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Abstract——Laboratory testing of phasor measurement units 
(PMUs) guarantees their performance under laboratory condi‐
tions. However, many factors may cause PMU measurement 
problems in actual power systems, resulting in the malfunction 
of PMU-based applications. Therefore, field PMUs need to be 
tested and calibrated to ensure their performance and data 
quality. In this paper (Part I), a general framework for the 
field PMU test and calibration in different scenarios is pro‐
posed. This framework consists of a PMU calibrator and an 
analysis center, where the PMU calibrator provides the refer‐
ence values for PMU error analysis. Two steps are implemented 
to ensure the calibrator accuracy for complex field signals: ① 
by analyzing the frequency-domain probability distribution of 
random noise, a Fourier-transform-based signal denoising meth‐
od is proposed to improve the anti-interference capability of the 
PMU calibrator; and ② a general synchrophasor estimation 
method based on complex bandpass filters is presented for accu‐
rate synchrophasor estimations in multiple scenarios. Simula‐
tion and experimental test results demonstrate that the PMU 
calibrator has a higher accuracy than that of other calibrator 
algorithms and is suitable for field PMU test. The analysis cen‐
ter for evaluating the performance of field PMUs and the appli‐
cations of the proposed field PMU test system are provided in 
detail in Part II of the next-step research.

Index Terms——Phasor measurement unit (PMU), calibration, 
synchrophasor, signal denoising, field PMU test.

I. INTRODUCTION

PHASOR measurement units (PMUs) can monitor the dy‐
namic behavior of power systems in real time. Thus, 

they have been widely deployed in power systems [1]. The 
measurement performance and data quality of PMUs must 
be evaluated to ensure the reliability and effectiveness of 
wide-area measurement applications, i. e., state estimation 
[2], fault location [3] - [5], and out-of-step protection [6]. 

Therefore, it is necessary to perform laboratory tests on 
PMUs before the installation [7].

However, laboratory tests alone do not guarantee the data 
quality of field PMUs for the following reasons: ① field 
power signals are more complex than test signals in a labora‐
tory, e.g., dynamic fundamental signals, harmonics, interhar‐
monics, and random noise may exist simultaneously [8]; ② 
the hardware performance, i. e., the sampling module and 
synchronization module performances of field PMUs may de‐
crease after long-term operation, and they need to be cali‐
brated; and ③ older PMUs are not tested for compliance 
with new PMU standards. Therefore, field PMUs may have 
poor data quality, potentially reducing the stability of power 
systems. For example, incorrect measurements under off-
nominal conditions have resulted in false alarms consisting 
of low-frequency oscillation [9]. To this end, it is necessary 
to develop test methods for field PMUs to improve their 
measurement performance and data quality.

PMU test systems based on a high-precision generator 
(system GEN) or high-accuracy calibrator (system CAL) are 
commonly used to test the performance of PMUs. In system 
GEN [10] - [12], a high-precision generator sends standard 
test signals to the PMU under test (PUT), and the reference 
values are obtained according to the signal models of PMU 
standards. Subsequently, the measurements of the PUT are 
compared with the reference values to determine their perfor‐
mance. In system CAL [13]-[15], a generator simultaneously 
sends the test signals to the PUT and calibrator. The mea‐
surement results of the calibrator consider the reference val‐
ues to obtain the performance of the PUT. In this test sys‐
tem, the generator does not require a high precision, but the 
accuracy of the calibrator must be at least 10 times higher 
than the standard requirements.

The literature indicates that three scenarios have been 
used to test field PMUs using the above two test systems, as 
shown in Fig. 1.
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Fig. 1.　Test system for field PMUs based on system CAL.
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In scenario A, the field PUT is disconnected from the 
power system, and a signal generator and a PMU calibrator 
are used to test the PMU, which is similar to laboratory test 
[16], [17]. The signal generator sends the test signals accord‐
ing to the PMU standards. It is determined whether the per‐
formance of the PUT satisfies the standard requirements un‐
der static and dynamic conditions. In this scenario, the refer‐
ence values can be obtained according to signal models if 
the signal generator has a high output accuracy and timing 
accuracy. A PMU calibrator is not required.

Standard signals do not adequately represent the complex 
power signals. Thus, in scenario B, a signal generator or sim‐
ulator is used for the playback simulation or field-recorded 
waveforms in various disturbance or fault scenarios [18]. In 
this case, the signal models are not known. Thus, a PMU cal‐
ibrator is required to provide the reference values.

The above two test methods do not accurately represent 
the field signals. Additionally, the field PUT must be discon‐
nected from the power system. Therefore, the PMU cannot 
monitor the system during the test. In scenario C, the PMU 
calibrator is connected to the power system to test the perfor‐
mance of the field PUT for field signals [19], [20]. Howev‐
er, the current line of the PUT and PMU calibrator must be 
connected in series. Thus, the PUT must be disconnected 
during the test. Noncontact measurement can be used to 
avoid line disconnection [19], but it is challenging to ensure 
the accuracy of noncontact current measurements. Therefore, 
the performance of the field PMU for voltage estimation is 
the focus of this test scenario.

System GEN is only suitable for scenario A, but system 
CAL can be used in all scenarios. Thus, a PMU calibrator 
can be used to test the field PMUs. The test signals in sce‐
nario A have known models. Thus, the calibrator algorithm 
can adjust the parameter setting according to the specific sig‐
nal type [13]. The calibrator algorithm in scenarios B and C 
must be universal for complex power signals owing to the 
unknown signal models. The standard signals have low-noise 
levels, but the playback and field signals may have high-
noise levels. Thus, the PMU calibrator requires good anti‐
noise capability in scenarios B and C. In addition, the PMU 
calibrator in scenarios A and B has no real-time requirement, 
but that in scenario C needs to estimate the synchrophasor in 
real time. Therefore, different test scenarios have different re‐
quirements. It is valuable to develop a general test system 
framework of field PMUs to apply for multiple test scenari‐
os.

In system CAL, the synchrophasor algorithm of the cali‐
brator is the key to providing a reference value with a suffi‐
cient accuracy in scenarios A, B, and C. However, the un‐
known test signal model and the high-noise level during the 
field PMU test in scenarios B and C make it difficult to cal‐
culate the reference values, which are the two problems that 
need to be solved in this paper.

Existing synchrophasor algorithms can be divided into 
PMU and calibrator synchrophasor algorithms. PMU syn‐
chrophasor algorithms can be categorized as time- and fre‐
quency-domain algorithms. Time-domain algorithms solve 
for the signal parameters iteratively and have numerical in‐

stability [21], [22]. Thus, they are not suitable for the PMU 
calibrator in scenario C. Frequency-domain algorithms in‐
clude discrete Fourier transform (DFT) based and Taylor 
Fourier transform (TFT) based algorithms. The DFT-based 
algorithms are based on the static synchrophasor model and 
have a low dynamic measurement accuracy [23], [24]. The 
TFT-based algorithms are based on the dynamic synchropha‐
sor model and have better dynamic performance [25], [26]. 
However, TFT-based algorithms have a low synchrophasor 
accuracy for field signals with a large oscillation frequency, 
e.g., subsynchronous oscillation (SSO) of 30 Hz. Therefore, 
the frequency-domain algorithms do not meet the calibration 
requirements.

Existing calibrator algorithms have been proposed for the 
laboratory test of PMUs [13] - [15], [27]. In a typical algo‐
rithm, different fitting models are established according to 
the signal models in the PMU standards because the test 
type is known in the laboratory [13]. However, the signal 
models are unknown in scenarios B and C. Thus, these meth‐
ods are not applicable. Therefore, universal methods are pro‐
posed such as the adaptive synchrophasor method, general 
fitting method, and frequency dynamic model method [18], 
[27]. These methods do not require prior information about 
the signal models. However, these methods have a poor anti‐
noise capability for field signals and a low-measurement ac‐
curacy in the presence of high-frequency oscillation. These 
calibrator algorithms are not suitable for field PMU test in 
multiple scenarios. As a result, it is necessary to propose a 
high-accuracy synchrophasor algorithm for the field PMU 
test.

Most synchrophasor algorithms can filter the out-of-band 
(OOB) interference signals including random noise. Howev‐
er, the random noise in the measurement band is difficult to 
suppress, yielding a low-measurement accuracy. Therefore, a 
signal denoising method must be proposed to suppress the 
random noise in the measurement band. In addition, the 
PMU calibrator needs to estimate the synchrophasor in real 
time. Therefore, the denoising method must have a low com‐
putational complexity.

Signal denoising methods mainly include the digital filter 
method, adaptive filtering denoising [28], wavelet threshold 
denoising [29], empirical mode decomposition (EMD) [30], 
singular value decomposition (SVD) [31], Kalman filtering 
[32], and modern filtering theory such as Wiener filtering 
[33]. The digital filter method, e. g., EMD and SVD, re‐
moves the random noise outside the effective frequency 
band. However, they have poor denoising capability when 
the random noise overlaps the effective frequency band such 
as the dynamic fundamental signal. In addition, EMD and 
SVD cannot operate in real time because of their high com‐
putational complexities. The adaptive filtering method, mod‐
ern filtering methods, and Kalman filtering method require 
prior knowledge of the field signal and noise. Therefore, 
they are not suitable for denoising-field power signals. Wave‐
let threshold denoising is essentially a low-pass filter, which 
cannot filter the noise in the low-frequency band, i. e., the 
measurement band of the PMUs. Therefore, the existing de‐
noising methods have the problems of a high-calculation 
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complexity or poor noise suppression in the frequency band 
for PMU measurement. A novel denoising method needs to 
be developed for field PMU test, especially for noisy dynam‐
ic power signals.

To address these problems, a field PMU test method is 
proposed, which is divided into Part I and Part II. The main 
contributions of Part I are as follows.

1) A general test and calibration framework consisting of 
a PMU calibrator and analysis center is proposed, which is 
the basis of the research work of Part I and Part II [34]. It is 
applicable to multiple test scenarios of field PMUs com‐
pared with other PMU test systems. The PMU calibrator is 
discussed in this paper, and the analysis center is analyzed 
in detail in Part II.

2) A high-accuracy synchrophasor estimation algorithm 
based on a complex bandpass filter is designed for the PMU 
calibrator. This algorithm is unrelated to the signal model 
and has good dynamic measurement performance for com‐
plex field signals.

3) According to the filtering characteristics of the synchro‐
phasor algorithm, a Fourier-transform-based threshold denois‐
ing method is proposed, and an iterative threshold setting 
method based on a chi-squared distribution for the random 
noise is proposed. This method can further improve the accu‐
racy of the PMU calibrator by eliminating the noise within 
the PMU measurement band.

The remainder of this paper is organized as follows. Sec‐
tion II presents a general test framework for field PMUs. In 
Section III, a synchrophasor estimation method is presented. 
A signal denoising method is proposed in Section IV. In Sec‐
tion V, the performance of the synchrophasor algorithm and 
denoising method is verified. Section VI summarizes this pa‐
per.

II. TEST FRAMEWORK FOR FIELD PMUS

According to the above analysis, a general test framework 
for field PMUs needs to have the following requirements. 
First, it can be applied to field PMU test for standard sig‐
nals, playback signals, and field signals. Second, the PMU 
calibrator must have a high accuracy to provide the refer‐
ence measurements, especially for noisy and dynamic field 
signals. Thus, the calibrator should provide good noise sup‐
pression to ensure its accuracy. Next, the fundamental signal 
type affects the performance evaluation of the PUT [7]. In 
scenarios A and B, the standard and playback signals have 
known signal types, or the types can be determined offline. 
However, the field signal types are unknown in scenario C. 
Thus, they must be determined in real time. Finally, the mea‐
surement performance of a field PMU is different at differ‐
ent interference levels, e. g., harmonics and interharmonics, 
leading to different evaluation indicators at different interfer‐
ence levels. Thus, it is necessary to calculate the content of 
the interference.

Consequently, the general framework for field PMU test is 
shown in Fig. 2, which consists of a PMU calibrator and an 
analysis center.

The PMU calibrator is used to provide reference values to 
analyze the estimation performance of the field PMUs. It in‐

cludes five modules. The synchronous sampling module gen‐
erates sampling clocks synchronized with the global position‐
ing system (GPS) or Beidou and converts the voltage and 
current signals into sample values. The signal denoising mod‐
ule suppresses the random noise to improve the accuracy of 
the synchrophasor because the field signals may have high-
noise levels, significantly affecting the accuracy of the syn‐
chrophasor. Then, the synchrophasor estimation module accu‐
rately measures the synchrophasor, frequency, and the rate of 
change of frequency (ROCOF) of the denoised power sig‐
nals. In addition, the interference content module calculates 
the level of the interference signals to provide a reference 
for evaluating the performance of the PUTs. Simultaneously, 
a waveform recording module is used to record the power 
signals. Owing to the unknown models of complex field sig‐
nals, it is difficult to determine the reason for the large test 
errors of the field PMUs. In this case, the recorded data can 
be used to ascertain which complex field signals have large 
errors.

The analysis center is a computer that receives the mea‐
surement results and evaluates the performance of the field 
PMU, which includes three modules. First, the signal type 
identification module uses the synchrophasor measurements 
to identify the signal types such as the amplitude step and 
low-frequency oscillation because the field PMU has differ‐
ent measurement performances for different signal types. In 
addition, power systems are becoming increasingly complex 
because of the rapid development of renewables, flexible 
transmission, and active loads. Accordingly, the number of 
signal types may increase. Thus, this module must be gradu‐
ally expanded and improved with the ongoing development 
of power systems.

Then, the measurement error analysis module obtains the 
measurement errors of the PUT by comparing the estimation 
results of the PMU calibrator and the PUT. The measure‐
ment errors include the total vector error (TVE), amplitude 
error (AE), phase error (PE), frequency error (FE), and RO‐
COF error (RFE). Finally, the performance evaluation mod‐
ule determines the error levels according to the signal types 
and interference levels because different signal types and in‐
terference levels have different error requirements. If there 
are doubts about the test results, the recorded data can be ex‐
tracted for further analysis. In addition, this module gener‐
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Fig. 2.　General framework for field PMU test.
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ates test reports and allows the visualization of the test re‐
sults.

It should be noted that not all the test scenarios require all 
these modules. For example, the signal models are known in 
scenario A. Thus, the signal type identification module and 
interference content module are not required. In other words, 
the proposed test framework can be simplified for various 
test scenarios.

The research works of Part I and Part II are carried out us‐
ing this test framework. The PMU calibrator is the focus of  
Part I, and the analysis center is detailed in Part II. The syn‐
chronous sampling, waveform recording, and interference 
content modules are easily implemented [9], [14]. In con‐
trast, the synchrophasor estimation and signal denoising mod‐
ules of the PMU calibrator are the focus of the research 
work presented in this paper.

III. SYNCHROPHASOR ESTIMATION METHOD 

The proposed synchrophasor algorithm for the PMU cali‐
brator is based on the design method developed by our team 
[35]. However, different scenarios are utilized in this meth‐
od. The application scenario of this paper is the field PMU 
test and calibration, and those in [35] are P- and M-class 
PMUs.

Static and dynamic signals can be regarded as a superposi‐
tion of different frequency components. Therefore, a synchro‐
phasor estimation method based on a complex bandpass fil‐
ter is applied to measure the synchrophasor.

Generally, the field signals are not always in a static stat‐
ic, and their amplitudes and frequencies change slowly. The 
amplitude and frequency may significantly change under dy‐
namic conditions such as those during low-frequency oscilla‐
tion or SSO. Therefore, the power signal model can be ex‐
pressed as:

y(t)= x(t)+ η(t)= 2 a(t)cos(φ(t))+ η(t) (1)

where x(t) is the fundamental signal; a(t) and φ(t) are the 
time-varying amplitude and phase, respectively; and η(t) is 
the interference signals, e. g., harmonics and OOB interhar‐
monics.

According to the Euler formula, the fundamental signal 
can be divided into a positive frequency component and a 
negative frequency component as:

x(t)= 2
2

a(t) ( )ejφ(t)+ e-jφ(t) = 2
2 ( )X + (t)+X - (t) (2)

where X + (t) and X - (t) are the positive and negative funda‐
mental components, respectively.

Other interference signals can also be decomposed into 
symmetric components in the frequency domain. The dia‐
gram of the synchrophasor estimation method based on com‐
plex bandpass filters is shown in Fig. 3, where fs is the sam‐
pling frequency; Fr is the reporting rate; and fn is the nomi‐
nal frequency.

The static and dynamic synchrophasors can be regarded as 
narrow-band components near the fundamental frequency 
(called the measurement bandwidth). Therefore, the synchro‐

phasor can be obtained by extracting the positive fundamen‐
tal component and suppressing the negative fundamental 
component using a complex bandpass filter. The field power 
signal must have harmonics and interharmonics. Therefore, 
the complex bandpass filter must filter the OOB interference 
components.

Filter design methods are mature. However, the challenge 
is to determine the parameter range of a complex bandpass 
filter for different scenarios. To this end, mathematical error 
models are derived to establish the relationship between the 
application requirements and the filter gain. Subsequently, 
the passband and stopband gains can be obtained using these 
models. The error models for the static and dynamic signals 
are described in [35]. The calibrator accuracy must be at 
least 10 times higher than the standard requirements. Based 
on the calibration requirements, the parameter range of the 
filter is obtained according to the error models. As shown in 
Table I, the passband ripple must be less than 0.0006 dB, 
and the stopband gain must be less than -95 dB for harmon‐
ics or OOB interharmonics and less than -129 dB for the 
negative fundamental component.

Based on the “required” parameter range, the complex 
bandpass filter used for synchrophasor estimation is present‐
ed in Fig. 4. The passband ripple is less than 0.0001 dB, in‐
dicating that a positive fundamental component can be ex‐
tracted accurately. The gain in the range of -55 Hz to -45 Hz 
is less than -140 dB, and the gain in the other stopband is 

TABLE I
MEASUREMENT REQUIREMENTS AND PARAMETER RANGES OF FILTER FOR 

PHASOR ESTIMATION METHODS FOR FIELD PMU TEST

Parameter

Passband range (Hz)

Stopband range (Hz)

Required passband ripple (dB)

Designed passband ripple (dB)

Required passband ripple of X - (t) (dB)

Designed passband ripple of X - (t) (dB)

Required passband ripple of harmonic/OOB (dB)

Designed passband ripple of harmonic/OOB (dB)

Data window (cycles)

Range

45-55

£ 25 and ³ 75

<0.0006

0.0001

<-129

-140

<-95

-100

15

Bandpass filter

StopbandStopband

Passband

Measurement

 bandwidth

-fs/2 fs/2-fn fn

η(t) η(t)

X�(t)
X+(t)

fn�Fr/2 fn+Fr/2

Magnitude

Fig. 3.　Synchrophasor estimation method based on complex bandpass fil‐
ters.
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less than -100 dB. These parameter ranges are denoted as 
“designed” in Table I. Therefore, the negative fundamental 
component and OOB interference components can be sup‐
pressed effectively.

Let the coefficients of the finite impulse response (FIR) 
bandpass filter in Fig. 4 be h(k) (0 £ k £ 2M, where 2M is the 
order of the filter). Then, the positive fundamental compo‐
nent can be obtained by:

z(k)=∑
i = 0

2M

h(k)y(k -M + i) (3)

where y(k) is the discrete power signal; and z(k) is the mea‐
sured positive fundamental component. The timestamp is 
marked in the middle of the data window to eliminate the 
phase shift.

Then, the synchrophasor at the reporting time can be ob‐
tained according to the definition of the synchrophasor:

Ẋ (k)= z(k)e-j2πfntk (4)

where Ẋ (k) is the discrete synchrophasor; and tk is the report‐
ing time.

A high-accuracy measurement method for estimating the 
frequency and ROCOF is proposed in [9], and the details 
are presented in Appendix A. On the basis of these algo‐
rithms, the PMU calibrator provides an accurate synchropha‐
sor, frequency, and ROCOF.

IV. SIGNAL DENOISING METHOD 

A. Denoising Theory

A Fourier-transform-based threshold denoising method is 
proposed in this subsection. The detailed process is as fol‐
lows.

The spectral coefficients Y(k) of the power signals are ob‐
tained by a DFT:

Y (k)=∑
n = 0

M - 1

y(n)e
-j

2πkn
M     0 £ k £M - 1 (5)

where M is the number of sampling values in the data win‐
dow.

The spectral coefficients of the frequency components are 
larger than those of the random noise. Therefore, a threshold 
value is set to distinguish the significant components from 
noise:

Y ′ (k)=
ì
í
î

Y (k)    Y (k)³ Sth

0         Y (k)< Sth

(6)

where Sth is the threshold value; and Y(k)=|Y(k)| is the ampli‐
tude. The spectral coefficients smaller than Sth are set to be 
0, and the spectral coefficients greater than Sth remain un‐
changed.

The signal is reconstructed based on inverse DFT (IDFT) 
by using the new spectral coefficients:

y′ (n)= real ( 1
M∑k = 0

M - 1

Y ′ (k)e
j
2πkn

M ) (7)

where real(×) means the real part of a complex number.
The DFT and IDFT can be replaced by a fast Fourier 

transform (FFT) and an inverse FFT (IFFT), respectively, to 
reduce the computational burden. The key difficulty of the 
proposed denoising method is setting the threshold value, 
which is analyzed in detail later.

B. Random Noise Distribution

The random noise distribution in the frequency domain is 
first analyzed to determine Sth.

It is assumed that the random noise in power signals fol‐
lows a normal distribution:

ν(k)~N(μσ2 )     0 £ k £M - 1 (8)

where ν(k) is the noise sequence; and μ and σ are the mean 
and standard deviations of the normal distribution, respec‐
tively. In general, μ is set to be 0. Thus, the noise is white 
Gaussian noise.

The DFT spectrum of the noise sequence is a complex se‐
quence that can be expressed as:

Vν (k)=Rν (k)+ jIν (k) (9)

where Vν (k) is the noise spectrum; and Rν(k) and Iν(k) are 
the real and imaginary parts of the noise spectrum, respec‐
tively.

The Fourier transform of a normal distribution also fol‐
lows a normal distribution, and the real and imaginary parts 
have the same mean and standard deviations. Thus, we can 
obtain:

ì
í
î

Rν (k)~N(0σ 2
R )

Iν (k)~N(0σ 2
I )

    σ 2
V = σ

2
R = σ

2
I (10)

where σR and σI are the standard deviations of the real and 
imaginary parts, respectively; and σV is the standard devia‐
tion of the noise spectrum.

The power and amplitude spectra of the white Gaussian 
noise are:

ì
í
î

ïï

ïï

Pν (k)=Rν (k)2 + Iν (k)2

Xν (k)= Pν (k)
(11)

where Pv (k) and Xv (k) are the power and amplitude of the 
random noise, respectively.

The square sum of the random variables with a standard 
normal distribution has a chi-squared distribution. The num‐
ber of degrees of freedom of the chi-squared distribution is 
equal to the number of random variables [36]. Based on this 
property, if the real and imaginary parts are standardized to 
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Fig. 4.　Magnitude of response of calibrator synchrophasor algorithm for a 
reporting rate of 50 Hz.

1511



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 6, November 2022

follow a normal distribution in (12) and (13), the standard‐
ized power must obey the chi-squared distribution in (14).

R′ν (k)=
Rν (k)

σV

~N(01) (12)

I ′ν (k)=
Iν (k)

σV

~N(01) (13)

P′ν (k)= (R′ν (k))2 + (I ′ν (k))2 =
Pν (k)

σ 2
V

    P′ν (k)~χ 2
2 (14)

where R′ν (k), I ′ν (k), and P′ν (k) are the standardized real part, 
imaginary part, and noise power, respectively; and χ 2

2 is a 
chi-squared distribution with two degrees of freedom, whose 
probability density function is defined as:

gn (x)=
ì
í
î

ïïïï

ïïïï

1
2n/2Γ(n/2)

xn/2 - 1e-x/2    x > 0

0                                       x £ 0

(15)

where Γ(×) is the Gamma function; and n is the number of 
degrees of freedom (n = 2 in this study). The probability of 
the chi-squared distribution is determined by its degrees of 
freedom.

C. Method of Threshold Setting

1)　Threshold Characteristics
If the power spectrum of the random noise in the power 

signals can be obtained, it must have a chi-squared distribu‐
tion after standardization according to the above analysis.

It is assumed that the power signal is as follows, and the 
signal-to-noise ratio (SNR) is 30 dB to 80 dB.

y(k)= x(k)+ ν(k)=

100 2 cos (2π ´ 50.23
k
fs ) + 20 2 cos (2π ´ 27.47

k
fs ) +

10 2 cos (2π ´ 56.7
k
fs ) + ν(k) (16)

The SNR is defined as:

SNR = 10 lg

æ

è

ç

ç

ç

ç
ççç
ç

ç

ç

ç

ç∑
k = 0

M - 1

x2 (k)

∑
k = 0

M - 1

ν2 (k)

ö

ø
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The probability density curves of chi-squared distribution 
χ 2

2, random noise of 30 dB to 80 dB, and a noisy signal are 
shown in Fig. 5.

In Fig. 5(a), the random noise and chi-squared curves al‐
most coincide, indicating that the standardized power of the 
random noise follows a chi-squared distribution. In Fig. 5(b), 
the standardized power of the noisy signal does not follow a 
chi-squared distribution.

In Fig. 5(a), we define:

ì
í
î

p(x > c)= α
c = χ 2

2 (α)
(18)

where p is the cumulative probability of the chi-squared dis‐
tribution; α is the confidence level; and c is the denoising 
threshold value for the standardized power spectrum P′ν (k), 

and the noise components less than c are suppressed. The 
value of α can be adjusted to improve the denoising perfor‐
mance. For example, more random noise is suppressed at 
high values of α.

When c is determined, the threshold value must be cσ 2
V for 

the noise power spectrum Pv (k) according to (14). Thus, ac‐
cording to (11), Sth in the amplitude spectrum can be set to be:

Sth = σV c (19)

However, the random noise of power signals is difficult to 
obtain. Thus, the standard deviation σV is unknown. There‐
fore, an iterative method for estimating the standard devia‐
tion of the noise is proposed.
2)　Iterative Method for Threshold Setting

According to the property of the chi-squared distribution, 
the mean and variance of the standardized noise power are:

ì
í
î

E(P′ν (k))= 2

Var(P′ν (k))= 4
(20)

As shown in Fig. 5(b), the standardized power of the 
noisy signal does not follow a chi-squared distribution. 
Thus, its mean and variance do not satisfy (20). However, 
some effective frequency components can be removed to en‐
sure that the residual power spectrum has a mean of 2 and a 
variance of 4. At this time, the standard deviation of the re‐
sidual spectrum can be considered as σV. Based on this con‐
cept, the following iterative steps are proposed.

Step 1: obtain the spectrum of the power signals and ini‐
tialize the iteration index i = 0:

ì
í
î

Ri
Y (k)= real(Y (k))

I i
Y (k)= imag(Y (k))

(21)

where Ri
Y (k) and I i

Y (k) are the real and imaginary parts of 
the frequency spectrum of the signal, respectively.

Step 2: standardize the power spectrum:

RI i
Y =[Ri

Y (0)    Ri
Y (M - 1)  I i

Y (0)    I i
Y (M - 1)] (22)
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Fig. 5.　 Probability density curves of chi-squared distribution, random 
noise, and a noisy signal. (a) Random noise. (b) Noisy signal.
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σ i
Y = std(RI i

Y ) (23)

P i
Y (k)=

(Ri
Y (k))2 + (I i

Y (k))2

(σ i
Y )2 (24)

where RI i
Y is a vector composed of Ri

Y (k) and I i
Y (k); σ i

Y is the 
standard deviation of RI i

Y; and P i
Y (k) is the standardized pow‐

er spectrum.
Step 3: calculate the variance and mean of the ith standard‐

ized power spectrum:

ì
í
î

λi
Y =Var(P i

Y (k))

E(P i
Y (k))= 2

(25)

In each case, the mean of the standardized power spec‐
trum must be 2, as shown in Appendix A Section B. Thus, 
only the variance is used to determine the standard deviation 
of the noise.

Step 4: eliminate the maximum power spectrum that repre‐
sents the effective frequency components:

Ri + 1
Y = [ Ri

Y (0)  Ri
Y (1)    Ri

Y ( j - 1)  Ri
Y ( j + 1)  ] (26)

I i + 1
Y = [ I i

Y (0)  I i
Y (1)    I i

Y ( j - 1)  I i
Y ( j + 1)  ] (27)

where j is the index of the maximum power spectrum.
Step 5: return to Step 2 to recalculate the variance until it 

is less than 4, and define the maximum iteration index 
as imax.

Step 6: find the standard deviation corresponding to the 
variance closest to 4, and set it as σV:

iν =min || λi
Y - 4     0 £ i £ imax (28)

σV = σ
iν
Y (29)

where iν is the index of the variance closest to 4; and min(×) 
is a function that returns the index of the minimum value in 
a data sequence.

This method is used to estimate the standard deviation of 
the noise. Then, the threshold value can be obtained using 
(19). After multiple tests, most noise can be suppressed to 
achieve good denoising performance at a confidence level of 
0.01. In this paper, c = χ 2

2 (0.01)= 9.21 is used.
The proposed denoising method adjusts the threshold value 

adaptively for different noise levels. Note that the synchropha‐
sor estimation algorithm can filter the OOB interference sig‐
nals. Therefore, only the random noise in the measurement 
band (0 to 100 Hz in this paper) needs to be analyzed.

D. Sensitivity to Length of Data Window

The FFT suffers from the spectrum leakage and the fence 
effect, and its frequency resolution is limited by the length 
of the data window. These problems may impact the denois‐
ing performance. Therefore, it is necessary to analyze the in‐
fluence of the length of the data window on the performance 
of the proposed denoising method.

The test signal model is defined in (16). The residual 
noise after using the proposed denoising method is:

v′ (k)= y′ (k)- x(k) (30)

The SNR of the denoised signal can be obtained with (17). 
The noise level is set to be 40 dB. The SNR of denoised signal 

for different lengths of the data window is shown in Fig. 6. 
The noise level decreases as the length of the data window of 
the FFT increases. However, the growth rate significantly de‐
creases when the length of the data window is greater than 4 s. 
At this time, any increase in the length of the data window to 
improve the denoising performance is ineffective because of a 
substantial increase in the computational burden. Therefore, 4 
s is used as the length of the data window in the proposed de‐
noising method. The PMU calibrator only provides high-accu‐
racy measurements for the reference values and has no latency 
requirements. Thus, a data window of 4 s is acceptable for the 
PMU calibrator.

The amplitude spectrum of a simulated signal for which 
the length of the data window is 4 s, is shown in Fig. 7, 
where the red line represents the threshold value (0.0253 A). 
Most components are less than 0.0253 A, indicating that 
most random noise is suppressed.

The denoised signal still contains approximately 52 dB of 
noise in the measurement band, indicating the limits to the 
denoising ability of the proposed denoising method. The rea‐
son is that the noise spectrum is continuous, whereas the pro‐
posed FFT-based method can only deal with noise compo‐
nents at discrete frequency points. Owing to the fence effect, 
the noise between two frequency points cannot be sup‐
pressed. However, the proposed denoising method can still 
significantly improve the synchrophasor accuracy under stat‐
ic and dynamic conditions, as discussed in the next section.

V. PERFORMANCE VERIFICATION 

A. Synchrophasor Estimation Method

In this paper, the reporting rate Fr is 50 Hz, and the sam‐
pling frequency is 1200 Hz. A PMU calibrator is developed, 
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Fig. 6.　SNR of denoised signal for different lengths of data window.
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and its hardware composition is described in [9]. The pro‐
posed synchrophasor algorithm is implemented using a PMU 
calibrator. In addition, it is necessary to analyze the hard‐
ware performance and memory capacity requirements to re‐
cord the waveforms. In the PMU calibrator, a common for‐
mat for transient data exchange (COMTRADE) file is used 
to record the three-phase voltage and current waveforms. 
Since only the fundamental measurement is considered, the 
sampling frequency does not need to be too high. One min‐
ute of waveform data is stored in a file. From experimental 
tests, the size of one file is approximately 1.8 MB. In gener‐
al, it is sufficient for the PMU calibrator to store the wave‐
form files for one day. Thus, the required storage capacity is 
60 × 24 × 1.8 = 2592 MB ≈ 2.6 GB. Because recording the 
waveforms does not involve complex algorithms, it has a 
low computational complexity. Compared with phasor mea‐
surement and denoising methods, the impact of the recorded 
waveforms on the hardware performance can be ignored.

A high-precision generator is used to test the PMU calibra‐
tor according to the test conditions specified in an IEEE stan‐
dard [7]. In addition, the calibrator method in [27] (denoted 
as PA) and a novel synchrophasor method in [37] (denoted 
as PB), are used for comparison to illustrate the advantages 
of the proposed synchrophasor algorithm. Compared with 
other calibrator algorithms, PA is a universal calibrator algo‐
rithm and is not related to signal models. Thus, it can be 
used for field PMU test. PB is a synchrophasor estimation 
method with good performance under static and dynamic 
conditions. Therefore, these two methods are selected for 
comparison. PA uses a quadratic expansion to approach the 
dynamic amplitude and phase in the observation interval. 
Then, the fitting coefficients are solved using the least-
squares (LS) method. PB designs an optimized cosine self-
convolution window and combines it with an interpolated 
DFT to estimate the synchrophasor.

The test results are listed in Tables II, III, and IV. The Chi‐
nese PMU standard (CHS) is also listed to verify the perfor‐
mance of the proposed denoising method [38]. The CHS us‐
es the amplitude and phase errors to evaluate the phasor ac‐
curacy. Thus, the equivalent TVE is listed in Table II.

TABLE II
THE MAXIMUM SYNCHROPHASOR ERRORS FOR STANDARD TEST

Test type

Off-nominal

Harmonic

OOB

AM

PM

Frequency ramp

TVE (%)

IEEE

1.0

1.0

1.3

3.0

3.0

1.0

CHS

0.425

0.852

1.853

0.578

0.907

0.907

Proposed

0.0053

0.0024

0.0074

0.0036

0.0076

0.0050

PA

0.067

0.033

0.068

0.009

0.011

0.049

PB

0.003

0.212

0.062

0.407

0.369

0.016

The estimation accuracy of PA is 10 times higher than the 
IEEE standard requirements. However, the ROCOF accuracy 
is only approximately two times higher than that of the CHS 
in off-nominal tests. Thus, PA cannot be applied to PMU 
test in China. The accuracy of PB is poor. In particular, the 

frequency errors exceed the limitations of harmonic and 
OOB test. The proposed method has higher accuracy than 
that of PA. The synchrophasor, frequency, and ROCOF accu‐
racies are at least two orders of magnitude higher than the 
standard requirements under static and dynamic conditions. 
For the harmonic and OOB test, the designed complex band‐
pass filter can filter the interference signals successfully, and 
the frequency and ROCOF are estimated accurately. There‐
fore, the developed PMU calibrator has good estimation per‐
formance for PMU test.

B. Denoising Method

The denoising method may be used to suppress the ran‐
dom noise in scenarios B and C, as shown in Fig. 1. Denois‐
ing methods based on the wavelet transform (DB) [29] and 
SVD (DC) [31] are compared to verify the advantages of the 
proposed method (DA).

The simulation signal is presented in (31) and the random 
noise of 30 dB is added.

y(t)= 50 2 [1 + 0.2cos(2π ´ 15t)]cos(2π ´ 50t)+ noise (31)

The DB and DC methods are used to denoise the ampli‐
tude modulation signal, and the magnitudes of responses of 
original and denoised signals for DB and DC methods are 
shown in Fig. 8. The DB method is similar to a low-pass fil‐
ter. Thus, it cannot suppress the random noise in the low-fre‐
quency band, although it has good high-frequency noise sup‐
pression capability. The DC method has better suppression 
performance for low-frequency noise because the dominant 
components can be obtained by SVD. However, the noise 
near the frequency components is difficult to suppress.

The magnitudes of responses of original and denoised sig‐
nals for DA method are shown in Fig. 9. Most of the noise 
has been removed, including that in the low-frequency band. 

TABLE III
THE MAXIMUM FREQUENCY ERRORS FOR STANDARD TEST

Test type

Off-nominal

Harmonic

OOB

AM

PM

Frequency ramp

Frequency error (Hz)

IEEE

0.005

0.025

0.010

0.300

0.300

0.010

CHS

0.002

0.004

0.025

0.025

0.300

0.010

Proposed

1.1×10-5

8.0×10-6

1.9×10-5

8.0×10-6

9.1×10-5

1.9×10-5

PA

5.0×10-5

1.9×10-4

2.6×10-3

1.9×10-4

8.5×10-3

3.1×10-4

PB

0.002

0.075

0.027

0.039

0.024

0.007

TABLE IV
THE MAXIMUM ROCOF ERRORS FOR STANDARD TEST

Test type

Off-nominal

Harmonic

OOB

AM

PM

Frequency ramp

RFE (Hz/s)

IEEE

0.1

14.0

14.0

0.2

CHS

0.01

0.02

0.10

3.00

0.20

Proposed

8.9×10-5

7.0×10-5

2.8×10-4

6.7×10-5

4.8×10-3

8.3×10-4

PA

0.0046

0.0040

0.2540

0.0110

0.5220

0.0160

PB

0.012

0.218

1.632

0.925

1.431

0.013
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The noise between the two frequency components can also 
be suppressed. Thus, DA is suitable for dynamic signal de‐
noising. DA has better denoising performance than that of 
DB and DC methods. However, some noises may remain in 
the denoised signals because it is difficult to distinguish the 
random noise from the frequency components completely 
with the threshold value.

C. Phasor Accuracy of Denoised Signals

After analyzing the field-recorded data, the field current 
signals may still contain the random noise of up to 30 dB. 
Thus, 30 dB of noise is added to the static and dynamic sig‐
nals. The maximum synchrophasor errors of different denois‐
ing methods are listed in Table V. The noise test is not speci‐
fied in the existing PMU standards. Therefore, there are no 
standard requirements as evaluation indicators for noise test. 
In addition, the frequency and ROCOF of the current signals 
need not be estimated. Therefore, they are not provided in 
Table V.

TABLE V
THE MAXIMUM SYNCHROPHASOR ERRORS OF DIFFERENT DENOISING 

METHODS FOR CURRENT SIGNALS WITH 30 DB OF NOISE

Test type

Off-nominal

AM

PM

Frequency ramp

TVE (%)

Noise

1.761

1.792

1.782

1.793

DA

0.668

0.705

0.681

0.792

DB

1.763

1.792

1.781

1.793

DC

0.841

1.332

1.392

1.348

The synchrophasor errors of the noisy signals are relative‐
ly large. DB cannot suppress the random noise in the low-
frequency band, which leads to unchanged synchrophasor er‐
rors. DC can remove the noise from the static signals but 
has poor denoising performance for dynamic signals. For 

DA, the synchrophasor errors of the denoised signals are 
less than half of the signals without denoising. Therefore, 
the proposed method has better denoising performance than  
DB and DC methods.

The analysis of the field-recorded data shows that the 
SNR of the field voltage signals is as high as 50 dB. Thus, 
50 dB of noise is added to the test signals. The results are 
shown in Tables VI and VII. Because DB could not suppress 
the noise, it is not included in Tables VI and VII. Similar to 
the results in Table V, DC has a good denoising effect for 
static signals but not for dynamic signals. The synchrophasor 
accuracy of the proposed method under static and dynamic 
conditions is improved by approximately 50%, except for 
the frequency ramp test. The fundamental frequency linearly 
changes over time during frequency ramp test. Thus, there is 
significant spectrum leakage, resulting in low denoising per‐
formance. The frequency accuracy is improved by 3-6 times, 
and the ROCOF accuracy is improved by 4-10 times com‐
pared with that of noisy signals. Therefore, the proposed de‐
noising method provides better denoising performance and 
higher estimation accuracy than the other methods.

VI. CONCLUSION 

In this paper, a general test and calibration framework are 
proposed for field PMU test in different scenarios. The 
framework comprises a PMU calibrator and an analysis cen‐
ter. The main focus of Part I is on the algorithms for the 
PMU calibrator. A general design method based on a com‐
plex bandpass filter is developed for accurate synchrophasor 
estimation in multiple scenarios. A Fourier-transform-based 
threshold denoising method is proposed to improve the anti‐
noise capability of the PMU calibrator. The threshold value 
is determined iteratively according to the frequency-domain 
chi-squared distribution of the random noise. Simulation and 
experimental test results show that the PMU calibrator has a 
higher accuracy than that of other calibrator algorithms and 
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TABLE VI
THE MAXIMUM SYNCHROPHASOR ERRORS OF DIFFERENT DENOISING

 METHODS FOR VOLTAGE SIGNALS WITH 50 DB OF NOISE

Test type

Off-nominal

AM

PM

Frequency ramp

TVE (%)

Noise

0.173

0.179

0.177

0.180

DA

0.083

0.053

0.069

0.108

DC

0.086

0.133

0.154

0.182

TABLE VII
THE MAXIMUM FREQUENCY AND ROCOF ERRORS OF DIFFERENT 

DENOISING METHODS FOR VOLTAGE SIGNALS WITH 50 DB OF NOISE

Test type

Off-nominal

AM

PM

Frequency ramp

FE (Hz)

Noise

0.012

0.012

0.018

0.012

DA

0.002

0.002

0.004

0.004

DC

0.003

0.007

0.011

0.011

RFE (Hz/s)

Noise

0.708

0.735

1.102

0.784

DA

0.064

0.122

0.232

0.187

DC

0.112

0.328

0.671

0.782
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denoising methods for complex field signals. The accuracy 
of the synchrophasor estimation method is 100 times higher 
than the standard requirements. The proposed denoising 
method can double the phasor accuracy and triple the fre‐
quency and ROCOF accuracy under noisy conditions. Thus, 
the method can provide reference values for error analysis of 
field PMUs. The analysis center and applications of the pro‐
posed test method are presented in Part II.

APPENDIX A

A. Frequency and ROCOF Estimation Method

In [9], a frequency and ROCOF estimation method based on 
the filtering characteristics of the LS method is proposed. As 
the frequency and ROCOF have the same solution processes, 
ROCOF estimation is provided as an example.

The second-order polynomial is used to approximate the 
time-varying frequency in the observation window:

f (t)= d0 + d1t + d2t2 (A1)

where d0, d1, and d2 are the polynomial coefficients that can be 
obtained by the LS method:

D = (P T
f Pf )-1 P T

f F (A2)

where F consists of M + 1 adjacent measured frequencies (M is 
an even number); D is composed of the polynomial coeffi‐
cients (D =[d0, d1, d2 ]T); and Pf is related to Fc and M (Fc is the 
calculation rate of the synchrophasor).

By deriving (A1) and setting the time tag at the center of the 
observation window, the ROCOF can be calculated as d1.

The above method can estimate the ROCOF accurately in 
the static state but will cause larger errors when the oscillation 
exists in the power system. To this end, an improved method is 
proposed.

The frequency and ROCOF of power oscillation can be ex‐
pressed as:

f (t)= f0 - amsin(2πfmt + φp ) (A3)

rf (t)=-bmam cos(2πfmt + φp ) (A4)

where am =-fmkp; bm = 2πfm; and fm, kp, and φp are the modula‐
tion frequency, depth, and initial phase, respectively.

In (A2), let

Qf = (P T
f Pf )-1 P T

f =
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úq00 q01  q0M

q10 q11  q1M

q20 q21  q2M

=
é

ë

ê

ê
êêê
ê

ê

ê ù

û

ú

ú
úúú
ú

ú

úq0

q1

q2

(A5)

Once Fc and M are determined, Pf and Qf can be calculated 
offline. As the ROCOF is equal to d1 in the observation win‐
dow, its estimation equation can be rewritten as:

rf ̂ (k)=∑
i = 0

M

q1i f (k -M/2 + i) (A6)

Equation (A6) is equivalent to using an M th-order filter q1=
[q10, q11, , q1M ] to filter the measured frequencies f (k).

According to the properties of an FIR filter, the estimated 
ROCOF with the time is:

r̂f (t)=- ||Q1 ( fm ) amcos(2πfmt + φp ) (A7)

where ||Q1 ( fm )  is the amplitude-frequency characteristic of q1.

Then, the measurement errors in the ROCOF can be ex‐
pressed as:

erf (t)= rf (t)- r̂f (t)=

- ( )bm

||Q1 ( fm )
- 1 ||Q1 ( fm ) amcos(2πfmt + φp ) (A8)

The errors are related to the modulation frequency fm. If 
erf (t) can be obtained, the errors in the ROCOF may be elimi‐
nated.

According to the spectral characteristics of q2 and the prop‐
erties of an FIR filter, the expression for the second derivative 
in the time domain is:

c2 (t)=- ||Q2 ( fm ) ||Q1 ( fm ) amcos(2πfmt + φp ) (A9)

where ||Q2 ( fm )  is the amplitude-frequency characteristic of q2. 

Substituting (A9) into (A8), the measurement error in the RO‐
COF is

erf (t)= ( )bm

||Q1 ( fm )
- 1

c2 (t)

||Q2 ( fm )
(A10)

Let

K2 = ( )bm

||Q1 ( fm )
- 1

1

||Q2 ( fm )
(A11)

The change in K2 with the modulation frequency is very 
small with a difference of 8 × 10-7. Therefore, K2 can be con‐
sidered as a constant independent of the modulation frequency 
(the constant is 2.85 × 10-5 in this paper). The measurement er‐
ror can be eliminated as:

rf ̂c (k)= rf ̂ (k)- 2.85 ´ 10-5c2 (k) (A12)

where rf ̂c (k) is the final estimated ROCOF.

B. Mean of Standardized Power Spectrum

The real and imaginary parts of the signal spectrum are de‐
noted as R(k) and I(k), respectively (0 £ k £N - 1). They com‐
prise a vector:

RI = [ R(0)  R(1)    R(N - 1)  I(0)  I(1)    I(N - 1)] (A13)

The mean and variance of RI can be obtained by:

μ =
∑
k = 0

2N - 1

RI(k)

2N
=
∑
k = 0

N - 1

(R(k)+ I(k))

2N
(A14)

σ2 =
∑
k = 0

2N - 1

(RI(k)- μ)2

2N
=
∑
k = 0

N - 1

[ ](R(k)- μ)2 + (I(k)- μ)2

2N
=

∑
k = 0

N - 1

[ ](R(k)2 + I(k)2 )- 2μ(R(k)+ I(k))+ 2μ2

2N
=

∑
k = 0

N - 1

(R(k)2 + I(k)2 )

2N
- 2μ
∑
k = 0

N - 1

(R(k)+ I(k))

2N
+ 2μ2 =

∑
k = 0

N - 1

(R(k)2 + I(k)2 )

2N
(A15)
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The standardized power spectrum is:

P′ (k)=
R(k)2 + I(k)2

σ2
(A16)

The mean of the above power spectrum is:

μP =
∑
k = 0

N - 1

P′ (k)

N
=
∑
k = 0

N - 1

(R(k)2 + I(k)2 )

Nσ2

(A17)

By substituting (A15) into (A17), μP = 2. Therefore, the 
mean of the standardized power spectrum must be 2 in every 
case.
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