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EMD-Att-LSTM: A Data-driven Strategy 
Combined with Deep Learning for 

Short-term Load Forecasting
Neeraj, Jimson Mathew, and Ranjan Kumar Behera

Abstract——Electric load forecasting is an efficient tool for sys‐
tem planning, and consequently, building sustainable power sys‐
tems. However, achieving desirable performance is difficult ow‐
ing to the irregular, nonstationary, nonlinear, and noisy nature 
of the observed data. Therefore, a new attention-based encoder-
decoder model is proposed, called empirical mode decomposi‐
tion-attention-long short-term memory (EMD-Att-LSTM). 
EMD is a data-driven technique used for the decomposition of 
complex series into subsequent simpler series. It explores the in‐
herent properties of data to obtain the components such as 
trend and seasonality. Neural network architecture driven by 
deep learning uses the idea of a fine-grained attention mecha‐
nism, that is, considering the hidden state instead of the hidden 
state vectors, which can help reflect the significance and contri‐
butions of each hidden state dimension. In addition, it is useful 
for locating and concentrating the relevant temporary data, 
leading to a distinctly interpretable network. To evaluate the 
proposed model, we use the repository dataset of Australian en‐
ergy market operator (AEMO). The proposed architecture pro‐
vides superior empirical results compared with other advanced 
models. It is explored using the indices of root mean square er‐
ror (RMSE) and mean absolute percentage error (MAPE).

Index Terms—— Short-term load forecasting, Australian energy 
market operator, long short-term memory (LSTM), empirical 
mode decomposition (EMD), attention mechanism.

I. INTRODUCTION 

IN past years, many studies have been conducted on differ‐
ent techniques for time-series forecasting. The models es‐

tablished using different methods are grouped into linear, 
nonlinear, ensemble, and deep learning ones.

Linear functions are used in linear forecasting models. 
Some of the prominent techniques of linear models are expo‐
nential smoothing, linear regression (LR), autoregressive inte‐
grated moving average (ARIMA), Holt-Winters, and other 
derived techniques such as seasonal autoregressive moving 
average (SARIMA). ARIMA is the most widely-used model 
for linear time-series forecasting. Moreover, solving nonlin‐
ear problems using linear forecasting models is challenging 

as linear models use linear relationships between the actual 
and forecasted data.

Indeed, nonlinear forecasting models require a nonlinear 
function for predicting load demands. These models are ef‐
fective in learning the complex load behaviors. Hence, they 
can be used for electric load forecasting. With the advances 
in computing resources and computing power, nonlinear 
models have garnered significant attention. Some widely-
used nonlinear models are support vector machine (SVM) 
[1], artificial neural networks (ANNs) [2], fuzzy techniques 
[3], and genetic algorithm (GA) [4].

In particular, a data-driven approach is used in ANNs, and 
the data analysis is performed using limited prior knowledge 
regarding the relationship between input and output data. 
These models perform like the human brain as they learn de‐
pendencies and patterns from the existing data and predict fu‐
ture results. Some important ANN models are the generalized 
regression neural network [5] and multilayer perceptron [6].

Reference [7] demonstrates a hierarchical ANN approach 
for a 15-min-ahead forecasting. They implement five neural 
networks (NNs) to observe different periods of 24-hour dura‐
tion for predicting a day-wise electric load. The results of 
these five NNs are subsequently combined using another ANN.

Reference [8] implements a technique based on wavelet 
transform and NN for 1-hour- to 24-hour-ahead load forecast‐
ing of North American data. In this technique, the load val‐
ues are first decomposed into various components by apply‐
ing the wavelet transform, and then the final forecasting is 
made using the NN-based approach. Reference [9] proposes 
a hybrid model comprising of the deep belief network 
(DBN) and LR models to forecast the future values of time 
series. After fitting the LR model to the original data, the 
LR model residuals are used as the extra nonlinear inputs 
for the DBN model.

Nonetheless, using these models has disadvantages such 
as the output getting stuck to local minima during optimiza‐
tion, hyper-parameter tunning, and appropriate kernel selec‐
tion. Ensemble models are a combination of linear and non‐
linear models; hence, they combine the advantages and over‐
come the limitations of linear and nonlinear models to pre‐
dict results accurately. Most ensemble models combine clas‐
sical statistical models, machine-learning models, and decom‐
position techniques. Reference [10] introduces an ensemble 
deep learning methodology to predict time series, which 
combines the results of different DBNs using the SVR mod‐
el. Reference [11] presents an EMD-DBN-based method for 
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short-term load forecasting (STLF), which uses two restrict‐
ed Boltzmann machines (RBMs) and DBN to forecast the dif‐
ferent intrinsic mode functions (IMFs) acquired from EMD.

Reference [12] proposes a methodology that combines 
variational mode decomposition (VMD) and extreme learn‐
ing machine (ELM) for STLF. First, VMD is used to decom‐
pose the original time series and remove the skewness. Sub‐
sequently, the obtained modes are used for forecasting by 
ELM enhanced with the differential evolution algorithm.

Ensemble models can achieve high accuracies. However, 
the network architecture used by these models is completely 
specific and complex. In addition, they are not well-
equipped to handle long-term dependency problems. These 
models require a defined approach to address the issue of 
convergence to local minima. Table I shows the advantages, 
disadvantages, and similarities or dissimilarities among the 
linear, nonlinear, and ensemble models. Additionally, it lists 
some sample models.

TABLE I
COMPARISON OF SEVERAL POPULAR TIME SERIES PREDICTION MODELS

Model

Linear 
models

Non-
linear 
models

Ensem‐
ble 

models

Example

Moving average (MA) 
& exponential smooth‐

ing (ES) [13]

ARIMA [14]

Box-Jenkins 
ARIMA [15]

ARIMA with an exter‐
nal/exogenous input 

(ARIMAX) [16]

SARIMA [17]

SVR [18]

Least square SVR (LS-
SVR) [19]

ANN [20]

Multi-layer 
perceptron (MLP) and 
radial basis function 
network (RBFN) [21]

Fuzzy neural 
networks [22]

Differential-EMD 
(DEMD)-SVR-

SR [23]

EMD-DBN [11]

Ensemble DBN 
(EDBN)-SVR [10]

SSA-LSTM [24]

SSA-SVM-ARIMA-
cuckoo search (CS) [25]

Methodology

MA and ES methods are applied for STLF. The data are collected for Universiti 
Teknologi PETRONAS (UTP), Malaysia, which are divided into two categories, i.
e., semester on (SON) and semester off (SOF). The load values for the year 2010 
are analyzed to forecast the load for the year 2011.

ARIMA model is used to predict monthly load. Five-year historical data are used to 
forecast the sixth-year data. The model is a multiplicative combination of seasonal 
and non-seasonal patterns. The order for the model used is ARIMA(1, 1, 0) (1, 1, 0).

A variant of ARIMA models, i.e., Box-Jenkins ARIMA, is used to forecast residential 
load in Greece. Fifty-year monthly and quarterly data are used for the analysis with 
a total of 180 samples. 156 samples are used to train the model and the remaining 
24 observations are used to test the accuracy of the model.

ARIMAX model is used to forecast the power load for the commercial building. Oc‐
cupancy data are used as an external feature to improve the performance of the 
model. The hourly data for 79 days are recorded, out of which for 5 days are for 
network login data and for 17 complete days are missing. The missing values are 
handled by imputting the average of the non-missing values for that hour and week.

SARIMA model is used to forecast Ghana using average monthly load demand data. 
Ten-year data are considered for analysis, out of which for nine months are consid‐
ered as training data, one year as validation, and the remaining as the test data to 
test the model. The order of the model is SARIMA (1, 1, 1) (0, 1, 2).

SVR model is developed with immune algorithm (IA) to forecast the annual power 
load in Taiwan, China. Data from 1981 to 2000 are used to train and test the mod‐
el. The optimal parameters required to apply the SVR model are estimated using 
simulated annealing approach.

The LS-SVR model for load forecasting of a commercial space in Guangzhou, China. 
The hourly climate data and building cooling load for five months are considered 
to train the model. Compared with ANN, the results show that LS-SVR performs 
superior using the mean absolute relative error (MARE).

A feedforward ANN is developed to forecast cooling loads for three educational build‐
ings in Singapore. The daily energy data of the last two years are used for the anal‐
ysis. The data are divided into several classes to reduce the variation in the data. The 
energy data for the previous five days are taken as the output to forecast the next day.

The combination of the MLP and RBFN is used for hourly air temperature forecast‐
ing. Four models are developed with the 24-hour time series of air temperature in a 
day as the output, and the output layer consists of 24 neurons.

A linguistic out-sample approach for fuzzy time series is used to forecast the daily 
power load in Malaysia. The weights of the fuzzy logical relationship (FLR) and 
the index number of close relationships in the fuzzy logical group are used. Daily 
electric load data for eight months are considered for the analysis.

An integrated DEMD approach is proposed to disintegrate the original load series in‐
to different modes. The residual is then forecasted using the auto-regressive (AR) 
model, while IMFs with non-linear SVR for better forecasting accuracy.

An EMD-DBN-based approach is proposed for STLF, where two restricted RBMs 
and DBN are used to accurately predict the individual IMFs obtained from EMD.

An EDBN is implemented for time-series forecasting. The outputs from various 
DBNs are aggregated using the SVR model.

SSA is used to eliminate the noisy components of a skewed load series. LSTM model 
uses the outcome of SSA to forecast the final load.

SSA is used to decompose the original series to identify and extract interpretable com‐
ponents from the original series. The linear part of the data is modeled using ARI‐
MA and nonlinear part using the SVR optimized using the CS algorithm.

Advantages and Disadvantages

1) Advantages:① a linear function is used to 
predict the future values 
of electric load series② implementation is easy③ less data are required for 
training

2) Disadvantages:① the forecasting accuracy is 
not high② it is insufficient to repre‐
sent the non-linear behav‐
iour of load series

1) Advantages:① a non-linear function is 
used to predict the future 
values② Iit is more generalized, 
adaptable, and responsive③ the input and output pat‐
terns can be mapped ac‐
curately

2) Disadvantages:① it is easy to get stuck into 
local minima② it requires constraints, such 
as parameter tunning③ Kernel selection is a com‐
plex process

1) Advantages:① the combination of linear 
and non-linear models is 
used to predict the future 
values② these models are more ro‐
bust and efficient③ the forecasting accuracy is 
high

2) Disadvantages:① a proper network composi‐
tion is required② the complexity is high③ it is easy to get stuck into 
local minima
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Furthermore, deep learning models can capture the nonlin‐
ear characteristics of time-series data. These models have a 
unique ability of capturing the hidden features in the time se‐
ries. Recurrent neural networks (RNNs) are considered to be 
very powerful in managing the sequence dependence of time-
series data. The LSTM network [26], [27] is a particular 
type of modified RNN widely used in deep learning to suc‐
cessfully model a large amount of data. LSTMs are formulat‐
ed explicitly to solve the problem of long-term dependency 
encountered by RNNs. By default, LSTM networks can re‐
member data for a long time. In this paper, we present a nov‐
el attention mechanism using a sequence-to-sequence 
(Seq2Seq) model combined with EMD as a data pre-process‐
ing technique [28]. The Seq2Seq model is a deep neural net‐
work model based on LSTM units. EMD is an empirical 
method used in time-series analysis to characterize the in‐
stantaneous frequency data from a nonlinear time series; 
thus, it improves the forecasting accuracy. In addition, the 
EMD decomposes a varying time signal into several IMFs 
and a residual component, which corresponds to the trend 
and seasonality.

The remainder of this paper is organized as follows. Sec‐
tion II contains the theoretical background of the methodolo‐
gies, data description, and a summary of methods. Section 
III elaborates on the comparative studies on the experimental 
results. Section IV draws the conclusions and presents the 
outlook of future work.

II. PRELIMINARIES, DATA ANALYSIS, AND METHODOLOGY 

A. LSTM Network

LSTM is a particular class of RNN models with a particu‐
lar capability to remember long-term temporal dependencies. 
The default property of these networks is to remember infor‐
mation for long periods. In addition, these models have a 
chain-like structure called cell state with repeating loops. 
The repeating loops help the network retain relevant informa‐
tion for short periods.

For an input sequence x1x2...xT (x tÎRn), the LSTM net‐
work calculates h tÎRm for each time step t. The recurrent 
function of the LSTM cell can be defined as:

(htc t )=F(ht - 1c t - 1x t ) (1)

It can be expressed as:

f t = σ(W f [h t - 1 x t ]+ b f ) (2)

i t = σ(W i [h t - 1 x t ]+ b i ) (3)

c͂ = tanh(Wc [h t - 1 x t ]+ bc ) (4)

c t = f tC t - 1 + i tc͂ (5)

o t = σ(Wo [h t - 1 x t ]+ b0 ) (6)

h t = o ttanh(c t ) (7)

where f t i t c͂ c t o tÎRm; W f W i Wc WoÎRm ´ n; c t is the 
context vector; b f b i bc, and b0 are the bias vectors; and  
represents the Hadamard product.

B. Basic Attention Mechanism

Reference [29] proposes a basic attention mechanism, 
which calculates the weighted sum of the encoder RNN out‐
put and uses it to generate a context vector. Provided an in‐
put x1x2xT, it stores all the encoded data H =
[h1h2hT ], where the dimension of H is n ´m, m = T; 
and n is the size of the RNN unit. The attention mechanism, 
which is a feedforward neural network, accepts the previous 
decoder hidden state h t and one of the cell state vectors d t - 1 
as input and then outputs a relevant score e t. The mechanism 
begins with computing e t (t = 12T) using the score func‐
tion fatt (×) as:

e t = fatt (htd t - 1 ) (8)

The attention score is α t (t = 12T), which is calculated 
using the softmax function as:

softmax(α t )=
exp (e t )∑
t

exp (e t ) (9)

The context vector C t (t = 12T) is the weighted sum 
of all encoded data h t, which can be expressed as:

C t =∑
t = 1

T

α t ht (10)

The computed value of C t is used to predict the output. In 
the training process, C t is one of the decoder inputs along 
with d t - 1 and ŷ t - 1, and the output is ŷ t. In the testing process, 
the output from previous step ŷ t - 1, along with d t - 1 and C t, 
are used as the input.

C. EMD

It is crucial to explore the inherent properties of time-se‐
ries data to acquire the trend and seasonality components. In 
1998, the EMD [28] was first introduced to decompose a sig‐
nal into several IMFs and a residue using the Hilbert trans‐
form without taking any base function or filter function. It 
was observed that EMD works very well with nonlinear and 
nonstationary time-series data. Each IMF corresponds to a 
particular frequency band obtained from the original data. 
The more complex the data composition is, the more IMFs 
are obtained.

The original series S(t) can be reconstructed from the de‐
composition by having a linear addition of all the IMFs 
IMFi and the residual Res as:

S(t)=∑
i = 1

n

IMFi +Res (11)

For the EMD, each IMF has to meet the following two 
criteria:

1) In the entire information set, the numbers of extrema 
and zero crossings should either be equal or different at 
most by one.

2) The average of the envelope outlined by the native 
maxima and minima should be zero.

The calculation of IMFs is an iterative process and contin‐
ues until the number of extreme points is less than two, 
which results in a residual series of decomposition.

The procedure of EMD is shown in Algorithm 1.
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Finally, the original time-series signal is decomposed as:

x ( t ) =∑
i = 1

n

ci + r (12)

where ci is the ith IMF extracted in the ith decomposition pro‐
cess; and r is the final residue.

D. Data Description

For comparison, five publicly-available time-series datas‐
ets of load demand from the AEMO repository [30] are 
used. The datasets for 2013 are collected with a half-hour 
sampling frequency, which provides 17520 samples for each 
state (New South Wales (NSW), South Australia (SA), Tas‐
mania (TAS), Queensland (QLD), and Victoria (VIC)).

Load demand depends on many external factors, such as 
the time scale. Figure 1 shows the monthly load demand pat‐
terns. Figure 2 shows the box-plot of the monthly load de‐
mand in 2013.

Figure 2 shows that the median of load demand decreases 
in the first quarter, increases in the second, decreases in the 
third, and increases in the fourth. It suggests that the de‐
mand data depends on the time-of-year effect because of the 

different working conditions of air conditioning and other 
similar appliances in winter and summer. The datasets can 
be categorized into four different seasons based on the time-
of-year effect: autumn (March, April, and May), winter 
(June, July, and August), spring (September, October, and 
November), and summer (December, January, and February). 
To examine the seasonal component of the data, one month 
from each season is considered, e. g., January, April, July, 
and October are used. In this study, 80% (1152 samples) of 
total samples are used as the training set, 10% (168 sam‐
ples) as the validation set, and the rest (168 samples) as the 
test set.

As a result, a cyclic pattern is identified in the data. Fig‐
ure 3 presents the cyclic pattern in half-hourly and hourly da‐
ta readings, and indicates that a daily cycle is repeated at a 
regular time interval. Figure 4 shows the auto-correlation 
plot for January in 2013 in NSW and a zoomed graph show‐
ing auto-correlation among the first 96 lags. The correlation 
between the lags decreases as the sample size increases. In 
addition, a strong correlation among the first 96 lags is ob‐
served, and it further decreases in the subsequent lags. Con‐
sequently, we use grid search on various lag values to select 
the desired features (time steps) for training the model. Ta‐
ble II shows root mean square error (RMSE) values corre‐
sponding to different lag values (time steps) for the NSW da‐
ta. The lag value of 96 provides the lowest RMSE value. 
The analysis confirms that the forecasting load depends on 
the load of the current and previous days. Therefore, the 
number of time steps in the model is 48 ´ 2 = 96.
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Fig. 2.　Box-plot of monthly load demand.
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Fig. 3.　Cyclic patterns of example time-series. (a) Hourly data. (b) Half-
hourly data.
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Fig. 1.　Original series of monthly load demand.

Algorithm 1: the procedure of EMD

Step 1: consider the original series as S(t) and take x(t)= S(t) as initializa‐
tion that should either be equal or different at most by one.

Step 2: find the extreme points of the series, which are termed as local 
maxima emax and local minima emin.

Step 3: use the extreme points and apply a cubic spline interpolation to 
find the surrounding envelope.

Step 4: calculate the average of points on the surrounding envelope as: 
mi (t)= (emaxi + emini )/2.

Step 5: compute the difference hi (t)= x(t)-mi (t).
Step 6: if hi (t) satisfies the two criteria mentioned above for an IMF, then 

it is accepted as IMFi, otherwise repeat Steps 2-5 until valid IMFs are 
found.

Step 7: update r(t)= x(t)- IMFi. Repeat Steps 2-6 until the number of ex‐
treme points is less than two, which results in residual series and de‐
composition stops.
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The forecasting process is mainly divided into two phases. 
In the first phase, EMD is used to gain the underlying multi‐
scale dynamics of the load time series such as trend and sea‐
sonality. In the second phase, an attention-based deep learn‐
ing model is used to predict the decomposed time series. 

The flow chart of the procedure for the proposed EMD 
model is shown in Fig. 5. After grouping the data into stable 
and unstable IMFs and residual terms, the fine-grained atten‐
tion-based model predicts each group. Figure 6 shows the 
training procedure of the proposed model, where Result is 
the corresponding forecasting result.

A divide-and-conquer algorithm recursively divides the 
problem into sub-problems for simplification and directly 
solve simple sub-problems. Subsequently, sub-problem solu‐
tions are combined to find the solution of the original problem.

In the proposed method, the load demand data are decom‐
posed into several IMFs and one residue using the EMD 

method. Even though the EMD decomposes complex series 
into subsequent simpler series, it is necessary to thoroughly 
check the decomposition stability. This information helps the 
training process as stable information and leads to a more 
precise estimation. To perform our analysis, we consider the 
season-wise data. The main idea is to check whether the da‐
ta remain stable after adding more samples. The insights into 
our approach can be explained as follows.

Step 1: season-wise data are divided into the training and 
testing sets.

Step 2: the EMD is performed on the training set to ob‐
tain the respective IMFs and residual series.

Step 3: data from the test set are added one by one, and 
decomposition by EMD is carried out every time.

Step 4: Step 3 is repeated until the entire test set is added 
sequentially.

Step 5: after obtaining total decompositions, we divide 
them into two groups: Group A and Group B, representing 
decompositions with the most frequent count of IMFs (in 
our case it is 9) and the remaining decompositions, respec‐
tively.

Step 6: a statistical approach such as Pearson correlation, 
and a comparison algorithm such as the lower bound (LB) 
[31] are used to check the stability of each IMF in the 
groups.

Step 7: based on the results, the entire decomposition set 
is divided into three sets: stable and unstable IMFs, and resi‐
due.

Step 8: using the algorithm explained in Algorithms 2-4, 
the attention-based LSTM is trained to obtain the forecasting 
results for each set.

Step 9: all the forecasting results are combined by summa‐
tion to formulate an ensemble output for time series.

The existing attention models use the single scalar score 
for a context vector C t at time t. It is observed that instead 
of using a single scalar of context vector C t, it might be ben‐
eficial to calculate and use the scalar score for each dimen‐
sion of the hidden state h t at time t, as each dimension repre‐
sents a different perspective of the captured internal struc‐
ture. In the encoder-decoder model computation, C t shares 
the same attention score, resulting in an equal contribution 
of all dimensions of h t.

Reference [32] shows that when different dimensions of 
encoded information are considered differently, and the atten‐
tion is applied to each dimension, it results in a better-per‐
forming model. Inspired by [32], we propose a fine-grained 
attention model. In the proposed model, scalars are main‐
tained for each dimension in H, which results in an increase 
in the number of attention scalars from T to nT. Equations 
(13) and (14) illustrate the comparison between the basic at‐
tention model and the fine-grained attention model.

α1h1 + α2h2 + + αThT = c t (13)

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

α1
1 h1

1 + α1
t h1

2 + + α1
Th1

T = c1
t

α2
1 h2

1 + α2
t h2

2 + + α2
Th2

T = c2
t

                                             
αn

1 hn
1 + αn

2 hn
2 + + αn

Thn
T = cn

t

(14)

Load series

Training set Training set

Test set

�
Sequential addition

EMD

EMD

Total decompositionAll IMFs

Group A Group B

Stable IMF1 Stable IMF2 Stable IMF
N

All unstable 

IMFs
Residue

Apply EMD on 

each addition

Statistical and algorithmic analysis

l

Fig. 5.　Flow chart of procedure for EMD model.

TABLE II
RMSE VALUES CORRESPONDING TO DIFFERENT TIME STEPS FOR NSW DATA

Time step

96

148

240

288

336

384

RMSE

January

556.56

567.11

567.45

581.24

564.22

603.98

April

287.24

291.67

288.45

298.90

285.32

312.45

July

263.15

271.07

271.86

288.58

266.44

291.81

October

158.97

159.09

163.22

172.01

159.78

188.29

All IMFs

Stable IMF1 Stable IMF2 Stable IMF
N

Model training Model training Model training
Model training

Model training

Result1 Result2
Resultunstable

Resultresidue

ResidueCombined 

unstable IMFs

Result
N

Forecasting results

Fig. 6. Flow chart of training procedure for proposed model.
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In the proposed model, we extend the score function fatt (·) 
to return a set of scores corresponding to the dimensions of 
the hidden state vector h t, which is expressed as:

en
t = f n

att (htd t - 1 ) (15)

where en
t  is the score assigned to the nth dimension of con‐

text vector; and f n
att is the fully-connected neural network. 

These dimension-specific scores are further normalized di‐
mension-wise, which is expressed as:

αn
t =

exp(en
t )

∑
t = 1

T

exp(en
t )

(16)

The context vectors are then computed as:

C t =
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α1
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t

∑
t = 1

T

α2
t h2

t



∑
t = 1

T

αn
t hn

t

(17)

Algorithms 2-4 explain the pseudocode for the steps used 
in data preparation, LSTM encoder, and attention and decod‐
er LSTM, respectively.

III. EXPERIMENTAL WORK 

A. Variable Decomposition Results of EMD

The number of decompositions depends on the complexity 
and length of the series, that is, the more complex the forma‐
tion of data, the more IMFs obtained. In particular, the de‐
composition may be affected by various exogenous factors 
in addition to new data, as shown in Fig. 8. Similarly, it can 
be observed that there is a variable count of IMFs, i.e., 7, 8, 
and 9 when new data are added.

Although we are unaware of hidden factors affecting the 
number of IMFs, it is necessary to train the model using the 
most stable IMFs to obtain the best estimation.

We choose legitimate IMFs that will not significantly 
change when the quantity of deterioration results shifts with 
the addition of new data. Therefore, we add the state of new 
information in each step and subsequently evaluate the IMFs 
using EMD. Subsequently, each recording is taken at a sam‐
pling frequency of 30 min from the test set, and the EMD is 
re-executed to decompose the results every time. We record 
each decomposition and achieve the statistics discussed earli‐
er. From the 480 decomposition results, there are 48 instanc‐
es of 7 IMFs, 417 instances of 8 IMFs, and 15 instances of 
9 IMFs. Based on this analysis, it is concluded that the final 
decomposition consisting of the entire data result is 8 IMFs.

It can be observed that most data have a similar decompo‐
sition outcome as 8 IMFs, whereas some data have variable 
results depending on hidden and exogenous factors. When 
the final result of decomposition has a constant number of 
IMFs, the decomposition results are categorized into groups 
A and B. Group A consists of most cases, i.e., 8 IMFs, and 
group B contains the other instances. Subsequently, all de‐
composition results are compared with the final result using 
the Pearson correlation [33] and LB [31] between the corre‐
sponding IMFs, which can ignore the order of magnitude.

Table III shows that only the IMFs 1-4 are stable, while 
the rest of them exhibit a larger variance. Therefore, we com‐
bine the unstable components as one frequency band and 
train the stable IMFs separately.

Algorithm 2: Pseudo code for data preparation

Step 1: scale the stable IMFs (Xs), unstable IMFs (Xuns), and residual IMFs 
(Xr) using MinMaxScalar.

Step 2: define and initialize the different values to be used such as batch 
size, train size, time steps, and forecasting steps.

Step 3: divide the three series into train, test, and validation sets and cre‐
ate 9 series, i. e., Xstrain, Xstest, Xsvalidation, Xunstest Xunsvalidation Xrtrain 
Xrtest and Xrvalidation, respectively.

Step 4: create three models for each training series, i.e., modelst for Xs,train, 
modeluns for Xunstrain, and modelres for Xrtrain using Algorithm 3.

Algorithm 3: Pseudo code for LSTM encoder

Step 1: encoder takes N (the length of Xtrain), M (the number of LSTM 
units), and T (the number of time steps initialized in Algorithm 2) along 
with Xtrain as the inputs.

Step 2: encoder using the LSTM cell as an encoded model (modelen) is 
created using N and M.

Step 3: define the initial hidden states and cell state at time t as ht and dt 
with zeros using the size of the Xtrain and M, respectively.

Step 4: iterate over the input through time T and take Xtrain at time t as 
Xtraint.

Step 5: take Xtraint as the input to the modelen along with ht and dt.
Step 6: take the output hidden states in ht and dt and use them as the in‐

put to the model in the next iteration.
Step 7: output ht to the encoded input.
Step 8: at the end of this iteration, the encoded input is completely popu‐

lated for the complete size of the input.

Algorithm 4: Pseudo code for attention and decoder

Step 1: encoder takes N, M, and T along with Xtrain as the input.
Step 2: encoder uses LSTM cell as an encoded model modelen using N 

and M.
Step 3: define the initial hidden states and cell state at time t as ht and dt 

with zeros using the size of the Xtrain and M, respectively.
Step 4: define the initial context vector cn

t  at time t and hidden state hn
t  

using encoded input size.
Step 5: iterate over the input through time T and define encodedinput at 

time t as encodedinputt.
Step 6: concatenate the hidden states ht and dt and store it in hdt.
Step 7: apply the linear weight to hdt to use it as the weight for attention 

mechanism and store it in w1.
Step 8: iterate over the different dimensions n of hidden state ht.
Step 9: apply the linear weight to encodedinput (n), which is the nth dimen‐

sion of the hidden state ht and store it in w2.
Step 10: add w1 and w2, and apply tanh(·) to it, then store the output into w.
Step 11: apply the linear weight to w and store it in w.
Step 12: apply softmax(·) to w and store it into n.
Step 13: multiply nt to encodedinput using the 1st dimension, as the 1st di‐

mension stores the dimension of hidden state.
Step 14: store the output as context vector at time t for the nth hidden 

state, i.e., cn
t .

Step 15: store the sum of all the cn
t  obtained from the loop into ct as con‐

text vector at time t.
Step 16: concatenate ytrain at time t to ct and apply linear weight to it.
Step 17: store the result in y͂t.
Step 18: apply modeldec to y͂t along with the inputs ht and dt hidden states.
Step 19: store the output hidden states in ht and dt.
Step 20: use the updated hidden states in the next iteration of t.
Step 21: concatenate context vector and hidden state at step T and store it 

into dcT.
Step 22: apply the linear weight to dcT to calculate the output and store 

the output in decode output.
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The frequency combination is performed to reduce the in‐
dividual errors that could be induced on separate training. 
Thus, the 8 IMFs are formed in groups of three for training. 
IMFs 1-4 form the most stable group, whereas the frequen‐
cies of IMFs 5-7 from unstable and residual parts are trained 
separately to obtain the trend of the series. The forecasting 
result of each group is linearly added to obtain the final fore‐
casting. Moreover, no IMF should be missed because it may 
mismatch with the scale of the end result. We divide each 
group into training, validation, and testing samples. The 
training samples are pre-processed, and the min-max scaler 
performs the scaling. This increases the convergence rate of 

the training mechanism. To avoid large weights in the high-
extent training values, data are scaled between [-11]. In this 
study, we use an LSTM-based fine-grained attention mecha‐
nism (EMD-Att-LSTM) because it successfully performs 
with temporal data. This model is selected owing to its abili‐
ty to handle long-term dependencies and its fast convergence 
rate. The model training is performed using the lookback 
(sliding window) mechanism on the training dataset. The 
sliding window is the history data or preceding time steps 
used as the input to forecast the next time step. The forecast‐
ing is performed on a daily manner. An exhaustive search 
technique is used for hyper-parameter tuning. The input to 
the model has a shape with 96 time steps. Two LSTM layers 
are used in the model. The output of the first layer is used 
as the input to the second layer. The first LSTM layer uses 
96 neurons, whereas the second layer contains 48 neurons. 
The rectified linear unit (ReLU) is used as the activation 
function in both layers. The layers also follow batch normal‐
ization and dropout with a value of 0.20 to avoid the model 
over-fitting. The output layer does not contain any activation 
functions. Only a dense layer is used as the output layer. 
The Adam optimizer is used in the model training mecha‐
nism. The learning rate and momentum values are 0.001 and 
0.90, respectively. The model is trained for 150 epochs using 
a batch size of 20. We use the Pytorch machine-learning li‐
brary [34] to implement our model. In addition, we use 
mean absolute percentage error (MAPE) and RMSE indices 
to assess the performance of the proposed model.

IV. RESULTS 

In this section, we compare the output of the proposed 
method to that of some existing advanced methods, includ‐
ing persistence models, SVR [35], ANN [36], DBN [37], RF 
[38], EMD-SVR [39], EMD-ANN [40], ensemble DBN [10], 
EMD-DBN [11], DMD [41], and VMD-Att-LSTM. We con‐
sider half-an-hour- and one-day-ahead as the two forecasting 

0 200 400 600 800 1000 1200 1440

I
M
F

1
I
M
F

6
I
M
F

5
I
M
F

4
R

es
id

u
e

7250
7000

7500
7750

1000

-500

0

500
-1000

0

1000

-1000

0

2000

-2000

0

1000

-1000

0

I
M
F

3
I
M
F

2

-500

1000
500

0

Time (lag)
(a)

I
M
F

1
I
M
F

6
I
M
F

5

I
M
F

4
R

es
id

u
e

I
M
F

3
I
M
F

2
I
M
F

7

Time (lag)
(b)

-500

500

0

-1000

-2000

0

2000

0

1000

-1000

0

1000

-500

0

500

-500

500

0

-100

100

0

7 50

7550
7600

7 00
200 400 600 800 1000 1200 1440

Fig. 8.　Variable decomposition results of EMD after adding new informa‐
tion in existing data. (a) Decomposition results on training data of NSW da‐
taset. (b) Decomposition results after adding the 17th sample from test data 
in training samples of NSW dataset.

TABLE III
ANALYSIS OF EACH DECOMPOSITION ON NSW DATASET

Method

Pearson index

Keogh index

IMF

IMF1

IMF2

IMF3

IMF4

IMF5

IMF6

IMF7

IMF8

IMF1

IMF2

IMF3

IMF4

IMF5

IMF6

IMF7

IMF8

Mean value

All data

0.4661

0.4859

0.4426

0.4599

0.3805

0.4202

0.3261

0.1507

693.1300

2567.6800

13878.3300

14287.7700

10216.4700

11163.9300

10258.2600

29094.0100

Group A

0.4753

0.4862

0.4419

0.4596

0.3808

0.4311

0.3548

0.1551

551.2600

2413.4200

13942.9600

14107.7600

9925.5100

10164.8900

9148.0400

1387.5200

Group B

0.4376

0.4850

0.4447

0.4608

0.3798

0.3869

0.2374

0.1371

592.5400

3043.0600

13678.9400

14943.4500

11114.1000

14246.0800

13683.3100

76038.5400
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horizons for the comparative study. To reflect different sea‐
sons, one month is selected from each season, that is, Janu‐
ary, April, July, and October.

A. Comparison Results for Half-an-hour-ahead Forecasting

The persistence model is the most basic one of the exist‐
ing models used for STLF. The series must be stationary to 
apply the persistence model; thus, these models consider lim‐
ited skewness during STLF. Therefore, these models can be 

used as a basis for evaluating the efficiency of various deep 
learning, data-driven, and ensemble structures. Table IV pres‐
ents half-an-hour-ahead forecasting of various advanced mod‐
els. The bold font indicates the best performing model for 
certain time series. The basic machine-learning algorithms, 
such as SVR, ANN, DBN, and RF are used to model the 
electric load time series, which are subsequently coupled 
with EMD to form hybrid models and improve the forecast‐
ing performance.

TABLE IV
HALF-AN-HOUR-AHEAD LOAD FORECASTING RESULTS

Data‐
set

NSW

TAS

QLD

VIC

SA

Time

January

April

July

October

January

April

July

October

January

April

July

October

January

April

July

October

January

April

July

October

Index

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

Prediction models

Persistence

164.02

1.64

248.14

2.43

235.66

2.31

159.98

1.65

17.80

1.27

37.42

2.32

43.84

2.73

22.80

1.63

109.39

1.50

137.11

1.91

127.23

1.92

110.19

1.61

174.95

2.52

162.18

2.15

171.99

2.44

139.47

1.97

72.11

3.04

58.53

3.03

75.05

4.25

48.49

2.62

SVR 
[35]

64.24

0.93

162.57

1.88

117.87

1.20

58.26

0.64

13.87

1.09

25.26

1.49

34.03

2.10

15.89

1.09

51.31

0.70

71.30

0.94

46.07

0.72

57.90

0.80

117.79

1.54

148.89

1.97

69.41

1.01

62.88

0.92

50.37

1.92

45.40

1.93

47.68

2.34

42.74

1.77

ANN 
[36]

96.66

0.98

140.74

1.26

165.42

1.68

76.64

0.82

13.84

1.09

27.03

1.63

33.97

2.03

18.49

1.36

62.97

0.85

65.84

0.93

51.79

0.82

63.17

0.92

114.73

1.55

149.20

1.99

119.43

1.74

96.63

1.42

55.65

2.33

39.55

2.33

56.12

3.53

37.94

2.23

DBN 
[37]

79.16

0.78

70.36

0.64

105.63

1.09

62.58

0.70

12.90

1.01

19.53

1.25

30.43

1.76

16.80

1.19

44.95

0.62

48.48

0.66

38.45

0.54

61.03

0.86

106.25

1.32

104.48

1.49

86.63

1.26

91.20

1.35

59.17

2.54

44.85

2.54

48.55

3.07

40.56

2.17

RF 
[38]

93.36

0.88

142.85

1.18

114.83

1.20

69.06

0.75

11.80

1.03

24.82

1.26

33.59

2.07

16.94

1.19

40.30

0.59

57.20

0.86

45.52

0.85

61.37

0.77

120.34

1.58

102.34

1.53

62.57

1.00

87.11

1.20

53.92

2.23

46.42

2.50

59.99

3.49

42.48

2.30

LSTM

78.01

0.76

132.78

1.13

72.26

0.71

57.87

0.62

12.03

1.08

21.99

1.24

28.71

1.79

14.37

1.02

43.51

0.61

57.98

0.82

40.19

0.57

48.93

0.68

87.60

1.20

78.11

1.02

69.47

1.06

67.74

0.93

47.11

1.81

42.63

1.81

38.54

1.97

36.44

2.19

EDBN 
[10]

75.42

0.70

134.47

1.14

78.09

0.67

64.36

0.66

13.24

1.06

21.35

1.21

22.62

1.36

20.41

1.34

51.03

0.63

60.27

0.75

42.00

0.60

55.49

0.71

78.58

1.05

75.59

0.98

66.36

0.91

68.50

0.89

39.87

1.69

35.65

1.75

38.03

1.98

43.59

1.92

EMD-
SVR 
[39]

78.56

0.78

114.09

1.07

74.29

0.67

54.58

0.60

12.54

0.97

21.76

1.36

30.90

1.91

14.94

1.06

42.12

0.57

51.30

0.61

35.53

0.53

54.89

0.75

82.96

1.09

96.24

1.33

119.27

1.73

90.49

1.23

58.29

2.29

26.14

1.37

37.38

2.17

30.16

1.67

EMD-
ANN 
[40]

82.11

0.88

87.76

0.82

81.22

0.81

66.00

0.74

11.39

0.78

18.03

1.16

29.14

1.98

9.37

0.70

33.88

0.48

56.02

0.73

41.48

0.62

46.78

0.69

117.45

1.56

77.02

0.99

114.34

1.67

91.38

1.23

46.34

1.73

27.98

1.54

39.16

2.33

25.14

1.69

EMD-
RF

76.10

0.76

120.16

1.10

120.77

1.22

76.58

0.82

13.52

1.09

25.19

1.45

32.34

2.17

13.69

0.97

33.34

0.44

54.78

0.81

45.39

0.69

48.41

0.67

115.66

1.59

68.30

0.92

61.84

0.88

55.19

0.85

42.52

1.55

31.27

1.83

31.93

1.86

26.59

1.71

EMD-
LSTM

57.29

0.64

71.91

0.64

63.67

0.51

55.76

0.62

9.03

0.57

16.81

1.11

18.45

1.15

9.49

0.72

33.72

0.46

43.65

0.59

29.31

0.42

41.23

0.59

58.75

0.91

53.72

0.67

56.34

0.85

46.19

0.71

29.37

1.32

26.01

1.35

29.75

1.73

22.53

1.51

EMD-
DBN 
[11]

49.86

0.53

69.55

0.65

75.09

0.70

51.68

0.55

11.59

0.74

16.23

1.07

24.44

1.54

8.81

0.66

25.39

0.34

48.34

0.67

30.61

0.44

40.46

0.56

98.75

1.35

64.11

0.87

58.70

0.88

57.95

0.84

51.91

1.69

33.44

1.89

29.18

1.70

34.17

1.62

VMD-
Att-

LSTM

46.61

0.41

57.93

0.61

68.65

0.54

49.04

0.63

9.43

0.59

13.78

0.89

19.22

1.15

7.96

0.55

34.25

0.47

34.98

0.51

29.03

0.42

39.98

0.50

51.71

0.87

51.40

0.62

45.07

0.60

43.16

0.66

27.23

1.19

21.40

1.24

20.27

1.12

21.73

1.48

Proposed

47.94

0.45

44.58

0.46

52.81

0.44

37.54

0.39

6.43

0.46

8.80

0.57

11.35

0.72

8.03

0.55

31.20

0.42

24.55

0.34

21.08

0.31

34.63

0.47

38.85

0.58

38.24

0.58

45.12

0.60

33.00

0.48

18.97

1.19

19.80

1.25

20.51

1.15

15.85

0.95
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B. Comparison Results for One-day-ahead Forecasting

Table V shows one-day-ahead forecasting results. The per‐
sistence model and the same set of machine-learning and hy‐

brid models are used for half-an-hour-ahead forecasting. The 
persistence model is used as a reference model for other 
models as the dataset includes daily seasonality.

Figure 9 shows the comparison result of the original and 
forecasting load series for one-day-ahead forecasting using 
the dataset of NSW. The forecasting and original time series 
show the same pattern, proving that the proposed model has 

a better accuracy. Additionally, to compare the performance 
of the proposed model with the existing methods, a nonpara‐
index statistical test, namely the Friedman rank test [42], is 
employed. The Friedman rank test is a post-hoc test used to 

TABLE V
ONE-DAY-AHEAD FORECASTING RESULTS

Data‐
set

NSW

TAS

QLD

VIC

SA

Time

January

April

July

October

January

April

July

October

January

April

July

October

January

April

July

October

January

April

July

October

Index

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

RMSE

MAPE (%)

Prediction model

Persis‐
tence

978.24

8.55

729.54

6.71

609.82

6.22

587.14

5.36

89.82

7.24

157.73

10.22

120.47

8.11

109.46

7.48

461.09

5.25

489.63

6.25

430.46

5.90

417.33

5.54

990.74

9.48

669.87

8.40

721.85

9.76

577.70

8.30

433.57

14.32

180.20

9.36

289.94

16.84

240.53

11.54

SVR
[35]

703.43

6.23

474.38

4.27

574.30

5.86

393.32

3.74

60.97

4.81

111.89

7.48

90.99

5.89

79.45

5.55

282.07

3.65

266.39

3.53

223.17

3.10

298.76

3.93

587.98

7.16

330.93

4.43

297.07

4.38

391.11

4.50

337.10

13.34

124.43

6.71

150.84

8.54

210.72

8.94

ANN
[36]

750.53

7.20

578.05

5.41

534.75

5.38

345.07

3.48

69.92

5.42

94.40

6.30

89.17

6.28

72.86

5.24

299.32

3.61

339.93

3.77

203.00

3.03

263.12

3.46

811.43

9.32

359.03

4.95

305.88

4.29

347.91

4.79

411.66

13.72

119.40

6.42

151.06

8.66

233.48

10.03

DBN
[37]

639.75

5.95

361.63

3.36

415.81

4.11

350.82

3.41

63.96

4.98

93.18

6.12

87.30

6.04

75.73

5.15

228.86

2.78

247.56

2.99

213.20

2.95

251.34

3.40

915.21

8.79

353.02

4.55

276.25

3.72

389.06

4.85

401.25

13.62

117.61

6.67

148.23

8.50

204.16

9.33

RF
[38]

521.14

4.26

500.70

4.25

387.15

4.01

296.53

2.78

65.90

4.77

92.64

6.10

90.48

6.17

69.80

4.63

195.85

2.41

231.01

2.78

156.08

2.32

236.50

2.88

739.65

8.77

366.16

4.65

302.15

4.29

364.32

4.16

349.87

13.41

127.90

6.88

154.67

8.95

218.30

9.11

LSTM

603.27

5.09

377.10

3.87

401.35

3.91

307.22

2.99

58.11

4.67

84.37

5.75

94.67

5.93

69.13

4.51

324.56

5.03

201.30

2.37

188.01

2.62

263.65

3.70

603.17

6.89

411.89

5.23

283.45

3.79

352.81

4.66

307.12

12.89

170.01

6.98

151.41

8.78

199.61

7.90

EDBN
[10]

636.03

5.70

551.74

4.78

414.90

4.07

334.12

3.14

60.68

4.82

109.78

7.28

85.19

6.04

80.81

5.05

218.55

2.69

259.34

3.33

159.45

2.32

292.93

3.53

762.16

9.14

343.18

4.49

285.14

3.65

401.02

4.72

363.49

14.43

105.39

6.56

148.55

8.59

203.53

9.32

EMD-
SVR
[39]

611.20

5.19

569.28

5.27

402.69

3.95

272.01

2.76

61.73

4.49

104.59

6.87

92.54

6.09

82.85

5.60

196.20

2.56

264.00

3.47

164.68

2.46

218.71

2.82

806.29

9.48

363.50

4.67

298.12

4.27

309.63

3.78

280.70

11.13

121.60

6.78

141.78

8.48

203.38

8.39

EMD-
ANN
[40]

748.30

6.66

512.59

4.57

345.90

3.09

299.34

2.90

63.38

4.87

87.41

5.92

82.92

5.50

80.85

5.63

273.70

3.28

237.58

3.11

174.64

2.45

248.55

3.27

781.17

9.07

376.12

4.79

386.64

5.29

332.44

4.15

397.66

13.80

126.78

6.87

153.22

9.53

199.77

8.54

EMD-
RF

544.17

4.54

495.28

4.21

353.90

3.67

333.82

3.17

58.51

4.67

86.61

5.80

81.34

5.54

73.86

4.88

178.63

2.21

201.74

2.44

150.01

2.29

260.94

3.15

783.58

9.32

393.63

5.04

300.65

4.26

344.06

3.92

288.85

13.03

124.60

6.65

161.71

9.12

209.70

8.22

EMD-
LSTM

579.87

4.98

349.08

3.31

376.21

3.80

247.91

2.36

53.56

4.07

72.04

4.80

91.33

5.06

64.76

4.70

311.16

4.91

190.87

2.26

186.97

2.71

215.44

2.79

567.50

6.06

403.34

5.38

269.50

3.59

329.10

3.67

244.31

12.77

167.90

9.10

153.22

8.89

147.30

7.01

EMD-
DBN
[11]

541.53

4.62

377.63

3.22

322.04

3.08

282.34

2.71

56.10

4.05

85.13

5.80

73.91

4.93

68.26

4.75

191.22

2.56

243.68

2.93

142.84

2.08

219.19

2.88

762.57

8.86

321.59

4.35

285.45

3.83

322.91

3.73

238.09

10.46

125.31

6.76

160.82

9.60

192.74

8.22

DMD
[41]

445.79

4.20

504.39

5.04

329.12

3.13

333.23

3.15

55.38

4.30

93.30

7.21

77.77

5.16

69.06

5.29

513.10

7.36

326.72

3.86

176.77

2.42

247.37

3.13

469.67

6.65

479.99

5.08

401.92

5.38

295.90

4.09

240.72

12.67

170.29

10.95

160.48

9.27

91.28

5.22

VMD-
Att-

LSTM

501.44

4.37

404.24

3.89

288.07

2.71

211.66

1.98

45.91

3.26

67.45

4.98

80.77

5.87

68.11

4.50

371.80

5.68

175.01

2.13

152.88

2.18

193.07

2.89

532.96

8.28

387.00

4.78

277.35

3.81

260.46

3.70

195.94

9.70

168.23

9.17

151.58

8.99

108.54

6.82

Pro‐
posed

556.56

4.55

287.24

3.17

263.15

2.49

158.97

1.69

46.64

3.45

49.63

3.09

90.50

5.08

64.73

4.61

354.78

5.14

152.85

2.46

148.36

1.88

181.55

2.59

514.93

7.77

390.80

5.01

259.85

3.43

262.22

3.79

118.59

7.05

176.30

6.60

137.42

7.91

64.50

3.54
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compare regressor models.

The half-an-hour- and one-day-ahead forecasting outputs 
of the Friedman rank test [43], [44] are shown in Fig. 10.

A high rank implies that the model is not performing satis‐
factorily. The rank of the proposed model is the lowest, indi‐
cating that it is the best model for half-an-hour- and one-day-
ahead forecasting. Additionally, p-value is the indication of 
variation in the procedure. A value smaller than 0.05 implies 
a high variation. Furthermore, the Wilcoxon signed-rank test 
[23], [45]-[47] is used to prove the statistical significance of 
the proposed model and a significance level of α = 0.05 is 
used. Table VI shows the test outputs for the half-an-hour-  
and one-day-ahead forecasting. The results indicate that the 
proposed model outperforms other models.

A comparison between the proposed and existing models 
using half-an-hour- and one-day-ahead forecasting is shown 
in Fig. 11. The RMSE of the proposed model are lower than 
those of other models for half-an-hour-ahead forecasting. 
This can be seen for all the four selected months. Thus, the 
proposed model outperform the existing advanced models. 
Improved results can also be seen for one-day-ahead fore‐
casting.
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Fig. 11. Comparison of all models based on forecasting results. (a) Half-an-
hour-ahead forecasting. (b) One-day-ahead forecasting.
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Fig. 10. Forecasting results of Friedman rank test. (a) Half-an-hour-ahead. 
(b) One-day-ahead.
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TABLE VI
WILCOXON SIGNED-RANK TEST RESULTS FOR HALF-AN-HOUR- AND ONE-

DAY-AHEAD FORECASTING RESULTS

Models for comparison 
with EMD-Att-LSTM

Persistence

SVR

ANN

DBN

RF

LSTM

EDBN

EMD-SVR

EMD-ANN

EMD-RF

EMD-LSTM

EMD-DBN

DMD

VMD-Att-LSTM

p-value

Half-an-hour

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0001

0.0002

0.0002

0.0028

0.0074

One-day

0.0001

0.0019

0.0028

0.0045

0.0169

0.0136

0.0051

0.0080

0.0019

0.0137

0.0216

0.0333

0.0051

0.0318
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mance of DMD and VMD-Att-LSTM with the proposed 
model on the NSW dataset considering RMSE. Additionally, 
to prove the effectiveness of the proposed model, a three-di‐
mensional (3D) plot is drawn between DMD, VMD-Att-
LSTM, and the proposed model considering all the five data‐
sets. Consequently, it is clear that the forecasting accuracy 
of the proposed model is higher than that of DMD. In addi‐
tion, empirical evaluation shows that the performance of the 
proposed model is comparable to that of existing advanced 
models.

V. CONCLUSION

This paper introduces a new approach using a hybrid mod‐
el comprising EMD and a fine-grained attention mechanism. 
The introduction of a new EMD approach enables the identi‐
fication of stable, unstable, and residual terms using the two 
statistical matrices, i.e., LB and Pearson correlation. The pro‐
posed attention mechanism EMD-Att-LSTM provides multi‐
ple attention scores for each hidden state h t, which helps ob‐
tain a better perspective of the internal structure of each hid‐
den state. The proposed model is evaluated using the AEMO 
electricity load datasets. The proposed architecture is tested 
with some existing advanced models such as VMD-Att-
LSTM, DMD, EMD-DBN, EMD-LSTM, EMD-RF, EMD-
ANN, EMD-SVR, EDBN, RF, LSTM, DBN, ANN, and 
SVR using MAPE and RMSE. Some of the observations can 
be summarized as follows.

1) In general, the EMD-Att-LSTM approach outperforms 
the existing single-structure and hybrid models in half-an-
hour- and one-day-ahead forecasting.

2) The proposed model provides the best results consider‐
ing the Friedman rank test and Wilcoxon signed-rank test re‐
sults.

3) The proposed architecture can process nonlinear fea‐
tures of the load time series when the forecasting horizon is 
increased.
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