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EMD-Att-LSTM: A Data-driven Strategy
Combined with Deep Learning for
Short-term Load Forecasting

Neeraj, Jimson Mathew, and Ranjan Kumar Behera

Abstract—Electric load forecasting is an efficient tool for sys-
tem planning, and consequently, building sustainable power sys-
tems. However, achieving desirable performance is difficult ow-
ing to the irregular, nonstationary, nonlinear, and noisy nature
of the observed data. Therefore, a new attention-based encoder-
decoder model is proposed, called empirical mode decomposi-
tion-attention-long  short-term memory (EMD-Att-LSTM).
EMD is a data-driven technique used for the decomposition of
complex series into subsequent simpler series. It explores the in-
herent properties of data to obtain the components such as
trend and seasonality. Neural network architecture driven by
deep learning uses the idea of a fine-grained attention mecha-
nism, that is, considering the hidden state instead of the hidden
state vectors, which can help reflect the significance and contri-
butions of each hidden state dimension. In addition, it is useful
for locating and concentrating the relevant temporary data,
leading to a distinctly interpretable network. To evaluate the
proposed model, we use the repository dataset of Australian en-
ergy market operator (AEMO). The proposed architecture pro-
vides superior empirical results compared with other advanced
models. It is explored using the indices of root mean square er-
ror (RMSE) and mean absolute percentage error (MAPE).

Index Terms— Short-term load forecasting, Australian energy
market operator, long short-term memory (LSTM), empirical
mode decomposition (EMD), attention mechanism.

[. INTRODUCTION

N past years, many studies have been conducted on differ-

ent techniques for time-series forecasting. The models es-
tablished using different methods are grouped into linear,
nonlinear, ensemble, and deep learning ones.

Linear functions are used in linear forecasting models.
Some of the prominent techniques of linear models are expo-
nential smoothing, linear regression (LR), autoregressive inte-
grated moving average (ARIMA), Holt-Winters, and other
derived techniques such as seasonal autoregressive moving
average (SARIMA). ARIMA is the most widely-used model
for linear time-series forecasting. Moreover, solving nonlin-
ear problems using linear forecasting models is challenging
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as linear models use linear relationships between the actual
and forecasted data.

Indeed, nonlinear forecasting models require a nonlinear
function for predicting load demands. These models are ef-
fective in learning the complex load behaviors. Hence, they
can be used for electric load forecasting. With the advances
in computing resources and computing power, nonlinear
models have garnered significant attention. Some widely-
used nonlinear models are support vector machine (SVM)
[1], artificial neural networks (ANNs) [2], fuzzy techniques
[3], and genetic algorithm (GA) [4].

In particular, a data-driven approach is used in ANNs, and
the data analysis is performed using limited prior knowledge
regarding the relationship between input and output data.
These models perform like the human brain as they learn de-
pendencies and patterns from the existing data and predict fu-
ture results. Some important ANN models are the generalized
regression neural network [5] and multilayer perceptron [6].

Reference [7] demonstrates a hierarchical ANN approach
for a 15-min-ahead forecasting. They implement five neural
networks (NNs) to observe different periods of 24-hour dura-
tion for predicting a day-wise electric load. The results of
these five NNs are subsequently combined using another ANN.

Reference [8] implements a technique based on wavelet
transform and NN for 1-hour- to 24-hour-ahead load forecast-
ing of North American data. In this technique, the load val-
ues are first decomposed into various components by apply-
ing the wavelet transform, and then the final forecasting is
made using the NN-based approach. Reference [9] proposes
a hybrid model comprising of the deep belief network
(DBN) and LR models to forecast the future values of time
series. After fitting the LR model to the original data, the
LR model residuals are used as the extra nonlinear inputs
for the DBN model.

Nonetheless, using these models has disadvantages such
as the output getting stuck to local minima during optimiza-
tion, hyper-parameter tunning, and appropriate kernel selec-
tion. Ensemble models are a combination of linear and non-
linear models; hence, they combine the advantages and over-
come the limitations of linear and nonlinear models to pre-
dict results accurately. Most ensemble models combine clas-
sical statistical models, machine-learning models, and decom-
position techniques. Reference [10] introduces an ensemble
deep learning methodology to predict time series, which
combines the results of different DBNs using the SVR mod-
el. Reference [11] presents an EMD-DBN-based method for
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short-term load forecasting (STLF), which uses two restrict-
ed Boltzmann machines (RBMs) and DBN to forecast the dif-
ferent intrinsic mode functions (IMFs) acquired from EMD.
Reference [12] proposes a methodology that combines
variational mode decomposition (VMD) and extreme learn-
ing machine (ELM) for STLF. First, VMD is used to decom-
pose the original time series and remove the skewness. Sub-
sequently, the obtained modes are used for forecasting by
ELM enhanced with the differential evolution algorithm.
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Ensemble models can achieve high accuracies. However,
the network architecture used by these models is completely
specific and complex. In addition, they are not well-
equipped to handle long-term dependency problems. These
models require a defined approach to address the issue of
convergence to local minima. Table I shows the advantages,
disadvantages, and similarities or dissimilarities among the
linear, nonlinear, and ensemble models. Additionally, it lists
some sample models.

TABLE 1
COMPARISON OF SEVERAL POPULAR TIME SERIES PREDICTION MODELS

Model Example Methodology Advantages and Disadvantages
Moving average (MA) MA and ES methods are applied for STLF. The data are collected for Universiti
& ox (g)nentialgsmooth- Teknologi PETRONAS (UTP), Malaysia, which are divided into two categories, i.
iI; (ES) [13] e., semester on (SON) and semester off (SOF). The load values for the year 2010
g are analyzed to forecast the load for the year 2011.
ARIMA model is used to predict monthly load. Five-year historical data are used to 1) Advantages:
ARIMA [14] forecast the sixth-year data. The model is a multiplicative combination of seasonal @ a linear function is used to
and non-seasonal patterns. The order for the model used is ARIMA(I, 1, 0) (1, 1, 0). predict the future values
A variant of ARIMA models, i.e., Box-Jenkins ARIMA, is used to forecast residential @ in?ﬂgﬁi:é:til((::di:zg:s
Box-Jenkins load in Greece. Fifty-year monthly and quarterly data are used for the analysis with @ lesls) data are required }%or
Linear ARIMA [15] a total of 180 samples. 156 samples are used to train the model and the remaining . 1
. training
models 24 observations are used to test the accuracy of the model. . .
2) Disadvantages:
ARIMAX model is used to forecast the power load for the commercial building. Oc- (D the forecasting accuracy is
ARIMA with an exter- cupancy data are used as an external feature to improve the performance of the not high
nal/exogenous input model. The hourly data for 79 days are recorded, out of which for 5 days are for (2) it is insufficient to repre-
(ARIMAX) [16] network login data and for 17 complete days are missing. The missing values are sent the non-linear behav-
handled by imputting the average of the non-missing values for that hour and week. iour of load series
SARIMA model is used to forecast Ghana using average monthly load demand data.
SARIMA [17] Ten-year data are considered for analysis, out of which for nine months are consid-
ered as training data, one year as validation, and the remaining as the test data to
test the model. The order of the model is SARIMA (1, 1, 1) (0, 1, 2).
SVR model is developed with immune algorithm (IA) to forecast the annual power
SVR [18] load in Taiwan, China. Data from 1981 to 2000 are used to train and test the mod-
el. The optimal parameters required to apply the SVR model are estimated using
simulated annealing approach. %ﬁAdvanthges: function i
- 1!
The LS-SVR model for load forecasting of a commercial space in Guangzhou, China. a non-hear uneton 18
. . . : used to predict the future
Least square SVR (LS- The hourly climate data and building cooling load for five months are considered values
SVR) [19] to tra.in thg model. Compared with ANN, the results show that LS-SVR performs @ It is more generalized,
superior using the mean absolute relative error (MARE). adaptable, and responsive
A feedforward ANN is developed to forecast cooling loads for three educational build- (3 the input and output pat-
Non- . - .
. ings in Singapore. The daily energy data of the last two years are used for the anal- terns can be mapped ac-
linear ANN [20] s The d divided i lel q N iation in the data. Th ’
models ysis. The data are divided into several classes to reduce the variation in the data. The curately
energy data for the previous five days are taken as the output to forecast the next day. ~ 2) Disadvantages:
Multi-laver @ it is easy to get stuck into
Y’ The combination of the MLP and RBFN is used for hourly air temperature forecast- local minima
perceptron (MLP) and . . . . . . . . .
radial basis function ing. Four models are developed with the 24'-h0ur time series of air temperature in a (2) it requires constralqt& such
network (RBEN) [21] day as the output, and the output layer consists of 24 neurons. as parameter tunning
L ) o 3 Kernel selection is a com-
A linguistic out-sample approach for fuzzy time series is used to forecast the daily plex process
Fuzzy neural power load in Malaysia. The weights of the fuzzy logical relationship (FLR) and
networks [22] the index number of close relationships in the fuzzy logical group are used. Daily
electric load data for eight months are considered for the analysis.
Differential-EMD An integrated DEMD approach is proposed to disintegrate the original load series in- 1) Advantages:
DEMD)-SVR- to different modes. The residual is then forecasted using the auto-regressive (AR) (D the combination of linear
( g g
SR [23] model, while IMFs with non-linear SVR for better forecasting accuracy. and non-linear models is
EMD-DBN [11] An EMD-DBN-based approach is proposed for STLF, where two restricted RBMs usTd to predict the future
and DBN are used to accurately predict the individual IMFs obtained from EMD. values
o . ) ) ] ) these models are more ro-
Ensem- Ensemble DBN An EDBN is implemented for time-series forecasting. The outputs from various bust and efficient
ble (EDBN)-SVR [10] DBNs are aggregated using the SVR model. ®) the forecasting accuracy is
models high

SSA-LSTM [24]

SSA-SVM-ARIMA-

cuckoo search (CS) [25]

SSA is used to eliminate the noisy components of a skewed load series. LSTM model
uses the outcome of SSA to forecast the final load.

SSA is used to decompose the original series to identify and extract interpretable com-
ponents from the original series. The linear part of the data is modeled using ARI-
MA and nonlinear part using the SVR optimized using the CS algorithm.

2) Disadvantages:

D a proper network composi-
tion is required

@ the complexity is high

@ it is easy to get stuck into
local minima
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Furthermore, deep learning models can capture the nonlin-
ear characteristics of time-series data. These models have a
unique ability of capturing the hidden features in the time se-
ries. Recurrent neural networks (RNNs) are considered to be
very powerful in managing the sequence dependence of time-
series data. The LSTM network [26], [27] is a particular
type of modified RNN widely used in deep learning to suc-
cessfully model a large amount of data. LSTMs are formulat-
ed explicitly to solve the problem of long-term dependency
encountered by RNNs. By default, LSTM networks can re-
member data for a long time. In this paper, we present a nov-
el attention mechanism using a sequence-to-sequence
(Seq2Seq) model combined with EMD as a data pre-process-
ing technique [28]. The Seq2Seq model is a deep neural net-
work model based on LSTM units. EMD is an empirical
method used in time-series analysis to characterize the in-
stantaneous frequency data from a nonlinear time series;
thus, it improves the forecasting accuracy. In addition, the
EMD decomposes a varying time signal into several IMFs
and a residual component, which corresponds to the trend
and seasonality.

The remainder of this paper is organized as follows. Sec-
tion II contains the theoretical background of the methodolo-
gies, data description, and a summary of methods. Section
IIT elaborates on the comparative studies on the experimental
results. Section IV draws the conclusions and presents the
outlook of future work.

II. PRELIMINARIES, DATA ANALYSIS, AND METHODOLOGY

A. LSTM Network

LSTM is a particular class of RNN models with a particu-
lar capability to remember long-term temporal dependencies.
The default property of these networks is to remember infor-
mation for long periods. In addition, these models have a
chain-like structure called cell state with repeating loops.
The repeating loops help the network retain relevant informa-
tion for short periods.

For an input sequence x,,X,,....X; (x, € R"), the LSTM net-
work calculates h, € R” for each time step ¢. The recurrent
function of the LSTM cell can be defined as:

(h,,c)=F(h, ,c,_,,x,) (1)
It can be expressed as:
Si=oW,[h_, x]+b,) )
i=c(W.[h,_, x]+b,) 3)
¢=tanh(W_[h,_, x,]+b,) 4
¢,=f0OC, ,+i0Oc¢ %)
o=cW,h,, x]+b,) 6)
h,=o0,0Otanh(c,) 7
where f. i, ¢ c.0,eR"; W, W, W, W,eR""; ¢, is the

context vector; b, b,, b., and b, are the bias vectors; and ©
represents the Hadamard product.
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B. Basic Attention Mechanism

Reference [29] proposes a basic attention mechanism,
which calculates the weighted sum of the encoder RNN out-
put and uses it to generate a context vector. Provided an in-
put x,,x,,...,x, it stores all the encoded data H=
[A,, h,,...h, ], where the dimension of H is nxm, m=T,
and n is the size of the RNN unit. The attention mechanism,
which is a feedforward neural network, accepts the previous
decoder hidden state &, and one of the cell state vectors d,_,
as input and then outputs a relevant score e, The mechanism
begins with computing e, (t=1,2,...,7) using the score func-
tion f,, () as:

e, =f;m (hn dt—l ) (8)

The attention score is a, (r=1,2,...,T), which is calculated
using the softmax function as:

exp (e,)
Dexple,)

The context vector C, (¢1=1,2,...,T) is the weighted sum
of all encoded data h, which can be expressed as:

T
C=>Yah, (10)
t=1

The computed value of C, is used to predict the output. In
the training process, C, is one of the decoder inputs along
with d,_, and p,_,, and the output is p, In the testing process,
the output from previous step y, ,, along with d, , and C,
are used as the input.

C. EMD

It is crucial to explore the inherent properties of time-se-
ries data to acquire the trend and seasonality components. In
1998, the EMD [28] was first introduced to decompose a sig-
nal into several IMFs and a residue using the Hilbert trans-
form without taking any base function or filter function. It
was observed that EMD works very well with nonlinear and
nonstationary time-series data. Each IMF corresponds to a
particular frequency band obtained from the original data.
The more complex the data composition is, the more IMFs
are obtained.

The original series S(f) can be reconstructed from the de-
composition by having a linear addition of all the IMFs
IMF, and the residual Res as:

softmax(a, )=

©

S(t)= D IMF,+ Res (11)
i=1

For the EMD, each IMF has to meet the following two
criteria:

1) In the entire information set, the numbers of extrema
and zero crossings should either be equal or different at
most by one.

2) The average of the envelope outlined by the native
maxima and minima should be zero.

The calculation of IMFs is an iterative process and contin-
ues until the number of extreme points is less than two,
which results in a residual series of decomposition.

The procedure of EMD is shown in Algorithm 1.
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Algorithm 1: the procedure of EMD

Step 1: consider the original series as S(¢) and take x(f)=S(¢) as initializa-
tion that should either be equal or different at most by one.

Step 2: find the extreme points of the series, which are termed as local
maxima e, and local minima e .

Step 3: use the extreme points and apply a cubic spline interpolation to
find the surrounding envelope.

Step 4: calculate the average of points on the surrounding envelope as:
m; ([): (emax.i+ € min, i )/2

Step 5: compute the difference A, (f)=x(¢)—m, (¢).

Step 6: if h,(¢) satisfies the two criteria mentioned above for an IMF, then
it is accepted as /MF,, otherwise repeat Steps 2-5 until valid IMFs are
found.

Step 7: update r(f)=x(t)—IMF, Repeat Steps 2-6 until the number of ex-
treme points is less than two, which results in residual series and de-
composition stops.

n

Finally, the original time-series signal is decomposed as:
x(t)=>e,+r (12)
i=1

where ¢, is the i" IMF extracted in the i" decomposition pro-
cess; and 7 is the final residue.

D. Data Description

For comparison, five publicly-available time-series datas-
ets of load demand from the AEMO repository [30] are
used. The datasets for 2013 are collected with a half-hour
sampling frequency, which provides 17520 samples for each
state (New South Wales (NSW), South Australia (SA), Tas-
mania (TAS), Queensland (QLD), and Victoria (VIC)).

Load demand depends on many external factors, such as
the time scale. Figure 1 shows the monthly load demand pat-
terns. Figure 2 shows the box-plot of the monthly load de-
mand in 2013.
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Fig. 1. Original series of monthly load demand.
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Fig. 2. Box-plot of monthly load demand.

Figure 2 shows that the median of load demand decreases
in the first quarter, increases in the second, decreases in the
third, and increases in the fourth. It suggests that the de-
mand data depends on the time-of-year effect because of the
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different working conditions of air conditioning and other
similar appliances in winter and summer. The datasets can
be categorized into four different seasons based on the time-
of-year effect: autumn (March, April, and May), winter
(June, July, and August), spring (September, October, and
November), and summer (December, January, and February).
To examine the seasonal component of the data, one month
from each season is considered, e.g., January, April, July,
and October are used. In this study, 80% (1152 samples) of
total samples are used as the training set, 10% (168 sam-
ples) as the validation set, and the rest (168 samples) as the
test set.

As a result, a cyclic pattern is identified in the data. Fig-
ure 3 presents the cyclic pattern in half-hourly and hourly da-
ta readings, and indicates that a daily cycle is repeated at a
regular time interval. Figure 4 shows the auto-correlation
plot for January in 2013 in NSW and a zoomed graph show-
ing auto-correlation among the first 96 lags. The correlation
between the lags decreases as the sample size increases. In
addition, a strong correlation among the first 96 lags is ob-
served, and it further decreases in the subsequent lags. Con-
sequently, we use grid search on various lag values to select
the desired features (time steps) for training the model. Ta-
ble II shows root mean square error (RMSE) values corre-
sponding to different lag values (time steps) for the NSW da-
ta. The lag value of 96 provides the lowest RMSE value.
The analysis confirms that the forecasting load depends on
the load of the current and previous days. Therefore, the
number of time steps in the model is 48 x2=96.
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s daly ey
= 8500 :
g
£ 7000
=]
£ 5500 . L ‘ ‘ t ‘ ‘
& 0 100 @ :200 300 400 500 600 720
Co Time (hour)
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~ 10000
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E 5000 k k k k k s ’

0 200 400 600 800 1000 1200 1440
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Fig. 3. Cyclic patterns of example time-series. (a) Hourly data. (b) Half-
hourly data.
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Fig. 4. Auto-correlation plot for January in 2013 and zoomed graph show-
ing auto-correlation among the first 96 lags. (a) Auto-correlation plot. (b)
Zoomed graph.
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TABLE 1T
RMSE VALUES CORRESPONDING TO DIFFERENT TIME STEPS FOR NSW DATA

Time step - RMSE
January April July October
96 556.56 287.24 263.15 158.97

148 567.11 291.67 271.07 159.09
240 567.45 288.45 271.86 163.22
288 581.24 298.90 288.58 172.01
336 564.22 285.32 266.44 159.78
384 603.98 312.45 291.81 188.29

The forecasting process is mainly divided into two phases.
In the first phase, EMD is used to gain the underlying multi-
scale dynamics of the load time series such as trend and sea-
sonality. In the second phase, an attention-based deep learn-
ing model is used to predict the decomposed time series.

The flow chart of the procedure for the proposed EMD
model is shown in Fig. 5. After grouping the data into stable
and unstable IMFs and residual terms, the fine-grained atten-
tion-based model predicts each group. Figure 6 shows the
training procedure of the proposed model, where Result is
the corresponding forecasting result.

Load series
|

v
Test set

Training set <<
l Sequential addition
EMD Apply EMD on

each addition

v
Total decomposition

¢—j—¥

Group A Group B
J

|
Y

Statistical and algorithmic analysis
|

12 12 12 ¥ 12
Stable /MF, Stable IMF, --- Stable IMF,, All unstable  Residue
IMFs

Training set
EMD

All IMFs

Fig. 5. Flow chart of procedure for EMD model.
All IMFs
|
¢ y v v V
Stable IMF,  Stable IMF,  Stable IMF, ~ Combined Residue

v ¥ v unstable IMFs y
Model training Model training Model training ¥ Model training

' ' p Model training '

Result, Result, Resulty, \ Result, e
Result,

l ‘ ‘ lunstable ‘

Forecasting results

Fig. 6. Flow chart of training procedure for proposed model.

A divide-and-conquer algorithm recursively divides the
problem into sub-problems for simplification and directly
solve simple sub-problems. Subsequently, sub-problem solu-
tions are combined to find the solution of the original problem.

In the proposed method, the load demand data are decom-
posed into several IMFs and one residue using the EMD
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method. Even though the EMD decomposes complex series
into subsequent simpler series, it is necessary to thoroughly
check the decomposition stability. This information helps the
training process as stable information and leads to a more
precise estimation. To perform our analysis, we consider the
season-wise data. The main idea is to check whether the da-
ta remain stable after adding more samples. The insights into
our approach can be explained as follows.

Step 1: season-wise data are divided into the training and
testing sets.

Step 2: the EMD is performed on the training set to ob-
tain the respective IMFs and residual series.

Step 3. data from the test set are added one by one, and
decomposition by EMD is carried out every time.

Step 4: Step 3 is repeated until the entire test set is added
sequentially.

Step 5: after obtaining total decompositions, we divide
them into two groups: Group A and Group B, representing
decompositions with the most frequent count of IMFs (in
our case it is 9) and the remaining decompositions, respec-
tively.

Step 6: a statistical approach such as Pearson correlation,
and a comparison algorithm such as the lower bound (LB)
[31] are used to check the stability of each IMF in the
groups.

Step 7: based on the results, the entire decomposition set
is divided into three sets: stable and unstable IMFs, and resi-
due.

Step 8: using the algorithm explained in Algorithms 2-4,
the attention-based LSTM is trained to obtain the forecasting
results for each set.

Step 9: all the forecasting results are combined by summa-
tion to formulate an ensemble output for time series.

The existing attention models use the single scalar score
for a context vector C, at time ¢. It is observed that instead
of using a single scalar of context vector C, it might be ben-
eficial to calculate and use the scalar score for each dimen-
sion of the hidden state &, at time ¢, as each dimension repre-
sents a different perspective of the captured internal struc-
ture. In the encoder-decoder model computation, C, shares
the same attention score, resulting in an equal contribution
of all dimensions of #,.

Reference [32] shows that when different dimensions of
encoded information are considered differently, and the atten-
tion is applied to each dimension, it results in a better-per-
forming model. Inspired by [32], we propose a fine-grained
attention model. In the proposed model, scalars are main-
tained for each dimension in H, which results in an increase
in the number of attention scalars from 7 to n7T. Equations
(13) and (14) illustrate the comparison between the basic at-
tention model and the fine-grained attention model.

o h, +o,h,+...+0.h,=c, (13)
alhi+a'hi+...+ayhi=c]

2 27,2 2
oihi+ah3+...+ozhr=c; (14)
othi+oshi+...+ohy=c!
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In the proposed model, we extend the score function f, ()
to return a set of scores corresponding to the dimensions of
the hidden state vector /&, which is expressed as:

e/ =fu(h.d_,) 15)
where e/ is the score assigned to the n" dimension of con-

text vector; and f, is the fully-connected neural network.
These dimension-specific scores are further normalized di-

mension-wise, which is expressed as:

a;l — Texp(et ) 16
> explel) 1o
t=1
The context vectors are then computed as:
-, -
Dah,
t=1
T
27,2
c-|h (1)

i
Dok
L=

Algorithms 2-4 explain the pseudocode for the steps used
in data preparation, LSTM encoder, and attention and decod-
er LSTM, respectively.

Algorithm 2: Pseudo code for data preparation

Step I: scale the stable IMFs (X)), unstable IMFs (X, ), and residual IMFs
(X)) using MinMaxScalar.

Step 2: define and initialize the different values to be used such as batch
size, train size, time steps, and forecasting steps.

Step 3: divide the three series into train, test, and validation sets and cre-
ate 9 series, i.e., Xx.ir'ain’ Xx.lest’ )(A'.va[idaliorv Xum‘.lest’ Xmu-wlidmmn’ Xr.lrain’
X, resrr AN X, iaions TESPECtivEly.

Stepy4: create three models for each training series, i.e., model,, for X ain?
model,,, for X, and model,,, for X, using Algorithm 3.

un, strain® S 7, train

Algorithm 3: Pseudo code for LSTM encoder

Step I: encoder takes N (the length of X, ), M (the number of LSTM

units), and 7 (the number of time steps initialized in Algorithm 2) along

with X, as the inputs.

Step 2: encoder using the LSTM cell as an encoded model (model,,) is
created using N and M.

Step 3: define the initial hidden states and cell state at time ¢ as &, and d,
with zeros using the size of the X, and M, respectively.

Step 4: iterate over the input through time 7" and take X,

at time ¢ as

rain

X s

Step”g?”take X, as the input to the model,, along with &, and d,.

Step 6: take the output hidden states in &, and d, and use them as the in-
put to the model in the next iteration.

Step 7: output h, to the encoded input.

Step 8: at the end of this iteration, the encoded input is completely popu-
lated for the complete size of the input.

III. EXPERIMENTAL WORK

A. Variable Decomposition Results of EMD

The number of decompositions depends on the complexity
and length of the series, that is, the more complex the forma-
tion of data, the more IMFs obtained. In particular, the de-
composition may be affected by various exogenous factors
in addition to new data, as shown in Fig. 8. Similarly, it can
be observed that there is a variable count of IMFs, i.e., 7, 8,
and 9 when new data are added.

Algorithm 4: Pseudo code for attention and decoder

Step 1: encoder takes N, M, and T along with X, . as the input.

Step 2: encoder uses LSTM cell as an encoded model model,, using N
and M.

Step 3: define the initial hidden states and cell state at time ¢ as &, and d,
with zeros using the size of the X, and M, respectively.

Step 4: define the initial context vector c; at time ¢ and hidden state A}
using encoded input size.

Step 5: iterate over the input through time T and define encoded,,,, at
time ¢ as encoded,,,,,

Step 6: concatenate the hidden states 4, and d, and store it in A,

Step 7: apply the linear weight to h, to use it as the weight for attention
mechanism and store it in w,.

Step 8: iterate over the different dimensions » of hidden state /,.

Step 9: apply the linear weight to encoded,,,,,(n), which is the n
sion of the hidden state &, and store it in w,.

Step 10: add w, and w,, and apply tanh(-) to it, then store the output into w.

Step 11: apply the linear weight to w and store it in w.

Step 12: apply softmax(-) to w and store it into n.

Step 13: multiply n, to encoded,,,,, using the 1* dimension, as the 1% di-
mension stores the dimension of hidden state.

Step 14: store the output as context vector at time ¢ for the n™ hidden
state, i.e., ¢}.

Step 15: store the sum of all the ¢ obtained from the loop into ¢, as con-
text vector at time ¢.

Step 16: concatenate y, . at time ¢ to ¢, and apply linear weight to it.

Step 17: store the result in y,.

Step 18: apply model,, to y, along with the inputs h, and d, hidden states.

Step 19: store the output hidden states in 4, and d,.

Step 20: use the updated hidden states in the next iteration of 7.

Step 21: concatenate context vector and hidden state at step 7 and store it
into d;.

Step 22: apply the linear weight to d., to calculate the output and store
the output in decode output.

" dimen-

Although we are unaware of hidden factors affecting the
number of IMFs, it is necessary to train the model using the
most stable IMFs to obtain the best estimation.

We choose legitimate IMFs that will not significantly
change when the quantity of deterioration results shifts with
the addition of new data. Therefore, we add the state of new
information in each step and subsequently evaluate the IMFs
using EMD. Subsequently, each recording is taken at a sam-
pling frequency of 30 min from the test set, and the EMD is
re-executed to decompose the results every time. We record
each decomposition and achieve the statistics discussed earli-
er. From the 480 decomposition results, there are 48 instanc-
es of 7 IMFs, 417 instances of 8 IMFs, and 15 instances of
9 IMFs. Based on this analysis, it is concluded that the final
decomposition consisting of the entire data result is 8 IMFs.

It can be observed that most data have a similar decompo-
sition outcome as 8 IMFs, whereas some data have variable
results depending on hidden and exogenous factors. When
the final result of decomposition has a constant number of
IMFs, the decomposition results are categorized into groups
A and B. Group A consists of most cases, i.e., 8§ IMFs, and
group B contains the other instances. Subsequently, all de-
composition results are compared with the final result using
the Pearson correlation [33] and LB [31] between the corre-
sponding IMFs, which can ignore the order of magnitude.

Table III shows that only the IMFs 1-4 are stable, while
the rest of them exhibit a larger variance. Therefore, we com-
bine the unstable components as one frequency band and
train the stable IMFs separately.
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Fig. 8. Variable decomposition results of EMD after adding new informa-
tion in existing data. (a) Decomposition results on training data of NSW da-
taset. (b) Decomposition results after adding the 17" sample from test data
in training samples of NSW dataset.

The frequency combination is performed to reduce the in-
dividual errors that could be induced on separate training.
Thus, the 8 IMFs are formed in groups of three for training.
IMFs 1-4 form the most stable group, whereas the frequen-
cies of IMFs 5-7 from unstable and residual parts are trained
separately to obtain the trend of the series. The forecasting
result of each group is linearly added to obtain the final fore-
casting. Moreover, no IMF should be missed because it may
mismatch with the scale of the end result. We divide each
group into training, validation, and testing samples. The
training samples are pre-processed, and the min-max scaler
performs the scaling. This increases the convergence rate of
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the training mechanism. To avoid large weights in the high-
extent training values, data are scaled between [—1, 1]. In this
study, we use an LSTM-based fine-grained attention mecha-
nism (EMD-Att-LSTM) because it successfully performs
with temporal data. This model is selected owing to its abili-
ty to handle long-term dependencies and its fast convergence
rate. The model training is performed using the lookback
(sliding window) mechanism on the training dataset. The
sliding window is the history data or preceding time steps
used as the input to forecast the next time step. The forecast-
ing is performed on a daily manner. An exhaustive search
technique is used for hyper-parameter tuning. The input to
the model has a shape with 96 time steps. Two LSTM layers
are used in the model. The output of the first layer is used
as the input to the second layer. The first LSTM layer uses
96 neurons, whereas the second layer contains 48 neurons.
The rectified linear unit (ReLU) is used as the activation
function in both layers. The layers also follow batch normal-
ization and dropout with a value of 0.20 to avoid the model
over-fitting. The output layer does not contain any activation
functions. Only a dense layer is used as the output layer.
The Adam optimizer is used in the model training mecha-
nism. The learning rate and momentum values are 0.001 and
0.90, respectively. The model is trained for 150 epochs using
a batch size of 20. We use the Pytorch machine-learning li-
brary [34] to implement our model. In addition, we use
mean absolute percentage error (MAPE) and RMSE indices
to assess the performance of the proposed model.

TABLE III
ANALYSIS OF EACH DECOMPOSITION ON NSW DATASET

Mean value
Method IMF
All data Group A Group B
IMF, 0.4661 0.4753 0.4376
IMF, 0.4859 0.4862 0.4850
IMF, 0.4426 0.4419 0.4447
. IMF, 0.4599 0.4596 0.4608
Pearson index
IMF 0.3805 0.3808 0.3798
IMF 0.4202 0.4311 0.3869
IMF, 0.3261 0.3548 0.2374
IMF 0.1507 0.1551 0.1371
IMF, 693.1300 551.2600 592.5400
IMF, 2567.6800 2413.4200 3043.0600
IMF, 13878.3300  13942.9600  13678.9400
) IMF, 14287.7700  14107.7600  14943.4500
Keogh index
IMF 10216.4700 9925.5100  11114.1000
IMF 11163.9300  10164.8900  14246.0800
IMF, 10258.2600 9148.0400  13683.3100
IMF 29094.0100 1387.5200  76038.5400
IV. RESULTS

In this section, we compare the output of the proposed
method to that of some existing advanced methods, includ-
ing persistence models, SVR [35], ANN [36], DBN [37], RF
[38], EMD-SVR [39], EMD-ANN [40], ensemble DBN [10],
EMD-DBN [11], DMD [41], and VMD-Att-LSTM. We con-
sider half-an-hour- and one-day-ahead as the two forecasting
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horizons for the comparative study. To reflect different sea-
sons, one month is selected from each season, that is, Janu-
ary, April, July, and October.

A. Comparison Results for Half-an-hour-ahead Forecasting

The persistence model is the most basic one of the exist-
ing models used for STLF. The series must be stationary to
apply the persistence model; thus, these models consider lim-
ited skewness during STLF. Therefore, these models can be
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used as a basis for evaluating the efficiency of various deep
learning, data-driven, and ensemble structures. Table IV pres-
ents half-an-hour-ahead forecasting of various advanced mod-
els. The bold font indicates the best performing model for
certain time series. The basic machine-learning algorithms,
such as SVR, ANN, DBN, and RF are used to model the
electric load time series, which are subsequently coupled
with EMD to form hybrid models and improve the forecast-
ing performance.

TABLE IV
HALF-AN-HOUR-AHEAD LOAD FORECASTING RESULTS

Prediction models

Data- .. EMD- EMD- EMD- VMD-
Time Index - -
set Persistence 8[\3/5R] A[I3\2\]I D[];%] F;;] LSTM E][)ll?)? SVR  ANN EIKI? ]]fg/[T]i/l DBN  Att- Proposed
[39] [40] [11] LSTM
I RMSE 164.02 6424 96.66 79.16 9336 78.01 7542 7856 82.11 76.10 57.29 49.86 46.61 47.94
anua
i MAPE (%) 1.64 0.93 0.98 0.78 0.88 0.76 0.70 0.78 0.88 0.76  0.64 053 041 0.45
April RMSE 248.14 162.57 140.74 70.36 142.85 132.78 13447 114.09 87.76 120.16 7191 69.55 57.93 44.58
i
- P MAPE (%) 2.43 1.88 1.26 0.64 1.18 1.13 1.14 1.07 0.82 1.10  0.64 0.65 0.61 0.46
Tul RMSE 235.66 117.87 165.42 105.63 11483 7226 78.09 7429 81.22 120.77 63.67 75.09 68.65 52.81
u
Y MAPE (%) 2.31 1.20 1.68 1.09 1.20 0.71 0.67 0.67 0.81 122 051 070 0.54 0.44
Octob RMSE 159.98 5826 76.64 62.58 69.06 57.87 6436 5458 66.00 76.58 5576 51.68 49.04 37.54
ctober
MAPE (%) 1.65 0.64 0.82 0.70 0.75 0.62 0.66 0.60 0.74 0.82 0.62 055 0.63 0.39
| RMSE 17.80 13.87 13.84 1290 11.80 12.03 13.24 12.54 11.39 1352 9.03 11.59 943 6.43
anua
i MAPE (%) 1.27 1.09 1.09 1.01 1.03 1.08 1.06 0.97 0.78 1.09 0.57 074 0.59 0.46
Anril RMSE 37.42 2526 27.03 19.53 2482 2199 2135 21.76 18.03 25.19 16.81 16.23 13.78 8.80
11
TAS P MAPE (%) 2.32 1.49 1.63 1.25 1.26 1.24 1.21 1.36 1.16 145 1.11 1.07  0.89 0.57
Tul RMSE 43.84 34.03 3397 3043 33.59 2871 22.62 3090 29.14 3234 1845 2444 19.22 11.35
u
Y MAPE (%) 2.73 2.10 2.03 1.76 2.07 1.79 1.36 1.91 1.98 217 1.15 .54  1.15 0.72
P RMSE 22.80 1589 1849 1680 1694 1437 2041 1494 937 13.69 949 838l 7.96 8.03
ctober
MAPE (%) 1.63 1.09 1.36 1.19 1.19 1.02 1.34 1.06 0.70 097 0.72 0.66 0.55 0.55
I RMSE 109.39 51.31 6297 4495 4030 43.51 51.03 42,12 33.88 33.34 33.72 2539 3425 31.20
anua
i MAPE (%) 1.50 0.70 0.85 0.62 0.59 0.61 0.63 0.57 0.48 044 046 034 047 0.42
April RMSE 137.11 71.30  65.84 4848 5720 5798 60.27 51.30 56.02 5478 43.65 48.34 3498  24.55
Il
QLD P MAPE (%) 1.91 0.94 0.93 0.66 0.86 0.82 0.75 0.61 0.73 0.81 059 067 0.1 0.34
Tul RMSE 127.23 46.07 51.79 3845 4552 40.19 42.00 3553 4148 4539 2931 30.61 29.03 21.08
il MAPE (%) 1.92 0.72 0.82 0.54 0.85 0.57 0.60 0.53 0.62 0.69 042 044 042 0.31
Octob RMSE 110.19 5790 63.17 61.03 61.37 4893 5549 5489 46.78 4841 41.23 4046 3998  34.63
ctober
MAPE (%) 1.61 0.80 0.92 0.86 0.77 0.68 0.71 0.75 0.69 0.67 0.59 056 0.50 0.47
i RMSE 174.95 117.79 114.73 106.25 120.34 87.60 78.58 82.96 117.45 115.66 5875 98.75 51.71 38.85
anua
Ay MAPE (%) 2.52 1.54 1.55 1.32 1.58 1.20 1.05 1.09 1.56 1.59 0091 1.35 0.87 0.58
April RMSE 162.18 148.89 149.20 104.48 10234 78.11 7559 96.24 77.02 6830 53.72 64.11 5140 38.24
ri
vIC P MAPE (%) 2.15 1.97 1.99 1.49 1.53 1.02 0.98 1.33 0.99 092 0.67 087 0.62 0.58
Tl RMSE 171.99 69.41 11943 86.63 62.57 69.47 6636 119.27 11434 61.84 56.34 58.70 45.07 45.12
u
Y MAPE (%) 2.44 1.01 1.74 1.26 1.00 1.06 0.91 1.73 1.67 0.88 0.85 0.88 0.60 0.60
Octoh RMSE 139.47 62.88 96.63 91.20 87.11 67.74 68.50 90.49 91.38 55.19 46.19 5795 43.16 33.00
ctober
MAPE (%) 1.97 0.92 1.42 1.35 1.20 0.93 0.89 1.23 1.23 0.85 0.71 084 0.66 0.48
I RMSE 72.11 50.37 55.65 59.17 5392 47.11 39.87 5829 4634 4252 2937 5191 2723 18.97
anua
i MAPE (%) 3.04 1.92 2.33 2.54 2.23 1.81 1.69 2.29 1.73 1.55 132 1.69 1.19 1.19
April RMSE 58.53 4540 39.55 4485 4642 4263 3565 26.14 2798 3127 26.01 3344 21.40 19.80
Il
SA P MAPE (%) 3.03 1.93 2.33 2.54 2.50 1.81 1.75 1.37 1.54 1.83  1.35 1.89 1.24 1.25
Tul RMSE 75.05 47.68 56.12 4855 5999 3854 38.03 37.38 39.16 3193 29.75 29.18 20.27  20.51
d MAPE (%) 425 2.34 3.53 3.07 3.49 1.97 1.98 2.17 2.33 1.86 1.73 1.70  1.12 1.15
Ostob RMSE 48.49 4274 3794 4056 4248 3644 4359 30.16 25.14 2659 2253 3417 21.73 15.85
ctober
MAPE (%) 2.62 1.77 2.23 2.17 2.30 2.19 1.92 1.67 1.69 1.71  1.51 1.62 1.48 0.95




NEERAIJ et al.: EMD-ATT-LSTM: A DATA-DRIVEN STRATEGY COMBINED WITH DEEP LEARNING FOR SHORT-TERM LOAD FORECASTING 1237

B. Comparison Results for One-day-ahead Forecasting brid models are used for half-an-hour-ahead forecasting. The

Table V shows one-day-ahead forecasting results. The per- persistence model is used as a reference model for other

sistence model and the same set of machine-learning and hy- Mmodels as the dataset includes daily seasonality.
TABLE V
ONE-DAY-AHEAD FORECASTING RESULTS

Prediction model
Data- EMD- EMD- EMD- VMD-

Time Index is- - - _

- R R
RMSE 97824 70343 750.53 639.75 521.14 603.27 636.03 611.20 748.30 544.17 579.87 541.53 445.79 50144 556.56

JaUAY \IAPE (%) 855 623 720 595 426 509 570 519 666 454 498 462 420 437 455
 RMSE 72954 47438 578.05 361.63 500.70 377.10 551.74 569.28 512.59 49528 349.08 377.63 504.39 404.24 287.24

W APl VIAPE %) 671 427 SAL 336 425 387 478 527 457 421 331 322 S04 389 317
RMSE  609.82 57430 53475 415.81 387.15 40135 414.90 402.69 345.90 353.90 37621 322.04 329.12 288.07 263.15

MY VIAPE ) 622 586 538 411 401 391 407 395 309 367 380 308 313 271 249
RMSE  587.14 39332 345.07 350.82 296.53 307.22 334.12 272.01 299.34 333.82 247.91 28234 33323 211.66 158.97

Oclober \\ APE (%) 536 374 348 341 278 299 314 276 290 317 236 271 315 198 169
RMSE  89.82 6097 69.92 63.96 6590 58.11 60.68 6173 6338 5851 53.56 56.10 5538 4591  46.64

lanuary U APE () 724 481 542 498 477 467 482 449 487 467 407 405 430 326 345
 RMSE 15773 111.89 9440 93.18 92.64 8437 109.78 10459 8741 8661 72.04 85.13 9330 6745 49.63

xS APl VIAPE %) 1022 748 630 612 610 575 728 687 592 580 480 580 721 498  3.09
RMSE 12047 9099 89.17 87.30 9048 9467 85.19 9254 8292 81.34 9133 7391 77.77 8077 90.50

MY VIAPE %) 811 589 628 604 617 593 604 609 550 554 506 493 516 587 508
RMSE 10946 7945 7286 7573 69.80 69.13 80.81 8285 80.85 73.86 6476 6826 69.06 68.11 64.73

Oclober \ APE (%) 748 555 524 515 463 451 505 560 563 488 470 475 520 450 461
RMSE  461.09 282.07 299.32 228.86 195.85 324.56 218.55 19620 273.70 178.63 311.16 19122 513.10 371.80 354.78

Ay \IAPE 6) 525 365 361 278 241 503 269 256 328 221 491 256 736 568 5.4

— RMSE  489.63 266.39 339.93 247.56 231.01 20130 25934 264.00 237.58 201.74 190.87 243.68 326.72 175.01 152.85

oip Al UAPE %) 625 353 377 299 278 237 333 347 341 244 226 293 386 213 246
juy  RMSE 43046 22317 20300 21320 IS6.08 8501 15945 16468 17464 150.01 18697 14284 176.77 15288 148.36
MAPE (%) 590 300 303 295 232 262 232 246 245 229 271 208 242 218 188

ey RMSE 41733 29876 263.12 25134 23650 263.65 292.93 21871 24855 26094 21544 219,19 247.37 19307 18155
MAPE (%) 554 393 346 340 283 370 353 282 327 315 279 283 313 289 259

RMSE 99074 587.98 81143 91521 739.65 603.17 762.16 806.29 781.17 783.58 567.50 762.57 469.67 532.96 514.93

Ay \IAPE (6) 948 706 932 879 877 689 904 948 907 932 606 886 665 828 777
aprit | FMSE 66987 33093 359.03 35302 366.16 41189 343.18 363.50 37612 393.63 403.34 32159 479.99 3§00 39050

vic MAPE (%) 840 443 495 455 465 523 449 467 479 504 538 435 508 478 501
RMSE 72185 297.07 305.88 276.25 302.15 283.45 285.14 298.12 386.64 300.65 269.50 28545 401.92 277.35 259.85

MY VAPE %) 976 438 429 372 429 379 365 427 529 426 359 383 538 381 343
oeber  RMSE 7770 39LII 34791 389.06 36432 352.81 40102 309.63 33244 34406 329.10 322.91 295.90 26046 26222
MAPE (%) 830 450 479 485 416 466 472 378 415 392 367 373 409 370 379

fanuary  RMSE 43357 33710 411,66 401,25 349.87 307.12 363,49 28070 397.66 28885 24431 23809 24072 195.94 11859
MAPE (%) 1432 1334 1372 1362 1341 12.89 1443 1113 1380 13.03 1277 1046 1267 970 7.5

At RMSE 18020 12443 11940 11761 127.90 17001 10539 121,60 12678 12460 16790 12531 17029 16823 176,30

» MAPE (%) 936 671 642 667 68 698 656 678 687 665 910 676 1095 9.17  6.60
juy  RMSE 28994 15084 15106 14823 154,67 15141 14855 14178 15322 16171 15322 160.82 16048 15158 137.42
MAPE (%) 1684 854 866 850 895 878 859 848 953 912 889 960 927 899 791

Oeobey  RMSE  240.53 210.72 23348 204.16 21830 199.61 203.53 20338 199.77 20970 14730 192.74 9128 10854 6450

MAPE (%) 11.54 894 1003 933 911 790 932 839 854 822 701 822 522 682 3.54

Figure 9 shows the comparison result of the original and a better accuracy. Additionally, to compare the performance
forecasting load series for one-day-ahead forecasting using of the proposed model with the existing methods, a nonpara-
the dataset of NSW. The forecasting and original time series index statistical test, namely the Friedman rank test [42], is
show the same pattern, proving that the proposed model has employed. The Friedman rank test is a post-hoc test used to
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compare regressor models.
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Fig. 9. Original and forecasting load series for one-day-ahead forecasting us-
ing NSW data. (a) January. (b) April. (c) July. (d) October.

The half-an-hour- and one-day-ahead forecasting outputs
of the Friedman rank test [43], [44] are shown in Fig. 10.
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Fig. 10. Forecasting results of Friedman rank test. (a) Half-an-hour-ahead.
(b) One-day-ahead.
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A high rank implies that the model is not performing satis-
factorily. The rank of the proposed model is the lowest, indi-
cating that it is the best model for half-an-hour- and one-day-
ahead forecasting. Additionally, p-value is the indication of
variation in the procedure. A value smaller than 0.05 implies
a high variation. Furthermore, the Wilcoxon signed-rank test
[23], [45]-[47] is used to prove the statistical significance of
the proposed model and a significance level of a=0.05 is
used. Table VI shows the test outputs for the half-an-hour-
and one-day-ahead forecasting. The results indicate that the
proposed model outperforms other models.

TABLE VI
WILCOXON SIGNED-RANK TEST RESULTS FOR HALF-AN-HOUR- AND ONE-
DAY-AHEAD FORECASTING RESULTS

Models for comparison p-value

with EMD-Att-LSTM Half-an-hour One-day
Persistence 0.0001 0.0001
SVR 0.0001 0.0019
ANN 0.0001 0.0028
DBN 0.0001 0.0045
RF 0.0001 0.0169
LSTM 0.0001 0.0136
EDBN 0.0001 0.0051
EMD-SVR 0.0001 0.0080
EMD-ANN 0.0001 0.0019
EMD-RF 0.0002 0.0137
EMD-LSTM 0.0002 0.0216
EMD-DBN 0.0028 0.0333
DMD 0.0051
VMD-Att-LSTM 0.0074 0.0318

A comparison between the proposed and existing models
using half-an-hour- and one-day-ahead forecasting is shown
in Fig. 11. The RMSE of the proposed model are lower than
those of other models for half-an-hour-ahead forecasting.
This can be seen for all the four selected months. Thus, the
proposed model outperform the existing advanced models.
Improved results can also be seen for one-day-ahead fore-
casting.

1000

0 - - ' 0 - : '
January  April July  October  January April July  October

Time Time
(a) (®)

-+ Persistence; -+ SVR; -+ ANN; -+ DBN; -+ RF; - LSTM; -~ EDBN
- EMD-SVR; -+ EMD-ANN; -+ EMD-RF; -+ EMD-LSTM; -+ DMD
~+ EMD-DBN; -+ VMD-Att-LSTM; -+ Proposed
Fig. 11. Comparison of all models based on forecasting results. (a) Half-an-

hour-ahead forecasting. (b) One-day-ahead forecasting.

Bar plots are shown in Fig. 12(a) to compare the perfor-
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mance of DMD and VMD-Att-LSTM with the proposed
model on the NSW dataset considering RMSE. Additionally,
to prove the effectiveness of the proposed model, a three-di-
mensional (3D) plot is drawn between DMD, VMD-Att-
LSTM, and the proposed model considering all the five data-
sets. Consequently, it is clear that the forecasting accuracy
of the proposed model is higher than that of DMD. In addi-
tion, empirical evaluation shows that the performance of the
proposed model is comparable to that of existing advanced
models.
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Fig. 12. Comparison of performance of DMD, VMD-Att-LSTM, and pro-
posed method. (a) Using NSW dataset. (b) Using all five datasets.

V. CONCLUSION

This paper introduces a new approach using a hybrid mod-
el comprising EMD and a fine-grained attention mechanism.
The introduction of a new EMD approach enables the identi-
fication of stable, unstable, and residual terms using the two
statistical matrices, i.e., LB and Pearson correlation. The pro-
posed attention mechanism EMD-Att-LSTM provides multi-
ple attention scores for each hidden state &, which helps ob-
tain a better perspective of the internal structure of each hid-
den state. The proposed model is evaluated using the AEMO
electricity load datasets. The proposed architecture is tested
with some existing advanced models such as VMD-Att-
LSTM, DMD, EMD-DBN, EMD-LSTM, EMD-RF, EMD-
ANN, EMD-SVR, EDBN, RF, LSTM, DBN, ANN, and
SVR using MAPE and RMSE. Some of the observations can
be summarized as follows.

1) In general, the EMD-Att-LSTM approach outperforms
the existing single-structure and hybrid models in half-an-
hour- and one-day-ahead forecasting.

2) The proposed model provides the best results consider-
ing the Friedman rank test and Wilcoxon signed-rank test re-
sults.

3) The proposed architecture can process nonlinear fea-
tures of the load time series when the forecasting horizon is
increased.
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