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Abstract——More customers are tending to install batteries 
with photovoltaic (PV), so they can better control their electrici‐
ty bills. In this context, customers may be tempted to go off-
grid at a substantial up-front cost, leading electricity companies 
into a death spiral, thereby raising electricity price further on 
those remaining on grid. Neighborhood energy markets can pro‐
mote the sharing of locally generated renewable energy and en‐
courage prosumers to stay on grid with financial incentives. A 
novel neighborhood energy trading (NET) mechanism is devel‐
oped using the topology of existing radial distribution network 
to encourage sustainable energy sharing in neighborhood and 
encourage prosumers to stay on grid. This mechanism considers 
loss, congestion management, and voltage regulation, and it is 
scalable with low computation and communication overhead. 
An IEEE test system is used to validate the NET mechanism. 
The simulation shows that the price and flow results are ob‐
tained with fast computation speed (within 10 iterations) and 
with loss reflected, flow limit reinforced, and voltage regulated. 
This study proves that the economic demand-supply-based pric‐
ing mechanism can be applied effectively in distribution net‐
works to help encourage more renewable energy sharing in sus‐
tainable neighborhood and avoid energy network death spiral.

Index Terms——Direct power flow, directional adjacency, local 
energy market, peer-to-peer, prosumer, solar community, sus‐
tainable building, transdisciplinary research.
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within desired limits when there is no con‐
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Power factor at node j in iteration k

Injected current from custom at node j in it‐
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Number of iterations for NET

Number of iterations for a generic P2P

Grid-supplied power price

Desired maximum price level

Market price of active power at node j in it‐
eration k at time t

Total market price of active power for both 
consumption and voltage regulation at node 
j in iteration k at time t

Nodal price for voltage regulation at node j 
in iteration k at time t

Nodal price of active power for voltage reg‐
ulation at node j in iteration k at time t

Nodal price of reactive power for voltage 
regulation at node j in iteration k at time t

Active power consumed/offered by customer 
at node j in iteration k at time t
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Reactive power consumed/offered by cus‐
tomer at node j in iteration k at time t

Branch resistance

Active power to node j in iteration k at time 
t

Voltage at node j in iteration k at time t

Voltage deviation of node j from node 1 (j >
1) in iteration k at time t

Allowable limit of voltage deviation at node 
j in iteration k at time t

Voltage sensitivity of node J with respect to 
active power changes at node j

Voltage sensitivity of node J with respect to 
reactive power changes at node j

I. INTRODUCTION 

AUSTRALIAN electricity prices have been doubled in 
the last eight years due to investments in distribution 

networks [1]-[3]. Network cost is about 50% of customers’ 
electricity bills in Australia [4], while in many other coun‐
tries with more dense networks, the factor is less than 20%. 
The present pricing method for most customers is based on 
the total energy use and the network charges are averaged 
across all customers. Hence, this pricing method does not ef‐
fectively reflect the fact that peak demand is the main driver 
for the increased investment in networks.

Cost-reflective pricing for customers’ use of distribution 
networks can play a key role in reducing peak load on net‐
works through the promotion of non-network alternatives, 
such as photovoltaics (PVs), demand response, and energy 
storage at the right locations [5]. To design a cost-reflective 
pricing mechanism for the use of distribution networks, the 
desirable features of a distribution network pricing mecha‐
nism can be summarized as follows.

1) Local congestion should be solved by penalizing load‐
ing and reward generation downstream of a bottleneck. Re‐
peated congestion should be relieved by driving investment 
by network or customers [6].

2) When the PV generation is plentiful, there should be a 
reduction of the energy cost [7].

3) Flows between neighbors or to/from the source should 
contribute to line maintenance.

4) Pricing should reflect a real network constraint [8].
5) Losses should be attributed to contributing customers 

with a benefit for relieving losses [9].
6) Voltage regulation can be an issue for networks with 

high PV penetration [10]. If there is a voltage violation, 
awards should encourage those with the strongest impact to 
contribute to the network-based correction [6].

7) Design reliability is a longer-term issue, and should re‐
flect potential peak usage and seek to meet a local communi‐
ty standard. For example, there may be different targets for 
urban and rural customers considering costs [11].

One way to summarize these features is that pricing mech‐
anisms need to consider the balance between local demand 
and supply, network flow management, losses, and voltage 

regulation [12], [13]. When evaluating pricing features, exist‐
ing pricing mechanisms may include the following points.

1) Energy tariff (volumetric tariff) is one of the most wide‐
ly-used mechanisms. Its network charges are averaged across 
all customers and not responsive to peak loading. It provides 
a maintenance and upgrade investment by scaling the energy 
charge; however, this charge does not address any of the 
above desirable features.

2) Time-of-use tariffs penalize the average expected con‐
gestions during a specific period (e. g., 4-8 p. m. on week‐
days), which is not relevant to the actual loading of the net‐
work. Although this mechanism partly addresses the first fea‐
ture, it is not directly related to the actual loading to reward 
responsive customers for the real peak demand events.

3) Tariffs with peak demand charge or energy charge with 
peak-demand-related line access fee (e. g., in Italy and 
France) attempt to avoid immediate local congestion. These 
tariffs partly address the first and fourth features with some 
impact on the sixth. However, these tariffs do not drive load 
to respond to the network peak.

4) Tariffs with coincident feeder congestion charge ad‐
dress the first and fourth features only.

None of these existing pricing mechanisms address all de‐
sirable features to reflect the real cost of network use for 
customers.

On the other hand, as the cost of PV and battery systems 
continue to decline, more customers intend to install PVs 
and pair them with battery storage to manage their electrici‐
ty bills. In this context, customers may be tempted to go off-
grid at a substantial up-front cost, leading electricity compa‐
nies into a death spiral [14], thereby raising electricity price 
further on those remaining on grid. This dire scenario can be 
avoided by a mechanism, which encourages customers with 
PVs, energy storage or load flexibility to participate in ener‐
gy markets [15], [16].

Energy markets in communities are clearly becoming 
more and more important, and existing studies often focus 
on the development of pricing mechanisms for the central‐
ized, pairwise or a mix of centralized and pairwise energy 
trading. There are few developments with consideration of 
network losses in low-voltage decentralized peer-to-peer 
(P2P) networks [6], [17] and in blockchain-enabled P2P ener‐
gy trading designs [9]. However, further investigations are 
needed for P2P energy sharing in communities as power 
flow and losses are not directly point-to-point [18], [19]. 
Communication overheads can be demanding for local ener‐
gy markets when there are many participants [20], [21]. A 
lightweight blockchain framework has been developed for 
P2P energy trading with reduced level of communication 
overheads [22]. For a centralized market design, the scalabili‐
ty of communication or computation may be challengeable 
because of the sheer volume of customers in distribution net‐
works [23], [24].

In this context, a new directional adjacency-based neigh‐
borhood energy trading (NET) pricing mechanism is pro‐
posed. This NET mechanism is based on a continually updat‐
ed price and flow information of distribution market. Some 
features of the NET mechanism are similar to a centralized 
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P2P trading mechanism. For example, the NET mechanism 
has a head node as the system coordinator, which is similar 
to a market manager or mediator in a centralized P2P trad‐
ing. This NET mechanism is not a P2P mechanism, but it is 
a centralized energy trading mechanism implemented in a de‐
centralized form. By comparing general P2P mechanisms 
with this NET mechanism, the following conclusions can be 
achieved.

1) The NET mechanism works for radial feeders with the 
directional adjacency approach and the direct load flow ap‐
proach. In the NET mechanism, nodes communicate with 
their adjacent nodes. For a generic N node radial network, as 
the number of nodes grows, the communication overhead of 
NET mechanism is expected to be less than that of the ge‐
neric P2P mechanism. However, general P2P mechanisms 
work for all network topologies.

2) The NET mechanism aims to achieve a balance be‐
tween the supply and demand by iteratively updating a head 
node market price. This is like a one-dimensional search, 
rather than multi-dimensional optimization in generic P2P 
trading among N nodes.

The main contributions of this study can be summarized 
as follows.

1) This NET mechanism uses the adjacency-based ap‐
proach to communicate energy price and power flow infor‐
mation.

2) The NET mechanism uses the existing network topolo‐
gy. Compared with other P2P energy trading schemes, this 
NET mechanism requires less communication overhead.

3) The NET mechanism uses the demand and supply 
curves of prosumers as the energy trading basis. This eco‐
nomic approach, rather than optimization, ensures fast com‐
putation convergence.

4) The NET mechanism is scalable with its low communi‐
cation overheads and fast computation convergence. Scaling 
up peer-based mechanisms can be challenging due to large 
numbers of communication links even for medium number 
of customers.

5) Local energy market trading schemes usually consider 
the economic aspects of energy without technical constraints 
satisfied. The NET mechanism has incorporated network 
loss correction, flow constraints, and voltage regulation into 
the energy trading inherently.

This new mechanism will facilitate an effective NET 
through correct pricing of energy and the network use. 
Thereby, this NET mechanism improves the utilization of 
the existing network assets and incentivizes customers (pro‐
sumers, e.g., solar households [25]) to stay on the network.

The remainder of this paper is organized as follows. Sec‐
tion II describes the NET mechanism. An IEEE test system 
is used as the case study in Section III. Finally, conclusion 
and future research areas are given in Section IV.

II. NET MECHANISM 

This section starts with the algorithm to determine the en‐
ergy price for cases without grid supply and cases with grid 
supply under flow constraints. Gradually, price adjustments 
for network uses are introduced to reflect losses, limit flows, 

and regulate voltages. Network uses are for using network 
infrastructure to distribute electrical energy.

A. Energy Price

One of the most efficient ways to set energy prices is to 
use a market mechanism which reflects the actual and local 
economic conditions. The NET mechanism is based on de‐
mand and supply curves of the participants in the market.

As shown in Fig. 1, the process of NET mechanism starts 
from the head node of the feeder (or at the transformer). The 
price is broadcasted downstream to the next adjacent node 
one by one. According to the nodal price, customers gener‐
ate or consume electricity. Then, the flow information is 
passed upstream one by one. Energy generation or consump‐
tion of each node and nodal prices are used to settle the pay‐
ments or receivables of customers.

Based on the total supply and demand mismatch, and 
transformer constraining situation, the head node price is ad‐
justed for the next iteration. This updating process of for‐
ward price and backward flow quantity continues until a con‐
vergence is reached. The algorithm for the iterative pricing 
process is given below.

B. Algorithm for Determining NET Energy Price

Step 1: let k = 1 and denote the initial value for the price 
of active power at the head node (node 1) as Mp( )11t .

Step 2: broadcast this price downstream, let Mp( j1t ) = 
Mp( )11t . Then, each consumer will decide how much they 
want to consume or sell depending on their demand or sup‐
ply curves. The active power and reactive power consumed/
offered by the customer are given by:

p ( jkt ) = α ( jt ) - β ( jt ) Mp( )jkt (1)

q ( )jkt = p ( )jkt tan θ ( )jk (2)

The injected current from the customer at node j at time t 
can then be calculated as:

i ( )jkt =
p ( )jkt - jq( jkt)

V ( )jkt
(3)

Step 3: customers will transmit the above current flow in‐
formation from the end to the head node of the feeder. 
Branch current connecting each node can be calculated after 
summating injected currents from customers:

Nodal price

Generation/consumption

Information

Consumer

Head node

Fig. 1.　Process of NET mechanism.
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[ ]B ( )ikt =BIBC [ ]i ( )jkt (4)

The price for the next iteration is calculated as:

Mp( )1k + 1t = ΓP B ( )1kt +Mp( )1kt (5)

For cases without grid supply, the community power de‐
mands are met by local generation only and there is no pow‐
er supplied from the main grid. Equation (5) will make sure 
that iterations are continued till B ( )1kt = 0.

For cases with grid supply, the community power de‐
mands are met by both local generation and the main grid. 
Also, when there is excess power from prosumers, it will be 
sent to the main grid. When the current through the trans‐
former is within its limit, the energy price is settled at the 
desired grid-supplied power price MPg.

When the current through the transformer exceeds its max‐
imum limit, the energy price for the customers supplied by 
the grid should be increased to reduce the flows through the 
transformer below its limit.

In (6), Γscale is used to scale ΓP to limit the oscillation of 
the prices when the flows through the transformer are close 
to its maximum flow limits.

Γscale =
ì
í
î

ïï
ïï
1      B ( )1kt >Bmax( )1   or  || ( )B ( )1kt -Bmax( )1 >A

C    otherwise
  (6)

When the current flow through the head node transformer 
towards downstream is above its maximum value, as given 
in (7), the energy price will be increased proportional to the 
flow mismatch to keep the flow within its limit in the next 
iteration. When the current flow is close to the maximum 
limit, the prices are slowly adjusted by using the scale factor 
Γscale to reduce the price oscillation. When the current flow 
through the transformer is within its limit, the energy price 
will be reduced to close to the desired price MP* by using 
(8). If there is a reverse flow as shown in (9), prices are re‐
duced for the next iterations to keep the reverse flow within 
the allowable limits. This process continues until no con‐
straint is violated.

Mp( )1k + 1t = Γscale ΓP || B ( )1kt -Bmax( )1 +Mp( )1kt

"B ( )1kt >Bmax( )1 (7)

Mp( )1k + 1t =Mp( )1kt - η ( )Mp( )1kt -MP*

" || B ( )1kt £Bmax( )1 (8)

Mp( )1k + 1t =-Γscale ΓP || B ( )1kt -Bmax( )1 +Mp( )1kt

"B ( )1kt <-Bmax( )1 (9)

C.　Adjustment to Energy Prices for Network Use

As the NET mechanism is carried out via the existing dis‐
tribution network, in addition to the energy price, charges 
for network use should be considered for the efficient use of 
the network. Therefore, in each iteration, prices should be ad‐
justed for network charges. For a cost-reflective pricing of 
network use, the energy price should be adjusted to incorpo‐
rate desirable features listed in the introduction. In summary, 
the energy price in each iteration needs to be adjusted to in‐

corporate losses, congestion, and voltage regulation. The for‐
mulation and details on the three aspects are provided as fol‐
lows.
1)　Algorithm for Updating Energy Price with Adjustments 
for Losses

Except for the changes in (10) and (11), the steps in Sec‐
tion II-B will be followed here. These changes are to ensure 
that the prices of each downstream node are adjusted for 
losses for the next iteration. As shown in (10), the losses in 
each branch are calculated using the branch current calculat‐
ed by (4).

Tp( )n - j + 1kt = Tp( )n - j + 2kt + p ( )n - j + 1kt -

B2( )n - jkt R ( )n - j + 1 (10)

For j = 1, the price for each iteration is calculated using 
(5) - (9). For nodes from j = 2 to n, the price is adjusted for 
losses in (11).

Mp( jk + 1t ) = Mp( )j - 1k + 1t

1 -ΦTp( )jkt
(11)

When there is no flow or voltage violation, the prices of 
the downstream nodes are reflected with (11). In general, the 
whole network would remain at constant prices.
2)　Algorithm for Updating Energy Price with Adjustments 
for Losses and Congestions

Except for changes to adjust the nodal prices downstream 
of a congested line or equipment to alleviate the conges‐
tions, the steps in Section II-B will be followed here.

For node j = J, assume that the maximum limit of branch 
current is Bmax( )J . If B ( )Jk ³Bmax( )J , the price will not 
change for the upstream nodes j = 2 to J. The price for nodes 
j = 2 to J is calculated as:

Mp( )jk + 1t =
Mp( )j - 1k + 1t

1 -ΦTp( )jkt
(12)

For the downstream nodes j = J + 1 to n, the price will be 
increased, as calculated by (13).

Mp( )jk + 1t =
Mp( )j - 1k + 1t

1 -ΦTp( )jkt
+Θ ( )B ( )Jkt -Bmax( )J

(13)

In this case, there is a price difference between the up‐
stream nodes and the downstream nodes of the constraint. 
For future network augmentation, a sinking fund can be es‐
tablished to reserve resources accumulated from the price dif‐
ferences.
3)　Algorithm for Updating Energy Price with Additional Ad‐
justments for Voltage Regulation

In addition to the energy charges, a voltage charge is im‐
posed to each node based on the nodal voltage sensitivity/ef‐
fectiveness to their net active or reactive injections on cor‐
recting the voltage problems in the network. The higher pric‐
es downstream of the line due to high-voltage charges are 
signals for active and reactive power changes, and at the 
same time, these higher prices can be costs or rewards for 
prosumers or the utility to invest on voltage regulation equip‐
ment.

The solution for voltage issues in the distribution net‐
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works is related to line characteristics. If the line reactance 
is much higher than the line resistance, the reactive power 
correction can improve the voltages more effectively than ac‐
tive power correction; if the line reactance is much lower 
than the line resistance, the active power correction can im‐
prove the voltages more effectively; if the line reactance and 
resistance are of the same size, the active and reactive power 
corrections have similar impacts on voltage regulation. The 
voltage sensitivities to active or reactive power reflect the ef‐
fectiveness of their impact on voltage regulation. These volt‐
age sensitivities are used to adjust energy prices, which in 
turn alter the consumption or supply of active or reactive 
power so that the voltage is regulated through an economic 
approach. The algorithm for adjusting these prices for volt‐
age regulation is given below:

Step 1: use (14) and (15) to calculate the nodal voltages 
using the branch current calculated by (4).

[ ]VD ( )jkt =BCBV [ ]B ( )jkt (14)

V ( jkt ) =V ( )1 -VD ( )jkt (15)

Step 2: find the node with the maximum voltage deviation 
VDmax and mark it as node J. The voltage deviations of node 
J are calculated by:

DV ( Jkt ) =
ì
í
î

ïï

ïï

VD ( )Jkt -VDmax        ||VD ( )Jkt >VDmax

0                                          ||VD ( )Jkt £VDmax

   (16)

Step 3: for j = 1, update Mv by:

Mv( )1k + 1t = ΓV ||DV ( )Jkt +Mv( )1kt (17)

Step 4: based on the maximum voltage deviation, and the 
voltage sensitivities of node J to active and reactive power 
at other nodes (denoted as ¶V ( )J /¶p ( )j  and ¶V ( )J /¶q ( )j , 
respectively), calculate the voltage charge for active and re‐
active power for each node with (18) and (19), respectively. 
The matrices of ¶V ( )J /¶p ( )j  and ¶V ( )J /¶q ( )j  need to be 
calculated first to estimate nodal price adjustments for volt‐
age regulation.

Mvq( )j,k + 1,t = ΔV ( )J,k,t
¶V ( )J

¶p ( )j Mv( )1,k + 1,t (18)

Mvp( )j,k + 1,t = ΔV ( )J,k,t
¶V ( )J

¶p ( )j Mv( )1,k + 1,t (19)

Step 5: for the next iteration, calculate active and reactive 
power for each node using (20)-(22).

MPT( jkt ) =Mp( jkt ) +Mvp( jkt ) (20)

p ( jkt ) = α ( jt ) + β ( jt ) MPT ( jkt) (21)

q ( jkt ) = p ( )jkt tan θ ( jkt ) + βq( )jt Mvq( )jkt (22)

To summarize, market prices Mp ( jkt) are to balance en‐
ergy supply and demand as well as to reflect losses, using 
(5)-(13). Nodal prices Mvp( )jkt  and Mvq( )jkt  are calculat‐
ed to regulate voltages, using (18) and (19).

III. CASE STUDY 

To validate the NET mechanism, a modified IEEE 13-bus 
test system is used, which is a radial distribution network 
[26]. As shown in Fig. 2, the test system consists of three 
generator nodes and six load nodes. The same set of line da‐
ta is considered as in [26]. The base parameters of the sup‐
ply curves of generators and demand curves of loads are giv‐
en in Table I and Table II. These base parameters α are mul‐
tiplied by different scale factors to represent demand and 
supply curves during different time periods.

A. Case Without Grid Supply

1)　No Energy Price Adjustments for Network Use
In this case, community power demands are met by local 

generation only (i. e., Bmax( )1 = 0). First, the proposed price 
algorithm is applied neglecting price adjustments for net‐
work use (i.e., relax the regulator current constraint, the up‐
per and lower voltage limits, and no price adjustment are 
made for line losses in the initial step).

Figure 3 presents how the market clearing energy price 
changes with the loads over ten intervals. In this case, the in‐
tercept values α of load demand curves are scaled to repre‐
sent different loading levels for different intervals. The scale 
factors used for α over ten intervals are 0.7, 0.9, 1.2, 1.6, 
0.8, 0.6, 0.7, 0.9, 1.1, and 1.4, respectively. In Fig. 3, the en‐
ergy price varies from 16 Ȼ/kWh during off-peak hours to 
43.9 Ȼ/kWh during peak hours. There is no price separation 
between the upstream nodes and the downstream nodes. So, 
the green and red lines on Fig. 3 are overlapped.

TABLE II
PARAMETERS OF CASE STUDY

ΓP

9.5×10-4

C

7×10-1

Φ

3×10-4

Θ

9.5×10-3

ΓV

1×10-5

βq

1×10-3

1

5423

12

9

6811

7 10

Regulator 

Generator nodes; Load nodes

Fig. 2.　Test system network.

TABLE I
VALUES OF α AND β OF CASE STUDY

Node

1

2

3

4

5

6

α

0

0

1200

800

800

3465

β

0

0

1500

1022

1170

8900

Node

7

8

9

10

11

12

α

0

1000

0

0

0

2000

β

-7113

838

0

-3277

-3527

5975
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2)　Case with Energy Price Adjustments for Line Losses
Figure 4 shows the variations of Mp at interval 4 when the 

price adjustments are made to reflect line losses. As a result, 
the price downstream tend to be slightly higher than the 
price at node 1 because electricity losses tend to be higher 
as it travels longer distances.

3)　Case with Energy Price Adjustments for Line Losses and 
Regulator Current Constraint

In this case, the maximum current carrying capacity of the 
regulator between node 2 and node 6 is 6 A. When the cur‐
rent through the regulator reaches its limit, the prices of all 
nodes downstream the regulator branch is increased consider‐
ing flow directions. Figure 5 shows the nodal prices at inter‐
val 4 when the prices are adjusted to reflect the line losses 
and the regulator current constraint. In this example, as all 
generators are on the nodes below the regulator branch and 
no supply is from the main grid, the direction of the current 
through the regulator is from node 6 to node 2.

Therefore, when the current through the regulator reaches 
its limits, the prices at nodes 2, 3, 4, and 5 are increased. In 
Fig. 5, the price at the transformer node is 43.9 Ȼ/kWh, how‐
ever, the prices at nodes 2, 3, 4, and 5 are increased to 
50.1 Ȼ/kWh to give price signals to customers downstream 
the regulator to adjust their consumptions. In addition to 
that, a small increase is observed for nodal prices at nodes 6-
12 compared with the transformer node. This small price in‐
crease is to reflect the losses. Figure 6 shows how the nodal 
prices vary with time. The market price separation takes 
place due to a network constraint violation as the system de‐
mand increases.

4)　Case with Additional Energy Price Adjustments for Volt‐
age Regulation

In this case, the maximum allowable voltage deviation of 
any node from the nominal voltage is 4 V. When the voltage 
of any node reaches this limit, the price for voltage regula‐
tion is implemented for each node based on their effective‐
ness in correcting the voltages, e.g., its voltage sensitivity to 
active and reactive power at the node with the highest volt‐
age deviation above the limit.

Figure 7 shows the total price for energy balancing and 
voltage regulation at interval 4. It shows price variations 
among nodes at interval 4 with high demand due to different 
prices imposed at different nodes including losses, flow lim‐
it, and voltage regulation prices.

12 (44.6 Ȼ/kWh)

9 (44.6 Ȼ/kWh)

7 (44.2 Ȼ/kWh) 10 (44.7 Ȼ/kWh)

3 (44.0 Ȼ/kWh) 2 (44.0 Ȼ/kWh)

1 (43.8 Ȼ/kWh)

4 (44.0 Ȼ/kWh)

5 (44.0 Ȼ/kWh)

6 (44.2 Ȼ/kWh)

8 (44.2 Ȼ/kWh)

11 (44.2 Ȼ/kWh)

Fig. 7.　Total energy prices for energy balancing and voltage regulation at 
interval 4.
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Fig. 5.　Total nodal prices at interval 4 with price adjustment for line losses 
and regulator current constraint.
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Fig. 3.　Variation of demand and energy price in case without grid supply.
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Fig. 4.　Nodal prices at interval 4 with adjustments for line losses.
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Fig. 6.　Nodal market prices at ten intervals with price adjustment for line 
losses and regulator current constraint.
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Figure 8 shows the nodal voltages at interval 4. As can be 
seen in Fig. 8, the voltages of nodes 7, 9, 10, and 12 are 
above the allowable voltage limits with the maximum devia‐
tion at node 10. 

Figure 9 illustrates how Mvp( )jkt  and Mvq( )jkt  are ap‐
plied to different nodes to correct the voltage violation, 
which are plotted for interval 4. As shown in Fig. 9, both 
Mvp( )jkt  and Mvq( )jkt  for voltage regulation are the high‐
est at node 10.

B. Case with Grid Supply

In this case, the community power demands are met by 
both local generation and the main grid. The maximum cur‐
rent carrying capacity of the feeder line is 25 A (i. e., 
Bmax( )1 = 25 A).
1)　No Adjustments to Energy Price for Network Use

To examine how the grid supply would change the market 
price, the NET algorithm is applied without price adjust‐
ments for the network use.

Figure 10 presents how the market energy price would 
change over ten intervals when the grid supply is available. 
As shown in Fig. 10, the energy price varies from 20 Ȼ/
kWh during off-peak hours to 32.63 Ȼ/kWh during peak 
hours. The energy price during the peak period is 11.27 Ȼ/
kWh less than that in case without grid supply.

The energy price during intervals with low demand is set‐
tled at 20 Ȼ/kWh, which is the desired price for energy sup‐
plied from the main grid. However, during intervals with 
high demand, the price increases above the desired price to 
limit the flows through the transformer.

Figure 11 shows how price converges over iterations for 
different intervals. At intervals 4 and 10 with high demand, 
at the initial price of 20 Ȼ/kWh, the initial flows from the 
grid are much higher than the transformer capacity of 20 A. 
Therefore, the price is increased in the subsequent iterations 
until the flows from the grid fall below 20 A, which takes 
10 iterations during the peak intervals.

Figure 12 shows how the price converges and the flow 
from the grid changes over the ten iterations at interval 4.
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Fig. 9.　Nodal prices for voltage regulation at interval 4. (a) Mvp( )jkt . (b) 
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Fig. 12.　Price and current over iterations to limit flows at interval 4.
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Fig. 11.　Price and current over iterations to limit grid flows. (a) Price. (b) 
Current.

12 (136.8 V)

9 (237.1 V)

7 (236.1 V) 10 (238.6 V)

3 (229.3 V) 2 (229.9 V)

1 (230.0 V)

4 (228.6 V)

5 (228.3 V)

6 (233.9 V)

8 (233.9 V)

11 (234.5 V)

Fig. 8.　Nodal voltages at interval 4.
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2)　Case with Energy Price Adjustments for Line Losses
Figure 13 shows the total nodal price during the peak peri‐

od with adjustments for line losses. Nodal prices tend to be 
higher when the nodes are further away from node 1 be‐
cause there are more losses when the electricity distribution 
path is longer.

3)　Case with Energy Price Adjustments for Line Losses and 
Voltage Regulation

Figure 14 shows the total price for energy and voltage reg‐
ulation at interval 4 with the peak demand. Nodes 9, 10, and 
12 have higher voltages and slightly higher prices than other 
nodes due to additional cost to manage voltage deviation 
(similar to the case without grid supply). Compared with 
Fig. 13, the price increasements of nodes 9, 10, and 12 are 
higher than those of other nodes, which is mainly from price 
adjustment to regulate voltage.

4)　Case with Energy Price Adjustments for Line Losses, Reg‐
ulator Current Constraint, and Voltage Regulations

Figure 15 shows the total nodal prices at interval 4, with 
the consideration of line losses, regulator current constraint 
and voltage regulations. Compared with Fig. 14, the nodes 
upstream of the regulator have similar prices; however, the 
nodes downstream of the regulator have slightly higher pric‐
es due to the regulator current constraint.

C. Scalability and Computation Time

To further test the scalability and demonstrate the results 
of the NET mechanism, the IEEE test system has been aug‐
mented to a 130-bus system. Out of 10000 simulations, the 
average computation time for simulating the NET mecha‐
nism over 10 intervals is 0.0038 s for the original case and 
0.0228 s for the augmented 130-bus system. 

The computation time is increased by 6 times for the 130-
bus system. The increasement of computation time is lower 
than anticipated because the NET mechanism is mainly 
based on matrix computation such as (4) and (14). Matrices 
with more rows may not necessarily need much more time 
to calculate.

This comparison result shows that the NET mechanism is 
scalable and computationally efficient. Another evaluation is 
that the computation time of the NET mechanism is very 
small compared to the 5 min trading interval in Australian 
energy wholesale market.

IV. CONCLUSION 

The communication overhead can be quite high in the ex‐
isting distributed energy trading mechanisms, e.g., pair-wise 
communication in a full P2P market [24], [27]. With the 
unique adjacency-based communication design of NET 
mechanism, the low communication is needed to pass price 
information from upstream to downstream or pass flow infor‐
mation from downstream to upstream. Through a cost reflec‐
tive pricing design, the NET not only has a scalable commu‐
nication process and fast pricing convergence rates, but also 
could reflect losses and manage network constraints in the 
pricing mechanism.

Another advantage of the NET mechanism is that the ex‐
isting network infrastructure can be used for the information 
flow (a realistic example is storage water heater, which has 
been controlled over decades with the existing electricity 
wires as the communication media). A limitation of the NET 
mechanism is that it works with radial feeders in distribution 
network when direct load flow approach is applicable [1]. 
However, generic P2P mechanisms may work in any electri‐
cal network topology. Further study includes a detailed finan‐
cial evaluation for the NET impact on network planning.
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