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Data-driven Reactive Power Optimization for 
Distribution Networks Using Capsule Networks

Wenlong Liao, Jiejing Chen, Qi Liu, Ruijin Zhu, Like Song, and Zhe Yang

Abstract——The construction of advanced metering infrastruc‐
ture and the rapid evolution of artificial intelligence bring op‐
portunities to quickly searching for the optimal dispatching 
strategy for reactive power optimization. This can be realized 
by mining existing prior knowledge and massive data without 
explicitly constructing physical models. Therefore, a novel data-
driven approach is proposed for reactive power optimization of 
distribution networks using capsule networks (CapsNet). The 
convolutional layers with strong feature extraction ability are 
used to project the power loads to the feature space to realize 
the automatic extraction of key features. Furthermore, the com‐
plex relationship between input features and dispatching strate‐
gies is captured accurately by capsule layers. The back propaga‐
tion algorithm is utilized to complete the training process of the 
CapsNet. Case studies show that the accuracy and robustness 
of the CapsNet are better than those of popular baselines (e.g., 
convolutional neural network, multi-layer perceptron, and case-
based reasoning). Besides, the computing time is much lower 
than that of traditional heuristic methods such as genetic algo‐
rithm, which can meet the real-time demand of reactive power 
optimization in distribution networks.

Index Terms——Data-driven, reactive power optimization, dis‐
tribution networks, deep learning, capsule networks.

NOMENCLATURE

δij Phase difference of voltage between the ith 
node and the jth node

ε(×) Step function

σ den
i Activation function of the ith dense layer

σ con
i Activation function of the ith convolutional 

layer

λ1, λ2 Penalty coefficients of voltage and current 
constraints

* Convolutional operation
Bcon

i Bias vector of the ith convolutional layer
Bden

i Bias vector of the ith dense layer
Bij Susceptance between the ith node and the jth 

node
bij Offset coefficient between the ith and jth prima‐

ry capsule layers
Cij Coupling coefficient between the ith and jth pri‐

mary capsule layers
dU, dU′ Voltage offsets before and after reactive power 

optimization
f1 Comprehensive objective function without 

penalty terms
f2 Comprehensive objective function with penal‐

ty terms
Gij Conductance between the ith node and the jth 

node
I max

i The maximum current allowed to flow 
through the ith branch

I i Current of the ith branch
N C

imax The maximum number of on/off switches for 
the ith shunt capacitor bank in one day

N C
it Number of on/off switches for the ith shunt ca‐

pacitor bank at time t
N T

it Number of operations for the ith on-load tap 
changer (OLTC) at time t

N T
imax The maximum number of operations for the ith 

OLTC in one day
nT Number of positions with OLTC
nSVC Number of positions with static var compensa‐

tor (SVC)
nC Number of positions with shunt capacitor bank
N Total number of branches
n Total number of nodes in distribution network
P loss, P′loss Power losses before and after reactive power 

optimization
Qmax

SVC The maximum reactive power that SVC can 
generate

Qmax
C The maximum reactive power that can be gen‐

erated by the ith shunt capacitor bank
QSVC it Reactive power generated by the ith SVC at 

time t
QCit Reactive power generated by the ith shunt ca‐
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pacitor bank at time t
Sj Input vector of the jth digital capsule layer
T min

i , T max
i The minimum and the maximum tap positions 

of the ith OLTC
Tit Tap position of the ith OLTC at time t
U max

i , U min
i Upper and lower voltage limits of the ith node

U con
i Output data of the ith convolutional layer

U cap
ji The jth vector generated by the ith input feature

UN Rated voltage of distribution network
Ui Voltage of the ith node
W con

i Weight of the ith convolutional layer
W cap

ji Weights of the primary capsule layers
Wp, Wu Weights of power loss and voltage offset
W den

i Weight of the ith dense layer
X con

i Input data of the ith convolutional layer
Y den

i Output data of the ith dense layer
yeOLTCi Coding value of the ith position

ydOLTCi Decoding value of the ith position

yeSVC Coding value of reactive power QSVC

ydSVC Reactive power

Z j Output vector of the jth digital capsule layers
Z den

i Input data of the ith dense layer

I. INTRODUCTION 

REACTIVE power optimization is an effective means to 
change the power flows of distribution networks by ad‐

justing the operation status of various power equipment at a 
given load level, so as to reduce power loss and improve the 
power quality. As an important part of distribution network 
scheduling and planning, reactive power optimization of dis‐
tribution networks is of great significance for both theoreti‐
cal research and practical applications [1].

Nowadays, the world faces more and more serious envi‐
ronmental problems and energy crisis. The traditional fossil 
energy gradually dries up, and the penetration of renewable 
energy sources (e. g., wind turbines and photovoltaic sys‐
tems) in distribution networks continuously increases [2]. Al‐
though these renewable energy sources are abundant, sustain‐
able, and environmentally friendly, their randomness and vol‐
atility also bring challenges to the safe operation of distribu‐
tion networks [3]. In order to alleviate the negative impact 
of renewable energy sources on distribution networks, the 
types and quantity of power equipment integrated into distri‐
bution networks are increasing. In this case, a large number 
of renewable energy sources and power equipment make the 
physical models of reactive power optimization tend to be 
complex. Traditional methods for reactive power optimiza‐
tion of distribution networks need to assume and simplify 
these physical models, and then find the approximate opti‐
mal solution through iteration [4]. However, the integration 
of a large number of renewable energy sources and power 
equipment greatly increases the complexity of physical mod‐
els. Traditional methods not only consume a lot of comput‐
ing time, but also easily fall into the local optimal solution 
[5]. To ensure the economy and stability of distribution net‐

works, there is an urgent need to develop a new approach in‐
dependent of physical models, with high accuracy, strong 
adaptability, and fast computing speed.

With the rapid development of sensors and communica‐
tion technologies, the amount of data in all walks of life 
shows an explosive increase, which has attracted the atten‐
tion of experts and scholars in various fields [6]. Distribu‐
tion networks are located at the end of the power system, 
which directly distribute electric energy to users. Its supervi‐
sory control and data acquisition (SCADA) system stores a 
large amount of historical load data. Since these power loads 
are collected from the adjacent regions, electrical users may 
have similar electricity consumption habits [7]. Moreover, 
previous publications have shown that there is a strong tem‐
poral dependency in the load curve, i. e., the current loads 
are relative to the historical loads [8], [9]. In this case, the 
dispatching strategy of historical cases may be used for the 
current case after fine-tuning parameters. Generally, massive 
historical data bring opportunities to the application of data-
driven technologies for reactive power optimization of distri‐
bution networks. For example, some deep neural networks 
may be used to project the non-linear relationship between 
power loads and dispatching strategies.

The core idea of data-driven technologies is to mine the 
existing prior knowledge and massive data by supervised 
learning. Then, some valuable information is extracted to di‐
rect the reactive power optimization of distribution net‐
works. The existing data-driven technologies for reactive 
power optimization of distribution networks can be summa‐
rized into two categories: similarity-based methods and mod‐
el-based methods. For the first category, it mainly includes 
large random matrix theory, Apriori algorithm, expert sys‐
tem, and case-based reasoning (CBR) [10], which aims to 
compute the similarity metrics between historical samples 
and new samples. Specifically, the large random matrix theo‐
ry calculates the similarity metrics between the forecasting 
random matrix and the real random matrix, so as to find the 
dispatching strategies of current power loads that are similar 
to historical power loads [11]. Similarly, the Apriori algo‐
rithm filters out the optimal dispatching strategy of the his‐
torical samples for the current sample based on frequent 
item set mining and association rule [12]. For the expert sys‐
tem, the user inputs the power loads of the distribution net‐
works based on the human-machine interface, and then the 
inference engine matches the power loads with dispatching 
strategy in the knowledge base. The conclusions of the 
matched dispatching strategy are sent out to the system oper‐
ators [13]. CBR searches historical cases similar to current 
cases, and then uses them to determine the dispatching strate‐
gy of unknown samples [14]. Generally, although these simi‐
larity-based methods make good use of prior knowledge by 
calculating distances between historical samples and current 
samples, they have difficulty in mining the complex non-lin‐
ear relationship between power loads and dispatching strate‐
gies, resulting in their limited accuracy for reactive power 
optimization. Moreover, the spread diffusion of distributed 
generations and market-based behaviors of end-users may 
change the spatio-temporal correlation among the load 
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curves, and the current load distribution and the historical 
load distribution may be dramatically different. Therefore, it 
is not appropriate to apply the dispatching strategies of his‐
torical cases to the current cases directly. For the second cat‐
egory, traditional model-based methods mainly include sup‐
port vector machine, multi-layer perceptron (MLP), and deep 
neural networks such as the deep belief network (DBN) and 
convolutional neural network (CNN) [15], which train a 
model to predict suitable dispatching strategies by a lot of 
historical samples. Unlike similarity-based methods, the mod‐
el-based methods are not to find a suitable historical dis‐
patching strategy, but to create a new one for the current 
case. Specifically, supportive vector machine (SVM) is a su‐
pervised learning method for reactive power optimization by 
constructing a decision surface, where the difference be‐
tween two different classes can be maximized [16]. MLP, 
DBN, and CNN construct neural networks using dense lay‐
ers, restricted Boltzmann machines, and convolutional layers, 
respectively, to represent the relationship between power 
loads and dispatching strategies. Compared with MLP and 
DBN, CNN has higher accuracy in reactive power optimiza‐
tion, since the convolutional layers have more powerful fea‐
ture extraction ability than dense layers and restricted 
Boltzmann machines [17]. However, the pooling operation 
of CNN will lose rich information of power loads, which re‐
stricts its accuracy to be further improved [18].

The capsule network (CapsNet) is a new deep neural net‐
work that originates from CNN. Compared with traditional 
CNN, CapsNet shows a much deeper semantic understand‐
ing of the scenario, and a stronger ability to represent high 
dimensional features, leading to its wide applications in vari‐
ous fields [19]. For example, a spectral-spatial CapsNet is 
proposed to significantly reduce the network complexity, and 
achieves highly accurate classification of hyper spectral im‐
aging data in [20]. While in [21], CapsNet is designed to 
mine spatial relationships specialized in synthetic aperture ra‐
dar automatic target recognition tasks. The simulation results 
show that CapsNet not only improves the accuracy of recog‐
nition, but also alleviates the computational burden. To im‐
prove the accuracy of gait recognition, CapsNet with convo‐
lutional and capsule layers is proposed to capture more dis‐
criminative features in [22]. The successful applications of 
CapsNet in images, videos, and speech signals prove that 
CapsNet is able to explore complex objective laws from 
high-dimensional data through supervised learning. Theoreti‐
cally, the latent representations of power loads can be effec‐
tively extracted by deep convolutional layers with strong 
learning ability, and the complex non-linear relationship be‐
tween dispatching strategies and power loads can be ex‐
plored to improve the accuracy for reactive power optimiza‐
tion based on primary capsule layers and digital capsule lay‐
ers.

However, most of the existing architectures of CapsNet 
are designed for computer vision (e. g., image and video) 
[23], which cannot handle the 1-dimensional power loads di‐
rectly. Therefore, how to design a structure of CapsNet with 
high accuracy and strong feature extraction ability given da‐
ta from distribution networks needs further research.

This paper aims to design a CapsNet to improve the accu‐
racy of reactive power optimization for distribution net‐
works. The performance of the proposed method is tested by 
the IEEE 33-bus radial distribution network and the IEEE 
69-bus radial distribution network. The key contributions of 
this paper are as follows.

1) A new data-driven, model-free, and scalable method is 
proposed for reactive power optimization of distribution net‐
works. The proposed CapsNet does not need to construct 
complex physical models explicitly. It makes full use of his‐
torical data and prior knowledge to quickly find dispatching 
strategies with similar accuracy to genetic algorithm (GA). 
In addition, the time cost is much lower than GA.

2) The pooling layers that lose rich feature information 
are replaced by capsule layers, which can more accurately 
explore the non-linear relationship between input features 
and dispatching strategies. Simulation results show that Cap‐
sNet has higher optimization accuracy in different volumes 
of the training set and stronger robustness than those of 
CBR, CNN, and MLP at different load levels.

3) This paper innovatively design the CapsNet with strong 
feature extraction capability and high optimization accuracy 
for reactive power optimization, according to the characteris‐
tics of the power loads from distribution networks. The influ‐
ence of key parameters of CapsNet (e.g., the number of con‐
volutional and capsule layers, batch size, the number of itera‐
tions, and the choice of optimizer) on the performance for re‐
active power optimization is analyzed by simulations on a 
smart meter dataset, and some default values of parameters 
are given.

The rest of this paper is organized as follows. Section II 
introduces the structure and parameters of the CapsNet. Sec‐
tion III formulates the reactive power optimization model. 
Section IV performs the simulations and analyzes the results. 
Section V summarizes the limitation and future works of the 
proposed method. Section VI presents the conclusions.

II. CAPSNET

As shown in Fig. 1, CapsNet is a high-performance deep 
neural network, which is mainly composed of convolutional 
layers, capsule layers, and dense layers. Firstly, the convolu‐
tional layers with strong learning ability are used to extract 
latent representations of power loads (active power and reac‐
tive power), which serve as the input data of primary cap‐
sule layers. In the primary capsule layer, each capsule can 
be regarded as a neuron group. The weights between prima‐
ry capsule layers and digital capsule layers are trained by 
the dynamic routing algorithm to get the output vector. Final‐
ly, the vectors from digital capsule layers are fed to dense 
layers to obtain the dispatching strategies.

A. Convolutional Layers

The main function of convolutional layers is to extract the 
latent representations of power loads by the convolutional 
operation. The feature matrix of power loads is obtained by 
multiplying the matrix elements with the convolutional ker‐
nel, and then adding an offset vector. Compared with the 
dense layers, convolutional layers have stronger feature min‐
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ing ability and avoid the complex selection process caused 
by manual construction of input features. The relationship be‐

tween input features and latent representations is given as:

U con
i = σ con

i (X con
i *W con

i +Bcon
i ) (1)

B. Capsule Layers

The capsule layers include primary capsule layers and dig‐
ital capsule layers, in which the input scalar and output sca‐
lar of traditional deep neural networks are substituted with 
the input vector and output vector of capsule layers. The cal‐
culation of capsule layers includes two stages.

In the first stage, the prediction vector is obtained by mul‐
tiplying the output features of convolutional layers with the 
weight matrix. The mathematical formula is:

U cap
ji =U con

i W cap
ji (2)

In (2), W cap
ji  are usually initialized by Gaussian noises.

In the second stage, the prediction vectors of primary cap‐
sule layers are sent out to the digital capsule layers by ad‐
justing the coupling coefficient, whose mathematical formu‐
la are given as:

Cij = Softmax(bij )=
exp(bij )∑

k

exp(bik )
³ 0    ∑

j

Cij = 1 (3)

Sj =∑
i

U cap
ji Cij (4)

Sj can be generated by multiplying coupling coefficients 
by prediction vectors of primary capsule layers. When 
Cij = 1, all the generated features of the primary capsule lay‐
ers are sent out to next digital capsule layers. When Cij = 0, 
all the generated features of the primary capsule layers are 
not sent out to next digital capsule layers.

Unlike the CNN or MLP, which often uses other functions 
(e.g., sigmoid function, rectified linear unit (ReLU) function, 
hyperbolic tangent function) as activation function, CapsNet 
uses the squash function to obtain the output vector Z j of 
digital capsule layers. The squash function squash(×) can be 
represented as:

Z j = squash(S j )=
 S j

2

1 +  S j

2

Sj

 S j

(5)

The squash function can not only keep the direction of the 
input vector, but also project the modulus of the input vector 
into new values varying from 0 to 1. Further, Fig. 2 visualiz‐

es the relationship between the modulus of the input vector 
and reduction coefficient of squash function. As the modulus 
of vectors increases, the reduction coefficients get closer to 
1, as shown in Fig. 2.

C. Dense Layers

Finally, the vectors from digital capsule layers are fed to 
dense layers to obtain dispatching strategies, whose output 
data are expressed as:

Y den
i = σ den

i (Z den
i W den

i +Bden
i ) (6)

D. Dynamic Routing Algorithm

After initializing the structure of the CapsNet, the dynam‐
ic routing algorithm is employed to update the parameters in 
capsule layers through the supervised training process, so 
that the rich information from the primary capsule layer is 
sent out to the digital capsule layers. The specific pseudo 
code of the dynamic routing algorithm is shown in Algo‐
rithm 1.

Firstly, the number of maximum iteration R is set and the 
bias coefficients bi,j are initialized with 0 elements. Secondly, 
the coupling coefficients are calculated by (3), and Sj is ob‐
tained by linear weighting with U cap

ji . Thirdly, the output vec‐
tor Zj can be obtained by inputting Sj to the squash activa‐
tion function. Lastly, the output vector Zj is utilized to up‐
date the bias coefficients bi,j, which can be obtained as:

b ij = b ij +Z jU
cap
ji (7)
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E. Reactive Power Optimization Model via CapsNet Reac‐
tive Power Optimization Model

This paper takes the minimum power loss and voltage off‐
set as the objective function to construct the reactive power 
optimization model of the distribution networks. The compre‐
hensive objective function can be defined as the largest 
change in the power loss and voltage offset before and after 
optimization [24]:

max f1 =Wp

P loss -P'loss

P loss

+Wu

dU - dU'
dU (8)

dU =∑
i = 1

n |

|
|
||
||

|
|
||
| UN -Ui

UN
(9)

The weights Wp and Wu can be adjusted flexibly. In this 
paper, the power loss and voltage offset are given the same 
weight (Wp and Wu are equal to 1) as an example to test the 
performance of different methods.

In addition, the reactive power optimization model of dis‐
tribution networks should meet the following constraints.
1)　Power Flow Constraints

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

Pi -Ui∑
j = 1

n

Uj (Gij cos δij +Bij sin δij ) = 0    i = 12n

Qi -Ui∑
j = 1

n

Uj (Gij sin δij -Bij cos δij ) = 0    i = 12n
(10)

2)　Voltage and Current Constraints

ì
í
î

ïïU min
i £Ui £U max

i     i = 12n

I i £ I max
i                     i = 12N

(11)

For the voltage and current constraints, the constrained 
model is transformed into an unconstrained model by em‐
ploying the penalty function method:

max f2 = f1 - λ1∑
i = 1

n

[ ]ε(Ui -U max
i )+ ε(U min

i -Ui ) -

λ2∑
i = 1

N

ε(I i - I max
i ) (12)

The penalty coefficients should be much larger than f1, 
and the penalty coefficients are equal to 10 in this paper. If 
the voltages and currents are within the boundary, f1 and f2 
are equal.

3)　Power Equipment Constraints

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

0 £QCit £Qmax
C ∑

t = 1

24

N C
it <N C

imax        i = 12nC

T min
i £T it £T max

i ∑
t = 1

24

N T
it <N T

imax    i = 12nT

0 £QSVC it £Qmax
SVC                               i = 12nSVC

(13)

F. Coding Method of Power Equipment

The reactive power optimization of distribution networks 
is to search the suitable reactive power dispatching strategies 
within a certain range of load fluctuations to minimize the 
power loss and the voltage offset of each node. Its key is to 
construct the relationship between the power loads (active 
powers and reactive powers) and dispatching strategies by 
using the CapsNet.

The mainstream power equipment for reactive power opti‐
mization includes on shunt capacitor bank, on-load tap 
changer (OLTC), and SVC. The number of shunt capacitor 
banks, tap position in OLTC, and output reactive power of 
the SVC are variables to be predicted by the CapsNet. Obvi‐
ously, shunt capacitor banks and OLTC are discrete vari‐
ables, while the SVC is a continuous variable. If these vari‐
ables are encoded using the binary encoding method, the 
number of encodings will be extremely long, which is not 
conducive to training the CapsNet. Therefore, this paper uni‐
formly uses value encoding methods.

For discrete variables, the OLTC with m positions is taken 
as an example to illustrate the value coding method. The 
coding value of the ith position is:

yeOLTCi =
2i - 1
2m

    i = 12m (14)

where yeOLTCi is less than 1 and greater than 0. Similarly, 
the positions yeOLTCi predicted by the CapsNet can be decod‐
ed as:

ydOLTCi =

ì

í

î

ïïïï

ï
ïï
ï

1    0 £ yeOLTCi £
i
m

i    
i - 1
m

< yeOLTCi £
i
m

(15)

where ydOLTCi is less than m and greater than 1.
For continuous variables, the coding value of the reactive 

power is:

yesvc =
QSVC

Qmax
SVC

(16)

Similarly, the reactive power yesvc predicted by the Cap‐
sNet can be decoded:

ydsvc = yeQ
max
SVC (17)

where ydsvc is less than Qmax
SVC and greater than 0.

So far, a bijective relationship has been established among 
the number of shunt capacitor banks, tap position in OLTC, 
and output reactive power of the SVC with the real numbers 
in the range of 0 to 1. For k variables to be optimized, the 
output layer at the top of the CapsNet outputs k numbers, 
which represent the optimized results. The mean absolute er‐
ror (MAE) is used as the loss function and the weight of the 
network is updated by the gradient descent method.

Algorithm 1: pseudo code of dynamic routing algorithm

initialize the number of maximum iterations R
bij = 0; Step = 0

while (Step < R)

Ci,j = Softmax(bi,j ) 

Sj =∑
i

U cap
ji Cij

Zj = squash(S j ) 

bij = bij +ZjU
cap
ji  

Step = Step + 1 

end

Return Zj
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G. Process of Reactive Power Optimization

The process of reactive power optimization based on the 
CapsNet is shown in Fig. 3, and the specific steps are as fol‐
lows.

1) Load and normalize data. The topology of distribution 
networks, the historical power loads of each node, and the 
corresponding dispatching strategies of the power equipment 
are imported. The samples are randomly divided into train‐
ing set, validation set, and test set. The training set and vali‐
dation set are used to obtain the parameters of the CapsNet, 
and the test set is used to evaluate the performance of the 
CapsNet. To ensure the convergence of CapsNet, power 
loads are projected into the range of 0 to 1 by using the min‐
imum-maximum normalization method.

2) Initialize the structure and parameters of the CapsNet. 
To improve the accuracy of reactive power optimization, it 
is necessary to explore suitable network structures and pa‐
rameters before training the CapsNet. The structures and pa‐
rameters of the CapsNet mainly include: the number of con‐
volutional layers and capsule layers, the number of itera‐
tions, the batch size, and the selection of optimizer. Taking 
two convolutional layers and one capsule layer as examples, 
Table II shows a simple structure of the CapsNet. The size 
of convolutional filters is 8 and 16, respectively, the size of 
the convolutional kernels is 2 × 2, and the activation function 
is ReLU function. The capsule layer outputs two vectors of 
1 × 16 scales, and the activation function is a squash func‐
tion. In the dense layer, a vector of 1 × 4 scales is obtained 
to represent dispatching strategies of the power equipment.

3) Train the CapsNet. The CapsNet is trained by the back 

propagation algorithm, which consists of forward incentive 
propagation and backward weight update. In the forward in‐
centive propagation, the power loads are processed by convo‐
lutional layers and capsule layers, and then transferred to the 
output layer, which outputs dispatching strategies of sam‐
ples. The forecasting results and optimal results are used to 
calculate the loss function (e.g., MAE). In backward weight 
update, the loss function is transferred from the output layer 
to middle layers using the chain rule. Next, the weights of 
convolutional layers and capsule layers are updated by the 
gradient descent method. If the iteration is over, the test set 
is used to evaluate the performance of the trained CapsNet.

4) Evaluate the CapsNet. After training the CapsNet, it 
will be used for reactive power optimization. The power 
loads of nodes from the test set are input into the CapsNet 
to obtain the corresponding dispatching strategies. Then, the 
power flow of distribution networks is calculated to obtain 
the indices such as power loss P′loss, voltage offset dU ′, and 
comprehensive objective function f2.

III. CASE STUDY 

A. Dataset and Simulation Tools

In order to fully test the performance of the proposed 
method, the modified IEEE 33-bus radial distribution net‐
work is used for simulation and analysis. The resistance and 
reactance of the branch can be found in [25], and the topolo‐
gy is shown in Fig. 4.

Specifically, the voltage magnitude base is 10 kV. The tap 
of the OLTC includes 17 positions, which range from -8 ×
1.25% to 8 × 1.25%. Normally, SVCs and capacitor banks 
are located at the end of the feeder to improve the voltages 
and reduce the power loss [26], and the decentralized loca‐
tions of these devices help reduce the voltage offset [27]. 
Therefore, the locations and capacities of SVCs and capaci‐
tor banks are assumed as follows. The SVC is added at the 
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Fig. 3.　Process of reactive power optimization based on CapsNet.

TABLE II
A SIMPLE STRUCTURE OF CAPSNET

Layer

1

2

3

4

5

6

7

Structure and parameter

X = Input(shape =(Powerload.shape))

Y = X.reshape(-1,8,8,1)

Y = Conv2D(filters = 8, kernel_size = 2, ‘ReLU’)(Y)

Y = Conv2D(filters = 16, kernel_size = 2, ‘ReLU’)(Y)

Y = Y.reshape(-1,36,16)

Y = Capsule(num_capsule = 2, dim = 16, ‘squash’)(Y)

Y = dense(unit = 4, ‘Sigmoid’)(Y)

Shape

1 × 64

8 × 8 × 1

7 × 7 × 8

6 × 6 × 16

36 × 16

2 × 16

1 × 4

OLTC

1

2 3 4 50 6 7 8

9

10 11 12 13 14 15

16 17

18 19 20 21

22 23 24 25 26 27 28 29

30

31 32

C
1

C
2
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Fig. 4.　Topology of modified IEEE 33-bus radial distribution network.
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9th node and the reactive power of the SVC ranges from 0 to 
400 kvar. The 7 shunt capacitor banks are added at the 16th 
nodes and 6 shunt capacitor banks are added at the 30th 
nodes. The capacity of each bank is 100 kvar.

The power loads are collected from the London smart me‐
ter dataset [28], which includes the electricity consumption 
of each household in 112 blocks from November 2011 to 
February 2014. The time resolution of the load curve is 1 
hour. The power loads of three adjacent blocks are combined 
to analog a node in the distribution network. Therefore, the 
power loads of 32 nodes can be obtained from the first 96 
blocks. Since the collected time of each block is different, 
5000 samples are reserved for simulation after data cleaning. 
80% of the samples are randomly selected to train the Cap‐
sNet, and 10% of the samples are randomly selected as the 
validation set. The remaining samples are used as the test set 
to evaluate the performance of the trained CapsNet. Except 
for the slack node (node 0 in this paper), the remaining 32 
nodes are considered as PQ nodes whose active power and 
reactive power are constant. Their active power and reactive 
power are used to form one sample. Therefore, each sample 
is a vector with one row and 64 columns for the modified 
IEEE 33-bus radial distribution network. Before training 
CapsNet, it needs to add a label to each sample, i.e., the cor‐
responding dispatching strategies. For each sample, the GA 
is run 30 times independently, and the best dispatching strat‐
egy is selected as the label of the sample.

The programs of the CapsNet for reactive power optimiza‐
tion of distribution networks are implemented in Spyder 3.0 
with Keras 2.0 and Tensorflow 1.0 deep learning library. The 
parameters of the computer are: Intel(R) Core(TM) i3-
3110M, a dual-core CPU processor with a base clock speed 
of 2.40 GHz, and 6 GB of memory.

B. Discussion on Key Parameters

In order to intuitively understand the stability and conver‐
gence speed of the CapsNet, Fig. 5 shows the changing 
trend of loss function values in the training set and valida‐
tion set.

With the increase of iterations, the loss function values of 
training set and validation set decrease rapidly. After 50 
rounds of training iterations, the loss function value of Cap‐
sNet becomes stable and no longer declines, which indicates 
that CapsNet has converged at this time. Comparing the loss 
function values of the training set and the validation set, it is 
found that they are very close and there is no fitting prob‐

lem, which shows that CapsNet has strong generalization 
ability.

Normally, different combinations of parameters and struc‐
tures need to be tried, so as to find a suitable structure for 
the neural network. Then, the loss function or accuracy of 
the validation set is calculated. The combination with the 
highest accuracy or the smallest loss function will be used 
for the neural network.

In order to analyze the influence of convolutional layers 
and capsule layers on the performance of the CapsNet, the 
numbers of convolutional layers and capsule layers are grad‐
ually increased, and the comprehensive objective functions 
of the validation set in different layers are counted, as 
shown in Fig. 6.

The following conclusions can be drawn from Fig. 6.
1) In the early stage, the comprehensive objective func‐

tions of the test set increase as the number of convolutional 
layers and capsule layers increases, which indicates that the 
performance of the CapsNet is gradually becoming stronger. 
When the number of capsule layers and convolutional layers 
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Fig. 5.　Training process of CapsNet.
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are both 4, the comprehensive objective function of the Cap‐
sNet is the largest, and the performance of reactive power 
optimization is the best. This phenomenon shows that it is 
difficult to mine the complex nonlinear relationship between 
power loads and dispatching strategies by a small number of 
convolutional layers and capsule layers. Increasing the num‐
ber of convolutional layers and capsule layers can improve 
the feature learning ability of the CapsNet, thus enhancing 
the accuracy of reactive power optimization.

2) Moreover, the number of parameters to be trained in‐
creases linearly with the increase of convolutional layers and 
capsule layers. When the numbers of convolutional layers 
and capsule layers are greater than 4, the performance of the 
CapsNet will be worse if more convolutional layers and cap‐
sule layers are added to the CapsNet. This is because the 
number of samples in the dataset is limited. Too many con‐
volutional layers and capsule layers will not only increase 
the parameters of the CapsNet to be trained, but also easily 
lead to over-fitting problems.

3) In general, the number of convolutional layers and cap‐
sule layers should be determined according to the volume of 
the data set. If the number of training samples is 4000, the 
CapsNet can get good performance by setting the number of 
convolutional layers and capsule layers to be less than 4. 
For other datasets, 4 can be considered as a good default val‐
ue for the numbers of convolutional layers and capsule lay‐
ers, and larger values or smaller values may be fine.

The batch size determines the number of samples that will 
be propagated through the network, which will directly af‐
fect the training process. In order to explore the influence of 
the batch size on the performance of the CapsNet, the batch 
size is set from 8 to 512, and the comprehensive objective 
functions of the CapsNet on the validation set are counted, 
as shown in Table III.

The following conclusions can be drawn from Table III.
1) As the batch size increases, comprehensive objective 

functions of the CapsNet first increase and then decrease. 
When the batch size is 16, the comprehensive objective func‐
tion is the largest, which indicates that the performance of re‐
active power optimization is the best. When the batch size is 
512, the comprehensive objective function value is the small‐
est, which shows that the large batch size causes the perfor‐
mance of CapsNet to deteriorate.

2) In terms of training time, although too large batch size 

can reduce the training time, it also affects the generalization 
ability of the CapsNet, resulting in the degradation of perfor‐
mance for reactive power optimization. Generally, the batch 
size of the CapsNet should be determined according to the 
volume of the dataset and the computing resources of com‐
puters. When the number of training samples is about 4000, 
setting the batch size to 16 can make the CapsNet achieve 
good performance. The larger values or smaller values may 
be fine for other datasets.

After initializing the batch size, convolutional layers, cap‐
sule layers, and the number of iterations, the loss functions 
of neural networks are optimized by employing a gradient 
descent method. The mainstream methods for gradient de‐
scent include Adam, RMSprop, stochastic gradient descent 
(SGD), Adagrad, Adadelta, Nadam, and Adamax. In addi‐
tion, the popular deep learning libraries (e. g., Keras, Py‐
torch, Tensorflow) include the implementations of these 
methods to update the weights. Normally, these methods are 
used as black boxes in practical engineering, since their prin‐
ciples are too complicated to be explained. To show how to 
choose a suitable optimizer for the CapsNet in reactive pow‐
er optimization, the above optimizers are set up and simulat‐
ed, and then the comprehensive objective functions of the 
validation set are counted, as shown in Table IV.

Table IV shows that the CapsNet has large objective func‐
tion values when Nadam, RMSprop, Adadelta, Adamax, and 
Adam algorithms are utilized to train the model. Specifical‐
ly, the Adam algorithm is the most optimal algorithms for 
the CapsNet in reactive power optimization, since the com‐
prehensive objective function of the Adam algorithm is 
slightly larger than those of the first four optimizers. Further‐
more, the comprehensive objective functions of SGD and 
Adagrad algorithms are all lower than 1.135, which indicates 
that they are not suitable for reactive power optimization 
based on the CapsNet.

C. Comparative Analysis with Existing Methods

In order to illustrate the effectiveness of the CapsNet, the 
traditional physical model-based method (e.g., GA) and pop‐
ular data-driven technologies (e. g., CBR, CNN, and MLP) 
are used as the baselines. The controlled variable method is 
used to find the best parameters and structures of various al‐
gorithms [29].

1) For GA, the total number of chromosomes is 50. The 

TABLE III
COMPREHENSIVE OBJECTIVE FUNCTIONS IN DIFFERENT BATCH SIZES

Batch size

8

16

32

64

128

256

512

Power loss 
(MW)

0.2319

0.2314

0.2319

0.2320

0.2318

0.2308

0.2340

Voltage offset 
(p.u.)

0.7990

0.7970

0.8012

0.7990

0.8033

0.8179

0.8158

Objective func‐
tion (p.u.)

1.1404

1.1410

1.1397

1.1396

1.1385

1.1367

1.1315

Training time
(s)

325.79

203.07

154.76

132.66

118.47

116.41

98.42

TABLE IV
COMPREHENSIVE OBJECTIVE FUNCTIONS IN DIFFERENT OPTIMIZERS

Optimizer

Adadelta

Adagrad

Adam

Adamax

Nadam

RMSprop

SGD

Power loss 
(MW)

0.2318

0.2313

0.2314

0.2315

0.2320

0.2321

0.2341

Voltage offset 
(p.u.)

0.8040

0.8168

0.7970

0.8012

0.7988

0.7977

0.8173

Objective function 
(p.u.)

1.1383

1.1338

1.1410

1.1396

1.1400

1.1404

1.1309
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probability of chromosomal chiasma is 0.5, and the probabili‐
ty of chromosomal variation is 0.3. The number of iterations 
is 200.

2) The structures and parameters of the CBR are consis‐
tent with the algorithm proposed in [10].

3) CNN includes two convolutional layers, two max-pool‐
ing layers, two dropout layers, and a dense layer. The num‐
ber of filters in the front and back convolutional layers is 8 
and 16, respectively. The sizes of the kernels in the convolu‐
tional layers are 2. The pooling sizes in max-pooling layers 
are 2. The probabilities abandoning neurons in dropout lay‐
ers are 0.25. The number of neurons in the dense layer is 4. 

The activation function of the density layer is the sigmoid 
function, and the rest are the ReLU functions. The number 
of iterations is 200, and the optimizer is the Adam algorithm.

4) In terms of MLP, 64 is the number of neurons in the in‐
put layer, and the numbers of neurons in the middle layer is 
32, 16, and 8, respectively. The number of neurons in the 
output layer is 4. The number of iterations is 200, and the 
optimizer is the Adam algorithm. The activation function of 
the output layer is the sigmoid function, and the rest are the 
ReLU functions.

The above methods are independently repeated 30 times 
and the average results of the test set are shown in Table V.

The following conclusions can be drawn from Table V.
1) The mean value of the comprehensive objective func‐

tion of CBR is the smallest, which indicates that directly ap‐
plying the dispatching strategies of historical cases to the 
current case will result in limited optimization accuracy. 
This is because the power loads of the historical cases and 
the current case are different, and the dispatching strategies 
found by the CBR are not well suited to current cases, espe‐
cially when the historical load differs significantly from the 
current loads for some reasons (e. g., impacts of the spread 
distributed generations and market-based behavior of end-us‐
ers). Comparing the performance of the CNN and MLP, it is 
found that the performance of CNN is slightly better than 
that of MLP, because convolutional layers have more power‐
ful feature extraction ability than dense layers, which can 
mine the complex nonlinear relationship between power 
loads and dispatching strategies.

2) Notably, both CNN and CapsNet use convolutional lay‐
ers to extract the features of the input data in the early stage. 
The difference is that they use pooling layers and capsule 
layers to explore the complex nonlinear relationship between 
the features and dispatching strategies in the later stage, re‐
spectively. The performance of CapsNet is better than that of 
CNN, which indicates that pooling operation loses parts of 
the feature information and limits the accuracy of reactive 
power optimization. In contrast, capsule layers in the Cap‐
sNet can accurately mine the relationship between the fea‐
tures and dispatching strategies, and provide better dispatch‐
ing strategies to distribution networks.

3) Comparing the comprehensive objective functions of 
various algorithms, it is found that the variance of CapsNet 
is very close to that of GA, and less than those of the CNN, 
CBR, and MLP, which indicates that CapsNet has higher sta‐
bility than CNN, MLP, and CBR.

4) Online computing speed is also one of the important in‐

dicators to measure the performance of the algorithm for re‐
active power optimization. For single reactive power optimi‐
zation, the time consumptions of CapsNet, CNN, MLP, 
CBR, and GA are 0.068 s, 0.069 s, 0.042 s, 4.002 s, and 
21.263 s, respectively. Traditional physical model-based 
methods rely on topology and parameters for online optimi‐
zation, which takes a long time. Although data-driven meth‐
ods require pre-trained models, they do not rely on grid mod‐
el parameters, and the speed of decision-making is much 
lower than physical model based methods such as GA.

In order to test the performance of various algorithms for 
dynamic reactive power optimization, the information entro‐
py method proposed is used to divide one day into several 
intervals. In this case, dynamic reactive power optimization 
can be simplified into several static reactive power optimiza‐
tion problems. Specifically, static reactive power optimiza‐
tion is performed in each interval to obtain several dispatch‐
ing strategies, which form a dispatching strategy for dynam‐
ic reactive power optimization. The detailed inference pro‐
cess and implementation steps can be found in [30]. In gen‐
eral, the superiority of CapsNet for static reactive power op‐
timization has been demonstrated by the previous Table V, 
and dynamic reactive power optimization can be simplified 
as multiple static reactive power optimizations. Therefore, it 
can be concluded that CapsNet is also applicable to dynamic 
reactive power optimization.

To verify this inference, five intervals are used as an ex‐
ample, i.e., dynamic reactive power optimization can be sim‐
plified as five static reactive power optimization problems. 
The average comprehensive objective functions of dynamic 
reactive power optimization of the test set are counted, as 
shown in Table VI.

Similar to the results of static reactive optimization, Cap‐
sNet outperforms other popular data-driven methods (e. g., 
CNN, CBR, and MLP) in terms of accuracy and stability. 

TABLE V
AVERAGE RESULTS FOR DIFFERENT METHODS

Method

CapsNet

CNN

MLP

CBR

GA

Power loss (MW)

Mean value

0.2314

0.2316

0.2317

0.2311

0.2315

Variance

0.1281

0.1286

0.1297

0.1278

0.1276

Voltage offset (p.u.)

Mean value

0.7970

0.8031

0.8143

0.8169

0.7949

Variance

0.2855

0.2859

0.2879

0.2933

0.2842

Comprehensive objective function (p.u.)

Mean value

1.1410

1.1387

1.1382

1.1346

1.1430

Variance

0.0289

0.0292

0.0294

0.0326

0.0287

Computing time (s)

0.068

0.069

0.042

4.002

21.263
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Moreover, the CapsNet not only ensures that the optimiza‐
tion accuracy is very close to that of GA, but also ensures 
that the computing time is much lower than that of GA, 
which shows the effectiveness of the proposed CapsNet for 
dynamic reactive power optimization.

To visualize the results of dynamic reactive power optimi‐
zation, one day is randomly selected, and various algorithms 
are used to solve the dynamic reactive power optimization 
model. The comprehensive objective function of each meth‐
od is shown in Fig. 7.

It can be observed from Fig. 7 that the comprehensive ob‐
jective function value of CapsNet in one day is slightly high‐
er than those of CNN, MLP, and CBR, which indicates that 
the performance of CapsNet in dynamic reactive power opti‐
mization is better than other data-driven methods.

D. Impact of Data Volume on Results

The smaller the number of samples in the training set, the 
less information the model can obtain from it. To analyze 
the impact of the volume of data in the training set on reac‐
tive power optimization, 12 simulation cases are set, and the 
number of samples in the training set of each case is shown 
in Table VII.

The above methods are independently repeated 30 times 
and the average comprehensive objective functions of the 
test set are shown in Fig. 8.

The following conclusions can be drawn from Fig. 8.
1) When the size of samples in the training set is more 

than 500, the reactive power optimization results of CapsNet 
does not change much, and the comprehensive objective 
function is always greater than 1.14, keeping high accuracy. 
Furthermore, when the number of samples in the training set 
is less than 500, the comprehensive objective function of 
CapsNet decreases rapidly, since the limited numbers of sam‐
ples reduce the generalization ability of the model.

2) Observing the comprehensive objective functions of 
MLP and CNN in different cases, it is found that they have 
higher requirements than CapsNet for the volumes of sam‐
ples in the training set. When the volumes of samples in the 
training set is less than 1500, their comprehensive objective 
functions also begin to decrease rapidly, indicating that their 
generalization ability is weaker than CapsNet.

3) Although the comprehensive objective function of CBR 
is not sensitive to the volumes of samples in the training set, 
its optimization accuracy is lower than MLP, CNN, and Cap‐
sNet. In general, the performance of CapsNet is better than 
the existing data-driven technologies such as MLP, CNN, 
and CBR in different volumes of training set.

E. Robustness Analysis of CapsNet

In order to fully test the robustness of the proposed meth‐
od, the sample with specified attributes (e.g., light loads and 
heavy loads) are removed from the training set. In other 
words, only the remaining samples (medium loads) are used 
to train models. Then, the trained models are utilized to ob‐
tain the dispatching strategies of the light loads and heavy 
loads in the test set. If the trained models also perform well 
for the samples with the specified attributes (e.g., light loads 
and heavy loads), it means that these models have good ro‐
bustness, i.e., the CapsNet can be adapted to different scenar‐
ios that do not appear in the training set.

Firstly, 5000 samples are arranged in descending order ac‐
cording to the sum of the power loads of each node. Second‐
ly, the first 30% of the samples are labeled as heavy loads 
and the last 30% as light loads. The remaining samples are 
considered as medium loads, which are used to train the 
models. Moreover, the optimization results of a randomly se‐
lected light loads and heavy loads are visualized, as shown 
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TABLE VII
NUMBER OF SAMPLES IN DIFFERENT CASES

Case

1

2

3

4

Number in 
training set

4000

3500

3000

2500

Case

5

6

7

8

Number in 
training set

2000

1500

1000

500

Case

9

10

11

12

Number in 
training set

250

125

62

31

TABLE VI
AVERAGE COMPREHENSIVE OBJECTIVE FUNCTION OF EACH METHOD

Method

CapsNet

CNN

MLP

CBR

GA

Mean value (p.u.)

1.1448

1.1417

1.1406

1.1365

1.1472

Variance (p.u.)

0.0295

0.0298

0.0230

0.0337

0.0292

Computing time (s)

0.340

0.345

0.210

20.010

106.315
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in Fig. 9 and Table VIII.

The following conclusions can be drawn from Fig. 9 and 
Table VIII.

1) Since CNN, MLP, and CBR are trained with the medi‐
um loads, the corresponding dispatching strategies of light 
loads and heavy loads obtained by these methods are too 
conservative, i.e., they tend to the corresponding solutions of 
medium loads. Specifically, when the distribution network is 
running at light load level, their solutions provide too much 
reactive power, which leads to voltages of some nodes ex‐
ceeding the upper limit. In the same way, when the power 
loads are very heavy in distribution networks, the solutions 
of CNN, MLP, and CBR cannot provide enough reactive 
power, resulting in the voltage of some nodes exceeding the 
lower limit.

2) By contrast, although the training set does not include 
light loads and heavy loads, CapsNet makes good use of 
convolutional layers and capsule layers to explore the com‐
plex non-linear relationship between power loads and dis‐
patching strategies, and the solutions always ensure that volt‐

ages are within the constraints, which indicates that CapsNet 
has stronger robustness than CNN, MLP, and CBR, and can 
adapt to reactive power optimization tasks at changeable 
load levels, which may be caused by spread distributed gen‐
eration and market-based behavior of end-users.

F. Reactive Power Optimization of Distribution Networks 
with Renewable Energy

To test the performance of the proposed method for reac‐
tive power optimization of distribution networks with renew‐
able energy, some photovoltaic (PV) systems and wind tur‐
bines (WTs) are added to the modified IEEE 33-bus radial 
distribution network, as shown in Fig. 10.

Specifically, the first PV system is added at the 21th node 
and the second PV system is added at the 12th node. Assume 
that the capacity of each PV system is 500 kVA. The first 
WT is added at the 24th node and the second WT is added at 
the 25th node. Assume that the capacity of each WT is 400 
kVA. In addition, it is assumed that the nodes with renew‐
able energy have capacitors that ensure a constant power fac‐
tor (e.g., power factor is 0.9 in this paper). The data of PV 
systems and WT are collected from the National Renewable 
Energy Laboratory [31], [32] and the time resolution is 1 
hour. Furthermore, the original PV and wind powers are 
scaled appropriately to ensure that the penetration of renew‐
able energy in distribution networks ranges from 10% to 
50%.

The different methods are independently repeated 30 
times and the average results of the test set are shown in Ta‐
bles IX-XI.

The following conclusions can be drawn from the above 
Tables.

1) As the penetration of renewable energy increases, both 
power loss and voltage offset of the distribution network 
gradually decrease, because decentralized renewable energies 
can directly meet part of the load demand at the nodes, re‐

TABLE VIII
SOLUTIONS OF DIFFERENT METHODS

Load 
type

Light 
loads

Heavy 
loads

Method

CapsNet

CNN

MLP

CBR

CapsNet

CNN

MLP

CBR

Position

8

8

8

8

8

8

8

8

Capacitor 1 
(kvar)

0

1

1

1

7

6

5

3

Capacitor 2 
(kvar)

0

0

1

2

6

6

6

6

SVC (kvar)

30

76

65

89

400

395

392

386

CapsNet

CNN

MLP

CBR

CapsNet

CNN

MLP

CBR
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Fig. 9.　Voltage corresponding to different loads. (a) Light loads. (b) Heavy 
loads.
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Fig. 10.　 Topology of modified IEEE 33-bus radial distribution network 
with renewable energy.

TABLE IX
AVERAGE POWER LOSS OF EACH METHOD

Penetration level (%)

10

20

30

40

50

Average power loss (MW)

CapsNet

0.1972

0.1701

0.1330

0.1139

0.0913

CNN

0.1985

0.1712

0.1338

0.1144

0.0919

MLP

0.1993

0.1726

0.1353

0.1154

0.0940

CBR

0.1998

0.1729

0.1356

0.1177

0.0947
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ducing the power flowing in the lines. In addition, renew‐
able energies are located at the end of feeder lines, which 
can improve the voltage amplitude of the nodes, and then re‐
duce the voltage offset of distribution networks. Moreover, 
the power loss and voltage offset of whole distribution net‐
works before optimization both decrease with the increase of 
penetration level, which causes the change not to be particu‐
larly large. Therefore, the comprehensive objective functions 
present a gradually downward trend.

2) Comparing the power losses, voltage offsets, and com‐
prehensive objective functions of different methods under 
different penetration levels, it is found that the average pow‐
er loss and voltage offset of CapsNet are lower than those of 
other methods, and the average comprehensive objective 
function is also the largest, which shows that CapsNet is su‐
perior to CNN, MLP, and CBR, and can adapt to the reac‐
tive power optimization of distribution networks with differ‐
ent penetration levels of renewable energy.

G. Impact of Different Scale Distribution Networks on Re‐
sults

To analyze the impact of different scale distribution net‐
works on the results, the modified IEEE 69-bus radial distri‐
bution network is used for simulation and analysis. The resis‐
tance and reactance of the branch can be found in [33], and 
the topology is shown in Fig. 11.

Specifically, the voltage magnitude base is 10 kV. The tap 
of the OLTC includes 17 positions, which range from -8 ×
1.25% to 8 × 1.25%. The locations and capacities of SVCs 
and capacitor banks are assumed as follows. The SVCs are 
added at the 10th node, 32th node, and 44th node; the reactive 
power of all SVCs ranges from 0 to 400 kvar; seven shunt 
capacitor banks are added at the 16th node, 24th node, 51th 
node, and 65th node; and the capacity of each bank is 100 
kvar.

In the same way, the London smart meter dataset are em‐
ployed to form the power load of each node. Specifically, 
the power loads of three different blocks are combined to an‐
alog a node in the distribution network. Since the collected 
time of each block is different, 5000 samples are reserved 
for simulation after data cleaning. Except for the slack node 
(node 0 in this paper), the remaining 68 nodes are consid‐
ered as PQ nodes whose active power and reactive power 
are constant. Their active power and reactive power are used 
to form one sample. Therefore, each sample is a vector with 
one row and 136 columns for the modified IEEE 69-bus ra‐
dial distribution network. For each sample, the GA method 
is run 30 times independently, and the best dispatching strat‐
egy is selected as the label of the sample.

To illustrate the effectiveness of the CapsNet, the tradition‐
al physical model based method and popular data-driven 
methods are used as the baselines. Each method is indepen‐
dently repeated 30 times and the average comprehensive ob‐
jective function of the test set are shown in Table XII.

The following conclusions can be drawn from Table XII.
1) Although the performance of CapsNet is slightly weak‐

er than GA in terms of comprehensive objective function 
and its variance, CapsNet outperforms other data-driven 
methods such as CNN, MLP, and CBR.

2) Normally, the real time system requires that the suit‐
able solutions should be obtained within 60 s, during which 
the power system gets the measurement data and then calcu‐
lates the suitable dispatching strategies for all power equip‐
ment [34], [35]. Moreover, the computing time of GA in‐
creases significantly with the size of distribution networks 
(e.g., the number of power equipment and nodes), while the 
computing times of data-driven methods are not sensitive to 
the size of distribution networks, indicating that the pro‐
posed CapsNet is more suitable for real-time reactive power 
optimization than GA, especially for large-scale distribution 
networks.

TABLE XII
AVERAGE COMPREHENSIVE OBJECTIVE FUNCTION OF EACH METHOD

Method

CapsNet

CNN

MLP

CBR

GA

Mean value (p.u.)

0.8343

0.8326

0.8319

0.8217

0.8362

Variance (p.u.)

0.0352

0.0355

0.0359

0.0394

0.0347

Computing time (s)

0.071

0.073

0.044

4.364

64.775

TABLE X
AVERAGE VOLTAGE OFFSET OF EACH METHOD

Penetration 
level (%)

10

20

30

40

50

Average voltage offset (p.u.)

CapsNet

0.7568

0.6845

0.6578

0.5962

0.5774

CNN

0.7619

0.6981

0.6692

0.6020

0.5861

MLP

0.7723

0.6967

0.6701

0.6154

0.5992

CBR

0.7881

0.7143

0.6786

0.6289

0.6015

TABLE XI
AVERAGE COMPREHENSIVE OBJECTIVE FUNCTION OF EACH METHOD

Penetration 
level (%)

10

20

30

40

50

Average comprehensive objective function (p.u.)

CapsNet

1.1392

1.1172

1.1084

1.0972

1.0779

CNN

1.1268

1.1112

1.1065

1.0948

1.0678

MLP

1.1260

1.1100

1.0986

1.0936

1.0648

CBR

1.1053

1.1045

1.0952

1.0869

1.0641
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Fig. 11.　Topology of modified IEEE 69-bus radial distribution network.
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IV. DISCUSSION 

This paper aims to apply the CapsNet to optimize the 
power loss and voltages of distribution networks. Moreover, 
the performance of the proposed CapsNet has been tested on 
the modified IEEE 33-bus radial distribution network and 
the modified IEEE 69-bus radial distribution network. The 
simulation results show that CapsNet achieves state-of-the-
art performance with superior accuracy and less computing 
time for reactive power optimization of distribution net‐
works. However, the proposed approach assumes that the to‐
pology of the distribution network is fixed, and it does not 
account for the influence of the dynamic topology (e.g., re‐
configuration of distribution networks) on the results. Specif‐
ically, the tie switches and sectionalizing switches are also 
common devices used for regulation of voltages and power 
loss. Unlike the SVC, OLTC, and shunt capacitor banks, the 
open states of tie switches and sectionalizing switches may 
lead to outages at some nodes [36]. In addition, the impact 
of market-based behavior of end-users on reactive power op‐
timization can be discussed in the future.

Moreover, the graph CapsNet is a possible extension of 
this paper to account for the influence of different topologies 
by inputting an adjacency matrix to neural networks [37]. In 
addition, the applications of the CapsNet are not limited to 
the reactive power optimization of distribution networks. It 
may be generalized to other tasks of power system such as 
energy management or demand-side response.

V. CONCLUSION 

To improve the accuracy and computing speed of reactive 
power optimization, a novel machine learning model, the 
CapsNet, is presented for reactive power optimization of dis‐
tribution networks. Through the simulation analysis on the 
IEEE 33-bus radial distribution network and the IEEE 69-
bus radial distribution network, the following conclusions 
are obtained.

1) The numbers of convolutional layers and capsule lay‐
ers, the batch size, the number of iterations, and the selec‐
tion of optimizers have a great influence on the performance 
of reactive power optimization. Specifically, it is difficult to 
mine the complex nonlinear relationship between power 
loads and dispatching strategies by a small number of convo‐
lutional layers and capsule layers, while too many convolu‐
tional layers and capsule layers will not only increase the pa‐
rameters of the CapsNet to be trained, but also easily lead to 
over-fitting problems. For the dataset with 5000 samples, the 
CapsNet can achieve good performance by setting the num‐
bers of convolutional layers and capsule layers to 4. For oth‐
er datasets, 4 can be considered as a good default value for 
the number of convolutional layers and capsule layers, and 
higher values or lower values may be fine. Similarly, the 
batch size should be determined according to the volume of 
the dataset and the computing resources of computers. Al‐
though small batch size can improve the performance of 
CapsNet, it consumes more training time. The convergence 
speed of CapsNet is very fast, and 50 iterations can ensure 
its convergence. Using Adam algorithm as the optimizer can 

enable the CapsNet with the best performance.
2) Compared with CNN, MLP, and CBR, CapsNet has not 

only higher optimization accuracy, but also better stability of 
optimization results. The pooling operation in the CNN loses 
parts of the feature information and limits the accuracy of re‐
active power optimization. In contrast, capsule layers in the 
CapsNet can accurately mine the relationship between fea‐
tures and dispatching strategies, which provides better dis‐
patching strategies to distribution networks. The computing 
time of GA increases significantly with the size of distribu‐
tion networks, while the computing time of data-driven-
based methods is not sensitive to the size of distribution net‐
works. Moreover, CapsNet does not rely on grid model pa‐
rameters, and the speed of decision-making is much lower 
than physical model based methods such as GA.

3) Compared with other deep neural networks (e.g., MLP 
and CNN), CapsNet has lower requirements for the volume 
of the training set. The performance of CapsNet is better 
than the existing data-driven technologies such as MLP, 
CNN, and CBR.

4) The CNN, MLP, and CBR are too conservative. When 
the power loads are very heavy or light in distribution net‐
works, some parts of the voltages may out of the limit, 
while CapsNet can ensure that the voltages are always with‐
in the constraints. In other words, the CapsNet has stronger 
robustness than CNN, MLP, and CBR, and can adapt to reac‐
tive power optimization tasks at different load levels.

5) For the reactive power optimization of distribution net‐
works with different penetration levels of renewable energy, 
the average power loss and voltage offset of CapsNet are 
lower than those of other methods, and the average compre‐
hensive objective function is also the largest, which shows 
that CapsNet is superior to CNN, MLP, and CBR.
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