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Data-driven Reactive Power Optimization for
Distribution Networks Using Capsule Networks

Wenlong Liao, Jiejing Chen, Qi Liu, Ruijin Zhu, Like Song, and Zhe Yang

Abstract—The construction of advanced metering infrastruc-
ture and the rapid evolution of artificial intelligence bring op-
portunities to quickly searching for the optimal dispatching
strategy for reactive power optimization. This can be realized
by mining existing prior knowledge and massive data without
explicitly constructing physical models. Therefore, a novel data-
driven approach is proposed for reactive power optimization of
distribution networks using capsule networks (CapsNet). The
convolutional layers with strong feature extraction ability are
used to project the power loads to the feature space to realize
the automatic extraction of key features. Furthermore, the com-
plex relationship between input features and dispatching strate-
gies is captured accurately by capsule layers. The back propaga-
tion algorithm is utilized to complete the training process of the
CapsNet. Case studies show that the accuracy and robustness
of the CapsNet are better than those of popular baselines (e.g.,
convolutional neural network, multi-layer perceptron, and case-
based reasoning). Besides, the computing time is much lower
than that of traditional heuristic methods such as genetic algo-
rithm, which can meet the real-time demand of reactive power
optimization in distribution networks.

Index Terms—Data-driven, reactive power optimization, dis-
tribution networks, deep learning, capsule networks.
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Bias vector of the i" dense layer
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Offset coefficient between the i" and j
ry capsule layers
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«th

Coupling coefficient between the i" and j
mary capsule layers
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Voltage offsets before and after reactive power
optimization
Comprehensive objective function without
penalty terms

Comprehensive objective function with penal-
ty terms

Conductance between the i" node and the ;"
node

The maximum current allowed to flow
through the /" branch

Current of the /" branch

The maximum number of on/off switches for
the i" shunt capacitor bank in one day

«th

Number of on/off switches for the i
pacitor bank at time ¢

shunt ca-

Number of operations for the i on-load tap
changer (OLTC) at time ¢

The maximum number of operations for the i"
OLTC in one day

Number of positions with OLTC

Number of positions with static var compensa-
tor (SVC)

Number of positions with shunt capacitor bank
Total number of branches

Total number of nodes in distribution network
Power losses before and after reactive power
optimization

The maximum reactive power that SVC can
generate

The maximum reactive power that can be gen-
erated by the i" shunt capacitor bank

Reactive power generated by the /" SVC at
time ¢

Reactive power generated by the i" shunt ca-
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pacitor bank at time ¢

S, Input vector of the /" digital capsule layer
T, ™ The minimum and the maximum tap positions
of the i" OLTC

T, Tap position of the i" OLTC at time ¢
urs,ure Upper and lower voltage limits of the i node
us” Output data of the i" convolutional layer

Use The /" vector generated by the i input feature
U, Rated voltage of distribution network

U, Voltage of the i" node

ween Weight of the i" convolutional layer

w:r Weights of the primary capsule layers

W, W, Weights of power loss and voltage offset

W den Weight of the i" dense layer

X" Input data of the i convolutional layer

y e Output data of the i" dense layer

Veortc. Coding value of the i" position

YaoLrci Decoding value of the i" position

Ve sve Coding value of reactive power Qg
Yasve Reactive power

Z Output vector of the ;" digital capsule layers
ze Input data of the i" dense layer

1. INTRODUCTION

REACTIVE power optimization is an effective means to
change the power flows of distribution networks by ad-
justing the operation status of various power equipment at a
given load level, so as to reduce power loss and improve the
power quality. As an important part of distribution network
scheduling and planning, reactive power optimization of dis-
tribution networks is of great significance for both theoreti-
cal research and practical applications [1].

Nowadays, the world faces more and more serious envi-
ronmental problems and energy crisis. The traditional fossil
energy gradually dries up, and the penetration of renewable
energy sources (e.g., wind turbines and photovoltaic sys-
tems) in distribution networks continuously increases [2]. Al-
though these renewable energy sources are abundant, sustain-
able, and environmentally friendly, their randomness and vol-
atility also bring challenges to the safe operation of distribu-
tion networks [3]. In order to alleviate the negative impact
of renewable energy sources on distribution networks, the
types and quantity of power equipment integrated into distri-
bution networks are increasing. In this case, a large number
of renewable energy sources and power equipment make the
physical models of reactive power optimization tend to be
complex. Traditional methods for reactive power optimiza-
tion of distribution networks need to assume and simplify
these physical models, and then find the approximate opti-
mal solution through iteration [4]. However, the integration
of a large number of renewable energy sources and power
equipment greatly increases the complexity of physical mod-
els. Traditional methods not only consume a lot of comput-
ing time, but also easily fall into the local optimal solution
[5]. To ensure the economy and stability of distribution net-
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works, there is an urgent need to develop a new approach in-
dependent of physical models, with high accuracy, strong
adaptability, and fast computing speed.

With the rapid development of sensors and communica-
tion technologies, the amount of data in all walks of life
shows an explosive increase, which has attracted the atten-
tion of experts and scholars in various fields [6]. Distribu-
tion networks are located at the end of the power system,
which directly distribute electric energy to users. Its supervi-
sory control and data acquisition (SCADA) system stores a
large amount of historical load data. Since these power loads
are collected from the adjacent regions, electrical users may
have similar electricity consumption habits [7]. Moreover,
previous publications have shown that there is a strong tem-
poral dependency in the load curve, i.e., the current loads
are relative to the historical loads [8], [9]. In this case, the
dispatching strategy of historical cases may be used for the
current case after fine-tuning parameters. Generally, massive
historical data bring opportunities to the application of data-
driven technologies for reactive power optimization of distri-
bution networks. For example, some deep neural networks
may be used to project the non-linear relationship between
power loads and dispatching strategies.

The core idea of data-driven technologies is to mine the
existing prior knowledge and massive data by supervised
learning. Then, some valuable information is extracted to di-
rect the reactive power optimization of distribution net-
works. The existing data-driven technologies for reactive
power optimization of distribution networks can be summa-
rized into two categories: similarity-based methods and mod-
el-based methods. For the first category, it mainly includes
large random matrix theory, Apriori algorithm, expert sys-
tem, and case-based reasoning (CBR) [10], which aims to
compute the similarity metrics between historical samples
and new samples. Specifically, the large random matrix theo-
ry calculates the similarity metrics between the forecasting
random matrix and the real random matrix, so as to find the
dispatching strategies of current power loads that are similar
to historical power loads [11]. Similarly, the Apriori algo-
rithm filters out the optimal dispatching strategy of the his-
torical samples for the current sample based on frequent
item set mining and association rule [12]. For the expert sys-
tem, the user inputs the power loads of the distribution net-
works based on the human-machine interface, and then the
inference engine matches the power loads with dispatching
strategy in the knowledge base. The conclusions of the
matched dispatching strategy are sent out to the system oper-
ators [13]. CBR searches historical cases similar to current
cases, and then uses them to determine the dispatching strate-
gy of unknown samples [14]. Generally, although these simi-
larity-based methods make good use of prior knowledge by
calculating distances between historical samples and current
samples, they have difficulty in mining the complex non-lin-
ear relationship between power loads and dispatching strate-
gies, resulting in their limited accuracy for reactive power
optimization. Moreover, the spread diffusion of distributed
generations and market-based behaviors of end-users may
change the spatio-temporal correlation among the load
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curves, and the current load distribution and the historical
load distribution may be dramatically different. Therefore, it
is not appropriate to apply the dispatching strategies of his-
torical cases to the current cases directly. For the second cat-
egory, traditional model-based methods mainly include sup-
port vector machine, multi-layer perceptron (MLP), and deep
neural networks such as the deep belief network (DBN) and
convolutional neural network (CNN) [15], which train a
model to predict suitable dispatching strategies by a lot of
historical samples. Unlike similarity-based methods, the mod-
el-based methods are not to find a suitable historical dis-
patching strategy, but to create a new one for the current
case. Specifically, supportive vector machine (SVM) is a su-
pervised learning method for reactive power optimization by
constructing a decision surface, where the difference be-
tween two different classes can be maximized [16]. MLP,
DBN, and CNN construct neural networks using dense lay-
ers, restricted Boltzmann machines, and convolutional layers,
respectively, to represent the relationship between power
loads and dispatching strategies. Compared with MLP and
DBN, CNN has higher accuracy in reactive power optimiza-
tion, since the convolutional layers have more powerful fea-
ture extraction ability than dense layers and restricted
Boltzmann machines [17]. However, the pooling operation
of CNN will lose rich information of power loads, which re-
stricts its accuracy to be further improved [18].

The capsule network (CapsNet) is a new deep neural net-
work that originates from CNN. Compared with traditional
CNN, CapsNet shows a much deeper semantic understand-
ing of the scenario, and a stronger ability to represent high
dimensional features, leading to its wide applications in vari-
ous fields [19]. For example, a spectral-spatial CapsNet is
proposed to significantly reduce the network complexity, and
achieves highly accurate classification of hyper spectral im-
aging data in [20]. While in [21], CapsNet is designed to
mine spatial relationships specialized in synthetic aperture ra-
dar automatic target recognition tasks. The simulation results
show that CapsNet not only improves the accuracy of recog-
nition, but also alleviates the computational burden. To im-
prove the accuracy of gait recognition, CapsNet with convo-
lutional and capsule layers is proposed to capture more dis-
criminative features in [22]. The successful applications of
CapsNet in images, videos, and speech signals prove that
CapsNet is able to explore complex objective laws from
high-dimensional data through supervised learning. Theoreti-
cally, the latent representations of power loads can be effec-
tively extracted by deep convolutional layers with strong
learning ability, and the complex non-linear relationship be-
tween dispatching strategies and power loads can be ex-
plored to improve the accuracy for reactive power optimiza-
tion based on primary capsule layers and digital capsule lay-
ers.

However, most of the existing architectures of CapsNet
are designed for computer vision (e.g., image and video)
[23], which cannot handle the 1-dimensional power loads di-
rectly. Therefore, how to design a structure of CapsNet with
high accuracy and strong feature extraction ability given da-
ta from distribution networks needs further research.
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This paper aims to design a CapsNet to improve the accu-
racy of reactive power optimization for distribution net-
works. The performance of the proposed method is tested by
the IEEE 33-bus radial distribution network and the IEEE
69-bus radial distribution network. The key contributions of
this paper are as follows.

1) A new data-driven, model-free, and scalable method is
proposed for reactive power optimization of distribution net-
works. The proposed CapsNet does not need to construct
complex physical models explicitly. It makes full use of his-
torical data and prior knowledge to quickly find dispatching
strategies with similar accuracy to genetic algorithm (GA).
In addition, the time cost is much lower than GA.

2) The pooling layers that lose rich feature information
are replaced by capsule layers, which can more accurately
explore the non-linear relationship between input features
and dispatching strategies. Simulation results show that Cap-
sNet has higher optimization accuracy in different volumes
of the training set and stronger robustness than those of
CBR, CNN, and MLP at different load levels.

3) This paper innovatively design the CapsNet with strong
feature extraction capability and high optimization accuracy
for reactive power optimization, according to the characteris-
tics of the power loads from distribution networks. The influ-
ence of key parameters of CapsNet (e.g., the number of con-
volutional and capsule layers, batch size, the number of itera-
tions, and the choice of optimizer) on the performance for re-
active power optimization is analyzed by simulations on a
smart meter dataset, and some default values of parameters
are given.

The rest of this paper is organized as follows. Section II
introduces the structure and parameters of the CapsNet. Sec-
tion III formulates the reactive power optimization model.
Section 1V performs the simulations and analyzes the results.
Section V summarizes the limitation and future works of the
proposed method. Section VI presents the conclusions.

II. CAPSNET

As shown in Fig. 1, CapsNet is a high-performance deep
neural network, which is mainly composed of convolutional
layers, capsule layers, and dense layers. Firstly, the convolu-
tional layers with strong learning ability are used to extract
latent representations of power loads (active power and reac-
tive power), which serve as the input data of primary cap-
sule layers. In the primary capsule layer, each capsule can
be regarded as a neuron group. The weights between prima-
ry capsule layers and digital capsule layers are trained by
the dynamic routing algorithm to get the output vector. Final-
ly, the vectors from digital capsule layers are fed to dense
layers to obtain the dispatching strategies.

A. Convolutional Layers

The main function of convolutional layers is to extract the
latent representations of power loads by the convolutional
operation. The feature matrix of power loads is obtained by
multiplying the matrix elements with the convolutional ker-
nel, and then adding an offset vector. Compared with the
dense layers, convolutional layers have stronger feature min-
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ing ability and avoid the complex selection process caused
by manual construction of input features. The relationship be-
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Fig. 1. Framework of CapsNet.

B. Capsule Layers

The capsule layers include primary capsule layers and dig-
ital capsule layers, in which the input scalar and output sca-
lar of traditional deep neural networks are substituted with
the input vector and output vector of capsule layers. The cal-
culation of capsule layers includes two stages.

In the first stage, the prediction vector is obtained by mul-
tiplying the output features of convolutional layers with the
weight matrix. The mathematical formula is:

U =Usm W

In (2), W;* are usually initialized by Gaussian noises.

In the second stage, the prediction vectors of primary cap-
sule layers are sent out to the digital capsule layers by ad-
justing the coupling coefficient, whose mathematical formu-
la are given as:

@)

exp(b,))
C,,=Softmax(b,;)= ———— >0 >C, =1 3
: | exp(b, 7 3)
2exp(b)
S;= zU.ﬂC?pr‘ 4)

S, can be generated by multiplying coupling coefficients
by prediction vectors of primary capsule layers. When
C,;=1, all the generated features of the primary capsule lay-
ers are sent out to next digital capsule layers. When C,;=0,
all the generated features of the primary capsule layers are
not sent out to next digital capsule layers.

Unlike the CNN or MLP, which often uses other functions
(e.g., sigmoid function, rectified linear unit (ReLU) function,
hyperbolic tangent function) as activation function, CapsNet
uses the squash function to obtain the output vector Z; of
digital capsule layers. The squash function squash(-) can be
represented as:

2

[s| s

i
BN
The squash function can not only keep the direction of the

input vector, but also project the modulus of the input vector
into new values varying from 0 to 1. Further, Fig. 2 visualiz-

Z,=squash(S;)= (5)
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tween input features and latent representations is given as:
UCOH_O_COH (XCOH*WCOH_"_BCOH) (1)
i —Yi i i i

Output vector

Activation / 7 \‘\
function // 2 .\ Dispatching strategies

\

AO0O-Or

/
/

/ \

Dense layer

Digital capsule layer

es the relationship between the modulus of the input vector
and reduction coefficient of squash function. As the modulus
of vectors increases, the reduction coefficients get closer to
1, as shown in Fig. 2.
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Fig. 2. Relationship between modulus of input vectors and reduction coef-
ficient of squash function.

C. Dense Layers

Finally, the vectors from digital capsule layers are fed to
dense layers to obtain dispatching strategies, whose output
data are expressed as:

Yiden — O_iden (Ziden Widen +B;ien ) (6)

D. Dynamic Routing Algorithm

After initializing the structure of the CapsNet, the dynam-
ic routing algorithm is employed to update the parameters in
capsule layers through the supervised training process, so
that the rich information from the primary capsule layer is
sent out to the digital capsule layers. The specific pseudo
code of the dynamic routing algorithm is shown in Algo-
rithm 1.

Firstly, the number of maximum iteration R is set and the
bias coefficients b,; are initialized with O elements. Secondly,
the coupling coefficients are calculated by (3), and S, is ob-
tained by linear weighting with U”. Thirdly, the output vec-
tor Z can be obtained by inputting S, to the squash activa-
tion function. Lastly, the output vector Z; is utilized to up-
date the bias coefficients b, , which can be obtained as:

bi.j = bi,j + Z/U/C?p @)
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Algorithm 1: pseudo code of dynamic routing algorithm

initialize the number of maximum iterations R
b;=0; Step=0

while (Step <R)
C,,;= Softmax(b, ;)
S;= szfw Cij

Z,;=squash(S;)

b=b,+ZU®

Step=Step + 1
end

Return Z/

E. Reactive Power Optimization Model via CapsNet Reac-
tive Power Optimization Model

This paper takes the minimum power loss and voltage off-
set as the objective function to construct the reactive power
optimization model of the distribution networks. The compre-
hensive objective function can be defined as the largest
change in the power loss and voltage offset before and after
optimization [24]:

P . —P/ dU-dU’
max f, =W, ‘°S;) s 4, U (8)
loss
| U,-U,
dU= 2 7NU )
i=1 N

The weights W, and W, can be adjusted flexibly. In this
paper, the power loss and voltage offset are given the same
weight (W, and W, are equal to 1) as an example to test the
performance of different methods.

In addition, the reactive power optimization model of dis-
tribution networks should meet the following constraints.

1) Power Flow Constraints

PI.—UI.ZIU].(Gy.coséij+BUsin5ij):0 i=1.2,...n

n (10)
Q,.—U,.Zl]j(Gijsinéy.—Bijcoséy.)=O i=1,2,..,n
=

2) Voltage and Current Constraints
Ur'<u.<ur™ i=12,...,n

11
Iigljmax i:172""’N ( )

For the voltage and current constraints, the constrained
model is transformed into an unconstrained model by em-
ploying the penalty function method:

max f,=f, -/, j[g(U,— UrM™)+eUM-U,)] -
i=1

1ol 1) (12)

The penalty coefficients should be much larger than f,
and the penalty coefficients are equal to 10 in this paper. If
the voltages and currents are within the boundary, f, and f,
are equal.
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3) Power Equipment Constraints

24
max C C .
OSQCi.tSQC ’ENL[ <Nz',max 1:1,27...,}1C
t=1
24 (13)
min max T T .
Ti STLI‘STI' ’ENI,I <Ni,max 1_1’25"-5717"
t=1
max .
0<Qgvci < Osve i=1,2,.. .1

F. Coding Method of Power Equipment

The reactive power optimization of distribution networks
is to search the suitable reactive power dispatching strategies
within a certain range of load fluctuations to minimize the
power loss and the voltage offset of each node. Its key is to
construct the relationship between the power loads (active
powers and reactive powers) and dispatching strategies by
using the CapsNet.

The mainstream power equipment for reactive power opti-
mization includes on shunt capacitor bank, on-load tap
changer (OLTC), and SVC. The number of shunt capacitor
banks, tap position in OLTC, and output reactive power of
the SVC are variables to be predicted by the CapsNet. Obvi-
ously, shunt capacitor banks and OLTC are discrete vari-
ables, while the SVC is a continuous variable. If these vari-
ables are encoded using the binary encoding method, the
number of encodings will be extremely long, which is not
conducive to training the CapsNet. Therefore, this paper uni-
formly uses value encoding methods.

For discrete variables, the OLTC with m positions is taken
as an example to illustrate the value coding method. The
coding value of the i" position is:

2i—1
Yeorre,i= m =12...

(14)

where y.o1c; is less than 1 and greater than 0. Similarly,
the positions y o ¢ ; predicted by the CapsNet can be decod-
ed as:

i

m

i—1 i
<

< IS
m Ve OLTC, i m

1 0 <Veorte: S

(15)

Ydortc,i=

i

where y, o1 1c; 15 less than m and greater than 1.
For continuous variables, the coding value of the reactive
power is:

_ QSVC

ye, sve max (16)
NYe
Similarly, the reactive power y. . predicted by the Cap-
sNet can be decoded:

max
NYe

yd,svc:ye (17)

where y, . 1s less than Qg and greater than 0.

So far, a bijective relationship has been established among
the number of shunt capacitor banks, tap position in OLTC,
and output reactive power of the SVC with the real numbers
in the range of 0 to 1. For k variables to be optimized, the
output layer at the top of the CapsNet outputs & numbers,
which represent the optimized results. The mean absolute er-
ror (MAE) is used as the loss function and the weight of the
network is updated by the gradient descent method.
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G. Process of Reactive Power Optimization

The process of reactive power optimization based on the
CapsNet is shown in Fig. 3, and the specific steps are as fol-
lows.

v v
Tre}m i Test set
validate set

Training CapsNet

N Is iteration stopped?

Y

Trained CapsNet

=
|Output and evaluation results Py, dU', f, |

End

|
|
1
1
1
|
|
|
|
|
1
1
1
1
|
|
|
i
1
| | Updat ight:
: paate weights
|
|
|
1
1
1
1
|
|
|
|
1
1
1
1
|
|
|
|
1
1
1

Fig. 3. Process of reactive power optimization based on CapsNet.

1) Load and normalize data. The topology of distribution
networks, the historical power loads of each node, and the
corresponding dispatching strategies of the power equipment
are imported. The samples are randomly divided into train-
ing set, validation set, and test set. The training set and vali-
dation set are used to obtain the parameters of the CapsNet,
and the test set is used to evaluate the performance of the
CapsNet. To ensure the convergence of CapsNet, power
loads are projected into the range of 0 to 1 by using the min-
imum-maximum normalization method.

2) Initialize the structure and parameters of the CapsNet.
To improve the accuracy of reactive power optimization, it
is necessary to explore suitable network structures and pa-
rameters before training the CapsNet. The structures and pa-
rameters of the CapsNet mainly include: the number of con-
volutional layers and capsule layers, the number of itera-
tions, the batch size, and the selection of optimizer. Taking
two convolutional layers and one capsule layer as examples,
Table II shows a simple structure of the CapsNet. The size
of convolutional filters is 8 and 16, respectively, the size of
the convolutional kernels is 2 %X 2, and the activation function
is ReLU function. The capsule layer outputs two vectors of
1x 16 scales, and the activation function is a squash func-
tion. In the dense layer, a vector of 1x4 scales is obtained
to represent dispatching strategies of the power equipment.

3) Train the CapsNet. The CapsNet is trained by the back
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propagation algorithm, which consists of forward incentive
propagation and backward weight update. In the forward in-
centive propagation, the power loads are processed by convo-
lutional layers and capsule layers, and then transferred to the
output layer, which outputs dispatching strategies of sam-
ples. The forecasting results and optimal results are used to
calculate the loss function (e.g., MAE). In backward weight
update, the loss function is transferred from the output layer
to middle layers using the chain rule. Next, the weights of
convolutional layers and capsule layers are updated by the
gradient descent method. If the iteration is over, the test set
is used to evaluate the performance of the trained CapsNet.
4) Evaluate the CapsNet. After training the CapsNet, it
will be used for reactive power optimization. The power
loads of nodes from the test set are input into the CapsNet
to obtain the corresponding dispatching strategies. Then, the
power flow of distribution networks is calculated to obtain
the indices such as power loss P, voltage offset dU’, and

loss?

comprehensive objective function f,.

TABLE 11
A SIMPLE STRUCTURE OF CAPSNET

Layer Structure and parameter Shape
1 X =Input(shape =(Powerload.shape)) 1x 64
2 Y = X.reshape(-1,8,8,1) 8§x8x1
3 Y =Conv2D(filters =8, kernel size =2, ‘ReLU")(Y) TxTx8
4 Y = Conv2D(filters = 16, kernel_size=2, ‘ReLU’) YY) 6x6x16
5 Y =Y .reshape(—1,36,16) 36x16
6 Y = Capsule(num_capsule =2, dim = 16, ‘squash’)(Y) 2%x16
7 Y =dense(unit=4, ‘Sigmoid’)(Y) 1x4

III. CASE STUDY

A. Dataset and Simulation Tools

In order to fully test the performance of the proposed
method, the modified IEEE 33-bus radial distribution net-
work is used for simulation and analysis. The resistance and
reactance of the branch can be found in [25], and the topolo-
gy is shown in Fig. 4.

18 19 20 21

Fig. 4. Topology of modified IEEE 33-bus radial distribution network.

Specifically, the voltage magnitude base is 10 kV. The tap
of the OLTC includes 17 positions, which range from —8 X
1.25% to 8x1.25%. Normally, SVCs and capacitor banks
are located at the end of the feeder to improve the voltages
and reduce the power loss [26], and the decentralized loca-
tions of these devices help reduce the voltage offset [27].
Therefore, the locations and capacities of SVCs and capaci-
tor banks are assumed as follows. The SVC is added at the
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9" node and the reactive power of the SVC ranges from 0 to
400 kvar. The 7 shunt capacitor banks are added at the 16™
nodes and 6 shunt capacitor banks are added at the 30™
nodes. The capacity of each bank is 100 kvar.

The power loads are collected from the London smart me-
ter dataset [28], which includes the electricity consumption
of each household in 112 blocks from November 2011 to
February 2014. The time resolution of the load curve is 1
hour. The power loads of three adjacent blocks are combined
to analog a node in the distribution network. Therefore, the
power loads of 32 nodes can be obtained from the first 96
blocks. Since the collected time of each block is different,
5000 samples are reserved for simulation after data cleaning.
80% of the samples are randomly selected to train the Cap-
sNet, and 10% of the samples are randomly selected as the
validation set. The remaining samples are used as the test set
to evaluate the performance of the trained CapsNet. Except
for the slack node (node O in this paper), the remaining 32
nodes are considered as PQ nodes whose active power and
reactive power are constant. Their active power and reactive
power are used to form one sample. Therefore, each sample
is a vector with one row and 64 columns for the modified
IEEE 33-bus radial distribution network. Before training
CapsNet, it needs to add a label to each sample, i.e., the cor-
responding dispatching strategies. For each sample, the GA
is run 30 times independently, and the best dispatching strat-
egy is selected as the label of the sample.

The programs of the CapsNet for reactive power optimiza-
tion of distribution networks are implemented in Spyder 3.0
with Keras 2.0 and Tensorflow 1.0 deep learning library. The
parameters of the computer are: Intel(R) Core(TM) i3-
3110M, a dual-core CPU processor with a base clock speed
of 2.40 GHz, and 6 GB of memory.

B. Discussion on Key Parameters

In order to intuitively understand the stability and conver-
gence speed of the CapsNet, Fig. 5 shows the changing
trend of loss function values in the training set and valida-
tion set.
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Fig. 5. Training process of CapsNet.

With the increase of iterations, the loss function values of
training set and validation set decrease rapidly. After 50
rounds of training iterations, the loss function value of Cap-
sNet becomes stable and no longer declines, which indicates
that CapsNet has converged at this time. Comparing the loss
function values of the training set and the validation set, it is
found that they are very close and there is no fitting prob-
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lem, which shows that CapsNet has strong generalization
ability.

Normally, different combinations of parameters and struc-
tures need to be tried, so as to find a suitable structure for
the neural network. Then, the loss function or accuracy of
the validation set is calculated. The combination with the
highest accuracy or the smallest loss function will be used
for the neural network.

In order to analyze the influence of convolutional layers
and capsule layers on the performance of the CapsNet, the
numbers of convolutional layers and capsule layers are grad-
ually increased, and the comprehensive objective functions
of the validation set in different layers are counted, as
shown in Fig. 6.

Convolutional layer

0.9562 | 0.9597

Capsule layer
(2)

1 172 684 1196 | 1708 | 2220

2748

Convolutional layer

1 2 3 4 5 6 7

Capsule layer
(b

Fig. 6. Indicators of different layers. (a) Comprehensive objective func-
tions. (b) Number of parameters to be trained.

The following conclusions can be drawn from Fig. 6.

1) In the early stage, the comprehensive objective func-
tions of the test set increase as the number of convolutional
layers and capsule layers increases, which indicates that the
performance of the CapsNet is gradually becoming stronger.
When the number of capsule layers and convolutional layers
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are both 4, the comprehensive objective function of the Cap-
sNet is the largest, and the performance of reactive power
optimization is the best. This phenomenon shows that it is
difficult to mine the complex nonlinear relationship between
power loads and dispatching strategies by a small number of
convolutional layers and capsule layers. Increasing the num-
ber of convolutional layers and capsule layers can improve
the feature learning ability of the CapsNet, thus enhancing
the accuracy of reactive power optimization.

2) Moreover, the number of parameters to be trained in-
creases linearly with the increase of convolutional layers and
capsule layers. When the numbers of convolutional layers
and capsule layers are greater than 4, the performance of the
CapsNet will be worse if more convolutional layers and cap-
sule layers are added to the CapsNet. This is because the
number of samples in the dataset is limited. Too many con-
volutional layers and capsule layers will not only increase
the parameters of the CapsNet to be trained, but also easily
lead to over-fitting problems.

3) In general, the number of convolutional layers and cap-
sule layers should be determined according to the volume of
the data set. If the number of training samples is 4000, the
CapsNet can get good performance by setting the number of
convolutional layers and capsule layers to be less than 4.
For other datasets, 4 can be considered as a good default val-
ue for the numbers of convolutional layers and capsule lay-
ers, and larger values or smaller values may be fine.

The batch size determines the number of samples that will
be propagated through the network, which will directly af-
fect the training process. In order to explore the influence of
the batch size on the performance of the CapsNet, the batch
size is set from 8 to 512, and the comprehensive objective
functions of the CapsNet on the validation set are counted,
as shown in Table III.

TABLE III
COMPREHENSIVE OBJECTIVE FUNCTIONS IN DIFFERENT BATCH SIZES

Batch size Power loss  Voltage offset Obj‘ective func- Training time
(MW) (p-u.) tion (p.u.) (s)

8 0.2319 0.7990 1.1404 325.79

16 0.2314 0.7970 1.1410 203.07

32 0.2319 0.8012 1.1397 154.76

64 0.2320 0.7990 1.1396 132.66

128 0.2318 0.8033 1.1385 118.47
256 0.2308 0.8179 1.1367 116.41
512 0.2340 0.8158 1.1315 98.42

The following conclusions can be drawn from Table III.

1) As the batch size increases, comprehensive objective
functions of the CapsNet first increase and then decrease.
When the batch size is 16, the comprehensive objective func-
tion is the largest, which indicates that the performance of re-
active power optimization is the best. When the batch size is
512, the comprehensive objective function value is the small-
est, which shows that the large batch size causes the perfor-
mance of CapsNet to deteriorate.

2) In terms of training time, although too large batch size
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can reduce the training time, it also affects the generalization
ability of the CapsNet, resulting in the degradation of perfor-
mance for reactive power optimization. Generally, the batch
size of the CapsNet should be determined according to the
volume of the dataset and the computing resources of com-
puters. When the number of training samples is about 4000,
setting the batch size to 16 can make the CapsNet achieve
good performance. The larger values or smaller values may
be fine for other datasets.

After initializing the batch size, convolutional layers, cap-
sule layers, and the number of iterations, the loss functions
of neural networks are optimized by employing a gradient
descent method. The mainstream methods for gradient de-
scent include Adam, RMSprop, stochastic gradient descent
(SGD), Adagrad, Adadelta, Nadam, and Adamax. In addi-
tion, the popular deep learning libraries (e.g., Keras, Py-
torch, Tensorflow) include the implementations of these
methods to update the weights. Normally, these methods are
used as black boxes in practical engineering, since their prin-
ciples are too complicated to be explained. To show how to
choose a suitable optimizer for the CapsNet in reactive pow-
er optimization, the above optimizers are set up and simulat-
ed, and then the comprehensive objective functions of the
validation set are counted, as shown in Table IV.

TABLE IV
COMPREHENSIVE OBJECTIVE FUNCTIONS IN DIFFERENT OPTIMIZERS

Optimizer Power loss Voltage offset ~ Objective function
(MW) (p-u.) (p-u.)
Adadelta 0.2318 0.8040 1.1383
Adagrad 0.2313 0.8168 1.1338
Adam 0.2314 0.7970 1.1410
Adamax 0.2315 0.8012 1.1396
Nadam 0.2320 0.7988 1.1400
RMSprop 0.2321 0.7977 1.1404
SGD 0.2341 0.8173 1.1309

Table IV shows that the CapsNet has large objective func-
tion values when Nadam, RMSprop, Adadelta, Adamax, and
Adam algorithms are utilized to train the model. Specifical-
ly, the Adam algorithm is the most optimal algorithms for
the CapsNet in reactive power optimization, since the com-
prehensive objective function of the Adam algorithm is
slightly larger than those of the first four optimizers. Further-
more, the comprehensive objective functions of SGD and
Adagrad algorithms are all lower than 1.135, which indicates
that they are not suitable for reactive power optimization
based on the CapsNet.

C. Comparative Analysis with Existing Methods

In order to illustrate the effectiveness of the CapsNet, the
traditional physical model-based method (e.g., GA) and pop-
ular data-driven technologies (e.g., CBR, CNN, and MLP)
are used as the baselines. The controlled variable method is
used to find the best parameters and structures of various al-
gorithms [29].

1) For GA, the total number of chromosomes is 50. The
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probability of chromosomal chiasma is 0.5, and the probabili-
ty of chromosomal variation is 0.3. The number of iterations
is 200.

2) The structures and parameters of the CBR are consis-
tent with the algorithm proposed in [10].

3) CNN includes two convolutional layers, two max-pool-
ing layers, two dropout layers, and a dense layer. The num-
ber of filters in the front and back convolutional layers is 8
and 16, respectively. The sizes of the kernels in the convolu-
tional layers are 2. The pooling sizes in max-pooling layers
are 2. The probabilities abandoning neurons in dropout lay-
ers are 0.25. The number of neurons in the dense layer is 4.
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The activation function of the density layer is the sigmoid
function, and the rest are the ReLU functions. The number
of iterations is 200, and the optimizer is the Adam algorithm.

4) In terms of MLP, 64 is the number of neurons in the in-
put layer, and the numbers of neurons in the middle layer is
32, 16, and 8, respectively. The number of neurons in the
output layer is 4. The number of iterations is 200, and the
optimizer is the Adam algorithm. The activation function of
the output layer is the sigmoid function, and the rest are the
ReLU functions.

The above methods are independently repeated 30 times
and the average results of the test set are shown in Table V.

TABLE V
AVERAGE RESULTS FOR DIFFERENT METHODS

Power loss (MW) Voltage offset (p.u.)

Comprehensive objective function (p.u.)

Method - - - Computing time (s)
Mean value Variance Mean value Variance Mean value Variance
CapsNet 0.2314 0.1281 0.7970 0.2855 1.1410 0.0289 0.068
CNN 0.2316 0.1286 0.8031 0.2859 1.1387 0.0292 0.069
MLP 0.2317 0.1297 0.8143 0.2879 1.1382 0.0294 0.042
CBR 0.2311 0.1278 0.8169 0.2933 1.1346 0.0326 4.002
GA 0.2315 0.1276 0.7949 0.2842 1.1430 0.0287 21.263

The following conclusions can be drawn from Table V.

1) The mean value of the comprehensive objective func-
tion of CBR is the smallest, which indicates that directly ap-
plying the dispatching strategies of historical cases to the
current case will result in limited optimization accuracy.
This is because the power loads of the historical cases and
the current case are different, and the dispatching strategies
found by the CBR are not well suited to current cases, espe-
cially when the historical load differs significantly from the
current loads for some reasons (e.g., impacts of the spread
distributed generations and market-based behavior of end-us-
ers). Comparing the performance of the CNN and MLP, it is
found that the performance of CNN is slightly better than
that of MLP, because convolutional layers have more power-
ful feature extraction ability than dense layers, which can
mine the complex nonlinear relationship between power
loads and dispatching strategies.

2) Notably, both CNN and CapsNet use convolutional lay-
ers to extract the features of the input data in the early stage.
The difference is that they use pooling layers and capsule
layers to explore the complex nonlinear relationship between
the features and dispatching strategies in the later stage, re-
spectively. The performance of CapsNet is better than that of
CNN, which indicates that pooling operation loses parts of
the feature information and limits the accuracy of reactive
power optimization. In contrast, capsule layers in the Cap-
sNet can accurately mine the relationship between the fea-
tures and dispatching strategies, and provide better dispatch-
ing strategies to distribution networks.

3) Comparing the comprehensive objective functions of
various algorithms, it is found that the variance of CapsNet
is very close to that of GA, and less than those of the CNN,
CBR, and MLP, which indicates that CapsNet has higher sta-
bility than CNN, MLP, and CBR.

4) Online computing speed is also one of the important in-

dicators to measure the performance of the algorithm for re-
active power optimization. For single reactive power optimi-
zation, the time consumptions of CapsNet, CNN, MLP,
CBR, and GA are 0.068 s, 0.069 s, 0.042 s, 4.002 s, and
21.263 s, respectively. Traditional physical model-based
methods rely on topology and parameters for online optimi-
zation, which takes a long time. Although data-driven meth-
ods require pre-trained models, they do not rely on grid mod-
el parameters, and the speed of decision-making is much
lower than physical model based methods such as GA.

In order to test the performance of various algorithms for
dynamic reactive power optimization, the information entro-
py method proposed is used to divide one day into several
intervals. In this case, dynamic reactive power optimization
can be simplified into several static reactive power optimiza-
tion problems. Specifically, static reactive power optimiza-
tion is performed in each interval to obtain several dispatch-
ing strategies, which form a dispatching strategy for dynam-
ic reactive power optimization. The detailed inference pro-
cess and implementation steps can be found in [30]. In gen-
eral, the superiority of CapsNet for static reactive power op-
timization has been demonstrated by the previous Table V,
and dynamic reactive power optimization can be simplified
as multiple static reactive power optimizations. Therefore, it
can be concluded that CapsNet is also applicable to dynamic
reactive power optimization.

To verify this inference, five intervals are used as an ex-
ample, i.e., dynamic reactive power optimization can be sim-
plified as five static reactive power optimization problems.
The average comprehensive objective functions of dynamic
reactive power optimization of the test set are counted, as
shown in Table VI.

Similar to the results of static reactive optimization, Cap-
sNet outperforms other popular data-driven methods (e. g.,
CNN, CBR, and MLP) in terms of accuracy and stability.
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Moreover, the CapsNet not only ensures that the optimiza-
tion accuracy is very close to that of GA, but also ensures
that the computing time is much lower than that of GA,
which shows the effectiveness of the proposed CapsNet for
dynamic reactive power optimization.

TABLE VI
AVERAGE COMPREHENSIVE OBJECTIVE FUNCTION OF EACH METHOD

Method Mean value (p.u.)  Variance (p.u.)  Computing time (s)
CapsNet 1.1448 0.0295 0.340
CNN 1.1417 0.0298 0.345
MLP 1.1406 0.0230 0.210
CBR 1.1365 0.0337 20.010
GA 1.1472 0.0292 106.315

To visualize the results of dynamic reactive power optimi-
zation, one day is randomly selected, and various algorithms
are used to solve the dynamic reactive power optimization
model. The comprehensive objective function of each meth-
od is shown in Fig. 7.
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Fig. 7. Comprehensive objective function of each method on a randomly

selected sample.

It can be observed from Fig. 7 that the comprehensive ob-
jective function value of CapsNet in one day is slightly high-
er than those of CNN, MLP, and CBR, which indicates that
the performance of CapsNet in dynamic reactive power opti-
mization is better than other data-driven methods.

D. Impact of Data Volume on Results

The smaller the number of samples in the training set, the
less information the model can obtain from it. To analyze
the impact of the volume of data in the training set on reac-
tive power optimization, 12 simulation cases are set, and the
number of samples in the training set of each case is shown
in Table VII.

TABLE VII
NUMBER OF SAMPLES IN DIFFERENT CASES

Number in Number in Number in
Case .. Case .. Case ..
training set training set training set
1 4000 5 2000 9 250
2 3500 6 1500 10 125
3 3000 7 1000 11 62
4 2500 8 500 12 31
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The above methods are independently repeated 30 times
and the average comprehensive objective functions of the
test set are shown in Fig. 8.
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Fig. 8. Comprehensive objective function of each method.

The following conclusions can be drawn from Fig. 8.

1) When the size of samples in the training set is more
than 500, the reactive power optimization results of CapsNet
does not change much, and the comprehensive objective
function is always greater than 1.14, keeping high accuracy.
Furthermore, when the number of samples in the training set
is less than 500, the comprehensive objective function of
CapsNet decreases rapidly, since the limited numbers of sam-
ples reduce the generalization ability of the model.

2) Observing the comprehensive objective functions of
MLP and CNN in different cases, it is found that they have
higher requirements than CapsNet for the volumes of sam-
ples in the training set. When the volumes of samples in the
training set is less than 1500, their comprehensive objective
functions also begin to decrease rapidly, indicating that their
generalization ability is weaker than CapsNet.

3) Although the comprehensive objective function of CBR
is not sensitive to the volumes of samples in the training set,
its optimization accuracy is lower than MLP, CNN, and Cap-
sNet. In general, the performance of CapsNet is better than
the existing data-driven technologies such as MLP, CNN,
and CBR in different volumes of training set.

E. Robustness Analysis of CapsNet

In order to fully test the robustness of the proposed meth-
od, the sample with specified attributes (e.g., light loads and
heavy loads) are removed from the training set. In other
words, only the remaining samples (medium loads) are used
to train models. Then, the trained models are utilized to ob-
tain the dispatching strategies of the light loads and heavy
loads in the test set. If the trained models also perform well
for the samples with the specified attributes (e.g., light loads
and heavy loads), it means that these models have good ro-
bustness, i.c., the CapsNet can be adapted to different scenar-
ios that do not appear in the training set.

Firstly, 5000 samples are arranged in descending order ac-
cording to the sum of the power loads of each node. Second-
ly, the first 30% of the samples are labeled as heavy loads
and the last 30% as light loads. The remaining samples are
considered as medium loads, which are used to train the
models. Moreover, the optimization results of a randomly se-
lected light loads and heavy loads are visualized, as shown
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in Fig. 9 and Table VIIL
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Fig. 9. Voltage corresponding to different loads. (a) Light loads. (b) Heavy
loads.
TABLE VIII
SOLUTIONS OF DIFFERENT METHODS
Lt;lajg Method  Position Ca]zifli;(r); ! Ca;zif]i;(r))r 2 SVC (kvar)
CapsNet 8 0 0 30
Light CNN 8 1 0 76
loads  MLP 8 1 1 65
CBR 8 1 2 89
CapsNet 8 7 6 400
Heavy CNN 8 6 6 395
loads  MLP 8 5 6 392
CBR 8 3 6 386

The following conclusions can be drawn from Fig. 9 and
Table VIII

1) Since CNN, MLP, and CBR are trained with the medi-
um loads, the corresponding dispatching strategies of light
loads and heavy loads obtained by these methods are too
conservative, i.e., they tend to the corresponding solutions of
medium loads. Specifically, when the distribution network is
running at light load level, their solutions provide too much
reactive power, which leads to voltages of some nodes ex-
ceeding the upper limit. In the same way, when the power
loads are very heavy in distribution networks, the solutions
of CNN, MLP, and CBR cannot provide enough reactive
power, resulting in the voltage of some nodes exceeding the
lower limit.

2) By contrast, although the training set does not include
light loads and heavy loads, CapsNet makes good use of
convolutional layers and capsule layers to explore the com-
plex non-linear relationship between power loads and dis-
patching strategies, and the solutions always ensure that volt-
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ages are within the constraints, which indicates that CapsNet
has stronger robustness than CNN, MLP, and CBR, and can
adapt to reactive power optimization tasks at changeable
load levels, which may be caused by spread distributed gen-
eration and market-based behavior of end-users.

F. Reactive Power Optimization of Distribution Networks
with Renewable Energy

To test the performance of the proposed method for reac-
tive power optimization of distribution networks with renew-
able energy, some photovoltaic (PV) systems and wind tur-
bines (WTs) are added to the modified IEEE 33-bus radial
distribution network, as shown in Fig. 10.
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Fig. 10. Topology of modified IEEE 33-bus radial distribution network
with renewable energy.

Specifically, the first PV system is added at the 21" node
and the second PV system is added at the 12" node. Assume
that the capacity of each PV system is 500 kVA. The first
WT is added at the 24™ node and the second WT is added at
the 25" node. Assume that the capacity of each WT is 400
kVA. In addition, it is assumed that the nodes with renew-
able energy have capacitors that ensure a constant power fac-
tor (e.g., power factor is 0.9 in this paper). The data of PV
systems and WT are collected from the National Renewable
Energy Laboratory [31], [32] and the time resolution is 1
hour. Furthermore, the original PV and wind powers are
scaled appropriately to ensure that the penetration of renew-
able energy in distribution networks ranges from 10% to
50%.

The different methods are independently repeated 30
times and the average results of the test set are shown in Ta-
bles IX-XI.

TABLE IX
AVERAGE POWER LOSS OF EACH METHOD

Average power loss (MW)

Penetration level (%)

CapsNet CNN MLP CBR
10 0.1972 0.1985 0.1993 0.1998
20 0.1701 0.1712 0.1726 0.1729
30 0.1330 0.1338 0.1353 0.1356
40 0.1139 0.1144 0.1154 0.1177
50 0.0913 0.0919 0.0940 0.0947

The following conclusions can be drawn from the above
Tables.

1) As the penetration of renewable energy increases, both
power loss and voltage offset of the distribution network
gradually decrease, because decentralized renewable energies
can directly meet part of the load demand at the nodes, re-



LIAO et al.: DATA-DRIVEN REACTIVE POWER OPTIMIZATION FOR DISTRIBUTION NETWORKS USING CAPSULE NETWORKS

ducing the power flowing in the lines. In addition, renew-
able energies are located at the end of feeder lines, which
can improve the voltage amplitude of the nodes, and then re-
duce the voltage offset of distribution networks. Moreover,
the power loss and voltage offset of whole distribution net-
works before optimization both decrease with the increase of
penetration level, which causes the change not to be particu-
larly large. Therefore, the comprehensive objective functions
present a gradually downward trend.

TABLE X
AVERAGE VOLTAGE OFFSET OF EACH METHOD

Penetration Average voltage offset (p.u.)

level (%) CapsNet CNN MLP CBR

10 0.7568 0.7619 0.7723 0.7881

20 0.6845 0.6981 0.6967 0.7143

30 0.6578 0.6692 0.6701 0.6786

40 0.5962 0.6020 0.6154 0.6289

50 0.5774 0.5861 0.5992 0.6015
TABLE XI

AVERAGE COMPREHENSIVE OBJECTIVE FUNCTION OF EACH METHOD

Penetration Average comprehensive objective function (p.u.)

level (%) CapsNet CNN MLP CBR
10 1.1392 1.1268 1.1260 1.1053
20 11172 11112 1.1100 1.1045
30 1.1084 1.1065 1.0986 1.0952
40 1.0972 1.0948 1.0936 1.0869
50 1.0779 1.0678 1.0648 1.0641

2) Comparing the power losses, voltage offsets, and com-
prehensive objective functions of different methods under
different penetration levels, it is found that the average pow-
er loss and voltage offset of CapsNet are lower than those of
other methods, and the average comprehensive objective
function is also the largest, which shows that CapsNet is su-
perior to CNN, MLP, and CBR, and can adapt to the reac-
tive power optimization of distribution networks with differ-
ent penetration levels of renewable energy.

G. Impact of Different Scale Distribution Networks on Re-
sults

To analyze the impact of different scale distribution net-
works on the results, the modified IEEE 69-bus radial distri-
bution network is used for simulation and analysis. The resis-
tance and reactance of the branch can be found in [33], and
the topology is shown in Fig. 11.
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Fig. 11. Topology of modified IEEE 69-bus radial distribution network.
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Specifically, the voltage magnitude base is 10 kV. The tap
of the OLTC includes 17 positions, which range from —8 x
1.25% to 8% 1.25%. The locations and capacities of SVCs
and capacitor banks are assumed as follows. The SVCs are
added at the 10" node, 32" node, and 44" node; the reactive
power of all SVCs ranges from 0 to 400 kvar; seven shunt
capacitor banks are added at the 16" node, 24" node, 51"
node, and 65" node; and the capacity of each bank is 100
kvar.

In the same way, the London smart meter dataset are em-
ployed to form the power load of each node. Specifically,
the power loads of three different blocks are combined to an-
alog a node in the distribution network. Since the collected
time of each block is different, 5000 samples are reserved
for simulation after data cleaning. Except for the slack node
(node O in this paper), the remaining 68 nodes are consid-
ered as PO nodes whose active power and reactive power
are constant. Their active power and reactive power are used
to form one sample. Therefore, each sample is a vector with
one row and 136 columns for the modified IEEE 69-bus ra-
dial distribution network. For each sample, the GA method
is run 30 times independently, and the best dispatching strat-
egy is selected as the label of the sample.

To illustrate the effectiveness of the CapsNet, the tradition-
al physical model based method and popular data-driven
methods are used as the baselines. Each method is indepen-
dently repeated 30 times and the average comprehensive ob-
jective function of the test set are shown in Table XII.

TABLE XII
AVERAGE COMPREHENSIVE OBJECTIVE FUNCTION OF EACH METHOD

Method Mean value (p.u.) Variance (p.u.)  Computing time (s)
CapsNet 0.8343 0.0352 0.071

CNN 0.8326 0.0355 0.073

MLP 0.8319 0.0359 0.044

CBR 0.8217 0.0394 4364

GA 0.8362 0.0347 64.775

The following conclusions can be drawn from Table XII.

1) Although the performance of CapsNet is slightly weak-
er than GA in terms of comprehensive objective function
and its variance, CapsNet outperforms other data-driven
methods such as CNN, MLP, and CBR.

2) Normally, the real time system requires that the suit-
able solutions should be obtained within 60 s, during which
the power system gets the measurement data and then calcu-
lates the suitable dispatching strategies for all power equip-
ment [34], [35]. Moreover, the computing time of GA in-
creases significantly with the size of distribution networks
(e.g., the number of power equipment and nodes), while the
computing times of data-driven methods are not sensitive to
the size of distribution networks, indicating that the pro-
posed CapsNet is more suitable for real-time reactive power
optimization than GA, especially for large-scale distribution
networks.
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IV. DIScUSSION

This paper aims to apply the CapsNet to optimize the
power loss and voltages of distribution networks. Moreover,
the performance of the proposed CapsNet has been tested on
the modified IEEE 33-bus radial distribution network and
the modified IEEE 69-bus radial distribution network. The
simulation results show that CapsNet achieves state-of-the-
art performance with superior accuracy and less computing
time for reactive power optimization of distribution net-
works. However, the proposed approach assumes that the to-
pology of the distribution network is fixed, and it does not
account for the influence of the dynamic topology (e.g., re-
configuration of distribution networks) on the results. Specif-
ically, the tie switches and sectionalizing switches are also
common devices used for regulation of voltages and power
loss. Unlike the SVC, OLTC, and shunt capacitor banks, the
open states of tie switches and sectionalizing switches may
lead to outages at some nodes [36]. In addition, the impact
of market-based behavior of end-users on reactive power op-
timization can be discussed in the future.

Moreover, the graph CapsNet is a possible extension of
this paper to account for the influence of different topologies
by inputting an adjacency matrix to neural networks [37]. In
addition, the applications of the CapsNet are not limited to
the reactive power optimization of distribution networks. It
may be generalized to other tasks of power system such as
energy management or demand-side response.

V. CONCLUSION

To improve the accuracy and computing speed of reactive
power optimization, a novel machine learning model, the
CapsNet, is presented for reactive power optimization of dis-
tribution networks. Through the simulation analysis on the
IEEE 33-bus radial distribution network and the IEEE 69-
bus radial distribution network, the following conclusions
are obtained.

1) The numbers of convolutional layers and capsule lay-
ers, the batch size, the number of iterations, and the seclec-
tion of optimizers have a great influence on the performance
of reactive power optimization. Specifically, it is difficult to
mine the complex nonlinear relationship between power
loads and dispatching strategies by a small number of convo-
lutional layers and capsule layers, while too many convolu-
tional layers and capsule layers will not only increase the pa-
rameters of the CapsNet to be trained, but also easily lead to
over-fitting problems. For the dataset with 5000 samples, the
CapsNet can achieve good performance by setting the num-
bers of convolutional layers and capsule layers to 4. For oth-
er datasets, 4 can be considered as a good default value for
the number of convolutional layers and capsule layers, and
higher values or lower values may be fine. Similarly, the
batch size should be determined according to the volume of
the dataset and the computing resources of computers. Al-
though small batch size can improve the performance of
CapsNet, it consumes more training time. The convergence
speed of CapsNet is very fast, and 50 iterations can ensure
its convergence. Using Adam algorithm as the optimizer can
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enable the CapsNet with the best performance.

2) Compared with CNN, MLP, and CBR, CapsNet has not
only higher optimization accuracy, but also better stability of
optimization results. The pooling operation in the CNN loses
parts of the feature information and limits the accuracy of re-
active power optimization. In contrast, capsule layers in the
CapsNet can accurately mine the relationship between fea-
tures and dispatching strategies, which provides better dis-
patching strategies to distribution networks. The computing
time of GA increases significantly with the size of distribu-
tion networks, while the computing time of data-driven-
based methods is not sensitive to the size of distribution net-
works. Moreover, CapsNet does not rely on grid model pa-
rameters, and the speed of decision-making is much lower
than physical model based methods such as GA.

3) Compared with other deep neural networks (e.g., MLP
and CNN), CapsNet has lower requirements for the volume
of the training set. The performance of CapsNet is better
than the existing data-driven technologies such as MLP,
CNN, and CBR.

4) The CNN, MLP, and CBR are too conservative. When
the power loads are very heavy or light in distribution net-
works, some parts of the voltages may out of the limit,
while CapsNet can ensure that the voltages are always with-
in the constraints. In other words, the CapsNet has stronger
robustness than CNN, MLP, and CBR, and can adapt to reac-
tive power optimization tasks at different load levels.

5) For the reactive power optimization of distribution net-
works with different penetration levels of renewable energy,
the average power loss and voltage offset of CapsNet are
lower than those of other methods, and the average compre-
hensive objective function is also the largest, which shows
that CapsNet is superior to CNN, MLP, and CBR.
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