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Abstract——The increasing integration of photovoltaic genera‐
tors (PVGs) and the uneven economic development in different 
regions may cause the unbalanced spatial-temporal distribution 
of load demands in an urban distribution network (UDN). This 
may lead to undesired consequences, including PVG curtail‐
ment, load shedding, and equipment inefficiency, etc. Global dy‐
namic reconfiguration provides a promising method to solve 
those challenges. However, the power flow transfer capabilities 
for different kinds of switches are diverse, and the willingness 
of distribution system operators (DSOs) to select them is also 
different. In this paper, we formulate a multi-objective dynamic 
reconfiguration optimization model suitable for multi-level 
switching modes to minimize the operation cost, load imbal‐
ance, and the PVG curtailment. The multi-level switching in‐
cludes feeder-level switching, transformer-level switching, and 
substation-level switching. A novel load balancing index is de‐
vised to quantify the global load balancing degree at different 
levels. Then, a stochastic programming model based on selected 
scenarios is established to address the uncertainties of PVGs 
and loads. Afterward, the fuzzy c-means (FCMs) clustering is 
applied to divide the time periods of reconfiguration. Further‐
more, the modified binary particle swarm optimization (BPSO) 
and Cplex solver are combined to solve the proposed mixed-in‐
teger second-order cone programming (MISOCP) model. Nu‐
merical results based on the 148-node and 297-node systems are 
obtained to validate the effectiveness of the proposed method.

Index Terms——Binary particle swarm optimization (BPSO), 
dynamic reconfiguration, multi-level switching, mixed-integer 
second-order cone programming (MISOCP), urban distribution 
network (UDN).
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I. INTRODUCTION 

UNCERTAINTIES of load growth and photovoltaic gen‐
erator (PVG) installation may lead to the power genera‐

tion-consumption unbalance, and further result in PVG cur‐
tailment, load shedding, or equipment inefficiency, etc. This 
is a typical situation in most urban distribution networks 
(UDNs), which requires certain spatial-temporal flexibility. 
Switch reconfiguration is an effective measure in providing 
the desired flexibility. However, traditional discorded switch‐
ing mode cannot take full advantage of switches due to the 
heavy reliance on the human experience. In the existing re‐
search works, the reconfiguration methods of UDN can be 
classified into two types [1], [2]: ① static reconfiguration, 
which controls the switches manually to find out an im‐
proved fixed topology for a yearly/seasonal operation; ② dy‐
namic reconfiguration, which controls the switches remotely 
and automatically to remove the grid congestion for real-time 
operation. Nevertheless, the static reconfiguration cannot satis‐
fy the temporal flexibility under the unbalanced spatial-tempo‐
ral distribution of load demands in the UDN, while the dynam‐
ic reconfiguration can show better performance by changing 
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the network topology several times in the scheduling time hori‐
zon. In addition, some switches link the feeders under the 
same transformer while others connect the feeders under dif‐
ferent transformers or substations. Those switches are installed 
at three hierarchies (feeder, transformer, and substation) with 
different capabilities in transferring the power flows in the 
UDN. Thus, multi-level (feeder-level, transformer-level, sub‐
station-level) dynamic reconfiguration method is necessary to 
cope with the risk brought by large-scale power flow regula‐
tion and fully utilize the transfer capabilities of these switches 
for the UDN under different unbalanced distributions of power 
generations and demands.

Network reconfiguration has been extensively studied, 
which aims to reduce the power loss, improve the voltage 
quality and load balancing of distribution networks with 
high penetration of distributed generations (DGs) [3] - [6]. 
Meanwhile, the reconfiguration optimization model is chang‐
ing from single-objective type to multi-objective type [7]. A 
multi-objective reconfiguration model was proposed in [8] to 
minimize the active power loss, load imbalance, and the 
maximum node voltage deviation index simultaneously, con‐
sidering the variabilities of loads and DGs. In [9], a novel 
voltage volatility index was devised to incorporate the im‐
pact of different distribution network parameters. Since it 
could directly characterize the influence of network topology 
on the voltage volatility, the potential of network reconfigu‐
ration in mitigating the voltage volatility was tapped correct‐
ly. In [10], a distribution network reconfiguration model was 
formulated to minimize the random fuzzy expected value of 
active power loss and maximum probability of voltage lim‐
its, with random-fuzzy uncertainties of both DGs and loads 
taken into account. However, those studies rarely regarded 
the DG curtailment as the optimization target in the research 
of network reconfiguration. Moreover, the unbalanced distri‐
bution of load demands in UDNs will also decrease DG con‐
sumption. To address this issue, minimizing DG curtailment 
should be incorporated into the objectives of network recon‐
figuration. In [11], a state-based sequential network reconfig‐
uration strategy was presented by the Markov decision pro‐
cess to minimize renewable DG curtailment and load shed‐
ding. A two-stage robust dynamic reconfiguration model 
with a small number of critical switches changing the status‐
es was established in [12]. The results showed that DG cur‐
tailment was significantly reduced by only a few times of re‐
configuration per day. It is well known that two feeders are 
linked with each other by the tie switches, which are normal‐
ly open. Those feeders may be from the same transformer, 
different transformers or even different substations. The pow‐
er flow transfer capabilities are different for different catego‐
ries of tie switches. The existing studies did not fully ex‐
plore those features and their operation limits. To make it 
clearer, we divide those tie switches into feeder tie switch, 
transformer tie switch and substation tie switch. Especially, 
transformer tie switch is defined as the one that links two feed‐
ers from different transformers while substation tie switches 
are those that link two feeders from different substations. Al‐
most all the distribution system operators (DSOs) prefer to reg‐

ulate the feeder tie switches in the network reconfiguration as 
long as the expected target can be roughly achieved by their 
transfer capabilities. Especially, the increasing benefits 
brought by more switches (transformer tie switches and substa‐
tion tie switches) may be so slight in some cases. In this re‐
gard, multi-level (feeder-level, transformer-level, and substa‐
tion-level) switching modes associated with the participation 
by different tie switches play an essential role in the realistic 
dynamic reconfiguration of UDNs.

It is usually difficult to solve the dynamic configuration 
problem with nonlinear power flow equations and numerous 
binary variables of switches. Existing algorithms can be cate‐
gorized into three groups: traditional analytical algorithms 
[13], [14], heuristic algorithms, e. g., branch exchange [15], 
[16], and intelligence optimization algorithm, e.g., genetic al‐
gorithm and particle swarm optimization [17], [18]. Al‐
though traditional optimization algorithms can give the glob‐
al solution, it is subject to the curse of dimensionality when 
applied to large-scale networks. Heuristic algorithms have 
relatively poor performance in calculation and global search. 
The intelligence optimization algorithm may be easily 
trapped in local optimization. Therefore, the traditional ana‐
lytical algorithm and intelligence optimization algorithm can 
be combined to speed up the solution. The second-order 
cone programming (SOCP) [19] is widely applied to trans‐
form the dynamic reconfiguration model into a mixed-inte‐
ger second-order cone programming (MISOCP) problem. 
Then, the modified model can be solved by the combination‐
al method of modified binary particle swarm optimization 
(BPSO) and Cplex. BPSO works better in complex binary 
problems. Cplex solver can be used to find out the optimal 
solution. Moreover, the time-period division for the dynamic 
reconfiguration is necessary to reduce the dimension of bina‐
ry variables during a large scheduling time horizon.

Based on the foregoing discussions, this paper proposes a 
multi-objective dynamic reconfiguration model considering 
multi-level switching modes, aiming at minimizing the eco‐
nomic operation cost, load imbalance, and PVG curtailment 
of UDNs. Different from the existing researches, the pro‐
posed multi-level switching mode is set according to the par‐
ticipation by different tie switches located at the feeder-lev‐
el, transformer-level, and substation-level. Firstly, three pow‐
er flow transfer means corresponding to those different 
switching modes are presented in detail. Secondly, a deter‐
ministic multi-objective dynamic reconfiguration model con‐
sidering load balancing is formulated by applying the above 
multi-level switching modes. The load balancing index is de‐
fined to judge the balance degree at different levels of UDN, 
while diverse switching price and operation limits are mod‐
eled for the tie switches at different levels. Thirdly, a sto‐
chastic programming model based on scenario set is formu‐
lated to address the uncertainties of PVG output and load de‐
mand, in which the fuzzy c-means (FCM) clustering [20] is 
introduced to divide the time periods of reconfiguration to 
solve the problem efficiently. Fourthly, the BPSO and Cplex 
solver work together to solve the proposed reconfiguration 
model. Finally, the 148-node and 297-node UDNs are used 

1243



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 5, September 2022

to demonstrate the effectiveness of the proposed method.
Specially, the main contributions of this paper are twofold. 

Firstly, dynamic reconfiguration considering multi-level 
switching mode is proposed to meet the spatial-temporal flexi‐
bility required by the unbalanced distribution of power genera‐
tions and demands. Thus, an appropriate switching mode can 
be optimized to avoid the large-scale power flow regulations 
with low incremental benefit. Secondly, the nonlinear dynamic 
reconfiguration model is transformed into a MISOCP problem, 
which is solved by the proposed combinational algorithm. The 
second-order cone relaxation of load balancing index and pow‐
er flow in this paper is proven to be accurate.

The rest of the paper is organized as follows. Section II de‐
scribes three power flow transfer means as the preliminaries 
for the subsequent multi-level switching modes. The determin‐
istic multi-objective dynamic reconfiguration model suitable 
for multi-level switching modes is presented in Section III. 
Section IV formulates a stochastic programming model based 
on the selected scenarios. FCM and the combinational solution 
method consisting of BPSO and Cplex are presented in Sec‐
tion V. Case studies about UDN reconfiguration considering 
multi-level switching modes are conducted in Section VI. Fi‐
nally, conclusions are drawn in Section VII.

II. THREE POWER FLOW TRANSFER MEANS 

A typical 10 kV UDN is a layered topology composed of 
three levels, i. e., feeder-level, transformer-level, and substa‐
tion-level. It is well known that all feeders are usually linked 
with each other by the tie switches no matter those feeders are 
from the same transformer, different transformers, or different 
substations. But power flow transfer capability is different 
when regulating different switches. Those power flow transfer 
behaviors are defined as feeder-transfer, transformer-transfer, 
and substation-transfer, respectively, which can achieve the 
network reconfiguration goal by executing the commands ac‐
cording to DSOs. Since the proposed multi-level switching 
modes are related to the participation of different tie switches, 
it is necessary to illustrate those three transfer means in detail.

A. Feeder-transfer

Feeder-transfer is to transfer the load to other feeders un‐
der the same transformer or bus by regulating the tie switch‐
es and sectionalizing switches. As shown in Fig. 1, both the 
feeder S1T11 and feeder S1T12 are supplied by the second‐
ary side of the transformer S1T1. Load demand in block 1 
can be transferred between the two feeders via changing the 
on/off statuses of BS2, BS3, and FS1. There are three active 
switch combinations: ① BS2 and BS3 on, FS1 off; ② FS1 
and BS2 on, BS3 off; ③ FS1 and BS3 on, BS2 off. In com‐
parison, block 2 only has two combinations: BS1 or FS2 on.

B. Transformer-transfer

Transformer-transfer is to transfer the load to other feeders 
under different transformers in the same substation. The low-
voltage side of the transformers in a 110 kV substation usually 
adopts a sectionalized single-bus configuration. 

Additionally, the sectionalized operation is used under the 
normal condition to hedge against possible short-circuit cur‐
rent. As shown in Fig. 2, transformers S1T1 and S1T2 are op‐
erated in the split mode. Two feeders (S1T12, S1T21) belong‐
ing to different transformers have a load shift by changing the 
on/off status of transformer tie switch TS1 and sectionalizing 
switch, i.e., the transformer-transfer between S1T1 and S1T2.

C. Substation-transfer

Substation-transfer is to transfer the load to other feeders 
belonging to a different substation. As shown in Fig. 3, feed‐
ers S1T11 (in substation 1) and S2T11 (in substation 2) are 
linked with each other via the substation tie switch SS3. Fur‐
thermore, in block 2, the substation-transfer between substa‐
tion 1 and substation 2 can be realized by adjusting the oper‐
ating statuses of SS1, SS2, BS4, and BS1.

Power/load node; Bus section switch (BSS, switch off)

Substation 1

S1T11 S1T12 S1T21

S1T1 S1T2

S1T22

110 kV

10 kV

TS1

BS1 BS2

BSS2

BSS1

Section A Section B

Transformer tie switch (TS, switch off); BS (switch on)

Fig. 2.　Topology of transformer-transfer.

Sectionalizing switch (BS, switch on)

Feeder tie switch (FS, switch off)Power/load node;

10 kV

110 kV

FS1

S1T11 S1T12

S1T1

FS2

BS2

BS3

BS1

S1T1

Block 1

Block 2

Fig. 1.　Topology of feeder-transfer.
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III. DETERMINISTIC MULTI-OBJECTIVE DYNAMIC 
RECONFIGURATION MODEL SUITABLE FOR MULTI-LEVEL 

SWITCHING MODES 

As shown in Table I, only feeder tie switches are involved 
in the feeder-level reconfiguration. At the transformer-level, 
both the transformer tie switches and feeder tie switches are 
taken into account. 

Naturally, all the switches are involved in the substation-
level reconfiguration, which is the same as the general glob‐
al reconfiguration. A deterministic multi-objective dynamic 
reconfiguration model is proposed in this section. Note that 
the above three reconfiguration strategies do not need to be 
modeled separately. Different multi-level switching decisions 
can be realized by adjusting the candidate switch set and the 
parameters in the functions/constraints in the following model.

A. Multi-level Equivalent Output for Substation

In this paper, the power loss of transformers is neglected. 
Then, the equivalence of the 110 kV substation can be illus‐
trated in the right part of Fig. 4. Specifically, the output pow‐
er for the substation 1 can be expressed as the summation of 
power flow in all four branches linked to substation 1 while 

the active power for transformer S1T1 PS1T1 is equal to the 
sum of power demand of feeder S1T11 P11 and power de‐
mand of feeder S1T12 P12. The feeder power is equivalent 
to the power flow in the corresponding branch.

B. Objective Functions

1)　Economic Operation Cost
Apart from the network power loss cost, the electricity 

purchasing cost from the main grid, switching cost, and load 
shedding cost are all included in the operation cost.
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2)　Load Balancing Index
The feeder load balancing index, transformer load balanc‐

ing index, and substation balancing index are devised to ex‐
press the global load balancing at different levels. More spe‐
cifically, the feeder load balancing index represents the aver‐
age value of mean square error for feeder power demand in 
all transformers while the transformer load balancing index 
represents that of mean square error for transformer power 
demand in all substations. As for substation load balancing, 
it is the mean square error of power load for all substations. 
Any one of them cannot represent the global load balancing 
degree well. In this way, the sum of three indexes should be 
optimized to improve the load balancing of the whole net‐
work, defined as the objective f2.
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(Bsub
t +B trans
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Substation 1
Substation 1

S1T1 S1T2

BSS2

BSS1

S1T1 S1T2

P
11

P
12

P
S1T1 P

S1T2

S1T11 S1T12 S1T21 S1T22

Fig. 4.　110 kV substation node equivalence.

Substation 1

S1T1 S1T2

110 kV

10 kV

BSS2

BSS1

Substation 2

S2T1 S2T2

BSS3

BSS4

BS4

SS2

SS3

SS1

BS1BS2

BS3

S1T11

S2T11

Block 2

Block 1

Power/load node; BSS (switch off)

Substation tie switch (SS, switch off); BS (switch on)

Fig. 3.　Topology of substation-transfer.

TABLE I
MULTI-LEVEL SWITCHING MODES

Switching 
mode

Feeder-level

Transformer-
level

Substation-
level

Tie switch

FS

√
√
√

TS

×

√
√

SS

×

×

√

Transfer mean

Feeder-
transfer

√
√
√

Transformer-
transfer

×

√
√

Substation-
transfer

×

×

√
Note: √ means included; × means not included.
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2) Transformer load balancing index
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Rfeed
jkt =

Pjkt

P max
jk

                         "t"jÎBsub"kÎ α( jf )

Rfeedavr
jft =

∑
kÎ α( jf )

Rfeed
jkt

N feed
jf

          "j"f"t

Bfeed
jft =  Rfeed

jkt -Rfeedavr
jft

2
    "j"f"t

Bfeed
t = ∑

jÎBsub

∑
fÎ γ( j)

Bfeed
jft

N trans
        "t

(9)

The expressions of mean square error are nonlinear equa‐
tions as shown in (7)-(9), which can be relaxed into second-
order cone expression (10) with a small relaxation gap in the 
programming simulation.
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ïï
ï
ï
ï

ï

ïï
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ï

 Rsub
jt -Rsubavr

t
2
£Bsub

t         "t

 R trans
jft -R transavr

jt
2
£B trans

jt     "t"j

 Rfeed
jkt -Rfeedavr

jft
2
£Bfeed

jft       "t"j"f

(10)

3)　PVG Curtailment
The PVG curtailment is described as:

min f3 =APV (11)

APV =∑
tÎ T
∑
jÎBPV

(P PVava
jt -P PV

jt ) (12)

C. Constraints

1)　Distflow Model
The relaxed power flow model described in [19] is ap‐

plied to transform the nonlinear constrains of power flow in‐
to second-order cone constraints. Additionally, the “big-M”
-type constant M is used in (15). If wijt = 1, the switch 
branch ij is in operation, where the voltage relationship be‐
tween the node i and node j is restricted by the branch flow 
and current. On the contrary, the constraint (15) always hold.∑

kÎ α( j)

Pjkt - ∑
iÎ β( j)

(Pijt - I ^
ijtrij )+ gjV

^
jt =Pjt    "t"jÎB (13)

∑
kÎ α( j)

Qjkt - ∑
iÎ β( j)

(Qijt - I ^
ijt xij )+ bjV

^
jt =Qjt    "t"jÎB (14)

V ^
jt +M (wijt - 1)£V ^

it - 2(Pijtrij +Qijt xij )+
I ^

ijt (r
2
ij + x2

ij )£V ^
jt +M (1 -wijt )    "t"ijÎE sw (15)

V ^
jt =V ^

it - 2(Pijtrij +Qijt xij )+ I ^
ijt (r

2
ij + x2

ij )    "t"ijÎE\E sw   (16)













 











2Pijt

2Qijt

I ^
ijt -V ^

it 2

£ I ^
ijt +V ^

it    "t"ijÎE (17)

Pjt =P sub
jt +P PV

jt -P l
jt +P lr

jt    "t"jÎB (18)

Qjt =Qsub
jt -Q l

jt +Q lr
jt    "t"jÎB (19)

V ^
jt =V 2

jt    "t"jÎB (20)

I ^
ijt = I 2

ijt    "t"ijÎE (21)

2)　Security Constraints
The security constraints are as follows.

-I
2

ij
£ I ^

ijt £
-
I

2

ij    "t"ijÎE\E sw (22)

wijt-I
2

ij
£ I ^

ijt £wijt
-
I

2

ij    "t"ijÎE sw (23)

-V
2

j
£V ^

jt £
-
V

2

j     "t"jÎB (24)

3)　Network Reconfiguration
The dynamic reconfiguration with multi-level switching 

modes can be carried out by choosing different switch sets 
E sw. Thus, the switching constraints can be expressed in a 
unified way.

1) Radiality ∑
ijÎEsw

wijt =B -N sub -Ealways

(25)

Equation (25) denotes that the number of connected 
branches is equal to the number of network nodes minus the 
number of substation nodes in a radial network.

2) Regulation limit
δswin

ijt + δswde
ijt £ 1    "t"ijÎE sw (26)

wijt -wijt - 1 = δswin
ijt - δswde

ijt     "t"ijÎE sw (27)

∑
tÎ T

(δswin
ijt + δswde

ijt ) £N swmax
ij     "ijÎE sw

(28)

If δswin
ijt = 1, the status of the switch in branch ij changes 

from open to closed at time period t, and for δswde
ijt = 1, vice 

versa. Expression (26) denotes that the switch cannot be 
open or closed simultaneously. Note that N swmax

ij  can be set 
differently for three tie switches. N swmax

ij  can gradually de‐
crease in the order of “feeder-transformer-substation” to 
roughly express the unwillingness of DSOs to frequently op‐
erate the switches located at the higher level, e.g., substation-
level or transformer-level reconfiguration. In other words, 
the DSOs prefer to control the statuses of lower-level switch‐
es to reach a satisfactory balance performance.

3) Connectivity
The network radiality has been extensively studied in re‐

cent years, which aims to guarantee the topology radiality 
and connectivity after the network reconfiguration [22]-[24]. 
Equation (25) cannot totally ensure the network radiality, es‐
pecially in the presence of PVG in UDN. Therefore, to 
avoid the existence of loops or islands, a small active load is 
added to PVG nodes and transition nodes (transition node is 
the node without power generation or demand) [22]. The ad‐
ditional auxiliary constraints (29)-(31) can guarantee the net‐
work connectivity. They are also associated with those 
switch variables in the above Distflow model.
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∑
kÎ α( j)

P *
jkt - ∑

iÎ β( j)

P *
ijt =P *

jt = ε    "t"jÎB (29)

-wijt P
max
ij £P *

ijt £wijt P
max
ij     "t"ijÎE sw (30)

-P max
ij £P *

ijt £P max
ij     "t"ijÎE\E sw (31)

4)　Transformer Power Limit
The transformer power limit is as follows.

P transmin
jf £P trans

jft £P transmax
jf     "t"jÎBsub"fÎ γ( j) (32)

ì
í
î

ïïïï

ïïïï

Qtransmin
jf £Q trans

jft £Q transmax
jf     "t"jÎBsub"fÎ γ( j)

Qtrans
jft = ∑

kÎ α( jf )

Qjkt                  "t"jÎBsub"fÎ γ( j) (33)

5)　PV Power Limit
The PV power limit is as follows.

0 £P PV
jt £P PVava

jt (34)

6)　Load Reduction Limit
The load reduction limit is as follows.

0 £P lr
jt £ β l

j P
l
jt (35)

Q lr
jt =P lr

jtQ
l
jt /P

l
jt (36)

IV. STOCHASTIC PROGRAMMING MODEL BASED ON 
SCENARIO SET 

In this paper, the scenario set generated by the Monte Carlo 
method and k-means algorithm is used to address the uncer‐
tainties of PVGs and loads. Furthermore, the aforementioned 
multi-objective function is normalized into a single objective 
function by 

-
λ 1, 

-
λ 2, 

-
λ 3. Then the stochastic programming model 

can be expressed in the following compact matrix form.

min (
-
λ 1 f1 +

-
λ 2 f2 +

-
λ 3 f3 ) (37)

f1 =C sw +∑
sÎNs

fs (C loss
s +C sub

s ) (38)

f2 =∑
sÎNs

fs∑
tÎ T

(Bsub
st +B trans

st +Bfeed
st ) (39)

f3 =∑
sÎNs

fs APV
s (40)

s.t.

Ax £ b (41)

Cx = d (42)

Gx +Hys = k (43)

 Lys
2
£M T ys (44)

Jys £w (45)

Rys £ ξs (46)

The first-stage decision variables are related to the switch‐
es and power flow in the connectivity constraints, while the 
PV power, load reduction, and transformer power are intend‐
ed for the second-stage decision variables.

The objective function (37) is determined by both the first-
stage and second-stage decision variables. Equations (41) 
and (42) denote the network reconfiguration constrains. The 
first-stage and second-stage decision variables are coupled 
by (43). Equation (44) denotes the second-order cone con‐

straints, including the relaxed real power flow and load bal‐
ancing index. The inequality constraints of the second-stage 
variables in each scenario are shown in (45). Lastly, (46) de‐
notes the PV power limit.

V. SOLUTION METHODOLOGY 

A. Fuzzy C-means Clustering-based Time Period Division

The dynamic reconfiguration can be effectively conducted 
due to the unbalanced spatial-temporal distribution of power 
generations and demands. However, the dynamic reconfigura‐
tion in the whole time horizon would lead to a high compu‐
tational burden due to a large number of binary variables. 
Therefore, we decrease the calculation dimension based on 
the time division. Each division (including several continu‐
ous time periods) is assigned to only one network topology 
when solving the reconfiguration model. In this paper, we 
adopt FCM [20] to divide the time periods. FCM performs the 
division (clustering) by a loss function based on a fuzzy mem‐
bership matrix. Especially, it assigns the membership degrees 
of given data to all cluster centers in the interval [0,1], which 
breaks the single membership relationship of hard clustering. 
Hereby, the points belonging to a cluster can achieve the small‐
est difference, which are opposite for different clusters.

The clustering programming model of FCM can be formu‐
lated as:

min J(XUV )=∑
cÎC
∑
tÎ T

ub
ctd

2
ct =∑

cÎC
∑
tÎ T

ub
ct X t -Vc

2

    b ³ 1

 (47)

ì
í
î

ïï

ïïïï

∑
cÎC

uct = 1    "t

0 £ uct £ 1    "c"t
(48)

As a weighted index number, b is usually equal to 2 to en‐
sure the astringency. In addition, (48) indicates that the sum 
of membership degrees of X t to all clusters is equal to 1, 
which is a typical feature of FCM. The optimal UC ´ T and V 
for (47) and (48) can be obtained by (49) and (50), respectively.

uct = (∑mÎC( dct

dmt )
2

b - 1 ) -1

(49)

Vc =
∑
tÎ T

ub
ct X t

∑
tÎ T

ub
ct

(50)

The overall clustering procedure can be summarized as:
Step 1: initialize the number of clusters C, UC ´ T, and the 

tolerance ε. k = 1.
Step 2: calculate V k according to (50).
Step 3: update U k according to (49).
Step 4: if  U k ++ 1

C ´́ T -U k
C ´́ T < ε, return V k and U k. Otherwise, 

update k = k + 1 and go to Step 2.
Step 5: based on the clustering result, the isolated points 

can be further classified into the adjacent cluster with a high‐
er membership degree.

By using FCM, the whole time periods can be divided in‐
to M clusters, which means the time dimension of dynamic 
reconfiguration is reduced from T to M. In the FCM process, 
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setting an optimal cluster number is significant. The regula‐
tion limit is used to avoid frequently changing the switch 
state, as shown in the previous section. It is noted that the 
optimal number of clusters is not required in the above 
FCM. The stochastic programming model proposed in Sec‐
tion IV needs to be modified slightly, where the dimension 
of switch variables decreases from T to M. It can be realized 
by the cluster-time periods incidence matrix RM. If the time 
period j belongs to reconfiguration time period i, rmij = 1,

RM =

é

ë

ê

ê

ê
êê
ê

ê

ê ù

û

ú

ú

ú
úú
ú

ú

ú
rm11 rm12  rm1T

rm21 rm22  rm2T

  
rmM1 rmM2  rmMT

(51)

B. BPSO and Cplex-based Combinational Method to Solve 
Proposed Model

The formulated MISOCP model is still challenging to 
solve when applied in large-scale systems because of the nu‐
merous binary variables. Thus, a combinational way based 
on the modified BPSO and commercial solver Cplex is used 
in this subsection. The BPSO takes the switch states as ran‐
dom swarms and embeds Cplex to solve the SOCP model 
corresponding to various particles. Meanwhile, the fitness 
values received from Cplex computation would be the key 
point to the evolution of the swarm in the BPSO iterations. 
The overall procedure is shown in Fig. 5.

The BPSO was initially proposed by Eberhart and Kennedy 
in 1997 [21]. However, the network topology may be infeasi‐
ble when directly coding each switch state as 0-1. Obviously, 
the closing of the tie switch must be accompanied by the open‐
ing of the sectionalizing switch to satisfy the network radiality. 
Therefore, an improved coding rule based on the loop is adopt‐
ed so as to ensure the topology feasibility (radiality) when gen‐
erating the initial particles and updating particles.

Significantly, the initial particle implementation is demon‐

strated in the following steps.
Step 1: particle coding. The initial velocities of particles 

are set randomly in a limited range. The position of the ith 
particle can be expressed as x i = (x i1x i2...x im...x iM ), where 
x im = (xim1xim2...ximN swr ). Note that we code the position of 

the particle in each time period in turn to guarantee the radi‐
ality and connectivity of network topology at any time. 
Moreover, Step 1 and the following Steps 2-4 only present 
the coding procedure in each time period. Randomly assign 
x im = (xim1xim2...ximN swr ) and ensure that the number of “0” in 

each loop is equal to 1.
Step 2: radiality check. In terms of Step 1, the loops or is‐

lands may exist if the branches corresponding to “0” in mul‐
tiple loops are in the same branch. Therefore, the number of 
loops is forced to be the number of open switches, which 
could be given by decoding the particle via the switch-loop 
switch incidence matrix P. If the number of open switches in 
Step 1 satisfies this condition, go to the next step. Other‐
wise, go to Step 1.

P =

é

ë

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

úp11 p12  p1q  p
1N swr

p21 p22  p2q  p
2N swr

   
p

N sw1
p

N sw2
 p

N swq
 p

N sw N swr

(52)

If piq = 1, it means that the switch i is deployed on the 
branch q. In addition, only one element in the same column 
of matrix P can be 1, while more than one element in the 
same row can be equal to 1, which indicates that the switch 
branch is the public branch contained in multiple loops.

Step 3: connectivity check. The node adjacency matrix is 
calculated by node-branch incidence matrix and decoded 
switch state vector. Then, the Laplacian matrix for connectivi‐
ty discrimination is formed. If the particle satisfies network to‐
pology constraints, go to the next step. Otherwise, go to Step 1.

Step 4: regulation limit check. If the switch state vector 
from the decoding particle violates (28), it will stop. Other‐
wise, go to Step 1.

It is ensured that the initial particles obtained by the 
above steps are feasible solutions. The particle updating is 
similar to the initial particle implementation except Step 1. 
Specifically, the velocity of the particle is updated by (53). 
The sigmoid function (54) is used to calculate the probabili‐
ty of “0” in each dimension of the particle position. Further‐
more, the roulette algorithm is used to select the “0” dimen‐
sion in each loop as follows.

1) Calculate the selection probability of “0” in each di‐
mension of each loop by S(vn + 1

im ).
2) Calculate the cumulative probability.
3) Compare the random number in the interval [0,1] and the 

cumulative probability. The “0” in each loop will be decided.

vn + 1
im = vn

im + c1r1 (pn
im - x n

im )+ c2r2 (pn
gm - x n

im ) (53)

S(vn + 1
im )= 1 - 1/(1 + exp(-vn + 1

im )) (54)

Then, the updated particle position can meet the require‐
ment that the number of “0” in each loop is equal to 1. 
Therefore, the updated particles will be feasible after check‐
ing the above Steps 2-4.

End

Choose the switching mode

Start

Input load demand data

Divide the time

periods by FCM

Initialize the position and

velocity of each particle

Does the

number of iterations reach

the upper limit? 

N

Y

Generate the scenarios

Initialize the parameters

of BPSO

 Simplify the network

Update the position and

velocity of each particle

Update the individual and

global optimal position

Determine the initial individual and

global optimal position by using Cplex

BPSO and Cplex-based

combinational method

Fig. 5.　Flowchart of solution algorithm.
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VI. CASE STUDIES 

The modified 148-node system and 297-node system are 
used to validate the proposed method in this paper. All the 
computations are carried out on a 2.9 GHz personal comput‐
er with 8 GB RAM, and the proposed method is pro‐
grammed in MATLAB 2016a.

A. Validation of Proposed Method in 148-node System

1)　System Configuration
As shown in Fig. 6, the test system consists of two substa‐

tions, four transformers, and eight feeders. The spatial-tempo‐
ral distribution of power generations and demands in practi‐
cal UDN is unbalanced. For simplicity, it is assumed that 

PVGs are only connected to one feeder of each transformer. 
Moreover, the forecasted power outputs of PVGs are as‐
sumed to be the same in each node. Load forecasting data 
(active power) in eight feeders are shown in Fig. 7. The 
number of sectionalizing switches, feeder tie switches, trans‐
former tie switches and substation tie switches are 13, 7, 3, 
and 2, respectively while the switching costs of these switch‐
es are $50, $50, $100, and $150, respectively. And the maxi‐
mum regulation numbers in the whole time horizon are 4, 4, 
3, and 2, respectively. The inertia weight of the BPSO algo‐
rithm is updated adaptively and is restricted within [0.4, 
0.9]. The learning factors c1 and c2 are both 2. The size of 
the swarm is 30.
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Fig. 6.　Topology of 148-node system.
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Fig. 7.　Load forecasting data (active power) in eight feeders.

Taking the basic scenario as an example, the schedule hori‐
zon is divided into six clusters by the FCM. Specifically, the 
time division includes time period 1-6, time period 7-9, time 
period 10-17, time period 18-20, time period 21-22, and time 
period 23-24. As shown in Fig. 8, the curves on the strip (the 
cluster center) represent the spatial distribution of the load de‐
mands during different periods belonging to this cluster.
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54
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Fig. 8.　Clustering results of basic scenario.

2)　Analysis of Deterministic Dynamic Reconfiguration with 
Multi-level Switching Modes

Considering the unbalanced distribution of load demands 
in the UDN, two case sets with different PVG penetration 
and load rates are devised in this part to explore the incre‐
mental benefits of dynamic reconfiguration among multi-lev‐
el switching modes. Then, an ideal switching mode can be 
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recommended for DSOs according to the results.
1) Analysis of multi-level switching modes with different 

PVG penetration
The capacities of PVGs in feeders S1T12, S1T22, S2T12, 

and S2T22 are adjusted to generate different spatial-temporal 
distribution of load demands. As reported in Table II, eight 
cases with different PV penetration are set up for the dynam‐
ic reconfiguration. Note that the PVG curtailment and over‐
all objective would be emphatically analyzed.

When the PVG outputs in several feeders are too large to be 
fully absorbed, network reconfiguration is needed to improve 
the power flow distribution for increasing the PVG consump‐
tion. As shown in Fig. 9, for different cases, PVG curtailment 
reduction is incurred by adopting three switching modes. 

P
 (

M
W

)

1 2 3 4 5 6 7 8
Case

0

5

10

15

20

25

30

35

40 No reconfiguration
Feeder level
Transformer level
Substation level

Fig. 9.　 PVG curtailments under original network topology and three 
switching modes.

In most cases, the PVG curtailment gradually decreases 
when changing the switching mode from feeder level to sub‐
station level. In other words, the reduction performance of 
PVG curtailment is optimal when conducting substation-lev‐
el reconfiguration because all the switches are involved at 
the same time. Moreover, it can be observed that the PVG 
curtailment depends on not only the PVG penetration but al‐
so the spatial distribution of load demands. For instance, the 
PVG curtailments in cases 5 and 6 are different.

In cases 1, 3, and 6, the PVG curtailment reductions at 
the transformer level and substation level are not remark‐
able, especially when the PVG power is almost fully ab‐
sorbed by the feeder-level reconfiguration. Similarly, from 
cases 2, 5, 7 and 8, it is found that the transformer-level re‐
configuration can effectively reduce the PVG curtailment, 
and thus substation-level reconfiguration is unnecessary. Nev‐

ertheless, in case 4, the substation-level reconfiguration has 
a great effect on the PVG curtailment. Thus, the PVG utiliza‐
tion difference resulted from the feeder level to the substation-
level dynamic reconfiguration in each case is not the same.

From the total objective and load balancing index in multi‐
ple switching modes illustrated in Fig. 10, the following ob‐
servations can be made. Firstly, no or only small incremental 
benefit is obtained when changing the reconfiguration from 
feeder level to substation level in some cases. This reflects 
that the transfer capacity of higher-level (substation-level or 
transformer-level) reconfiguration is insufficient. In such cas‐
es, the lower-level switching mode outperforms the higher-
level one when DSOs give preference to the lower-level 
switches. Secondly, there is no monotonic relationship be‐
tween the load balancing index and the multi-level switching 
modes. The load balancing preference may be sacrificed 
while ensuring the PVG curtailment reduction. It also im‐
plies that the network reconfiguration heavily relies on cer‐
tain transferable branches, and the sectionalizing switches 
may have been unreasonably deployed.

Meanwhile, it is important to highlight that the three 
switching modes of dynamic reconfiguration have dramatical‐
ly reduced the PVG curtailment as well as the total objective 
compared with the original network topology. However, the 
incremental benefits from feeder level to substation level are 
not guaranteed to be growing in certain cases. Therefore, an 
appropriate switching mode should be chosen according to 
the total objective result in the three reconfiguration modes 
so as to prevent the low incremental benefit when applying 
the higher-level switching mode. According to the optimiza‐
tion results of the total objective, the feeder-level reconfigu‐
ration should be selected in cases 1, 2, 3, and 6, while the 
transformer-level reconfiguration is better in cases 5, 7, and 
8. The substation level would be a better choice for case 4.

2) Analysis on multi-level switching modes under differ‐
ent load rates

Similarly, we adjust the load rate of some feeders based 
on the basic data shown in Fig. 7. Then eight cases reported 
in Table III are intended for the unbalanced spatial-temporal 
distribution of load demands. This part mainly focuses on 
the influence of multi-level switching modes under different 
load rates. Thus, the PVG penetration in those eight cases is 
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Fig. 10.　Total objective and load balancing index under original network 
topology and dynamic reconfiguration with multi-level switching modes.

TABLE II
CASES FOR DIFFERENT PVG PENETRATIONS

Case

1

2

3

4

5

6

7

8

Capacity of PVG (MW)

S1T12: 2, S2T12: 0.5, S1T22/S2T22: 1

S2T12: 2.5, S1T12/S1T22/S2T22: 1

S1T12/S1T22/S2T12/S2T22: 1.5

S1T12: 3, S1T22: 2, S2T12: 0.5, S2T22: 1

S1T12/S2T12: 2.4, S1T22/S2T22: 1.5

S1T12/S1T22/S2T12/S2T22: 2

S1T12/S2T12: 2.7, S1T22/S2T22: 1.5

S1T12/S2T12: 3, S1T22/S2T22: 1.5

Penetration (%)

26.88

32.85

35.84

38.82

46.59

47.78

50.17

53.76
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set unchanged and is at a low level. According to the numer‐
ical result, there is no PVG curtailment in those cases when 
performing the switching mode at any level.

As shown in Fig. 11, the load shedding cost is high in all 
the cases due to the transmission power limit of the feeders 
and transformers when no reconfiguration is applied and the 
load demand is high. However, the application of dynamic 
reconfiguration can effectively alleviate this problem. It can 
be seen that the load shedding cost gradually decreases in 
each case and even drops to 0 in some cases when applying 
the reconfiguration from feeder level to substation level.

Specifically, the impacts of multi-level switching modes 
on the load shedding cost in these cases are analyzed in de‐
tail. In cases 2 and 3, the feeder-level reconfiguration has a 
negligible effect on load shedding. It shows that both feeders 
linked to transformer S2T1 have a high load demand concur‐
rently, and thus the feeder-transfer cannot guarantee the reli‐
able power supply. In other words, the high-level transfer is 
necessary. Moreover, comparing case 2 with case 3, it can 
be seen that the transformer-level switching mode can en‐
sure no load shedding when the load rate in S2T1 is less 
than 1.28 times of the basic data. Otherwise, the substation-
level switching is required. When the unbalance degree of 
load demand distribution increases globally such as cases 4-
6, the feeder-level switching would be unable to guarantee 
the reliability of power supply if the load rate reaches 1.28 
times of the basic data. In addition, the comparison between 
case 2 and case 5 shows that the load demand in S2T11 is 

higher than that in S2T12, and the sectionalizing switches of 
S2T11 are not reasonably deployed because the transferable 
power is either too small or too large. As far as the growth 
of load rate in substation 2 is concerned, the transformer-lev‐
el reconfiguration is enough to ensure no load shedding if 
the load rate is less than 1.22 times of the basic data. Fur‐
thermore, the transfer capabilities of all three switching modes 
would be weakened with the increase of global load power. As 
shown in case 8, the performance by the substation-level mod‐
el is almost the same as that by the transformer-level one.

The total objective and load balancing index with multiple 
modes under different load rates are illustrated in Fig. 12. 
Similar to the results under different levels of PVG penetra‐
tion, there is no monotonic relationship between the load bal‐
ancing index and the multi-level switching modes. The opti‐
mization of the total objective is expected. Specially, the dy‐
namic reconfiguration with multi-level switching modes has 
significantly reduced the load shedding cost and the total ob‐
jective value. But the incremental benefits from feeder level 
to substation level may vary in different cases. In addition, 
the total objective by using some higher-level mode may be 
higher than that by using a lower-level mode in some cases. 
Such phenomenon is related to the limitation of BPSO in the 
combinational method. In another way, it also illustrates that 
the incremental benefit from the lower-level mode to the 
higher-level mode would not be significant. According to the 
total objective value, the feeder-level switching mode is a 
better choice in cases 1, 4, 5, and 6. The transformer-level 
switching mode should be selected in cases 2, 7, and 8, while 
the substation-level  mode would be the best for case 3.

3)　Comparison of Stochastic Programming Model with 
Deterministic Model

Using case 6 in Table II as an example, 1000000 scenari‐
os are randomly generated to compare the reconfiguration 
schemes between stochastic programming and deterministic 
model. The test results are presented in Table IV. It can be 
observed that both the maximum objective value and the av‐
erage objective value of the stochastic programming model 
are smaller than those of the deterministic model, which indi‐
cates that the stochastic programming has a better perfor‐
mance in dealing with the uncertainties.

TABLE III
CASES FOR DIFFERENT LOAD RATES

Case

1

2

3

4

5

6

7

8

Capacity of load rate (MW)

S1T11/S1T21: 1.4

S2T11/S2T12: 1.28

S2T11/S2T12: 1.35

S1T11/S1T21/S2T11/S2T21: 1.25

S1T11/S1T21/S2T11/S2T21: 1.28

S1T11/S1T21/S2T11/S2T21: 1.33

S2T11/S2T12/S2T21/S2T22: 1.22

Whole network: 1.3

Capacity-load ratio

1.34

1.37

1.34

1.29

1.27

1.24

1.33

1.14
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Fig. 11.　Load shedding cost under original network topology and multi-lev‐
el switching modes.
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Fig. 12.　Total objective and load balancing index under original network 
topology and multi-level switching modes.
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4)　SOCR Exactness Analysis
The branch power and current must be 0 when the status 

of a switch branch changes from closed to open. The feeder 
load rate and feeder load balancing index of a transformer 
may be close to 0 during some time periods due to the high 
PVG penetration. Note that both situations would lead to se‐
rious distortion of the relative relaxation gap. Consequently, 
we define the absolute relaxation gaps to check the exact‐
ness of (10) and (17) as:
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For case 6 in Table II, the relaxation gaps of the three bal‐
ancing indexes and branch current are shown in Figs. 13 and 
14, respectively. It can be observed that the order of magni‐
tude of the relaxation gaps is around 10-10 and 10-7, which 
indicates that the second-order cone relaxation adopted in 
this paper is sufficiently accurate.

5)　Comparison of Different Solution Methods
Different solution methods are used to solve the MISOCP 

model established in the Section IV. The comparation of pro‐
cessing time is shown in Table V, where we can find that it 
is infeasible to solve the problem by Cplex due to the numer‐
ous binary variables. 

Also, the updated individuals after the crossover and muta‐
tion of genetic algorithm (GA) are usually infeasible, which 
decelerate the optimization. As expected, the processing time 
of the proposed method is shorter than that of GA.

6)　Comparison of Different Switching costs
Different switching costs are selected to compare the total 

objective obtained by multi-level switching modes. In the 
above numerical analysis, the switching costs of feeder tie 
switch, transformer tie switch and substation tie switch are 
set to be $50, $100, and $150, respectively. We make this 
objective as cost 2 in this part. In addition, other two tests 
are included, whose objectives are named as cost 1 ($50, 
$150, and $250) and cost 3 ($50, $75, and $100). For cases 
5, 7, and 8 in Table II, the total objectives obtained by se‐
lecting different switching costs in multi-level switching 
modes are shown in Fig. 15. It indicates that the incremental 
benefits from feeder-level switching mode to substation-level 
switching mode would decrease as the switching cost of 
high-level switches increases. In this way, the willingness to 
choose low-level reconfiguration would be stronger due to 
the high switching cost of high-level switches.
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Fig. 15.　 Total objective obtained by using different switching costs in 
multi-level switching modes.

B. Validation of Proposed Method in 297-node System

A practical system which includes 297 nodes, two substa‐
tions, four transformers, and eight feeders is applied to test 
the proposed method. The topology of this system is depict‐
ed in Fig. 16. The numbers of sectionalizing switches, feeder 
tie switches, transformer tie switches, and substation tie 
switches are 19, 7, 3, and 2, respectively. The forecasted 
loads in eight feeders are shown in Fig. 17. Some other pa‐
rameters are also the same as those described in the 148-
node system.
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TABLE IV
COMPARISON OF TEST RESULTS BETWEEN STOCHASTIC PROGRAMMING AND 

DETERMINISTIC MODEL

Type

Stochastic programing

Deterministic model

The maximum 
objective value

20840.6140

21038.7156

Average objective 
value

18723.6969

18796.1879

TABLE V
COMPARISON OF PROCESSING TIME OF DIFFERENT SOLUTION METHODS

Method

Cplex

Combinational method (BPSO-Cplex)

GA

Processing time (hour)

Infeasible

11.82

20.49
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Similarly, the capacities of PVGs in feeders S1T21, 
S2T11, and S2T21 are adjusted in various ways to change 
the distribution of load demand. Then, four cases reported in 
Table VI are selected to explore the increasing benefits from 

feeder-level reconfiguration to substation-level reconfigura‐
tion. The test results including PVG curtailment and total ob‐
jective are shown in Fig. 18.
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The serious PVG curtailment under the original network 
topology is caused by the unbalanced distribution of load de‐
mands. The power flow regulation performed by multi-level 
switching modes would improve this situation. However, the 
increasing benefits brought by the higher-level reconfigura‐
tion may be so slight. As shown in Fig. 18, the small in‐
creasing benefit is obtained from feeder level to transformer 
level in case 2 and case 4 while there is no benefit when 
changing from feeder level to substation level in case 1 and 
case 3. According to the total objective, the feeder-level re‐
configuration should be selected in cases 1-4.

VII. CONCLUSION 

This paper proposes a dynamic reconfiguration model for 
multi-level switching modes to minimize the operation cost, 
load imbalance and PVG curtailment. The multi-level switch‐
ing modes are characterized according to the participation of 
different tie switches. Case studies are performed to show 
the effectiveness of the proposed model. The conclusions are 
summarized as follows.

1) The incremental benefits of multi-level switching 
modes may vary with different PVG penetrations and load 

demands in the UDN. To avoid the large-scale power flow 
regulations, a suitable switching mode should be optimized 
to support the generation-demand balance. Furthermore, if 
the alleviation of PVG curtailment or load shedding is 
achieved with the sacrifice of load balancing, it implies that 
the capability in transferring power flow is insufficient.

2) Compared with the deterministic method, the stochastic 
model demonstrates better performance in handling the un‐
certainties of PVGs and loads and improving the optimiza‐
tion results for dynamic reconfiguration.

3) The second-order cone relaxation of load balancing in‐
dex and power flow in this paper are exact.

4) The incremental benefits from feeder level to substa‐
tion level would decrease as the switching cost of high-level 
switches increases.
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Fig. 18.　Total objective and PVG curtailment under original network topol‐
ogy and multi-level switching modes.
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