanced”: based on “Original”, the load is 

redistributed more unevenly.
Figure 8 shows that different levels of unbalance lead to 

different VSM. Throughout the day, the hourly MSV indi‐
cates that a more balanced system will have a higher VSM, 
e.g., at the 17th hour, the MSV of a balanced case is 2.02% 
higher than that of the unbalanced case. The VSM difference 
is more prominent in peak load hours. When the load is low, 
it can be observed that the three cases achieve almost the 
same MSV. Table VI shows the cost comparison with differ‐
ent balanced levels. We can observe that the cost of the 
more unbalanced case is higher than the original case and 
the balanced case. These observations also emphasize the im‐
portance of considering unbalanced operation in VSC-OPF.

V. CONCLUSION

A novel method to incorporate voltage stability constraints 
in the unbalanced distribution system OPF problem is pro‐
posed in this paper. The MSV of the power flow Jacobian 
matrix is taken as a metric for voltage stability. The con‐
straint on the MSV is reformulated as an LMI and can be in‐
corporated in the SDP-based ACOPF model. This reformula‐
tion allows the algorithm to find the optimal solution in the 
maximal convex subset of the original voltage stability con‐
straints. The case studies validate the proposed method. Sim‐
ulation results show that the proposed method can effective‐
ly improve the VSM of the test systems, and the effect of 
VSC on operation costs and power dispatch results are pre‐
sented. A penalty technique is employed to achieve a low-
rank OPF solution. While most of the VSC-OPF solutions re‐
main low-rank, as the VSM increases, the exactness of the 
SDP-OPF is gradually decreased. The future research direc‐
tion is to find better methods to improve the SDP relaxation 
exactness and the evaluation of the proper MSV threshold. 
New methods with less computation burdens are desired to 
consider stochastic scenarios in power system operation.

TABLE IV
COST FOR IEEE 13-BUS SYSTEM WITHOUT ESSS

Case

1

2

3

Cost ($)

Total

845.62

859.52

880.64

Main grid

563.59

484.54

469.27

DG

282.03

374.98

411.37

σref

0.5510

0.5806

0.6061

TABLE V
COST FOR IEEE 37-BUS SYSTEM WITHOUT ESSS

Case

1

2

3

Cost ($)

Total

550.72

567.81

676.48

Main grid

382.26

343.07

436.48

DG

168.46

224.73

239.99

σref

0.3380

0.3465

0.3630
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Fig. 7.　Hourly cost and reactive power dispatch for IEEE 37-bus system 
without ESSs. (a) Hourly cost. (b) Reactive power dispatch.
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TABLE VI
COST COMPARISON WITH DIFFERENT UNBALANCED LEVELS

Unbalanced level

Balanced, no VSC

Balanced, σ = 5%

Unbalanced, no VSC

Unbalanced, σ = 5%

Cost ($)

Total

801.57

812.28

803.58

813.29

Main grid

499.65

451.29

501.42

434.44

DG

283.14

350.28

283.37

366.50

ESS

18.78

10.74

18.78

12.33

σref

0.5700

0.5986

0.5537

0.5840
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