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Abstract——With the rapid increase of distributed photovoltaic 
(PV) power integrating into the distribution network (DN), the 
critical issues such as PV power curtailment and low equipment 
utilization rate have been caused by PV power fluctuations. DN 
has less controllable equipment to manage the PV power fluctu‐
ation. To smooth the power fluctuations and further improve 
the utilization of PV, the regulation ability from the demand-
side needs to be excavated. This study presents a continuous 
control method of the feeder load power in a DN based on the 
voltage regulation to respond to the rapid fluctuation of the PV 
power output. PV power fluctuations will be directly reflected 
in the point of common coupling (PCC), and the power fluctua‐
tion rate of PCCs is an important standard of PV curtailment. 
Thus, a demand-side management strategy based on model pre‐
dictive control (MPC) to mitigate the PCC power fluctuation is 
proposed. In pre-scheduling, the intraday optimization model is 
established to solve the reference power of PCC. In real-time 
control, the pre-scheduling results and MPC are used for the 
rolling optimization to control the feeder load demand. Finally, 
the data from the field measurements in Guangzhou, China are 
used to verify the effectiveness of the proposed strategy in 
smoothing fluctuations of the distributed PV power.

Index Terms——Demand-side management, multi-time-scale op‐
timization, power fluctuation smoothing, load control, model 
predictive control (MPC).

I. INTRODUCTION 

THE capacity of distributed photovoltaic (PV) in distribu‐
tion networks (DNs) has rapidly increased in recent 

years [1]. Because the PV output is affected by uncertain fac‐
tors such as clouds and irradiance, its power drastically fluc‐
tuates in a short time [2]. There is a lack of effective flexi‐
ble regulation methods to cope with the fluctuation of the 
PV output in the existing DN, leading to the low utilization 
of equipment, voltage flickering, and curtailment of PV pow‐
er [3]. Therefore, certain transmission system operators 
(TSOs) such as State Grid Corporation of China (SGCC), 
China Southern Power Grid Company Limited, and North 
American Electric Reliability Corporation have developed 
new grid codes that limit the ramp rate at the PV point of in‐
terconnection (POI) within 10% per minute [4], [5]. A DN 
normally covers a small area, and the external environment 
around each distributed PV is similar. When the irradiance 
abruptly changes, the fluctuation of the distributed PV power 
is superimposed, causing the power of the point of common 
coupling (PCC) in the DN to fluctuate drastically. Therefore, 
to reduce the impact of power fluctuations, it is necessary to 
use efficient and rapid power control methods to smooth 
PCC power fluctuations.

It is a traditional control method to use the rapid regula‐
tion ability of energy storage systems (EESs) and distributed 
generators (DGs) such as microturbines and diesel engines 
to smooth PV power fluctuations [6], [7]. However, owing 
to the high cost of DGs and ESSs, the operating costs in the 
DN increase as the distributed PV penetration increases. The 
static load model is commonly used in power systems to de‐
scribe loads and reveal the coupling relationship between the 
load power and voltage [8], [9]. Certain TSOs currently con‐
trol the active power by reducing the voltage to reduce the 
energy consumption [10]-[12]. Using the coupling character‐
istics between the voltage and power, the active power regu‐
lation can be rapid and continuous by regulating the voltage, 
so as to save the cost of deploying EESs. The topology of 
the DN presents the radiation shape in units of feeders; there‐
fore, this study uses the characteristics between the load and 
voltage to achieve feeder-level load control by regulating the 
feeder voltage.

The continuous regulation performance of the voltage-reg‐
ulating equipment is the premise of feeder-level load control. 
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Common voltage regulating equipment includes power capac‐
itors, on-load tap changers (OLTCs), and static synchronous 
compensators [13], [14]. However, the aforementioned volt‐
age-regulating equipment discretely controls voltage, thus 
the load cannot be continuously regulated. A dynamic volt‐
age restorer (DVR) is a device that is used to control the 
voltage in real time by changing the trigger angle of the in‐
verter. Owing to its rapid and continuous voltage regulation 
characteristics, it is often used to solve voltage quality prob‐
lems such as voltage flickers, fluctuations, and harmonic 
waves [15], [16]. Therefore, the DVR is used to regulate the 
voltage in real time to achieve load control in this study.

It is critical for scholars to determine a control method or 
strategy that achieves a rapid control of the load. Most exist‐
ing studies use a single time-section control algorithm such 
as proportion-integration-differentiation (PID) algorithm [17], 
[18] without considering the coordination of multiple time 
sections to maximize the stabilization of PV power fluctua‐
tions. The model predictive control (MPC) algorithm [19], 
[20] is a process control algorithm, and its rolling optimiza‐
tion can fully consider the coordination of multiple time sec‐
tions, thus having a certain prejudgment. The existing litera‐
ture primarily uses MPC to control the voltage [21] and fre‐
quency [22] of the power grid. Since the voltage and fre‐
quency tend to be stable or only have a small fluctuation 
over time, the requirement for the accuracy of the prediction 
model is not high. However, when the control target such as 
active power is an indicator that does not tend to be stable, 
it is necessary to further improve the robustness of the pre‐
diction model or to add a feedback correction after the con‐
trol, thereby ensuring control accuracy. A reasonable refer‐
ence value of MPC can stabilize the PCC power fluctuation 
while ensuring that the voltage regulation has the least im‐
pact on the grid and user sides; therefore, the reference val‐
ue needs to be optimized before control.

In summary, for smoothing the PV power fluctuations in 
the DN, this study presents a demand-side management strat‐
egy based on the MPC to continuously control the power of 
the feeder-level load through voltage regulation. Specifically, 
the voltage as the regulating resource is limited by the volt‐
age qualification rate, and the voltage is reversly regulated 
ahead of the power fluctuations through the rolling optimiza‐
tion of MPC, thus the regulation capacity of the feeder-level 
load significantly increases during the occurrence of severe 
power fluctuations. The main contributions of this study are 
as follows.

1) A multi-time scale demand-side management strategy 
including pre-scheduling and real-time control for the sup‐
pression of PV power fluctuation is proposed. In the pre-
scheduling, a multi-objective intraday optimization model is 
established to solve the reference power of the PCC. In the 
real-time control, the load power responds to the PV output 
through a feeder-level load control.

2) A rolling optimization method based on the MPC algo‐
rithm for voltage regulation is proposed. The controlled au‐
toregressive integral moving average (CARIMA) based time 
series model is used to predict the power of the PCC in the 

short term. The parameters of the power prediction model 
are updated in real time to avoid the influence of PV or load 
randomness. With the prediction function of rolling optimiza‐
tion, the DVR will pre-regulate the voltage in advance when 
the power of the PCC is predicted to change abruptly to ob‐
tain a greater load regulation space when power fluctuation 
occurs.

The rest of the paper is organized as follows. The multi-
time-scale demand-side management strategy for the suppres‐
sion of PV power fluctuation is proposed in Section II. A 
case study of an industrial park in Guangzhou, China is used 
to verify the effectiveness of the strategy in Section III. Fi‐
nally, the conclusions are drawn in Section IV.

II. MULTI-TIME-SCALE DEMAND-SIDE MANAGEMENT 
STRATEGY 

A feeder-level load control method is first proposed in 
this section. The feeder voltage is continuously regulated by 
the DVR, which provides a control method for demand-side 
management. Second, a demand-side management strategy 
based on pre-dispatching and real-time control is established, 
which considers the smoothing of PCC power fluctuation as 
the ultimate goal for optimizing voltage regulation. Finally, 
the PCC power fluctuations caused by the PV system can be 
smoothed by a load control.

A. Feeder-level Control Method

1)　Feeder-level Load Controllability Study
The static load model is currently often used to character‐

ize the coupling relationship between the load power and 
voltage [9]. The static load model of the feeder in the DN 
can be expressed as:

Pf = PfN
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where Af , Bf , and Cf are the proportions of the constant im‐
pedance load, constant current load, and constant power load 
in feeder f, respectively; Uf and UfN are the real-time voltage 
and rated voltage of the feeder, respectively; and Pf and PfN 
are the real-time active power and rated active power of the 
feeder, respectively. The coupling relationship between Pf 
and Uf is directly related to the proportion of the various 
loads at the feeder level.

To facilitate the description of the effect of voltage on the 
active power, the coupling coefficient between the voltage 
and active power of the feeder-level load (nFE

p ) is defined as:

nFE
p =[(Pf -Pf 0 )/Pf 0 ]/[(Uf -Uf 0 )/Uf 0 ]  (2)

where Pf 0 and Uf 0 are the initial or reference values of the 
active power and voltage for each feeder, respectively.

The 10 kV feeder of the DN consists of multiple 380 V/
220 V transformer districts, and the load type in each trans‐
former district is generally the same. As shown in (1), the 
same load type has the same coupling coefficient; therefore, 
the coupling coefficient of the feeder-level load can be calcu‐
lated by the coefficient of the load in each transformer dis‐
trict as follows:
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nFE
p =∑

c = 1

D

nLD
pc

Pc

Ptotal
(3)

where D is the total number of transformer districts in the 
feeder; nLD

pc is the coupling coefficient between the load volt‐
age and active power of transformer district c; Pc is the ac‐
tive power in district c; and Ptotal is the active power of the 
feeder.

Since the control cycle is short, the fluctuation of nLD
pc is 

only affected by the season and law of production and life. 
The nLD

pc of different load types in each season are summa‐
rized in [8] and [9]; for example, the nLD

pc of the residential 
load in summer is 1.6, and the nLD

pc of the commercial load 
in winter is 0.8. To verify the ability of the active power to 
vary with the voltage and measure the nFE

p  of the controlled 
feeder-level load, the DVR installed on site is used to regu‐
late the voltage of the load, while the power of the feeder-
level load is recorded. The nFE

p  value is calculated according 
to the field data and (2). The calculation results are present‐
ed in Table I, where DU is the change rate of feeder voltage 
after DVR regulation; and DP is the change rate of feeder ac‐
tive power after DVR regulation.

2)　Modelling of DVR
The DVR is a voltage regulating device based on power 

electronic components and regulates the output voltage of 
the series transformer by changing the trigger angle of the in‐
verter unit. Since the inverter angle can be continuously 
changed stepwise, the DVR can adjust the voltage quickly 
and continuously [23]. A DVR is composed of several pow‐
er electronic devices, which cannot be considered in the orig‐
inal Jacobian matrix; therefore, it is necessary to establish an 
equivalent model according to the DVR function.

The circuit structure of the equivalent feeder with the 
DVR is shown in Fig. 1. The DVR is connected in series be‐
tween nodes m and n in the original network. Use and θse are 
the equivalent voltage and the voltage phase angle of the se‐
ries transformer, respectively; Uh and θh are the equivalent 
voltage and the voltage phase angle of the parallel transform‐
er of the DVR, respectively; Xs and Xh are the equivalent re‐
actances of the DVR; Gmn and Bmn are the conductance and 
susceptance of the line, respectively; and bc is the suscep‐
tance to the ground. The internal resistance of the transform‐
er is ignored.

The DVR is a passive device, and the sum of the active 
power of the parallel and series branches is zero. To avoid 
the involvement of a voltage source and improve the speed 

of intraday optimization, the internal circuit model of the 
DVR can be simplified according to passive characteristics. 
The effect of DVR on the DN is manifested by the power in‐
jection at both ends of the original line nodes m and n [24]. 
The dual node power injection model of DVR is presented 
in Fig. 2.

The power injection of nodes m and n can be expressed 
as:
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(4)

where Um and Un are the voltage amplitudes on the input 
side and output side of the DVR access point, respectively; 
θmse and θnse are the differences between the voltage phase 
angles of nodes m and n and the voltage phase angle of 
equivalent series transformer in DVR, respectively; θsen is 
the difference between the voltage phase angle of equivalent 
series transformer and the voltage phase angle of node n; 
P inj

m  and Qinj
m  are the active power and reactive power injected 

by the DVR sending node, respectively; and P inj
n  and Qinj

n  are 
the active power and reactive power injected by the DVR re‐
ceiving node, respectively.

Through the above modeling of the DVR, Use and θse can 
be added to the power flow model in the pre-scheduling to 
express the influence of DVR on the feeder voltage. Since 
most of the wiring forms of the DN are radial, the DVR can 
be installed in the switch station at the sending end of the 
feeder to achieve the load control of the entire feeder.

B. Modelling of Pre-scheduling

The reference value of PCC power is an important input 
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Fig. 1.　Circuit structure of equivalent feeder with DVR.
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Fig. 2.　Dual node power injection model of DVR.

TABLE I
CALCULATION RESULTS OF COUPLING COEFFICIENT OF CONTROLLED 

FEEDER-LEVEL LOADS

DU (%)

1.24

1.22

-1.25

-1.28

-1.27

-1.12

DP (%)

1.92

2.00

-2.01

-1.99

-2.08

-1.69

nFE
p

1.5484

1.6803

1.6080

1.5547

1.6378

1.5115
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of the MPC. Frequent voltage regulation significantly in‐
creases the network loss and affects the demand-side power. 
Therefore, a multi-objective intraday optimization model is 
established to solve the optimal power of the PCC. In the 
MPC, the optimal power is proportionally combined with 
the measured power to form the final reference value. A rea‐
sonable reference value can be used in the MPC to stabilize 
the fluctuations and minimize their impact on the DN. In 
this study, the process of calculating the optimal power of 
the PCC is called “pre-scheduling”.

The PV output is significantly random, and the intraday 
prediction of a short-time scale has certain deviations. To re‐
duce the influence of prediction deviation on optimization, 
the method proposed in [25] is used to cope with the sto‐
chasticity of the PV output, and the objective function with 
randomness is converted into the desired form.

An intraday optimization model is established to solve the 
reference power of the PCC in each pre-scheduling cycle. 
The objective function is divided into three parts. To smooth 
the PCC power fluctuation, the first part of the objective 
function minimizes the difference between the PCC power 
in each adjacent prescheduling cycle. The power regulation 
of the load is considered as the second part to improve the 
power supply quality and avoid the large-scale voltage regu‐
lation of the DVR. The transmission loss is considered as 
the third part of the objective function to minimize the pow‐
er loss in the control. To conveniently describe the character‐
istics of the feeder-level load voltage control, this study ne‐
glects the electrical distance between the loads in each feed‐
er and concentrates the loads on one node. The objective 
function is as follows.

min E ( f ) =∑
sÎ S

πs
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êα ( )P grid

sk -P grid
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NF ( )DP load
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+ γP loss
sk     k = 12ND (5)

where S is the total number of generated scenarios; πs is the 
probability of scenario s; α, β, and γ are the weight coeffi‐
cients of the power fluctuation, load power regulation, and 
transmission loss value in the objective function, respective‐
ly; P grid

sk  is the PCC active power in the pre-scheduling cycle 
k of scenario s; DP load

sfk is the regulation value of the load ac‐
tive power of feeder f in the pre-scheduling cycle k of sce‐
nario s; NF is the total number of feeder lines in the DN; 
P loss

sk  is the transmission loss in the pre-scheduling cycle k of 
scenario s; and ND is the total number of pre-scheduling cy‐
cles.

The constraints for the objective function are as follows.
1)　Balance constraint of active power
The injected power of nodes integrated into the DVR 

must be reflected in the equality constraint. The PCC power 
constraint is as follows:

∑
f = 1

NF ( )P load
sfk +DP load

sfk -∑
m = 1

NB

( )P pv
smk +P inj

smk +P loss
sk =P grid

sk (6)

where P load
sfk is the load active power of feeder f in the pre-

scheduling cycle k of scenario s; P pv
smk is the PV power of 

node m in the pre-scheduling cycle k of scenario s; P inj
smk is 

the active power injected by the DVR sending node in the 
pre-scheduling cycle k of scenario s; and NB is the number 
of system nodes.

2)　Active power of feeder-level load
The relationship between the load power regulation and 

voltage regulation can be expressed as:

DP load
sfk = nFE

pfDUsfk    "fÎNF (7)

where nFE
pf is the coupling coefficient between the voltage 

and active power of the load of feeder f; DUsfk is the theo‐
retical voltage regulation value of the DVR in the pre-sched‐
uling cycle k of scenario s.

3)　Power flow constraints
The DVR model is considered in the optimization model 

with the method indicated in Section II-C; therefore, the 
power flow constraints of the optimization model can be 
written as:
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n = 1

NB

Usnk( )Gmn cos θmnk +Bmn sin θmnk

Qpv
smk +Qinj

smk -Qload
smk =

           Usmk∑
n = 1

NB

Usnk( )Gmn sin θmnk -Bmn cos θmnk

(8)

where P load
smk is the load active power of node m in the pre-

scheduling cycle k of scenario s; Qinj
smk is the reactive power 

injected by the DVR sending node in the pre-scheduling cy‐
cle k of scenario s; Usmk and Usnk are the voltage ampli‐
tudes of nodes m and n in the pre-scheduling cycle k of sce‐
nario s, respectively; and θmn,k is the phase angle difference.

The power flow constraints include nonlinear models such 
as trigonometric functions. Therefore, the pre-scheduling 
model established in this paper is a nonlinear optimization 
one that can be solved using the TOMLAB toolbox in MAT‐
LAB. The P grid

sk  in each scenario s can be solved through the 
pre-scheduling model, and the mathematical expectation of 
P grid

sk  is P grid
kopt which can be obtained from the probability of 

each scenario s and its corresponding P grid
sk . Finally, P grid

kopt is 
the optimization result of the PCC. The P grid

kopt and the mea‐
sured PCC power are combined proportionally to form the 
reference value in the real-time control based on MPC.

C. Modelling of Real-time Control

In the real-time control, the voltage regulation of the DVR 
is solved using the MPC algorithm combined with pre-sched‐
uling results, which can be suppressed through continuous 
load control.
1)　Prediction Model

The advantage of the MPC over the traditional single-time 
scale control is that it uses the prediction value to perform 
rolling optimization for the control variable, thus the control 
has certain predictability. Therefore, the prediction of PCC 
power is an important part of the MPC. The PV output is 
closely related to the change in clouds at the previous mo‐
ment, and the load power is also related to the previous mo‐
ment. This study uses the CARIMA model with a static er‐
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ror elimination function to predict the PCC power in the ul‐
tra-short term [26] as follows:

A( )z-1 P grid
t =B ( )z-1 Ut - 1 +

Et

1 - z-1
(9)

where A and B are the parameter matrices of the output and 
input, respectively, the dimension of A is h × h, the dimen‐
sion of B is h × NF, and h is the number of model input vari‐
ables; the dimension of P grid

t  is h × 1, P grid
t =

[P grid
1t P

grid
2t P grid

ht ]T, and P grid
it  is the active power of the ith 

PCC; the dimension of Ut - 1 is NF × 1, Ut - 1 =
[U1t - 1U2t - 1UNFt - 1 ]T, and Uit - 1 is the voltage amplitude 

of the ith feeder; the dimension of disturbance variable Et is 
h × 1; and z-1 is the backward shift operator. In this paper, 
the PCC power is the unique input variable, thus h is 1. NF 
is the number of feeders, which can be adjusted according to 
the case. The formulas after considering the backward shift 
operator are as follows.

A( )z-1 = 1 +A1 z-1 + +Ana
z-na (10)

B ( )z-1 =B0 +B1 z-1 + +Bnb
z-nb (11)

where Ai is the input matrix from time t to t - na, and its di‐
mension is the same as A; and Bi is the input matrix from 
time t to t-nb, and its dimension is the same as B. The na 
and nb need to be set in advance according to the characteris‐
tics of the controlled system.

As shown in (9), the input and output values of each mo‐
ment are coupled, and the PCC power cannot be directly pre‐
dicted according to the feedback. Therefore, the Diophantine 
equation is further used to decouple the CARIMA model 
[27], so that the output can be predicted by using the input 
and output values at the current moment and the future ones 
can be forecasted. Ignoring the disturbance variable, the 
transformed optimal prediction model can be written as:

Pgrid =∑
f = 1

NF

GfDUf +FP his
grid +∑

f = 1

NF

H fDU his
f (12)

where Pgrid =[P grid
t + 1 P

grid
t + 2 P grid

t +N1
]T, N1 is the prediction hori‐

zon length, and P grid
t +N1

 is the predicted value of the PCC pow‐

er at time t + N1; DUf =[DUftDUft + 1DUft +Nu - 1 ]T, Nu is 

the control horizon length, and DUft +Nu - 1 is the predicted val‐

ue of feeder voltage amplitude regualtion of feeder f at time 
t + Nu - 1; DU his

f =[DUft - 1DUft - 2DUft - nb
]T, and DUft - nb

 

is the historical value of the feeder voltage amplitude regual‐
tion of feeder f at time t - nb; P his

grid =[P grid
t P grid

t - 1 P grid
t - na + 1 ]T, 

and P grid
t - na + 1 is the historical value of the PCC power at time 

t - na + 1; and Gf, F, and Hf are the matrices introduced in 
the Diophantine equation, which can be deduced by matrices 
A and B. The dimension of Gf is N1 × Nu, the dimension of F 
is N1 × na, and that of Hf is N1 × nb. The first term on the 
right side of (12) indicates the control excitation, and the lat‐
ter two terms are the known initial conditions.
2)　Rolling Optimization

For a highly random system, the system power significant‐
ly changes within 15 min. If the optimal power in the pre-
scheduling is considered as the reference value of the MPC, 
it may lead to excessive load regulation. Therefore, to fully 

consider the current state of the system, the optimal power 
and measured power are proportionally combined to form 
the reference value of the MPC as follows.
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P gridref
t =P grid

t

P gridref
t + j = μP grid

kopt + ( )1 - μ P gridref
t + j - 1     j = 12N1

μ =
τ

τ + Tc

 

(13)

where τ is the filter time constant; Tc is the control period; j 
is the prediction time; P gridref

t  is the reference value of the 
PCC active power; and μ ∈[0,1] is the output softening coeffi‐
cient. τ is proportional to μ; when τ increases, it indicates 
that the proportion of P grid

kopt in P gridref
t + j  increases, and the filter‐

ing effect on the PCC power fluctuations in the control is 
improved.

In the rolling optimization model of the MPC, the differ‐
ence between the prediction power of the PCC and the refer‐
ence value is considered as the first part of the objective 
function. To minimize the regulation of the demand-side 
power, the voltage regulation is considered as the second 
part of the objective function. The weight coefficient matrix 
in the objective function can reasonably distribute the 
weights of the power deviation and the control variables. 
The objective function and constraints are expressed as:
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(14)

where λj and ξm,j are the weight coefficients of the PCC pow‐
er deviation and the voltage regulation, respectively; Gfj, Fj, 
and Hfj are the elements of Gf, F, and Hf, respectively; Uft 
is the voltage amplitude of the f th feeder at time t; Umax and 
Umin are the maximum and minimum voltage amplitudes al‐
lowed by the current DN, respectively; Rt is the active pow‐
er fluctuation rate of PCC at time t; and Rmax is the allow‐
able maximum value of the active power fluctuation rate of 
PCC, which is considered as 10% per min in this study. For‐
mula (14) is a quadratic programming problem, which can 
be solved by toolboxes such as CPLEX in MATLAB.

Online rolling optimization is the core of demand-side 
management strategy. The DUft + j - 1 of the objective function 
from a current state to the control horizon Nu is solved by 
(14), and then DUft is taken as the DVR voltage regulation 
value of the f th feeder at time t. According to DUft and Uft 
at time t, the feeder voltage Uft + 1 at time t + 1 can be ob‐
tained by summing them.

The rolling optimization of the MPC can achieve the ef‐
fect of pre-regulation. When the PCC power is predicted to 
decrease at time t, i. e., the PV output increases sharply at 
time t, the DVR reduces the voltage from t -Nu to t -Nu + 1 
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in advance without exceeding the original power volatility 
limit. Thus, a larger voltage rising space and greater regula‐
tion power of the load based on the voltage qualification 
rate at time t can be obtained. Similarly, when the PCC pow‐
er is predicted to rise sharply at time t, the DVR raises the 
voltage from t -Nu to t -Nu + 1 in advance. Thus, a larger 
voltage dropping space at time t can be obtained. Therefore, 
the predictive function of the MPC can make better use of 
the regulable demand-side capacity compared with the single-
timescale control, thereby achieving a wider range of power 
suppression.
3)　Feedback Correction

The stochasticity of the PV and load causes the CARIMA 
model to inaccurately predict the PCC power. To improve 
the self-adaptability of the prediction model, the parameters 
of the CARIMA model are identified online by substituting 
the calculated control variables and real-time feedback PCC 
power into the recursive least squares (RLS) model. There‐
fore, the prediction model updates the parameters according 
to the system state at the previous moment in each control 
cycle, avoiding the influence of external random variables 
on the control algorithm and further improving the control 
accuracy.

Based on the aforementioned analysis, the overall real-
time control is as follows: ① the difference between P grid

t + j  
and P gridref

t + j  is considered as the input; ② the voltage regula‐
tion of each feeder ∆Uft is used as the control variable; ③ 
the PCC power after the control is obtained by adding the 
regulation value of each feeder-level load ∆P load

ft , the PV 
power PPV, and the basic power P load

basic, which has no regula‐
tion ability. Before the start of each control cycle, the RLS 
method is used based on P grid

t  and Ut =[U1tU2tUft ]
T to 

identify the parameters of the CARIMA model online and 
further predict the PCC power. The control block diagram 
based on the MPC is shown in Fig. 3.

III. CASE STUDY 

A. Basic Data

The studied DN model is an actual power system in 
Guangzhou, China, as shown in Fig. 4. The distributed PV is 
integrated into F3 and F4 feeders, and DVRs are installed at 

the sending end of the F2 and F5 feeders, respectively. The 
rated load of each feeder is as follows: 4.6 MW for F1, 7.25 
MW for F2, 2.38 MW for F3, 3.45 MW for F4, 1.52 MW 
for F5, and 3.68 MW for F6. The installed capacity of the 
PV in F3 and F4 is 4 MW, and the PV penetration of the 
DN model is 35%.

Based on the method for calculating the coupling coeffi‐
cient of the feeder, the nFE

p  is solved using (3). The load 
types and coupling coefficients of the feeders are listed in 
Table II.

B. Model Solving

The high stochasticity of the PV power in the DN model 
is the main factor affecting the PCC power fluctuations. The 
PV power data in a winter day in Guangzhou, China are se‐
lected as the data of PV active power in the real-time con‐
trol model, as shown in Fig. 5.

As shown in Fig. 5, the PV power fluctuates sharply dur‐
ing 08: 30 to 16: 30. To highlight the effect of suppressing 
power fluctuations, the demand-side management strategy is 
implemented in these eight hours. First, P grid

kopt is solved by 
pre-scheduling, and the weight coefficients of the objective 
function in pre-scheduling are set as α= 2, β = 5, and γ= 3.

The resolution time of the existing ultra-short-term load 
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TABLE II
LOAD TYPES AND COUPLING COEFFICIENTS OF FEEDERS

Feeder

F2

F5

Main load type

Asynchronous motor

Residential

Shopping mall

Agricultural

Residential

Capacity (MW)

2.20

2.25

2.80

0.80

0.72

nLD
pc
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Fig. 5.　PV power data in a winter day in Guangzhou, China.
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prediction data is 15 min, and according to the maximum 
resolution time of the power prediction data, the pre-schedul‐
ing period is set to be 15 min. As shown in Fig. 6, when the 
PCC power volatility is predicted to be less than 10% per 
min, the DVR does not participate in the voltage regulation; 
thus, the PCC active power is the same before and after the 
optimization. The PCC active power is smoothed by the opti‐
mization when the PCC power volatility exceeds 10% per min.

To meet the requirements of the standard GB/T 19964-
2012 and other provisions, the maximum value of the PCC 
power volatility is 10% per min. Therefore, the control peri‐
od Tc is 1 min, which meets the provisions of relevant regula‐
tions. According to Fig. 6, h is set to be 1 and NF is set to 
be 2. According to the complexity of the CARIMA model, 
na is set to be 11 and nb is set to be 5. In the parameter set‐
ting of the MPC, the prediction horizon N1 is 5 min, the con‐
trol horizon Nu is 3 min, and the filter time constant τ is 5 
min. A comparison of the PCC active power before and after 
the control is shown in Fig. 7. A comparison of the PCC 
power volatility is shown in Fig. 8. The voltage at the send‐
ing end of F2 and F5 after the control is shown in Fig. 9. A 
comparison of the active power of F2 and F5 is shown in 
Fig. 10.

The demand-side management can better suppress fluctua‐
tions of the PCC active power, as shown in Figs. 7 and 8. In 
addition, the DVR does not take part in the control when the 
power fluctuation is small, thereby ensuring a smoothing ef‐
fect while significantly reducing the transmission loss caused 
by the DVR. The current measurement result of the PCC 
power is considered in the reference value of the MPC, such 

that the inherent fluctuation is restrained without additional 
power fluctuation. Prior to the control, there are 21 moments 
when the volatility exceeds 10% per min. After the control, 
the maximum volatility is reduced from 31% per min to 
9.6% per min, which meets the requirement of the PCC pow‐
er volatility not exceeding 10% per min.
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Fig. 7.　Comparison of PCC active power before and after control.
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To highlight the effect of voltage regulation during the vi‐
olent power fluctuation, the voltage curve shown in Fig. 9 is 
selected for analysis. The nFE

P  of F2 is larger; therefore, its 
range of voltage regulation is significantly smaller than that 
of F5 in response to the same power fluctuation. F5 can on‐
ly improve load regulation by increasing the range of the 
voltage regulation. When the power violently fluctuates, e.g., 
during 11:30 to 12:00, the feeder voltage is reversely regulat‐
ed in advance before the power fluctuates to obtain a larger 
voltage regulation space during the power fluctuation. Simi‐
larly, because nFE

P  of F2 is larger than that of F5, F2 does 
not need to obtain a larger load regulation space through re‐
verse regulation at certain time, thus the degree and times of 
the F5 reverse voltage regulation are larger than those of F2.

As shown in Fig. 10, the active power of the controlled 
feeder responds to the voltage of the DVR in real time, 
which is based on the voltage/power coupling characteristics. 
Through feeder-level load control, the PCC power fluctua‐
tion can be stabilized by each controlled feeder.

Based on the aforementioned results, the PCC power fluc‐
tuation can be significantly reduced by ensuring the voltage 
qualification rate through the demand-side management strat‐
egy. This strategy effectively avoids the PV curtailment 
caused by the PV power ramp by using the regulation poten‐
tial of the load and improves the utilization rate of the PV.

The quadratic programming model established for real-
time control consists of several practical solution tools. In 
this study, YALMIP and CPLEX toolboxes are used to solve 
this model. The model is solved in MATLAB R2016b 
through AMD Ryzen 5 4600H with a Radeon graphics 3.00 
GHz processor and 16 GB RAM memory. The calculation 
time used in the real-time control is recorded, and the fre‐
quency and cumulative percentage of the calculation time in 
each control period are counted. The statistical results are 
shown in Fig. 11, which demonstrate that the maximum cal‐
culation time does not exceed 0.9 s, and the average calcula‐
tion time is 0.67 s.

The constraints in the optimization model established by 
the pre-scheduling include nonlinear constraints such as pow‐
er flow in the DN. In this study, YALMIP and TOMLAB 
toolboxes are used to solve the nonlinear programming prob‐
lem, and the calculation is conducted by a computer and 
software with the same configuration as the real-time con‐
trol. The average solution time of the pre-scheduling model 

is 32 s, much less than 15 min, which can also meet the 
time requirements of subsequent real-time control.

C. Comparison of Control Effect Between MPC Algorithm 
and PID Control Algorithm

The MPC algorithm applied in this study is an iterative 
control algorithm that determines the future voltage control 
regulation in the control horizon according to the predicted 
power of the PCC in the prediction horizon, and the PID 
control algorithm is a non-iterative control algorithm that cal‐
culates the voltage regulation value according to the PCC 
power deviation at current moment. In this subsection, based 
on the fact that the pre-scheduling results are consistent, the 
control effects of MPC algorithm and PID control algorithm 
are compared in the scenario with the same PV penetration 
rate and the scenario with different PV penetration rates.
1)　Scenario with the Same PV Penetration Rate

In this scenario, the MPC algorithm and PID control algo‐
rithm are used to calculate the voltage regulation values, and the 
time period with an apparent control effect is intercepted for 
display. The comparison results are presented in Figs. 12-14.

The MPC algorithm is superior to the PID control algorithm 
in smoothing fluctuations, as shown in Figs. 12 and 13. The 
PID control algorithm is a scale control algorithm that rapidly 
responds to the difference between the measurement power 
and the reference power of the PCC; however, it cannot suffi‐
ciently suppress the power fluctuation only by using the con‐
trol at this time owing to the limitation of the voltage qualifica‐
tion rate when the power fluctuation is large.
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Fig. 11.　Statistical results of time consumption of real-time control.
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As shown in Figs. 12-14, the CARIMA model predicts 
that the PCC power is close to decreasing at approximately 
11: 40, and the MPC algorithm can obtain a larger voltage 
rising space when the PCC power decreases by reducing the 
voltage in advance without making the Rt at the current mo‐
ment exceed the limitation, thereby achieving a larger range 
of power fluctuation stabilization. However, if the PID con‐
trol algorithm raises the voltage to the upper limit when the 
PCC power rapidly decreases, the power fluctuation rate of 
the PCC cannot be controlled to be less than 10% per min. 
Similarly, at 12:55, the MPC algorithm increases the voltage 
in advance to obtain more space for voltage reduction when 
the PCC power increases.

Based on the aforementioned analysis indicating that non-
iterative algorithms such as PID control algorithm only cal‐
culate the voltage regulation value of a single-time scale 
based on the current-moment output, the control effect of the 
traditional non-iterative algorithm is poor in a system with a 
large randomness. As shown in Fig. 13, although the PCC 
power fluctuation is reduced to a certain extent, the mo‐
ments when the Rt is not controlled within 10% per min re‐
main.

The advantage of the iterative algorithms such as MPC al‐
gorithm is that it can constantly modify its control quantity 
through the control effect. The MPC algorithm considers pre‐
diction data such as the PV power and load; therefore, the 
calculated control results have a certain predictability. The 
MPC algorithm reversely regulates the voltage before the 
PV power is predicted to fluctuate; thus, it has a larger volt‐
age regulation space when the power violently fluctuates and 
achieves a larger range of power fluctuation suppression.

Considering the calculation time, the calculation model of 
the non-iteration algorithm is simple. Utilizing the computer 
and software with the same configurations indicated above, 
the average calculation time of the PID control algorithm is 
0.23 s, which is less than that of the MPC algorithm. How‐
ever, when suppressing minute-level power fluctuations, the 
calculation time of the MPC algorithm can also meet the re‐
quirements, and the MPC algorithm can provide a larger ad‐
justable load power under the same constraints; therefore, 
the MPC algorithm has apparent advantages.

2)　Scenario with Different PV Penetration Rates
The PV penetration rate directly affects the power fluctua‐

tion range of the PCC; therefore, it is selected as a single 
control variable. The MPC algorithm and PID control algo‐
rithm are used for the demand-side management, and the 
power fluctuation rate of the PCC is used as the evaluation 
index of the two control algorithms.

The PV penetration rate is the ratio of the installed PV ca‐
pacity to the rated load capacity of the DN, and the PV pene‐
tration rate PVpe is changed by adding the installed PV ca‐
pacity. The PCC power fluctuations after the MPC and PID 
control are expressed using a probability density function 
(PDF). The PID and MPC algorithms are used to smooth the 
PCC power under the scenarios with PV penetration rates of 
45%, 54%, and 68%, respectively. The PDF curve of Rt in 
each PV penetration rate scenario is shown in Fig. 15.
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When the system power flow meets the constraint, wheth‐
er the maximum volatility exceeds 10% per min is the stan‐
dard for determing whether the PV can be integrated into 
the DN under this capacity. The comparision of the effects 
after using different control algorithms is listed in Table III.

As shown in Fig. 15, when the penetration rate increases 
from 35% to 68%, the PCC power volatility increases from 
31% per min to 58% per min without any control algorithm. 
The probability of the PCC power volatility distributed near 
0 increases after using the control algorithms, indicating that 
the two algorithms have effectively stabilized the PCC pow‐
er fluctuations to a certain extent. However, the number of 
volatilities distributed near 0 after using the MPC algorithm 
is larger than that of the PID control algorithm, and the vola‐
tility peak after using the MPC algorithm is also lower than 
that of the PID control algorithm. Therefore, the MPC algo‐
rithm has a better control effect than the PID control algo‐
rithm with different penetration rates.

The PID control algorithm is a single-time section control 
algorithm, which is limited by the voltage regulation range at 
the preceding time, and has a poor control effect during the 
time with the high power volatility. The MPC algorithm can 
pre-regulate the DVR voltage in advance according to the pre‐
diction power of the PCC; therefore, it has a larger load power 
regulation capacity than that of the PID control algorithm at 
the time with large power fluctuations. As shown in Fig. 15(b), 
when the installed PV capacity increases to 10 MW, the MPC 
algorithm can limit the PCC power volatility to 10% per min. 
However, when the installed PV capacity increases to 12 MW, 
the load power cannot fully smoothen the PV power fluctua‐
tion owing to the limitation of the voltage qualification rate, as 
shown in Fig. 15(c).

Based on the aforementioned results, the MPC algorithm 
uses the advantage of rolling optimization to make full use 
of the demand-side regulation ability, and its suppression ef‐
fect with different PV penetration rates is better than that of 
the PID control algorithm. Therefore, the proposed strategy 
can smooth the PV power fluctuations in a wider range and 
further improve the PV utilization under the same regulation 
capacity.

IV. CONCLUSION 

A multi-time-scale demand-side management strategy 
based on the MPC is proposed for the problem of PCC pow‐
er fluctuations when there is a high penetration of distribut‐

ed PV. The effectiveness of the proposed strategy in stabiliz‐
ing the PCC power fluctuation is verified using an example. 
It also provides a solution to the problem that the DN can‐
not be connected to a distribution PV with larger capacity 
due to the power fluctuation rate of PCC exceeding the limit.

The following conclusions can be drawn from this study: 
① the feeder voltage is regulated by the DVR to achieve the 
continuous regulation of the feeder-level load; ② in pre-
scheduling, a multi-objective intraday optimization model is 
established to solve the reference value of the PCC; ③ 
based on the MPC, the voltage regulation is solved by the 
rolling optimization, and the DVR regulates the voltage pri‐
or to the PV ramp increasing based on the prediction, which 
enlarges the range of smoothing the PV power fluctuation; 
and ④ the MPC can smooth a wider range of power fluctua‐
tions than the PID control with a limited regulation capacity.

Finally, as advanced measurement devices are gradually in‐
tegrated into the DN, the prediction and optimization model 
of MPC should be further improved in future studies to 
adapt to high-frequency control speeds.
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