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Abstract——The use of unmanned aerial vehicles (UAVs) in the 
collection of data from wireless devices, sensor nodes, and the 
Internet of Things (IoT) devices has recently received signifi‐
cant attention. In this paper, we investigate the data collection 
process from a set of smart meters in advanced metering infra‐
structure (AMI) enabled by UAVs. The objective is to minimize 
the total annual cost of the electric utility by jointly optimizing 
the number of UAVs, their power source sizing, the charging lo‐
cations as well as the data collection trip planning. This is 
achieved while considering the energy budgets of batteries of  
UAVs and the required amount of collected data. The problem 
is formulated as a mixed-integer nonlinear programming (MIN‐
LP), which is decoupled into two sub-problems where a candi‐
date UAV and a number of buildings are first grouped into 
trips via genetic algorithms (GAs), and then the optimum trip 
path is found using a traveling salesman problem (TSP) branch 
and bound algorithm. Simulation results show that the battery 
capacity or the number of UAVs increases as the coverage area 
or the density increases.

Index Terms——Advanced metering infrastructure, unmanned 
aerial vehicle, power source sizing, trip planning, genetic algo‐
rithm.

I. INTRODUCTION 

ADVANCED metering infrastructure (AMI) is consid‐
ered as a vital part of integrated power management so‐

lutions that are based on the supervisory control and data ac‐
quisition (SCADA) system. AMI incorporates electrical hard‐
ware devices such as smart meters, smart sensors, circuit 
breakers, switchboards, uninterruptible power supply (UPS) 

systems, and communication gateways, which are recognized 
as the most reliable performance equipment for protection, 
control, and measurement [1]. AMI has many advantages 
such as: ① improving the energy efficiency, accurate collec‐
tion, and calculation; ② reporting to the customers and utili‐
ties; and ③ maximizing the electrical network reliability and 
availability [2], [3].

Smart meters play an important role in AMI systems. 
These meters measure the voltage and current analog sig‐
nals, convert them to digital signals, and then transmit them 
to the electric utility to be monitored and stored. Although 
the data can be manually collected, they are prone to errors 
and consume more time and cost. That is why smart meters 
use two-way communication to transmit the data to the utili‐
ty without human intervention. The two-way communication 
can be achieved through wires using serial and parallel com‐
munication interfaces such as Ethernet [4], modbus [5], 
BAC net [6], M-bus [7], and RS485 [8] or can be wirelessly 
transmitted using global system for mobile (GSM) communi‐
cations, ad-hoc connectivity, or general packet radio services 
(GPRS). Smart meters can also be connected through a pow‐
er line communication (PLC) system. PLC is a wired line 
communication and transmission system that can provide 
two-way data as well as power transmission.

The use of wired communications to deliver the smart me‐
ters data to the utility is subject to the limitations such as 
the number of nodes allowed to be simultaneously used on 
the line and the maximum distance between the smart meter 
and the utility [9]. For example, the PLC technology uses 
the power line to transmit small amounts of data via long 
distances. The transmitted data can be attenuated and inter‐
fered from nearby devices, which might cause a high rate of 
data loss and scalability issues [10].

Similarly, wireless communication has its own limitations 
including congestion in the network due to the overload of 
data received from the smart meters. ZigBee, which is a 
wireless communication technology used for automatic me‐
ter reading where power usage, data rate, complexity, and 
cost of deployment are low, suffers from its own limitations, 
which includes limited processing capabilities and memory 
size in addition to possible interference due to the sharing of 
the same transmission medium [11]. In addition, mesh net‐
works, which could also be used for data collection from 
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smart meters, could face the issues like fading, interference, 
and looping [11]. This is because each smart meter is 
equipped with a radio module and sends its data to the 
neighboring meters, which, in turn, act as repeaters for deliv‐
ering the data to the access point. Then, the data are trans‐
mitted to the utility. Another example is the low-range (Lo‐
Ra) network technology, which consumes low power when 
used for data collection from smart meters. However, it suf‐
fers from spectrum interference and the need to create a new 
network from scratch with new signal towers, base stations, 
and even portable gateways [12]. Finally, using 5G technolo‐
gy for collecting the data from smart meters is a possibility, 
which avoids the problems of LoRA. However, this comes 
at the expense of a significantly increased cost for the utility 
due to the need to use a huge number of subscribe identity 
module (SIM) cards as well as the monthly subscription for 
their associated data plan.

One possible solution for the data collection problem is to 
use unmanned aerial vehicles (UAVs). This solution avoids 
many of the problems mentioned above, especially when the 
UAV and the smart meter communicate through a standard 
well-established communication protocol, e. g., Wi-Fi. When 
using UAVs for data collection, the size of the battery is a 
trade-off between the weight and the flying range. A small-
capacity low-mass battery requires more data collection trips 
and thus more frequent recharging of the battery, which 
leads to a reduction in its lifetime (due to a decrease of the 
lifetime of lithium polymer, which is about two to three 
years or 300 to 500 charge cycles [13]). A larger battery ca‐
pacity means that the UAV is capable of flying for a longer 
time and can cover longer-distance trips. At the same time, 
the increased weight leads to more power consumption [14]. 
Thus, there is a need to choose the proper number of UAVs 
and their proper batteries; choose the proper starting point of 
each UAV; and manage the trips properly.

Based on the previous discussion, the number of UAVs 
and their appropriate batteries pose a constraint on the time 
of flying and hovering, which in turn limits the number of 
buildings that can be visited in each trip and affects the cost. 
In this paper, we present a new optimization framework to 
achieve a joint optimal selection of the number of UAVs and 
their proper batteries, the starting point selection of each 
UAV, and the trip planning. Specifically, the objective is to 
meet the utility requirement of data collection within a limit‐
ed period at a minimum cost.

The contributions of this work can thus be summarized as 
follows.

1) An optimization problem is formulated to minimize the 
total annual cost for the electric utility. This cost includes 
the capital cost of the UAVs and their batteries as well as 
the operational cost of the trips. The decision variables are 
the optimum number of UAVs jointly with their power 
source sizing, the optimum location of the charging pad of 
each UAV as well as the trip plan of optimal data collection. 

2) To deal with the formulated problem, we decouple it in‐
to two sub-problems: ① a candidate UAV and a number of 
buildings are first grouped into trips via genetic algorithms 
(GAs); and ② the optimum trip path is found using a travel‐

ing salesman problem (TSP) branch and bound algorithm.
The rest of this paper is organized as follows. Section II 

details the related works in the literature. In Section III, we 
introduce the system model while in Section IV, we present 
the problem formulation aiming at minimizing the total annu‐
al cost for all trips. In Section V, we present the proposed 
approach for solving our problem. Simulation results are 
then presented in Section VI before this paper is finally con‐
cluded in Section VII.

II. RELATED WORK 

In this section, we first review the most relevant works in 
the literature related to wireless data collection techniques in 
AMI. Then, we review the usage of UAVs for general data 
collection from wireless sensor networks (WSNs). Finally, 
the current state of the art related to UAV usage in AMI is 
discussed.

Reference [15] investigates the software details of the 
communication gateway in an AMI system using PLC where 
smart meters are connected to the gateway through a Lon‐
Works-type industrial bus and the collected data are then 
transmitted from the gateway to a central computer through 
GSM. Similarly, [16] proposes an approach for the data col‐
lection and transmission from the energy meter to the utility 
through a GSM network. Despite the cost saving in data 
transmission, the system is shown to cause the congestion in 
the GSM network.

A different approach based on master-slave architecture is 
investigated in [17] to collect the data wirelessly from the 
smart meters by using the low-power wireless mesh network 
standard 6LoWPAN, and then send it to the server using 
GPRS technology. Accurate billing in real time is thus 
achieved. A similar proposal is given in [18] where an ener‐
gy-efficient and cost-efficient solution is achieved using an 
IEEE 802.15.4-compliant wireless network.

As mentioned earlier, one of the key UAV applications is 
general data collection from WSNs. In that context, some re‐
search works are more concerned with energy. For example, 
[19] develops a combination of GA and ant colony optimiza‐
tion (ACO) to find the best path for a UAV, which is used to 
collect the data from Internet of Things (IoT) sensors. How‐
ever, this research work is limited to the energy consumption 
of the sensor nodes (SNs) and does not consider the energy 
consumption of the UAVs. A differential evolution algorithm 
with population size (DEVIPS) is suggested for optimizing 
the deployment of UAVs in [20]. The algorithm selects the 
number and locations of hovering points to minimize the 
consumed energy of UAVs. Moreover, a new approach is de‐
veloped in [21] for reliable uplink communication from IoT 
devices to UAVs while minimizing the power transmission 
of devices by calculating the best path for the UAVs. Along 
similar lines, [22] proposes a convex suboptimal optimiza‐
tion and approximation by jointly optimizing the UAV path 
and transmission power of SNs to minimize the transmission 
outage probability.

Other research works in the literature focus on minimizing 
the UAV trip times. Specifically, [23] suggests two meta‐
heuristic algorithms for obtaining the optimal path of the 
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UAV to minimize the overall time while collecting the target 
data. Similarly, [24] suggests two schemes to minimize the 
overall trip time among all UAVs by calculating the best 
path. The problem is solved by using a min-max multiple 
traveling salesmen problem. Also, the joint optimal data col‐
lection interval, speeds of UAVs, and transmit power of sen‐
sors are suggested in [25] to minimize the total flight time 
of UAVs. In [26], a UAV is used to collect the data from 
SNs via a quasi-static block-fading channel. And the SNs, 
wakeup schedule and UAV trajectory are optimized. The de‐
sign is formulated as a mixed-integer non-convex optimiza‐
tion problem and solved sub-optimally by applying the suc‐
cessive convex optimization technique. Similar problems are 
tackled in [27] and [28] but considering multiple-antenna 
UAVs. Finally, [29] suggests a solution for collision-free, re‐
liable, and energy-efficient communication when using 
UAVs as a mobile gateway to collect the data from SNs 
based on the LoRa WAN protocol.

As for the data collection from smart meters using UAVs, 
lots of research works in the literature have already investi‐
gated this idea but under different assumptions and with dif‐
ferent goals. For example, [30] explores joint ACO with 
guided local search (GLS) for optimizing data collection 
from smart meters using UAVs to overcome collisions while 
sending the collected data wirelessly. However, the focus is 
on minimizing the packet transmission time without consider‐
ation of other factors such as the available energy of the 
drone’s battery or the cost of the data collection. Reference 
[31] focuses on the usage of UAVs in urban areas. The idea 
of data collection from smart meters by UAVs is also pro‐
posed in [32] and [33]. Reference [32] uses the MATLAB 
wireless SN platform lifetime (MATSNL) prediction and sim‐
ulation package to estimate the trade-off between the battery 
lifetime and the data transmission size. The results prove the 
validity of the approach, but the research work considers nei‐
ther the choice of the optimal point for charging the UAVs 
nor the planning of the UAV path. Reference [33] discusses 
the usefulness of integrating an inertial navigation system 
(INS) and a global positioning system (GPS) in the UAVs 
through experimentation. Similarly, [34] studies the design 
of UAV trajectories and the wireless communication protocol 
between the UAVs and the smart meters. In this research 
work, the UAVs are assumed to send a broadcast beacon to 
the smart meters to start sending their data. The results of 
the proposed approach are compared with those when using 
traditional manual reading of the meters in Brazilian utili‐
ties. However, we consider neither the amount of data nor 
the optimal battery choice for the UAV in order to minimize 
the total cost.

Even though several related aspects such as the methods 
of data collection from smart meters, trip planning of the 
UAVs, minimization of the transmitted power, and maximiza‐
tion of the data collection rate have been addressed in prior 
research works, the total cost of operation from the electric 
utility’s point of view has never been considered before. 
This is captured in the number of UAVs needed to cover the 
city served by the utility, their associated power source selec‐
tion, and their starting point selection, which is indeed an im‐

portant decision from a practical point of view. Consequent‐
ly, this paper investigates the cost minimization issue 
through a joint optimal number of UAVs, the starting point 
selection, the associated battery selection, and trip planning, 
which is what distinguishes this paper from all the prior re‐
search works in the literature.

III. SYSTEM MODEL 

We consider a system with k UAVs, where kÎDD =
{ }12.D , and D is the maximum number of available 
UAVs. Each UAV is assumed to use only one battery from a 
predefined set of batteries, i.e., B ={12.B}, to collect the 
data from the smart meters, which are installed on distribut‐
ed buildings in a city. The meters are assumed to belong to 
the set N = {12N} as shown in Fig. 1. Assuming the dis‐
tance between any UAV and the nth building is dn. The hori‐
zontal coordinate of the dth UAV is denoted by qd and that 
of the nth building is denoted by qn. Also, it is assumed that 
each UAV flies at a fixed altitude H and it collects the data 
from the smart meters in a total of T trips, where T £N. 
Moreover, we assume that each smart meter should be visit‐
ed once during the data collection period T. In addition, we 
denote the starting point of the kth UAV by sk, which is as‐
sumed to have coordinates qsk

ÎR2 ´ 1. The starting point is 

the point where charging takes place for each UAV in prepa‐
ration for its next trips. It is important to note that one com‐
mon starting point for all the UAVs might not be enough for 
them to cover the area under the jurisdiction of the utility 
and that is why each UAV is allowed to have a unique start‐
ing point, i. e., subscript k. Finally, we define the subset of 

meters allocated to UAV k as Nk =N {sk} . 

It is assumed that the UAV can have four possible states 
of motion. The first is an ascending one where the UAV 
starts moving vertically from the ground to reach the altitude 
H. The second is a forwarding one where the UAV moves 
forward at a fixed altitude H. The third is hovering at a 
fixed altitude H where the UAV hovers near a building to 
collect the data from the smart meters. The final is a de‐
scending one from the altitude H to the ground.
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Fig. 1.　Collecting data of UAVs from the smart meter.
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As shown in Fig. 1, a UAV collects the data from a subset 
of buildings in each trip and the number of trips will clearly 
depend on the available charge in the UAV battery, the 
amount of target data to be collected from each smart meter, 
the distance between buildings as well as the number of 
buildings. We assume that the UAV could collect the data 
from each building weekly or monthly according to the utili‐
ty’s requirements, and the smart meters can send the data to 
the UAV using one of the various wireless communication 
technologies mentioned in [35]. It is also assumed that the 
link between the UAV and the smart meter during hovering 
is dominated by free-space line-of-sight (LOS) propagation. 
The LOS path loss PLn is given by [36]:

PLn = 10α lg ( 4πfdn

c ) + Llos (1)

where α is the free-space path loss exponent; f is the carrier 
frequency; c is the speed of light; and Llos is a fixed attenua‐
tion term that is added to the LOS environment. The signal-
to-noise ratio (SNR) at the UAV when communicating with 
the smart meter of the nth building is thus expressed as:

SNRn =
pn

10
PLn

10 σ2
(2)

where pn is the transmit power of the smart meter in build‐
ing n; and σ2 is the additive noise power.

Using Shannon’s capacity formula, the achievable rate R 
between the UAV and a smart meter measured in bits per 
second can thus be obtained as:

R =BW × log2(1 + SNRn ) (3)

where BW is the allocated channel bandwidth. Finally, assum‐
ing that the amount of target data that must be collected 
from each smart meter is the same and is denoted by B bits, 
the UAV hovering time T HOV during data collection from 
each smart meter in each building is simply given by:

T HOV =
B
R

(4)

IV. PROBLEM FORMULATION 

We aim to minimize the total annual cost of using UAVs 
for data collection. This includes both the capital cost of the 
chosen set of UAVs and their associated batteries in addition 
to the operation cost of all the trips per year due to the re‐
charging of the batteries of the UAVs. This is achieved via a 
proper choice of the number of UAVs, their batteries as well 
as the proper choice of the starting points and trip planning 
of UAVs. The objective function of the proposed optimiza‐
tion problem can thus be expressed as:

min
XYZuwtkS

 ∑
kÎD

Xk

é

ë
êêêê

ù

û
úúúúcostk +∑

bÎB
Ybk( )costb +C tot

bk (5)

where ZuwtkuwÎNk and tÎ T = { }12T  is another bi‐
nary decision variable, which indicates that the kth UAV trav‐
els from point u to w as part of trip t, and note that these 
points could represent actual buildings or the starting point 
of any UAV; Xk is a binary decision variable that indicates 
whether the kth UAV is selected or not, and kÎD; Ybk is a 

binary decision variable that indicates whether battery b is 
associated with the kth UAV, and bÎB; C tot

bk is the operation 
cost of all trips per year assuming battery b is used with the 
kth UAV; S is the set of all possible points in the city, which 
could act as starting points for any UAV; and costk and costb 
are the annualized capital costs of the UAV and the battery, 
respectively. costk is given by:

costk =CRFk × pk (6)

CRFk =
i ( )1 + i

Lyear
k

( )1 + i
Lyear

k - 1
(7)

where pk and CRFk are the price and capital recovery factor 
(CRF) of the UAV and its associated wireless charging pad, 
respectively; i is the interest rate; and Lyear

k  is the lifetime of 
the kth UAV. The CRF converts the capital cost into a series 
of equal annual payments that eventually pay off the UAV 
and its charging pad price with interest over its lifetime [37]. 
Also, the annualized capital cost of the battery can be calcu‐
lated using the same equations in (6) and (7) but using pb 
and CRFbk instead. In addition, the lifetime of battery b 
when associated with the kth UAV in years is Lyear

bk , which 
can be calculated as:

Lyear
bk =min ( Lcycle

b

C cycle
bk

Lmax ) (8)

where Lmax is the chemical lifetime of any battery, which is 
independent of the number of recharging cycles; Lcycle

b  is the 
maximum number of recharging cycles of battery b; and 
C cycle

bk  is the number of recharging cycles of the battery when 
associated with the kth UAV, which is given by:

C cycle
bk =

E year
bk

E useful
b

(9)

where E year
bk  is the annual energy consumption, which de‐

pends on whether data collection is carried out weekly or 
monthly, in particular, E year

bk = μE collection
bk  with μ being the fac‐

tor that captures the frequency of the data collection trips 
and E collection

bk  is the energy consumed for one charging cycle 
by the kth UAV assuming battery b is installed; and E useful

b  is 
the actual useful energy of a battery, which is usually a per‐
centage of its capacity, and specifically, E useful

b = ϵE max
b  with ϵ 

being the max depth of discharge and E max
b  is the battery ca‐

pacity. C tot
bk includes the expenditures related to the con‐

sumed energy during trips. This is equivalent to the cost of 
charging the battery and can now be calculated as:

C tot
bk = ϱ

E year
bk

φ
(10)

where E year
bk /φ is the consumed charging energy; ϱ is the 

price; and φ is the discharging/charging efficiency. In the fol‐
lowing subsections, we will discuss different constraints that 
govern the optimization problem in (5).

A. Trip Planning Constraints

For the kth UAV and for any point u that is visited in trip t, 
the total number of all outgoing trips to any other point 
needs to be equal to 1. This is necessary to ensure that every 
point is visited only once in all trips. Also, for any point w, 
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the total number of incoming trips from any other point 
needs to be equal to 1. Noting that these constraints do not 
hold for the starting point sk, and they can be formulated re‐
spectively as: ∑

wÎNk

Zuwtk = 1    "u ¹ sk"t"k (11)

∑
uÎNk

Zuwtk = 1    "w ¹ sk"t"k (12)

In addition, to ensure that the starting point sk for the kth 
UAV has only one outgoing connection and only one ingo‐
ing connection during trip t, which is necessary because ev‐
ery feasible solution contains only one closed sequence of 
visited points. The following two constraints are needed.∑

uÎNk

Zusktk
= 1    "t"k (13)

∑
wÎNk

Zskwtk
= 1    "t "k (14)

Now, based on the above definitions, the total UAV flying 
time during trip t is equal to:

T fwd
tk =
∑
uÎNk

∑
wÎNk

duw Zuwtk

V fwd
k

    "t"k (15)

where V fwd
k  is the speed of the kth UAV in the horizontal mo‐

tion between any two points; and duw is the distance be‐
tween points u and w, which is simply calculated as duw =

 qu - qw = ( )xu - xw

2

+ ( )yu - yw

2

, and x and y are the Car‐

tesian coordinates and  ×  indicates the Euclidean distance of 
a vector from the origin (2-norm). Moreover, the total hover‐
ing time of the kth UAV during trip t is equal to the summa‐
tion of all hovering times i.e.,

T hov
tk = T HOV∑

uÎNk

∑
wÎNk

Zuwtk     "t"k (16)

The quantity inside the parentheses represents the total 
number of buildings visited in trip t by the kth UAV.

Finally, observing that UAVs do not work all day long 
since they need time to recharge their batteries, and that utili‐
ties have specific working hours per day. The following con‐
straint needs to be added.

T fwd
tk + T hov

tk £ τ    "k"t (17)

where τ is the maximum number of working hours per UAV.

B. Number of UAVs and Power Source Sizing Constraints of 
UAV

We first observe that a specific battery cannot be assigned 
to a certain UAV unless this UAV has already been selected 
to execute trips. This clearly leads to the following con‐
straint: ∑

bÎB
Ybk =Xk    "k (18)

We also observe that since we assume only one battery 
will be used by the utility for each UAV, this selected bat‐
tery must have a large enough capacity to cover the distance 
between the starting point of the selected UAV and the fur‐
thest building in the city, which leads to the following con‐

straint: ∑
bÎB

Ybkd
k
b ³ 2dskn

    "nÎN"k (19)

where d k
b  is the maximum distance covered by the battery of 

the kth UAV; and dskn
 is the distance between the starting 

point of the kth UAV and building n that needs to be visited 
and the factor 2 is needed to ensure that the UAV can come 
back again to its starting point for recharging.

Next, it is clear that the discharge power limit of the 
UAV’s battery should be greater than the maximum con‐
sumed power of the battery during either hovering and data 
collection or forward motion, which translates into the fol‐
lowing constraint:

∑
bÎB

Ybk P max
b ³max ( )P hov

bk P
fwd
bk     "k (20)

where P max
b  is the maximum discharge rate of battery b; P hov

bk  
is the power consumed during the hovering of the kth UAV 
when powered by battery b, which depends on the mass and 
the velocity of the UAV; and P fwd

bk  is the power consumed 
during the forward movement of the kth UAV. Now, the maxi‐
mum discharge rate of battery b is calculated as:

P max
b =E max

b C rate
b (21)

E max
b =CbVb (22)

where C rate
b  is the capacity rate of battery b [38]; Vb is its 

voltage rating; and Cb is its capacity. 
P hov

bk  is calculated as:

P hov
bk =mtot

bk gvair =mtot
bk g

2mtot
k

nk Ak ρ
(23)

mtot
bk =m0k +∑

bÎB
Ybk mb (24)

where mtot
bk is the total mass of the kth UAV with battery b;  

m0k is the dead mass of the kth UAV; mb is the mass of bat‐
tery b; g is the gravitational acceleration; ρ is the density of 
air; nk is the number of the UAV rotors; vair is the velocity 
of air; and Ak is the area of the cylindrical mass of air. 

Finally, P fwd
bk  can be calculated as:

P fwd
bk =

1
2
ρnk Akvair( v2

air - v2
FWbk sin θ 2

k ) (25)

where vFW, b, k is the forwarding flight velocity; and θk is the 
pitch angle [39].

vFWbk =
2mtot

bk g tan θk

ρcD Ak

(26)

where cD is the drag coefficient depending on the geometry 
of the UAV. Next, the useful energy of the battery must be 
enough to cover each trip assuming the battery is recharged 
between trips. Hence, we can obtain:∑

bÎB
Ybk E useful

b ³Etbk    "t (27)

where Etbk is the consumed energy during trip t by using 
the kth UAV when installing battery b, which is calculated as:

Etbk =E fwd
tbk +E hov

tbk (28)

where E fwd
tbk and E hov

tbk are the consumed energies by the kth 
UAV during the forwarding and hovering motions during 
trip t, respectively. They are calculated as:
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E fwd
tbk =P fwd

bk T fwd
tk     "t "k (29)

E hov
tb k =P hov

bk T hov
tk     "t "k"b (30)

Finally, it is important to note that the total consumed en‐
ergy during all trips is equal to the sum of the consumed en‐
ergies during hovering and forwarding motion during all 
trips, which is given as follows for the kth UAV.

E collection
bk =∑

tÎ T

E fwd
tbk +∑

tÎ T

E hov
tbk (31)

Clearly, E collection
bk  can be calculated by substituting (29) and 

(30) into (31).

V. PROPOSED APPROACH 

As explained above, the optimization problem proposed in 
(5) tries to jointly find the optimal number of UAVs, their as‐
sociated batteries, the optimal starting point of each UAV as 
well as the optimal trip plan to be followed to minimize the 
total annual cost of the data collection process for the utility. 
This problem is defined as mixed-integer nonlinear program‐
ming (MINLP), which is generally complicated to find an 
optimal solution. Moreover, a careful look at the problem re‐
veals that it has an embedded optimum route-selection sub‐
problem, which is similar to the TSP whose general mathe‐
matical solution is not easy to obtain [40]. In most cases, a 
customized branch and bound algorithm is mostly efficient 
for solving a TSP. In spite of that, when using branch and 
bound algorithm to solve a TSP with many cities, large com‐
putational time may be required. Therefore, metaheuristic al‐
gorithms, which quickly lead to a good but not necessarily 
optimal solution to a TSP, are often used.

In order to solve the previously introduced MINLP optimi‐
zation problem, it is decoupled into two subproblems as 
shown in Fig. 2. The outer subproblem is solved using GA. 
Inside the fitness function of the GA, we use branch and 
bound as a solution for the internal TSP subproblem, which 
becomes linear integer programming. The two subproblems 
are solved as follows. The outer subproblem GA selects the 
optimal number of UAVs, their corresponding battery sizes, 
the optimal starting point for each UAV, and the assigned 
buildings to each UAV. Moreover, the GA assigns these 
buildings to trips and then passes the selection to the inter‐
nal branch and bound problem, which solves the TSP and 
calculates the optimal path for each trip. After the path calcu‐
lation, the GA uses the specifications of the selected battery 
and path to check the constraints for each trip. Namely, the 
power consumption of the battery must be greater than or 
equal to the maximum hovering and forwarding power as 
well as the consumed energy must be less than or equal to 
the actual usable energy of the battery as shown in (20) and 
(27), respectively. If the constraints are not satisfied, a high 
penalty is assigned to the fitness function and the GA gener‐
ates a new population. Finally, if the stopping criterion is 
met, which is chosen to be a limit on the stall generations 
(the number of steps the GA looks over to see whether it is 
making progress), the process terminates. And the output 
will be the optimal batteries, the trips assigned to each UAV, 
the buildings assigned to each trip, the optimal path for each 
trip, and the total annual cost for all trips.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are provided to illustrate 
the effectiveness of the proposed approach. We implement 
the approach proposed in Fig. 2 using MATLAB. The differ‐
ent simulation parameters are summarized in Table I.

We use the specifications of the commercial smart meter 
detailed in [42]. This meter stores an amount of data equals 
to 220 bytes per 15 min. Hence, the total amount of data 
stored in one smart meter per day is Dday = 220  bytes ×
8  bits  per  bytes ´ 4  times  per hour × 24  hours  per  day/1024 =
165  kbits. We also assume that each building has a number 
of smart meters and all the meters in the building will send 
their data to a central server from which the UAV will be re‐
sponsible for collecting the total sum of data using Wi-Fi 
technology. The total amount of data collected by one UAV 
in a trip is thus calculated as D =Dday Nk Nmeters Ndays, where 
Nk, Nmeters, and Ndays are the number of buildings per trip, the 
number of smart meters per building, and the number of 
days between two consecutive trips, respectively. 

Furthermore, we assume that the distance between the 
UAV and the central server during data collection is equal 
for all buildings and is equal to or less than 10 meters.
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Fig. 2.　Joint GA and TSP algorithms.
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Regarding the candidate UAVs, for simplicity, we assume 
a set of 19 identical UAVs whose specifications are summa‐
rized in Table I. Also, a set of 19 batteries whose specifica‐
tions are summarized in Table II is used, and the partial dis‐
charge of batteries affects their life cycles. 

However, for lithium-ion batteries, which are assumed to 
be used in this paper, the so-called “memory effect” is mini‐
mal compared with other types of batteries [43]. Therefore, 
in this paper, we ignore this effect and assume that the par‐
tial discharge is counted as a percentage of a full cycle with‐
out affecting the battery life cycle.

For example, for the maximum depth of discharge 
(MDOD) of 80%, 4 cycles of 20% are counted as one full 
cycle. This is why in (9), we divide the total used energy in 
one year by the usable battery energy to calculate the num‐
ber of cycles without considering whether the total annual 
energy is through full (the battery is empty when reaching 
the charging point) or partial discharge cycles.

In addition, each UAV is assumed to work for a maxi‐
mum of 5 hours per day and 22 days per month or 5 days 
per week. This is a technical limitation on the operation of 
UAVs in populated areas and the flying time of UAV for 
each trip is still limited by its battery.

We also consider three areas for the city under investiga‐
tion (1 km×1 km, 2 km×2 km, and 3 km×3 km) with four 
different building densities (10 buildings per km2, 30 build‐
ings per km2, 50 buildings per km2, and 100 buildings per 
km2), and two cases for data collection frequency (weekly 
and monthly). The resulting solutions for the optimization 
problem in different considered cases are presented in Table III.

A. Impact of Building Density

Assuming the city area and data collection frequency are 
the same, increasing the building density leads to three op‐
tions. The first is selecting a UAV with a high-capacity bat‐
tery to increase the number of buildings per trip and conse‐
quently, decrease the number of trips. The second is to select 
a UAV with a low- to medium-capacity battery, which has a 
lower initial cost but will have a short life time and needs to 
be replaced in a short period. The third option is to select 
more than one UAV, which could cover a high building den‐
sity. Clearly, the three options might require a high total an‐
nual cost. Therefore, in this paper, we use the proposed ap‐
proach to select the optimal number of UAVs with proper 
batteries.

As shown in Table III and Fig. 3, for the case of 10 build‐
ings per km2 and a 1 km × 1 km city, the optimal number of 
trips is found to be three trips per month to collect all the re‐
quired data from all smart meters, as shown in Fig. 4, and 
the total annual cost is about $125.2. When the density in‐
creases to 50 buildings per km2 for the same city area, the 
number of trips is found to increase to 21 trips per month, 
as shown in Fig. 5, and the annual cost increases to $127.7. 
This is due to the fact that increasing the building density 
causes an increase in the amount of the consumed energy 
during the flying between buildings, as shown in Fig. 3. It is 
also observed that the UAV used in a density of 10 buildings 
per km2 is not suitable for that of 50 buildings per km2 be‐
cause its battery cannot cover all buildings, so a UAV with a 
larger battery is needed. Also, the starting point of each 
UAV changes to allow the UAV to collect the target data 
from all buildings.

For the case of 10 buildings per km2 and a 3 km×3 km 
city, only one UAV with a high-capacity battery collects the 
data from all buildings. 

When the building density for the same city area increases 
to 100 buildings per km2, using only one UAV to collect the 
data from all buildings is found to be infeasible. However, 
using the proposed approach, the optimal number of UAVs 

TABLE I
SIMULATION PARAMETERS

Parameter

BW

H

V

σ2

Llos

β0

di

pn

E
ϱ

τ

Nmeters

m0k

Value

2.4 GHz

100 m

20 km/hr

-110 dBm

2 dB

-60 dB

5 m

0.1 W

80%

$10-4

25 (weekly) or 
110 (monthly)

50

0.94 kg

Parameter

Ak

nk

Lcycle
b

µ

φ

Lmax

α

costk

Lyear
k

f

Ndays

D

Value

0.045216 m2

4 rotors

400

52 (weekly) or 12 
(monthly)

90%

5 years

2.5 [41]

$526.7

5 years

910 MHz

7 (weekly) or 30 
(monthly)

1115 kbits (weekly) or 
4950 kbits (monthly)

TABLE II
SPECIFICATIONS OF CANDIDATE BATTERIES 

Battery

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

U (V)

11.1

11.1

11.1

11.1

11.1

11.1

11.1

11.1

7.4

7.4

11.1

22.2

11.1

14.8

22.2

22.2

22.2

22.2

22.2

C (Ah)

350

450

1000

2200

1500

2200

2700

2200

6000

5000

7000

3200

3000

6000

5000

8000

10000

20000

22000

C rate
b  (h-1)

70

70

70

25

100

25

30

25

40

50

40

60

30

50

75

60

25

25

25

mb (kg)

0.11

0.12

0.32

0.18

0.14

0.41

0.23

0.29

0.21

0.20

0.41

0.51

0.28

0.59

0.88

1.24

1.37

1.50

1.77

Price ($)

8.12

12.18

14.77

15.12

17.03

18.62

20.45

20.82

24.76

36.50

40.90

48.60

53.73

56.70

61.02

85.59

109.08

148.64

198.18
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for this case is found to be two with the following starting 
points: (1982, 1562) and (1905, 1906), as shown in Table 
III. In other words, the buildings are divided into two 
groups, each of which will be served by a specific UAV and 
will have a specific charging point. Each UAV starts its trip 
from its designated starting point and has to return to it after 

the trip finishes for re-charging. Note that, as mentioned 
above, these points are static and will not change for a city 
once picked. After a significant growth in a city, the optimiza‐
tion algorithm might need to be run again to find an updated 
number of UAVs along with their batteries and new starting 
points.

B. Impact of Coverage Area

For the same building density and data collection frequen‐
cy, increasing the city area leads to an increase of the dis‐
tances that the UAVs need to cover in order to collect the 
target data from buildings. Consequently, the number of trips 
increases, the UAV consumes more energy to cover all target 
buildings, and an increase in the total annual cost is expected. 

TABLE III
SIMULATION RESULTS

Building density (No. of 
buildings per km2)

10

30

50

100

Data collection frequency

Monthly

Weekly

Monthly

Weekly

Monthly

Weekly

Monthly

Weekly

Battery used (mAh, V)

(2200, 11.1)

(6000, 7.4)

(20000, 22.2)

(2200, 11.1)

(6000, 7.4)

(20000, 22.2)

(2200, 11.1)

(7000, 11.1)

(20000, 22.2)

(6000, 7.4)

(7000, 11.1)

(20000, 22.2)

(6000, 7.4)

(7000, 11.1)

(20000, 22.2)

(6000, 7.4)

(7000, 11.1)

2 identical (20000, 22.2)

(6000, 7.4)

(7000, 11.1)

2 identical (20000, 22.2)

(20000, 22.2)

(20000, 22.2)

3 identical (20000, 22.2)

No. of trips

3

24

20

2

24

19

12

66

73

12

70

71

21

118

123

21

121

67, 71

43

254

146, 141

2

44

99, 87, 87

Starting point

(542.6, 533)

(879, 1251.3)

(1618, 1247)

(520.5, 440.1)

(572.5, 1147)

(902.2, 919.5)

(500, 500)

(1000, 1000)

(1410, 1590)

(500, 500)

(964.1, 1001.3)

(1349.1, 1650.9)

(500, 500)

(924.4, 983.1)

(1511, 1499.8)

(500, 500)

(1080, 1009.7)

(1429, 1805), (14889, 1620)

(481.9, 501.8)

(1000, 1000)

(1982, 1562), (1905, 1906)

(481.9, 495.3)

(1000, 1000)

(1773, 1295.6), (1656, 
1791.5), (1312.3, 1304)

Total annual cost ($)

125.2

133.1

172.0

125.3

170.1

388.8

125.3

164.5

333.7

133.5

299.0

985.7

127.7

192.2

489.2

143.3

416.1

1, 957

133.1

269.3

1, 71.7

168.1

791.3

4, 189.5, -

125.2 133.1
190.9125.3 164.5

333.7

127.7
192.2

489.2

133.1
269.3

1071.7
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Fig. 3.　Total annual cost versus area and density for monthly collection.
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Fig. 4.　Trip plan for a city with a density of 10 buildings per km2, city ar‐
ea of 1 km×1 km, and monthly data collection.

1344



SHAHIN et al.: JOINT OPTIMAL POWER SOURCE SIZING AND DATA COLLECTION TRIP PLANNING FOR ADVANCED METERING...

Compared with the results presented in Fig. 4 where the 
city area is 1 km×1 km, when the city area increases to 3 
km×3 km while keeping the same building density, the num‐
ber of trips increases to 20 trips per month and a UAV with 
a larger battery is chosen by the proposed approach. Also, 
the total annual cost increases to $190.9 as shown in Table 
III and Fig. 3. Furthermore, compared with the results where 
the city area is 1 km×1 km and building density is 100 build‐
ings per km2, one UAV with a medium capacity battery is 
used. When the city area increases to 3 km × 3 km while 
keeping the same building density, two UAVs with larger 
batteries and two different starting points are chosen by the 
proposed approach and the total annual cost increases, as 
shown in Table III. This means that a city with a larger area 
will incur a significant increase in the cost due to higher en‐
ergy consumption during the forwarding compared with the 
hovering.

C. Impact of Data Collection Frequency

Assuming a city area of 1 km×1 km and a density of 30 
buildings per km2, if the data collection frequency is month‐
ly, the number of trips is found to be 12, as shown in Table 
III. Clearly, the algorithm selects a UAV with a small battery 
(2200 mAh, 11.1 V) and the cost is $125.5, which is quite 
expected because the distance that the UAV needs to fly in 
order to reach all buildings is small. Also, the number of 
buildings that the UAV needs to visit and collect the data 
from is very few so the proposed approach chooses a UAV 
with a small battery that can achieve the requirements with 
low cost. If the data collection frequency becomes weekly, 
the number of trips changes to 12 trips per week (48 month‐
ly trips). Therefore, a larger battery is selected (6000 mAh, 
7.4 V) and the cost becomes $133.5, as shown in Fig. 6. In 
the case of a 3 km×3 km city, the weekly data collection 
leads to almost a threefold increase in the cost compared 
with a monthly data collection, as shown in Fig. 6.

Clearly, using a UAV with a small battery for weekly data 
collection leads to consuming the battery quickly and results 
in a need to change it over a relatively short period of time 
and an increase in the cost. Likewise, for monthly data col‐
lection, the proposed approach does not use a UAV with a 
large battery. 

This is because using one battery for only 12 trips per 
month is not an efficient and proper utilization of the battery 
before its chemical lifetime expires. Besides, the data collec‐
tion frequency affects the number of UAVs. In the case of 
an area of 3 km × 3 km and a density of 50 buildings per 
km2, when the data collection frequency is monthly, only 
one UAV collects the data from all buildings but when the 
data collection frequency changes to weekly, one UAV fails 
to collect the data from all buildings and the algorithm 
chooses two UAVs to cover all buildings, as shown in Table 
III.

D. Solution Sensitivity to Number of Runs and Type of Meta‐
heuristic Algorithm

Since the optimal solution in this paper is obtained using 
a metaheuristic algorithm, which is GA, it is important to en‐
sure its quality and check its stability across a number of 
simulation runs. Towards this end, we choose to repeat the 
simulation 100 times for the case of a city with the area of 1 
km×1 km and the density of 10 buildings per km2. For each 
run, the obtained optimal solution, the number of genera‐
tions needed by the GA to reach the obtained optimal solu‐
tion and the run time are all recorded. The results are sum‐
marized in Table IV. 

Clearly, the robustness of the obtained optimal solution is 
demonstrated since across the 100 runs, the variations in the 
total annual cost are minimal. Although there are consider‐
able changes in the number of generations that the GA has 
to go through different run times, consequently, this doesn’t 
affect the quality and stability of the obtained optimal solu‐
tion. Furthermore, in order to check the sensitivity of the ob‐
tained optimal solution to the type of the metaheuristic algo‐
rithm used in the outer subproblem, as shown in Fig. 2, we 
conduct new simulation using a different optimization tech‐
nique other than GA, which is SA. Table V summarizes the 
total annual cost obtained by employing both GA and SA. 
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Fig. 5.　Trip plan for a city with a density of 50 buildings per km2, city ar‐
ea of 1 km × 1 km, and monthly data collection.

TABLE IV
TOTAL ANNUAL COST OBTAINED BY EMPLOYING BOTH GA AND 

SIMULATED ANNEALING (SA)

Category

Maximum

Minimum

Mean

Standard deviation

Total annual 
cost ($)

125.1960

125.1800

125.1890

0.0046

No. of generations 
for GA

305

124

170

35

Run time (s)

64.990

27.778

41.000

9.200

0
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Fig. 6.　Total annual cost versus data collection frequency for a density of 
30 buildings per km2.
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Clearly, the new algorithm provides very close results to 
those obtained via GA, which confirms the stability of the 
proposed approach and shows that an optimum value is in‐
deed obtained.

E. Effect of GA Parameters on Quality of Obtained Optimal 
Solution

As mentioned above, there is no significant difference be‐
tween using GA and SA for solving the problem. We now fo‐
cus on a different aspect of the proposed approach, which is 
the effect of the chosen GA parameters on the quality of the 
obtained optimal solution as described in [44]-[46].

It is clear that different configurations and combinations 
of the GA parameters need to be tested to judge the sensitivi‐
ty of the obtained optimal solution to such variations. In this 
paper, the results provided so far are obtained assuming the 
following GA parameters: the population size is 100; the mu‐
tation, which specifies how the GA introduces small random 
changes in the individuals in the population to create muta‐
tion children, is done in a uniform way with a rate of 0.02; 
and the crossover fraction or crossover rate, which deter‐
mines the fraction of the next generation produced by cross‐
over, is set to be 0.8. In order to provide more insights, we 
herein investigate the obtained optimal solution for other val‐
ues of these parameters.

We start by varying the population size while keeping the 
remaining parameters fixed, as detailed in Table VI. Clearly, 
increasing the population size results in a negligible improve‐
ment in the total annual cost. This improvement is obtained 
at the expense of a significant increase in the run time of the 
algorithm, which does not justify the gain obtained.

We next investigate the effect of crossover type and total 
annual cost as shown in Table VII.

Our initial choice to go with a uniform crossover with 
rate 0.8 provides the best optimal solution among the test 
scenarios. Finally, the effect of the mutation rate is studied 
in Table VIII, which also confirms that the initial choice has 
the minimum total annual cost among the test scenarios.

VII. CONCLUSION

In this paper, we have studied data collection trip plan‐
ning for AMI enabled by UAVs. We have formulated and 
solved an optimization problem where the total annual cost 
is minimized by jointly determining the optimal path for a 
trip as well as selecting the optimal number of UAVs, their 
associated batteries, and the optimal starting point for each 
UAV.

The resulting MINLP optimization problem has been 
solved using an iterative algorithm alternating between a GA 
and a branch and bound algorithm. Due to the constraints on 
the energy and power of a UAV, the UAV may not be able 
to collect the target data in one trip, so the GA groups the 
buildings into trips and selects the optimal number of UAVs 
with proper batteries and with appropriate starting points, 
whereas the branch and bound algorithm selects the optimal 
path for each trip.

Simulation results have shown the impact of the city area, 
density, and data collection frequency on the selection of the 
optimal batteries and the selection of an optimal path for 
each trip. Moreover, the obtained optimal solution exhibits 
considerable robustness against changing the different GA 
parameters such as the population size and crossover type. 
Finally, we show that the optimization problem can actually 

TABLE VII
CROSSOVER TYPE AND TOTAL ANNUAL COST

Crossover type

Uniform with rate 0.8

Heuristics with rate 1.2

Heuristics with rate 1.5

Heuristics with rate 0.9

Heuristics with rate 0.5

Total annual cost ($)

333.700

343.410

346.874

343.271

343.322

TABLE V
COMPARISON BETWEEN TOTAL ANNUAL COST OBTAINED 

USING GA AND SA

City area

1 km×1 km

2 km×2 km

3 km×3 km

Building density

10

30

50

10

30

50

10

30

50

Algorithm

GA

SA

GA

SA

GA

SA

GA

SA

GA

SA

GA

SA

GA

SA

GA

SA

GA

SA

Total annual cost ($)

125.2

125.2

125.3

125.6

127.6

127.6

133.1

134.2

164.5

164.6

192.2

193.0

172.9

172.9

333.7

334.3

489.2

489.2

TABLE VIII
MUTATION RATE AND TOTAL ANNUAL COST

Mutation rate

Uniform with rate 0.01

Uniform with rate 0.02

Uniform with rate 0.03

Total annual cost ($)

342.779

333.700

346.854

TABLE VI
POPULATION SIZE AND TOTAL ANNUAL COST

Population size

50

100

150

200

Total annual cost ($)

333.985

333.700

330.828

329.132
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be solved by other metaheuristic algorithms such as SA, and 
no significant difference in the solution quality is observed.
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