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Bi-level Multi-objective Joint Planning of 
Distribution Networks Considering Uncertainties

Shouxiang Wang, Yichao Dong, Qianyu Zhao, and Xu Zhang

Abstract——With the increasing penetration of photovoltaics in 
distribution networks, the adaptability of distribution network 
under uncertainties needs to be considered in the planning of 
distribution systems. In this paper, the interval arithmetic and 
affine arithmetic are applied to deal with uncertainties, and an 
affine arithmetic based bi-level multi-objective joint planning 
model is built, which can obtain the planning schemes with low 
constraint-violation risk, high reliability and strong adaptabili‐
ty. On this basis, a bi-level multi-objective solution methodology 
using affine arithmetic based non-dominated sorting genetic al‐
gorithm II is proposed, and the planning schemes that simulta‐
neously meet economy and adaptability goals under uncertain‐
ties can be obtained. To further eliminate bad solutions and im‐
prove the solution qualities, an affine arithmetic based domi‐
nance relation weakening criterion and a deviation distance 
based modification method are proposed. A 24-bus test system 
and a 10 kV distribution system of China are used for case 
studies. Different uncertainty levels are compared, and a sensi‐
tivity analysis of key parameters is conducted to explore their 
impacts on the final planning schemes. The simulation results 
verify the advantages of the proposed affine arithmetic based 
planning method.

Index Terms——Affine arithmetic, adaptability, multi-objective 
joint planning, Pareto optimal front, uncertainty.

NOMENCLATURE

A. Sets

Ωn, Ωss, Ωl

Ωssa, Ωla

Ωc, Ωk

Ωh, Ωth

Sets of buses, substation buses, and lines

Sets of candidate substation buses and candi‐
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Sets of stages and time slots in stage h

Ωd
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d
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Ωdtie
lh
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αloss, αpro

α1, α2

α3, α4

εth

λ1, λ2

ccons
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lk , 
ccons

PV , ccons
SVC

cup
ssc, c

up
lk

co&m
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I max
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N max
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NΩh
, NΩss
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Ωd

nh

P capmax
PVih , 

Qmax
SVCih

Ri,AVG

S max
ssc

V max

zlk

C. Variables

σ cons
ich, δ

cons
ijkh

σ up
ich, δ

up
ijkh

Sets of all buses, lines, and tie-lines at sub‐
station d in stage h

Network loss cost and photovoltaic (PV) 
generation profit per unit of electricity

Weight coefficients of tie-line connection de‐
gree and network cohesion degree

Weight coefficients of voltage violation mar‐
gin and current violation margin

Duration of each time slot in stage h

Inflation rate and interest rate

Construction costs of type-c substation, unit 
length conductor-k line, unit PV power, and 
unit static var compensator (SVC)

Upgrade costs of type-c substation and unit 
length conductor-k line

Operation and maintenance costs of type-c 
substation, unit length conductor-k line, unit 
PV power, and unit SVC

The maximum allowable current magnitude 
and apparent power for conductor-k line

Length of line ij

The maximum numbers of buses with PV 
and SVC installations

Sizes of sets Ωh, Ωss, and Ωd
nh

The maximum PV installation capacity and 
SVC compensation capacity at bus i in 
stage h

Average radius of affine polynomial of the 
ith affine objective

The maximum allowable substation capacity

The maximum allowable voltage magnitude

Unit impedance of conductor-k line

Binary decision variables representing 
whether constructing type-c substation at 
bus i and conductor-k line ij in stage h

Binary decision variables representing 
whether upgrading type-c substation at bus i 
and conductor-k line ij in stage h 
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βih, γih

τich, μijkh

η̂(t)
PVh

φPVih

ψijh, ψjih

εm

cijh

Dtcdh, Dncdh

D̂d
PVh

dAVG (xk )

eijh

f ̂invh, f ̂o&mh, 
f ̂lossh, f ̂proh

f ̂i (xk )

f (0)
i (xk ), 

f m
i (xk )

f (0)
iAVG, fiAVG

F̂(xk ), F
⌢

(xk )

F̂AVG, F
⌢

AVG

Gijpfh, Bijpfh

Î  (t)
ijpkh

L(×), 
Nd

OAVG (xk )

P̂ cap
PV , Q̂SVC

P̂ (t)
ih, Q̂

(t)
ih

P̂  (t)
PV ih, Q̂

 (t)
PV ih

P̂  (t)
L ih, Q̂

 (t)
L ih

S  (t)
ijpk

S  (t)
ssich

Binary decision variables representing 
whether installing PV and SVC at bus i 

Binary decision variables representing 
whether type-c substation at bus i and con‐
ductor-k line ij are in operation

Affine PV output efficiency at time t

PV power factor at bus i in stage h

Binary decision variables representing 
whether bus i is the parent of bus j

The mth noise element of affine polynomial

Binary decision variable representing wheth‐
er bus i and bus j are connected

Tie-line connection degree and network co‐
hesion degree in stage h

Affine standard deviation of PV installation 
capacity for substation d

Distance between f 0
i (xk ) and f 0

iAVG

Electrical distance between buses i and j

Affine investment cost, operation and main‐
tenance cost, network loss cost, and PV gen‐
eration profit in stage h

The ith affine objective of solution xk

Central value and the mth noise coefficient 
of f ̂i (xk )

Average central value of the ith affine objec‐
tive and average value of the ith determinis‐
tic objective

Affine and interval multi-objective vectors 
of solution xk

Affine and interval multi-objective vectors 
of average level

Line conductance and susceptance between 
phase-p of bus i and phase-f of bus j in 
stage h

Affine phase-p current magnitude of conduc‐
tor-k line at time t in stage h

Interval length and intersection operation

Number of deterministic objectives

Overlapping volume between hypercubes 

F
⌢

(xk ) and F
⌢

AVG

Affine PV installation capacity and SVC 
compensation capacity

Affine active power and reactive power in‐
jections of bus i at time t in stage h

Affine PV active power and reactive power 
of bus i at time t in stage h

Affine load active power and reactive pow‐
er of bus i at time t in stage h

Apparent power of conductor-k at time t

Capacity of type-c substation at time t

V̂ (t)
ih, θ̂

(t)
ijh

V̂ mar
h , Î mar

h

VAVG, V (xk )

Affine voltage magnitude of bus i and volt‐
age angle difference between bus i and bus 
j at time t in stage h

Affine voltage violation margin and current 
violation margin in stage h

Volumes of hypercubes F
⌢

(xk ) and F
⌢

AVG

I. INTRODUCTION

THE increasing penetration of photovoltaics (PVs) in dis‐
tribution network (DN) has inevitably induced some op‐

erational issues such as voltage violation [1] - [3], increased 
thermal stress [4], and degraded power quality [5]. To solve 
these issues, the adaptive planning of active distribution net‐
work (ADN) has become one of the research hotspots. In the 
traditional DN planning model, the cost concerning invest‐
ment, reliability, network loss, and grid power purchase is 
taken as the main objective [6]. On this basis, some improve‐
ments have been made in recent years. In [7], the DN plan‐
ning problem is formulated as second-order cone program‐
ming by the linearization technique. Some researchers have 
focused on multistage planning considering geographical lo‐
cations, environmental benefits, and multistage needs. In [8], 
the DN multistage planning considering different types, loca‐
tions and installation cycles of DN devices is proposed to 
minimize the total economic cost. In [9], the linearization 
technique is used to build a multistage mixed-integer linear 
programming (MILP) model, and the total cost is minimized 
by voltage regulator installation and network reconfiguration.

However, the objectives of the above models are mainly 
economy or reliability while the PV hosting capacity is rare‐
ly considered, which will restrict the enhancement of adapt‐
ability. Therefore, a DN planning model with discrete vari‐
ables and nonlinear power flow is presented in [10] to maxi‐
mize the PV hosting capacity. In [11], the network reconfigu‐
ration is formulated as a nonlinear and non-differentiable op‐
timization model for hosting capacity improvement. In [12], 
a two-stage planning model for adaptability enhancement is 
proposed, where the first stage solves static investment prob‐
lem and the second stage solves operational issue. Moreover, 
the PV and load uncertainties have great impacts on the safe 
and stable operation of DN as well as DN planning 
schemes. Although some researchers have tried to reduce im‐
pacts of uncertainties by the artificial intelligence approaches 
[13], the applicability of the above deterministic methods will 
be limited for lacking consideration of multiple uncertainties.

Currently, the probabilistic methods, robust methods, and 
interval methods are the three commonly used methods for 
dealing with uncertainty problems. Generally, the probabilis‐
tic methods [14]-[16] describe various uncertainties depend‐
ing on the probability density functions (PDFs) generated by 
massive scenario simulations. In [14], a stochastic planning 
model with techno-economic and environmental indices is 
built, where the intermittency of PV and load is quantified 
by K-means based probabilistic method. In [15], the uncer‐
tainties of heat and electricity demands as well as PV out‐
puts are quantified by massive scenario simulations. In [16], 
the Latin hypercube sampling and scenario reduction tech‐
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niques are used to build a probabilistic planning model. Al‐
though the probabilistic methods can effectively quantify 
multiple uncertainties, their performances are heavily depen‐
dent on the accuracy of PDFs. In reality, it is generally in‐
tractable to obtain accurate PDFs of PVs or loads, especially 
with limited measurement data, which restricts the applica‐
tion of probabilistic methods [17].

For addressing the drawbacks of probabilistic methods in 
dealing with uncertainties, the robust methods and interval 
methods are two feasible methods. The robust methods usual‐
ly characterize uncertainties through the polyhedral uncertain‐
ty sets, and the solution robustness can be effectively con‐
trolled by the budget of uncertainty [18]-[20]. However, the 
robust optimization model is generally a nonlinear and non-
convex min-max-min problem, which cannot be solved di‐
rectly by commercial optimization packages [18]. Hence, a 
bi-level or tri-level decomposition strategy comprising pri‐
mal and dual cuts is essential, and the convexification of 
power flow equation is needed to guarantee convergence 
[19], [20], which increases the model complexity and compu‐
tational burden.

In comparison, the interval methods are more applicable 
in dealing with uncertainty problems because all uncertain 
variables are expressed by their upper and lower bounds, 
which are relatively easier to obtain in most cases. The supe‐
riority of interval methods becomes more obvious, especially 
under the environment of insufficient meter configurations 
[21]-[23]. Generally, the interval methods can be realized in 
two ways, namely interval arithmetic (IA) and affine arithme‐
tic (AA). IA usually has the drawback of conservative com‐
putation when various uncertain variables are interrelated, 
which can be overcome by AA. AA can keep track on the 
dependencies of multiple uncertain variables and reduce the 
computation conservativeness by the complex operations of 
multiple affine polynomials. In a sense, AA is an advanced 
interval method with higher computation accuracy and lower 
conservativeness.

At present, some references [24], [25] have used IA for 
DN uncertainty planning, while AA has not been applied for 
DN planning considering uncertainties in the existing litera‐
tures. Therefore, an AA-based adaptability-oriented bi-level 
multi-objective joint planning model is built in this paper, 
and the AA-based non-dominated sorting genetic algorithm 
II (AA-NSGA-II) is used to calculate the AA-based Pareto 
optimal front (AA-POF). With an expanded analysis scope 
of DN adaptive planning and a comprehensive coverage on 
uncertainties, the proposed method can obtain more rational 
planning schemes with better economy and adaptability 
goals under uncertainties. The main contributions of this pa‐
per are as follows.

1) To realize the goal of DN adaptability enhancement, 
two indices, namely network structural adaptability and oper‐
ational adaptability, are proposed. Meanwhile, the concept of 
uneven degree of PV configuration is introduced to adequate‐
ly improve the PV hosting capacity through a more even PV 
configuration instead of the extreme one. On this basis, an 
adaptability-oriented bi-level multi-objective joint planning 
model is established, which can obtain the planning schemes 
with low constraint-violation risk, high reliability, and strong 
adaptability.

2) IA and AA are applied to precisely quantify uncertainty 
fluctuations of PVs and loads, and the deterministic planning 
model has been improved by incorporating affine parame‐
ters. On this basis, an AA-NSGA-II-based bi-level multi-ob‐
jective solution methodology is proposed to calculate AA-
POF. The obtained AA-POF represents a set of optimal plan‐
ning schemes that can simultaneously meet the economy and 
adaptability goals of DN considering uncertainties, which is 
of great significance for practical DN planning in the com‐
plex uncertain environment.

3) To further eliminate bad solutions in AA-POF and im‐
prove the solution qualities, an AA-based dominance relation 
weakening criterion and a deviation-distance-based AA-POF 
modification method are proposed. The comparison analysis 
of different uncertainty levels is conducted to explore their 
diverse interval variations. The results of AA-based planning 
method are compared with IA and Monte Carlo simulation 
(MCS) methods to demonstrate its advantages. In addition, a 
sensitivity analysis is conducted to explore the impacts of 
key parameters on the final planning schemes.

The remaining parts of this paper are organized as fol‐
lows. Section II presents the problem formulation, which es‐
tablishes the AA-based bi-level multi-objective joint plan‐
ning model. Section III proposes the AA-NSGA-II-based so‐
lution methodology. Section IV conducts the case study and 
sensitivity analysis. Finally, the main conclusions are drawn 
in Section V.

II. PROBLEM FORMULATION

In reality, the PV power outputs are inevitably affected by 
various uncertain factors such as variable solar radiations 
and temperatures, and load demands also constantly change 
with weather variations and electricity price adjustment [17]. 
The uncertainty fluctuations of PVs and loads can directly af‐
fect the uncertain power injections of all buses and then af‐
fect the uncertain power flow of DN, which has great im‐
pacts on the safe and stable operation of DN as well as DN 
planning schemes. To this end, IA and AA are applied in this 
paper to deal with uncertainties. IA is a numerical method 
where all uncertain variables are expressed in interval forms 
with the upper and lower bounds. AA is an advanced inter‐
val method where the dependencies of uncertain variables 
are considered, and the computation conservativeness can be 
effectively reduced by the complex operations of affine poly‐
nomials. The detailed arithmetical operations of IA and AA 
can be found in [26]. On this basis, the AA-based adaptabili‐
ty-oriented bi-level multi-objective joint planning model is 
built as follows.

A. Objective Functions

The bi-level multi-objective joint planning model includes 
four objectives in total. In the upper-level model, the con‐
struction and upgrade strategy of substation and line is opti‐
mized for minimizing the total economic cost and maximizing 
the network structural adaptability. In the lower-level model, 
the configuration strategy of PV and static var compensation 
(SVC) is optimized for maximizing the operational adaptabili‐
ty and minimizing the uneven degree of PV configuration.
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1) AA-based Total Economic Cost
The AA-based total economic cost f ̂1 in (1) is defined as 

the weighted sum of affine net present value of investment 
cost, operation and maintenance cost, network loss cost, and 
PV generation profit formulated by (2)-(5). The objective f ̂1 
is the fundamental objective for DN multistage planning.

min f ̂1 = ∑
hÎΩh

( )1 + λ1

1 + λ2

h

( finvh + fo&mh + flossh - fproh ) (1)
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ich ) +

∑
ijÎΩl

∑
kÎΩk
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ccons
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ccons
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∑
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∑
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co&m
lk μijkhlij +

∑
g = 1

h ∑
iÎΩn

co&m
PV βig P̂ cap

PVig +∑
g = 1

h ∑
iÎΩn

co&m
SVC γig (3)

f ̂lossh = αlossεth∑
tÎΩth

∑
ijÎΩn

Gijh( )(V̂ (t)
ih )2 + (V̂ (t)

jh )2 - 2V̂ (t)
ihV̂

(t)
jh cos θ̂ (t)

ijh

(4)

f ̂proh = αproεth∑
tÎΩth

∑
iÎΩn

βih P̂  (t)
PVih (5)

2) Network Structural Adaptability
The network structural adaptability f2 in (6) is defined as 

the weighted sum of two indices. The first index is the tie-
line connection degree (TCD) in (7), which is quantified by 
the distribution density of tie-lines between different power 
supply areas. Dtcd = 0 means there is no tie-line in operation 
and the corresponding power supply reliability is poor. The 
second index is the network cohesion degree (NCD) in (8) 
and (9), which is quantified by the strength of network cohe‐
sion between different geographical regions. Dncd = 0 means 
all substations supply power in their own geographical re‐
gions without interconnection. The objective f2 can effective‐
ly reflect the flexibility and adaptability of DN network 
structure, which is also important during the whole planning 
horizon.

max f2 =
1

NΩh

∑
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i
n

1
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eijh =
ì
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∑
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¥                          cijh = 0
(9)

3) AA-based Operation Adaptability
The high penetration of PVs has great impacts on the 

overall level of bus voltage and line current. The AA-based 
operational adaptability f ̂3 in (10) is defined as the weighted 
sum of voltage violation margin V̂ mar

h  and current violation 
margin Î mar

h  formulated by (11) and (12). f ̂3 can effectively re‐
flect the comprehensive constraint violation risk and DN op‐
erational adaptability under uncertainties. The larger f ̂3 is, the 
more abundant space for further PV installation there will 
be, and the DN will present larger PV hosting capacity and 
stronger operational adaptability accordingly.

max f ̂3 =
1

NΩh

∑
hÎΩh

(α3V̂
mar

h + α4 Î mar
h ) (10)
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h =

1
NΩss

N
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∑
iÎΩd

nh
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|
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|

|
||
|
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NΩss
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|

|
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|
|
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|

|
||
|
|
| I max

lk - Î (t)
ijpkh
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(12)

4) AA-based PV Configuration Uneven Degree
When a centralized PV with a large capacity is installed at 

the most distant terminal bus, which is called the extreme 
PV configuration, the voltage violation is most likely to oc‐
cur. In this condition, the PV configuration presents an un‐
even characteristic and the PV hosting capacity will be re‐
stricted. To this end, the AA-based PV configuration uneven 
degree f ̂4 is defined by (13)-(15) to quantify the uneven de‐
gree of PV configuration during all planning stages consider‐
ing uncertainties. By optimizing the objective f ̂4, the PV host‐
ing capacity can be adequately improved through a more even 
PV configuration instead of the extreme PV configuration.

min f ̂4 =
1

NΩh
NΩss

∑
hÎΩh

∑
dÎΩss

D̂d
PVh

P̂ capd
PVh

(13)

D̂d
PVh =

1
N
Ωd

nh

∑
iÎΩd

nh
( )βih P̂ cap

PVih -
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PVh

N
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2
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P̂ capd
PVh = ∑

iÎΩd
nh

βih P̂ cap
PVih (15)

B. Constraint Conditions

1) AA-based Three-phase Power Flow Constraints
To describe the three-phase unbalance characteristics of 

DN and influences of various uncertain factors, the AA-
based three-phase power flow is constrained by (16) - (21), 
where the AA-based forward-backward sweep power flow 
method [22] is used for analysis.

P̂ (t)
iph = V̂ (t)

iph∑
jÎΩn

∑
f = a

c

(GijpfhV̂
(t)

jfh cos θ̂ (t)
ijpfh +BijpfhV̂

(t)
jfh sin θ̂ (t)

ijpfh )

(16)

Q̂(t)
iph = V̂ (t)

iph∑
jÎΩn

∑
f = a

c

(GijpfhV̂
(t)

jfh sin θ̂ (t)
ijpfh -BijpfhV̂

(t)
jfh cos θ̂ (t)

ijpfh )

(17)

P̂ (t)
iph = βih P̂ (t)

PViph - P̂ (t)
Liph (18)

Q̂(t)
iph = βihQ̂

(t)
PViph + γihQ̂SVCiph - Q̂(t)

Liph (19)
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P̂ (t)
PV iph = P̂ cap

PViphη̂
(t)
PVh (20)

Q̂(t)
PViph = P̂ (t)

PViph tan(arccos φPVih ) (21)

2) Radial Topology Constraints
The DN radial topology should be maintained during the 

whole planning horizon as formulated by (22) and (23).
ψijh +ψjih = μijh    "ijÎΩl"hÎΩh (22)

ψijh = 0    "jÎΩss"hÎΩh (23)

∑
iÎΩn

ψijh = 1    "jÎΩn \Ωss"hÎΩh (24)

3) AA-based Steady-state Operation Constraints
The AA-based steady-state operation constraints concern‐

ing bus voltage, line current, and apparent power should be 
satisfied for each time slot as formulated by (25)-(27), which 
can ensure the normal operation of DN under uncertainties. 
The PV installation capacity, SVC compensation capacity, 
and substation capacity also need to be constrained by 
(28)-(30).

V min £ -V
(t)

iph < V̄ (t)
iph £V max    "iÎΩn"p = abc (25)

| Ī (t)
ijpkh | £ I max

lk     "ijÎΩl"kÎΩk"p = abc (26)

| S̄  (t)
ijpkh | £ S max

lk     "ijÎΩl"kÎΩk"p = abc (27)

P̄ cap
PVih £P capmax

PVih     "iÎΩn (28)

| Q̄SVCih | £Qmax
SVCih    "iÎΩn (29)

S  (t)
ssich £ S max

ssc     "iÎΩss"cÎΩc (30)

where the horizontal lined superscript 
-
(×) and subscript 

-
(×) rep‐

resent the upper and lower bounds of uncertain variable, re‐
spectively.
4) Multistage Planning Constraints

During the whole planning horizon, N max
PV  and N max

SVC  should 
be restricted by (31) and (32), respectively. Other multistage 
planning constraints for substations and lines are described 
in (33)-(36). ∑

hÎΩh

∑
iÎΩn

βih £N max
PV (31)

∑
hÎΩh

∑
iÎΩn

γih £N max
SVC (32)

∑
hÎΩh

∑
cÎΩc

(σ cons
ich + σ up

ich ) £ 1    "iÎΩss (33)

∑
hÎΩh

∑
kÎΩk

(δcons
ijkh + δup

ijkh ) £ 1    "ijÎΩl (34)

τih =
ì

í

î

ïïïï

ïïïï

∑
g = 1

h ∑
cÎΩc

σ cons
icg     "iÎΩssa"hÎΩh

1                       "iÎΩss \Ωssa"hÎΩh

(35)

μijh £∑
g = 1

h ∑
kÎΩk

δcons
ijkg     "ijÎΩla"hÎΩh (36)

III. SOLUTION METHODOLOGY

With the properties of fast non-dominated sorting and elit‐
ist strategy, NSGA-II has received a lot of attentions in solv‐
ing multi-objective optimization problems [27]. By incorpo‐

rating affine parameters in NSGA-II, AA-NSGA-II is pro‐
posed in [23]. In AA-NSGA-II, the objectives of all feasible 
solutions are compared in affine forms to reflect uncertain‐
ties. Based on AA-NSGA-II, an AA-based dominance rela‐
tion weakening criterion and a deviation distance based AA-
POF modification method are presented in this section, 
which can effectively eliminate bad solutions in the AA-POF 
and improve the solution qualities. On this basis, an AA-NS‐
GA-II-based bi-level multi-objective solution methodology is 
proposed.

A. AA-NSGA-II Improvement

1) AA-based Dominance Relation and AA-POF
The comparison of affine variables is usually conducted 

based on the confidence level. The detailed calculation meth‐
od of confidence level can be found in [23]. On this basis, 
the AA-based dominance relations between all feasible solu‐
tions in the solution space S ={xk|k = 12K} can be deter‐
mined. For an N-dimensional multi-objective minimization 
problem, the solution xi dominates xj in S if:

ì
í
î

ïïïï

ïïïï

Φ{ }f ̂a (xi )< f ̂a (xj ) ³ 0.5    "aÎ{12N}

Φ{ }f ̂b (xi )< f ̂b (xj ) > 0.5    $bÎ{12N}
(37)

When no other solutions in S dominate xk, xk becomes an 
AA-based Pareto optimal solution. Thus, the set of Pareto 
optimal solutions containing Knd solutions can be defined as 
Pnd ={xk|k = 12Knd }. On this basis, the AA-POF is de‐
fined as the affine multi-objective vector of all AA-based Pa‐
reto optimal solutions as shown in (38).

AA -POF = { }|F̂(xk )=[ f ̂1 (xk )f ̂2 (xk )f ̂N (xk )]T xkÎPnd (38)

With the increase of N, the dimension of AA-POF will get 
larger accordingly. When N = 2, the AA-POF is a set of rect‐
angles. When N = 3, the AA-POF is a set of cubes. When N ³
4, the AA-POF will become a set of hypercubes.
2) AA-based Dominance Relation Weakening Criterion

When N is large, there will be some bad solutions in the 
AA-POF which only have one non-dominated objective, 
while other objectives are all dominated by other solutions. 
These bad solutions will become less feasible with the in‐
crease of N because their ratios of non-dominated objective 
are getting lower, which makes their infeasibility closer to 
those solutions without any non-dominated objective. In this 
case, the strict dominance relation criterion in (37) seems 
less applicable, and it is necessary to eliminate bad solutions 
by appropriately weakening the dominance relation. To this 
end, an AA-based dominance relation weakening criterion is 
proposed in this paper. Under this criterion, the solution xi 
dominates xj if:

ì
í
î

ïïïï

ïïïï

Φ{ }f ̂a (xi )< f ̂a (xj ) ³ 0.5    "a £N - [ ]log2 (N - 2)

Φ{ }f ̂b (xi )< f ̂b (xj ) < 0.5    $b >N - [ ]log2 (N - 2)
(39)

where [×] is the rounding operation.
3) Deviation Distance Based AA-POF Modification

After adopting the AA-based dominance relation weaken‐
ing criterion, there may still exist bad solutions with certain 
objectives deviated far from the average level. These solu‐
tions are also infeasible and should be eliminated although 
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they are non-dominated. To this end, a deviation distance 
based AA-POF modification method is proposed in this pa‐
per. If the affine objectives of all Pareto optimal solutions 
are denoted as (40), the average central value f 0

iAVG can be 
calculated by (41).

f ̂i (xk )= f (0)
i (xk )+∑

m = 1

M

f m
i (xk )εm    "xkÎPndi = 12N (40)

f (0)
iAVG =

1
Knd
∑

xkÎPnd

f (0)
i (xk )    i = 12N (41)

On this basis, the deviation distance DAVG (xk ) between 
F̂(xk ) and average level F̂AVG =[ f ̂1AVGf ̂2AVGf ̂NAVG ]T is cal‐
culated by (42)-(46).

DAVG (xk )=
dAVG (xk )

OAVG (xk )+VAVG +V (xk )+ 1
    "xkÎPnd (42)

dAVG (xk )=∑
i = 1

N

|| f (0)
i (xk )- f (0)

iAVG     "xkÎPnd (43)

OAVG (xk )= Õ
N

i = 1
L ( )f ̂i (xk ) f ̂iAVG     "xkÎPnd (44)

VAVG = Õ
N

i = 1 ( )2
Knd
∑

xkÎPnd

∑
m = 1

M

|| f m
i (xk ) (45)

V (xk )= Õ
N

i = 1 ( )2∑
m = 1

M

|| f m
i (xk )     "xkÎPnd (46)

where the hypercubes F
⌢

(xk ) and F
⌢

AVG can be derived from 
the affine polynomials of F̂(xk ) and F̂AVG according to (47) 
and (48), respectively.

f ̂i (xk )=
é

ë
êêêê f (0)

i (xk )-∑
m = 1

M

|| f m
i (xk ) f (0)

i (xk )+∑
m = 1

M

|| f m
i (xk )

ù

û
úúúú (47)

ì

í

î

ïïïï

ïïïï

f ̂iAVG =[ f (0)
iAVG -RiAVGf (0)

iAVG +RiAVG ]

RiAVG =
1

Knd
∑

xkÎPnd

∑
m = 1

M

|| f m
i (xk )

(48)

By comparing the deviation distances of all Pareto opti‐
mal solutions, i. e., DAVG (xk ) ("xkÎPnd ) with the predefined 
maximum allowable deviation distance Dmax, the bad solu‐
tions in AA-POF can be effectively eliminated.

The deviation distance DAVG (xk ) only considers the affine 
objectives but ignores the deterministic objectives. To this 
end, the comprehensive deviation distance D͂AVG (xk ) consider‐
ing all affine objectives and deterministic objectives is de‐
fined as:

D͂AVG (xk )=DAVG (xk )× exp ( )∑
i = 1

Nd |

|

|
||
||

|

|
||
| fi (xk )

fiAVG

- 1     "xkÎPnd (49)

fiAVG =
1

Knd
∑

xkÎPnd

fi (xk ) (50)

B. AA-NSGA-II-based Bi-level Solution Methodology

By applying the basic theories of AA-NSGA II, AA-based 
dominance relation weakening criterion and deviation dis‐
tance-based AA-POF modification method, an AA-NSGA-II-
based bi-level multi-objective solution methodology is pro‐
posed. Through the joint optimization of bi-level model, the 

multi-objective planning problem can be solved more effec‐
tively. The main solution flowchart is depicted in Fig. 1, and 
the detailed solution procedure is introduced as follows.

Step 1: initialize the chromosome codes at the upper level 
for construction and upgrade the strategy of substation and 
line, and filtrate them by (22)-(24) and (33)-(36). Then, a to‐
tal of N up

P  feasible individuals are generated, and the popula‐
tion P up only containing upper-level codes is formed.

Step 2: select the ith individual of P up, i.e., I up
i  for replicat‐

ing, and keep their upper-level codes consistent. Then, initial‐
ize the lower-level codes for configuration strategy of PV 
and SVC, and filtrate them by (16)-(21) and (25)-(32). A to‐
tal of N down

P  individuals are generated and the population 
P1 (I up

i ) containing upper- and lower-level codes is constituted.
Step 3: calculate the lower-level objectives f ̂3 and f ̂4 for 

each individual of P1 (I up
i ). Then, analyze the dominance rela‐

tions of f ̂3 and f ̂4 between different individuals by (41). Thus, 
the set of AA-based non-dominated solutions corresponding 
to P1 (I up

i ), i.e., F opt
1 (I up

i ), is determined.
Step 4: conduct the selection, crossover and mutation oper‐

ations for P1 (I up
i ) (only for the lower-level codes) to form 

P2 (I up
i ), and F opt

2 (I up
i ) is ascertained. After Nmax iterations, 

the set of non-dominated solutions corresponding to I up
i , i.e., 

F opt
N (I up

i ) is obtained. Then, calculate the upper-level objec‐
tives f ̂1, f2, and analyze the AA-based weakening dominance 
relations of all objectives to determine the AA-POF F opt (I up

i ).
Step 5: repeat Steps 1-4 for all individuals of P up and form 

P full containing all sets of non-dominated solutions, where 
P full ={F opt (I up

i )|i = 12N up
P }. Then, analyze the AA-based 

weakening dominance relations of all objectives and obtain 
AA-POF F opt (P full ). The final AA-POF F opt

final can be deter‐
mined by the deviation distance based modification.

IV. CASE STUDY

A. Case Description and Parameter Setting

To verify effectiveness of the proposed method, a modi‐
fied 24-bus test system [8] shown in Fig. 2 is used to con‐
duct case study. This is a 20 kV distribution system consist‐
ing of 4 substation buses, 20 load buses, and 33 lines (in‐
cluding 9 tie-lines marked in red). The whole system is di‐
vided into four geographical regions, namely Z1 - Z4. The ref‐
erence voltage is set as 1.00 p. u.. V max and V min are set as 
1.05 p.u. and 0.95 p.u., respectively. All buses are assumed 
as PQ-type bus.

The planning horizon is divided into 3 stages, each lasting 
for 5 years. The data of line and peak load (power factor 
equals 0.9) are derived from [8] and [9], respectively. The in‐
terval construction of PV outputs and load demands with refer‐
ence to [17] is depicted in Fig. 3. There are three available 
types of substations and conductors, and the existing substa‐
tions and conductors are all type one. The data of substations 
and conductors are shown in Table I and Table II, respectively. 
The economic parameters are given in Table III. α1, α2, α3 and 
α4 are set as 0.5, 0.5, 0.8, and 0.2, respectively. The crossover 
rate and mutation rate are set as 0.5 and 0.1, respectively. In 
addition, all SVCs are assumed in inductive compensations. 
N max

PV  and N max
SVC  are both set as the total number of buses. P capmax

PVih  
and Qmax

SVCih are set as 1 MW and 500 kvar, respectively.
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All simulation tests are implemented in C++ environment 
on a Dell laptop with Intel Core i7-7700HQ CPU running at 
2.80 GHz with 8 GB RAM.

B. Simulation Analysis

1) AA-based Pareto Optimal Solutions
By using the bi-level multi-objective solution methodolo‐

gy, a total of ten Pareto optimal solutions are obtained. The 
planning schemes of Pareto optimal solutions No. 2 and No. 
8 are shown in Fig. 4, and the interval objective values of 
all Pareto optimal solutions are listed in Table IV and Ta‐
ble V.

In Fig. 4, the letters C and U represent the lines to be con‐
structed and upgraded, respectively. The letter T represents 
the substations to be constructed or upgraded. The numbers 
1, 2 or 3 in bracket represent the corresponding type.

It can be observed that with the increase of total PV instal‐
lation capacity, the investment cost, operation and mainte‐
nance cost as well as PV generation profit will rise up ac‐
cordingly, while the network loss cost decreases in general. 
The solution No. 3 has larger PV capacity but lower total 
cost compared with solution No. 4, which means an ade‐
quate PV capacity can reduce the total cost. For the solu‐
tions with similar PV capacity, the PV configuration seems 
important. 
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Fig. 1.　Main solution flowchart.
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Specifically, a more even PV configuration, i. e., a lower 
PV configuration uneven degree can lead to a better power 
flow distribution, which is beneficial for reducing network 
loss and constraint violation risk. In this case, the voltage 
and current violation margin is increased, and the DN opera‐
tional adaptability and PV hosting capacity can be effective‐
ly improved.

Meanwhile, each planning scheme corresponds to a cer‐
tain network structural adaptability. The solutions No. 4, No. 
8, and No. 10 have more tie-lines in operation and tighter in‐
terconnections between geographical regions, so their power 
supply reliability and adaptability are stronger. The index of 
network structural adaptability is equally important for DN 
planning, so these three solutions may be feasible in practice 
although most of their objectives are not optimal.

In addition, the variation amplitude of current violation 
margin is much larger than that of voltage violation margin. 
This is because the 24-bus system is of small scale and pow‐
er supply radius, which makes the voltage rise less obvious. 
In this case, the DN operational adaptability is mainly depen‐
dent on current violation margin, and the ratio of α3 and α4 

can be set smaller. With the increase of network scale and 
power supply radius, the variation of voltage violation mar‐
gin will be more obvious. Especially in the rural DN with 
long lines, the voltage violation risk is much higher, and the 
DN operational adaptability is mainly determined by voltage 
violation margin, which means the ratio of α3 and α4 should 
be enlarged.
2) AA-POF Analysis

The AA-POF is depicted as a set of cubes (the length, 
width and height correspond to f ̂3, f ̂4, and f ̂1 in order, respec‐
tively) with the mass f2 in the multi-dimensional objective 
space, as shown in Fig. 5. To compare different objective 
values more intuitively, the projections of AA-POF on f ̂3-f ̂4 
plane, f ̂3-f ̂1 plane, and f ̂4-f ̂1 plane are depicted in Fig. 6(a), 
(b), and (c), respectively.

Following the AA-based dominance relation weakening 
criterion, all of the ten Pareto optimal solutions obtained 
have two non-dominated objectives. For instance, the solu‐
tion No. 6 of Fig. 6(a) has better f ̂3 and f ̂4 values in the two-
dimensional objective space, while its f ̂1 and f2 values are 
both dominated by other solutions in region A. Meanwhile, 
solution No. 7 of Fig. 6(b) has better f ̂1 and f ̂3 values while 
its f2 and f ̂4 values are both dominated by other solutions in 
region B. All other solutions also show the multi-objective 
mutual dominance characteristics. The final Pareto optimal 
solutions to be adopted in practice should be selected by the 
DN planners based on the specific demand of each objective.
3) Deviation Distance Analysis

The deviation distances of all Pareto optimal solutions 
from the average level are calculated, as shown in Table VI. 
When only considering affine objectives f ̂1, f ̂3, and f ̂4, solu‐
tions No. 6 and No. 7 have greater deviation distances com‐
pared with other solutions.

If the maximum allowable deviation distance Dmax is set 
as 3.5, solutions No. 6 and No. 7 can be regarded as bad so‐
lutions and should be eliminated from the AA-POF. When 
further considering the deterministic objective f2, the compre‐
hensive deviation distance D͂AVG (xk ) can be calculated by 
(51) and (52), which is compared with DAVG (xk ) as shown in 
Fig. 7.

After considering the objective f2, the comprehensive devi‐
ation distances of solutions No. 6 and No. 8 are enlarged 
more obviously, because their f2 values are farther from the 
average level. At this time, only the solutions No. 6 and No. 
7 have D͂AVG (xk ) values greater than 4.

(b)

0

0.2

0.4

0.6

0.8

1.0
P

V
 a

ct
iv

e 
p
o
w

er
 (

p
.u

.)

0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19 21 241 3 5 7 9 11 13 15 17 19 21 24
Time (hour)

0

0.2

0.4

0.6

0.8

1.0

1 3 5 7 9 11 13 15 17 19 21 24

L
o
ad

 a
ct

iv
e 

p
o
w

er
 (

p
.u

.)

L
o
ad

 r
ea

ct
iv

e 
p
o
w

er
 (

p
.u

.)

(c)

Time (hour)

(a)

Time (hour)

Fig. 3.　Interval construction. (a) PV active power. (b) Load active power. (c) Load reactive power.

TABLE II
DATA OF DIFFERENT TYPES OF CONDUCTORS

Ωk

1

2

3

zlk (Ω/km)

1.268 + j0.422

0.576 + j0.393

0.215 + j0.334

 S max
lk  

(kVA)

2260

4350

9210

 I max
lk  

(A)

136

261

445

 ccons
lk  

($/km)

10000

15000

23000

 cup
lk 

($/km)

11400

17480

 co&m
lk  

($/(km·a))

25

35

50

TABLE III
DATA OF NECESSARY ECONOMIC PARAMETERS

ccons
PV  

($/kW)

1000

ccons
SVC ($)

3000

 co&m
PV  

($/kW·a)

50

 co&m
SVC  

($/a)

100

 αloss 
($/kWh)

0.08

 αpro 
($/kWh)

0.06

λ1

0.03

λ2

0.10

TABLE I
DATA OF DIFFERENT TYPES OF SUBSTATIONS

Ωc

1

2

3

S max
ssc  (kVA)

12000

15000

20000

ccons
ssc  (k$)

750

950

1350

cup
ssc (k$)

720

1020

co&m
ssc  (k$/a)

2.0

3.0

4.5
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TABLE V
INTERVAL VALUES OF COSTS AND PROFITS, TCD AND NCD, AND VOLTAGE AND CURRENT VIOLATION MARGINS

No.

1

2

3

4

5

6

7

8

9

10

f ̂inv (M$)

[13.70,14.38]

[11.12,11.79]

[9.37,9.95]

[8.63,8.77]

[9.72,10.15]

[12.66,13.32]

[8.85,9.17]

[9.59,9.82]

[9.98,10.54]

[9.97,10.51]

f ̂o&m (M$)

[2.78,2.95]

[2.15,2.34]

[2.55,2.69]

[2.14,2.19]

[1.66,1.77]

[2.35,2.51]

[2.54,2.71]

[3.01,3.11]

[3.32,3.54]

[2.28,2.44]

floss (M$)

[1.09,1.18]

[2.60,2.79]

[1.55,1.66]

[2.96,3.20]

[1.53,1.68]

[2.91,3.14]

[1.10,1.19]

[2.76,2.94]

[1.53,1.66]

[2.32,2.49]

f ̂pro (M$)

[5.08,5.67]

[3.91,4.37]

[4.69,5.20]

[3.87,4.15]

[3.05,3.37]

[4.66,5.03]

[4.65,5.16]

[5.66,6.10]

[6.18,6.78]

[4.19,4.71]

Dtcd (%)

19.50

15.08

13.77

13.99

19.44

13.08

15.65

22.78

13.30

19.64

Dncd (%)

16.73

24.06

23.00

30.27

19.62

13.27

19.58

41.02

19.64

32.41

V̂ mar
  (%)

[4.83,4.85]

[4.95,5.00]

[4.91,4.94]

[4.98,5.02]

[4.93,4.97]

[4.85,4.88]

[4.86,4.88]

[5.04,5.09]

[4.88,4.91]

[4.97,5.01]

Î mar
  (%)

[73.60,77.96]

[65.32,69.60]

[71.43,76.18]

[63.18,69.13]

[64.93,70.29]

[76.29,79.89]

[74.07,77.68]

[48.86,56.94]

[69.43,74.67]

[59.20,65.79]

TABLE IV
INTERVAL VALUES OF f ̂1, f2, f ̂3, f ̂4, PV INSTALLATION CAPACITY, AND SVC COMPENSATION CAPACITY

No.

1

2

3

4

5

6

7

8

9

10

f ̂1 (M$)

[12.41,12.96]

[11.90,12.52]

[8.56,9.22]

[9.74,10.17]

[9.82,10.33]

[13.26,13.92]

[7.58,8.22]

[9.45,10.04]

[8.42,9.15]

[10.16,10.79]

f2 (%)

18.11

19.57

18.38

22.13

19.53

13.17

17.62

31.90

16.47

26.02

f ̂3 (%)

[18.58,19.47]

[17.03,17.92]

[18.21,19.19]

[16.62,17.84]

[16.93,18.03]

[19.14,19.88]

[18.70,19.44]

[13.80,15.46]

[18.53,19.64]

[15.81,17.17]

f ̂4 (%)

[12.83,14.24]

[14.30,15.61]

[18.56,20.21]

[15.35,16.62]

[18.80,20.20]

[12.46,13.74]

[22.25,23.71]

[16.46,17.56]

[18.65,20.05]

[15.64,16.93]

NPV

15

12

10

11

10

16

9

11

9

11

P̂ cap
PV  (kW)

[11188,12924]

[7900,9112]

[6827,7820]

[5104,5361]

[6955,7956]

[10775,12241]

[5831,6562]

[7431,7849]

[6889,7698]

[7145,8101]

NSVC

14

18

13

15

16

18

8

9

17

16

Q̂SVC (kvar)

[4213,4810]

[5350,5962]

[4914,5543]

[3884,4195]

[5164,5890]

[5913,6651]

[3337,3741]

[2887,3184]

[5484,6207]

[5283,6109]
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Fig. 4.　Planning schemes of Pareto optimal solutions No. 2 and No. 8. (a) No. 2. (b) No. 8.
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Therefore, the solutions No. 6 and No. 7 can still be re‐
garded as bad solutions if Dmax is set as 4 or less. And the 
modified AA-POF consists of eight feasible non-dominated 
solutions in total, which effectively improves the solution 
qualities.

D͂AVG (xk )=DAVG (xk )× exp ( )|||||||

|

|
||
| f2 (xk )

f2AVG

- 1     k = 1210 (51)

f2AVG =
1
10∑k = 1

10

f2 (xk ) (52)

C. Result Comparison

1) Different Uncertainty Levels
To quantify the influences of different uncertainty levels, 

the objectives f ̑1, f ̑3, and f ̑4 of Pareto optimal solutions at the 
uncertainty levels of ±5%, ±10%, and ±20% are compared 
in Fig. 8. As can be observed, the interval range of each ob‐
jective gets wider with the increase of uncertainty level. For 
the same objective, the interval variations of different solu‐
tions at three uncertainty levels are basically the same, while 
the variation characteristics for different objectives are di‐
verse. Therefore, the selection of uncertainty level is impor‐
tant for the rationality of planning schemes. If the uncertain‐
ty level is set too high, the final interval will be too wide, 
which is of less reference significance. If the uncertainty lev‐
el is too low, the interval will be too narrow, which cannot 
quantify the impacts of uncertainties. In reality, multiple 
planning objectives should be comprehensively considered to 
determine a reasonable uncertainty level.
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Fig. 7.　Comparison of deviation distances D͂AVG (xk ) and DAVG (xk ).
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TABLE VI
DEVIATION DISTANCES OF ALL PARETO OPTIMAL SOLUTIONS

k

1

2

3

4

5

6

7

8

9

10

dAVG (xk )

7.0825

4.4275

4.5475

2.3395

3.0375

8.9075

9.5025

4.1245

5.0025

2.3475

OAVG (xk )

0

0

0

0

0.0005

0

0

0

0

0

VAVG

0.8747

0.8747

0.8747

0.8747

0.8747

0.8747

0.8747

0.8747

0.8747

0.8747

V (xk )

0.6902

0.7229

1.0672

0.6662

0.7854

0.6252

0.6915

1.0956

1.1242

1.1053

DAVG (xk )

2.7613

1.7045

1.5458

0.9206

1.1419

3.5631

3.7029
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1.6681
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2) Different Uncertainty Analysis Methods
To demonstrate the advantages of the AA-based planning 

method, the objectives f ̑1, f ̑3, and f ̑4 of all ten Pareto optimal 
solutions obtained by the AA-, IA-, and MCS-based methods 
are compared in Fig. 9. As can be observed from Fig. 9, the 
simulation results of AA-based planning method are nearly 
close to the MCS-based method. This is because the AA-
based planning method can keep track on the dependencies 

of multiple uncertain variables, so the computation conserva‐
tiveness can be effectively reduced. In comparison, the IA-
based method will obtain less accurate and conservative re‐
sults for lacking the consideration of dependencies of vari‐
ous uncertain variables. Therefore, the AA-based method has 
great application values and advantages in the proposed bi-
level multi-objective joint planning for its high computation 
accuracy and low conservativeness.

D. Test on Real Chinese 10 kV Distribution System

A real Chinese 10 kV distribution system shown in Fig. 10 
is used for another case study to further validate the effective‐
ness of the proposed method. This system consists of 3 substa‐
tion buses, 51 load buses, and 56 lines (including 5 tie-lines), 
which is divided into three geographical regions Z1-Z3. The 

whole planning horizon is divided into 2 stages, each lasting 
for 5 years. The data of peak load active power (power factor 
equals 0.9) and line length are shown in Table VII and Table 
VIII, respectively. The values of P capmax

PVih  and Qmax
SVCih are set as 

300 kW and 150 kvar, respectively. All other parameters are 
set the same as those of the 24-bus test system.
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Fig. 10.　Initial topology of real Chinese 10 kV distribution system.
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1) Bi-level Multi-objective Joint Planning
By using the AA-based dominance relation weakening cri‐

terion and bi-level multi-objective solution methodology, a 
total of five Pareto optimal solutions are obtained. The inter‐
val objective values of all Pareto optimal solutions are listed 
in Table IX and Table X. The planning scheme of Pareto op‐
timal solution No. 1 is shown in Fig. 11.

As is observed from Table IX and Table X, solution No. 1 
has the smallest f ̂1 value and relatively large f ̂3 value among 

five Pareto optimal solutions, while its f2 and f ̂4 objectives 

are poor. In comparison, solution No. 2 has the best f ̂3 and f ̂4 

objectives while its f ̂1 and f2 objectives are the worst, which 

further validates the multi-objective mutual dominance char‐
acteristics. The five Pareto optimal solutions obtained repre‐
sent the non-dominated optimal planning schemes that can si‐
multaneously meet DN economy and adaptability goals con‐
sidering uncertainties, which is of great significance for prac‐
tical DN planning in uncertain environment.

On this basis, the deviation distances DAVG (xk ) and 
D͂AVG (xk ) of all Pareto optimal solutions are calculated as 
shown in Table XI. Obviously, solution No. 2 has relatively 
larger D͂AVG (xk ) compared with other solutions. If Dmax is set 
as 4, solution No. 2 will be a bad solution and should be 
eliminated. In this way, the final AA-POF can be effectively 
modified and the solution qualities can be greatly improved.
2) Parameter Sensitivity Analysis

In the proposed model, the weight coefficients α1 and α2 
can quantify the contribution degrees of TCD and NCD to 
the DN network structural adaptability. Meanwhile, α3 and 
α4 can quantify contribution degrees of voltage violation mar‐
gin and current violation margin to the DN operational adapt‐
ability. The tuning of these key parameters has more or less 
impacts on the final planning schemes, so a parameter sensi‐
tivity analysis is conducted for the real Chinese 10 kV distri‐
bution system as follows.

1) Sensitivity of α1 and α2

Three scenarios are used to analyze the sensitivity of 
weight coefficients α1 and α2. Scenario 1 is when 
α1 = α2 = 0.5. Scenario 2 is when α1 = 0.8 and α2 = 0.2. Scenar‐
io 3 is when α1 = 0.3 and α2 = 0.7. The number of final Pare‐
to optimal solutions and average objective values in scenari‐
os 1, 2, and 3 are compared in Table XII.

As can be observed from Table XII, the number of final 
Pareto optimal solutions Knd in scenario 2 is smaller than 
those in scenarios 1 and 3. This is because there are obvious 
differences of NCD values between various solutions while 
the TCD values have little differences, which means the opti‐
mality of objective f2 is more sensitive to the NCD variation.

TABLE IX
INTERVAL OBJECTIVE VALUES OF f ̂1, f2, f ̂3, AND f ̂4

No.

1

2

3

4

5

f ̂1 (M$)

[4.96,5.11]

[6.54,6.73]

[6.47,6.67]

[5.10,5.36]

[5.61,5.78]

f2 (%)

14.18

11.19

16.95

16.24

21.83

f ̂3 (%)

[17.59,18.08]

[18.28,18.65]

[16.99,17.56]

[17.12,17.55]

[15.47,16.12]

f ̂4 (%)

[7.49,7.61]

[5.61,5.66]

[5.78,5.80]

[6.80,6.87]

[6.53,6.57]

TABLE X
INTERVAL OBJECTIVE VALUES OF Dtcd, Dncd, V̂

mar
 , AND Î mar

 

No.

1

2

3

4

5

Dtcd (%)

6.65

6.86

5.64

6.86

8.67

Dncd (%)

21.71

15.51

28.25

25.61

34.99

V̂ mar
  (%)

[4.25,4.34]

[4.40,4.47]

[4.36,4.47]

[4.36,4.45]

[4.16,4.27]

Î mar
  (%)

[70.99,73.03]

[73.83,75.36]

[67.53,69.92]

[68.16,69.97]

[60.70,63.54]

TABLE VII
PEAK LOAD ACTIVE POWER OF CHINESE 10 KV DISTRIBUTION SYSTEM

Bus 
No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

Power (kW)

Stage 1

112

86

116

87

92

0

0

0

75

0

0

0

106

74

0

0

0

Stage 2

168

132

157

133

142

78

143

89

154

94

123

146

142

134

133

88

112

Bus 
No.

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

Power (kW)

Stage 1

0

104

128

101

124

75

83

0

123

0

0

0

0

105

127

0

0

Stage 2

103

176

183

161

175

144

138

123

178

148

156

88

121

204

165

107

84

Bus 
No.

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

Power (kW)

Stage 1

55

107

116

95

108

84

65

0

0

74

0

0

0

105

0

0

0

Stage 2

104

153

144

126

143

115

124

83

75

126

105

121

85

133

136

54

73

TABLE VIII
LINE LENGTH OF CHINESE 10 KV DISTRIBUTION SYSTEM

Line
No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

lij (km)

0.63

0.85

1.06

1.12

0.64

0.36

1.15

0.65

0.76

1.08

0.72

0.88

0.65

0.47

Line
No.

15

16

17

18

19

20

21

22

23

24

25

26

27

28

lij (km)

0.82

1.06

0.89

0.65

0.85

0.88

0.69

0.36

0.75

0.89

0.44

0.69

0.93

0.44

Line
No.

29

30

31

32

33

34

35

36

37

38

39

40

41

42

lij (km)

0.76

0.94

0.62

0.92

0.24

0.55

0.88

0.77

0.68

0.57

0.89

0.74

0.54

0.48

Line
No.

43

44

45

46

47

48

49

50

51

52

53

54

55

56

lij (km)

0.46

0.65

0.91

0.62

0.75

0.36

0.52

0.84

0.76

1.08

0.58

0.76

0.84

0.67
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In scenario 2 with small α2 value, the objective f2 of origi‐
nal Pareto optimal solution No. 3 has a significant decrease 
due to its large NCD value, which makes solution No. 3 
dominated by other solutions. In comparison, all Pareto opti‐
mal solutions in scenario 3 can remain optimality due to a 
larger α2 value than 0.5. Moreover, the objective f2 presents 
obvious variation between different scenarios, while little 
change occurs for the other three objectives.

2) Sensitivity of α3 and α4

Three scenarios are used to analyze the sensitivity of 
weight coefficients α3 and α4. Scenario 1 is when α3 = 0.8 
and α4 = 0.2. Scenario 4 is when α3 = α4 = 0.5. Scenario 5 is 

when α3 = 0.3 and α4 = 0.7. The final planning schemes in 
three scenarios are compared in Table XIII. As can be ob‐
served from Table XIII, the value of Knd in scenarios 1, 4, 
and 5 are the same. This is because the test system used is 
of small scale and power supply radius, which makes the 
voltage rise less obvious. In this condition, the optimality of 
objective f ̂3 is more sensitive to the current violation margin 
Î mar

  rather than voltage violation margin V̂ mar
 . In the whole 

solution space, the original five Pareto optimal solutions 
shown in Table X all have relatively large Î mar

  values com‐
pared with other solutions, so the increase of α4 value will 
make their optimality stronger. Therefore, the number of fi‐
nal Pareto optimal solutions will remain unchanged.

V. CONCLUSION

In this paper, IA and AA are applied to quantify PV and 
load uncertainties, and an AA-based adaptability-oriented bi-
level multi-objective joint planning model is built, which 
can obtain the planning schemes with low constraint viola‐
tion risk, high reliability, and strong adaptability under uncer‐
tainties. On this basis, an AA-NSGA-II-based bi-level multi-
objective solution methodology is proposed to calculate AA-
POF. The obtained AA-POF represents a set of optimal plan‐

TABLE XI
DEVIATION DISTANCES OF ALL PARETO OPTIMAL SOLUTIONS

k

1

2

3

4

5

dAVG (xk )

2.370

2.763

1.485

0.972

1.762

OAVG (xk )

0

0

0

0

0

VAVG

0.0058

0.0058

0.0058

0.0058

0.0058

V (xk )

0.0088

0.0035

0.0023

0.0078

0.0044

DAVG (xk )

2.3359

2.7375

1.4731

0.9590

1.7442

D͂AVG (xk )

2.6704

4.2370

1.5509

0.9686

2.2700
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Fig. 11.　Planning scheme of Pareto optimal solution No. 1.

TABLE XII
COMPARISON OF PLANNING SCHEMES BETWEEN SCENARIOS 1, 2, AND 3

Scenario

1

2

3

Knd

5

4

5

f ̂ avg
1  (M$)

[5.74,5.93]

[5.55,5.75]

[5.74,5.93]

f avg
2  (%)

16.08

10.70

19.73

f ̂ avg
3  (%)

[17.09,17.59]

[17.12,17.60]

[17.09,17.59]

f ̂ avg
4  (%)

[6.44,6.50]

[6.61,6.68]

[6.44,6.50]

TABLE XIII
COMPARISON OF PLANNING SCHEMES BETWEEN SCENARIOS 1, 4, AND 5

Scenario

1

4

5

Knd

5

5

5

f ̂ avg
1  (M$)

[5.74,5.93]

[5.74,5.93]

[5.74,5.93]

f avg
2  (%)

16.08

16.08

16.08

f ̂ avg
3  (%)

[17.09,17.59]

[36.28,37.39]

[49.06,50.57]

f ̂ avg
4  (%)

[6.44,6.50]

[6.44,6.50]

[6.44,6.50]
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ning schemes that can simultaneously meet DN economy 
and adaptability goals considering uncertainties, which is of 
great significance for practical DN planning in the complex 
uncertain environment. In addition, an AA-based dominance 
relation weakening criterion and a deviation distance based 
AA-POF modification method are proposed to eliminate bad 
solutions and improve the solution qualities. The simulation 
results in a modified 24-bus system show the multi-objective 
mutual dominance characteristics. The comparison of differ‐
ent uncertainty levels shows their diverse interval variations. 
The comparison of different methods demonstrates the ad‐
vantages of proposed AA-based planning method for its high 
computation accuracy and low conservativeness. Moreover, 
the sensitivity analysis for a real Chinese 10 kV distribution 
system explores the impacts of key parameters on the final 
planning schemes.
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