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Abstract——To facilitate the large-scale integration of distribut‐
ed wind generation (DWG), the uncertainty of DWG outputs 
needs to be quantified, and the maximum DWG hosting capaci‐
ty (DWGHC) of distribution systems must be assessed. Howev‐
er, the structure of the high-dimensional nonlinear dependen‐
cies and the abnormal marginal distributions observed in geo‐
graphically dispersed DWG outputs lead to the increase of the 
complexity of the uncertainty analysis. To address this issue, 
this paper proposes a novel assessment model for DWGHC that 
considers the spatial correlations between distributed genera‐
tion (DG) outputs. In our method, an advanced dependence 
modeling approach called vine copula is applied to capture the 
high-dimensional correlation between geographically dispersed 
DWG outputs and generate a sufficient number of correlated 
scenarios. To avoid an overly conservative hosting capacity in 
some extreme scenarios, a novel chance-constrained assessment 
model for DWGHC is developed to determine the optimal sizes 
and locations of DWG for a given DWG curtailment probabili‐
ty. To handle the computational challenges associated with 
large-scale scenarios, a bilinear variant of Benders decomposi‐
tion (BD) is employed to solve the chance-constrained problem. 
The effectiveness of the proposed method is demonstrated using 
a typical 38-bus distribution system in eastern China.

Index Terms——Correlation, Benders decomposition (BD), dis‐
tributed wind generation (DWG), hosting capacity, vine copula.

I. INTRODUCTION 

FUTURE distribution networks will witness an increasing 
integration of renewable-energy-based distributed genera‐

tion (DG) due to its low cost and low emission. Compared 
with the conventional dispatchable generation, renewable-en‐
ergy-based DG output, especially distributed wind generation 
(DWG), is more intermittent and stochastic owing to time-

varying weather conditions. When a high level of DG pene‐
tration is reached, the uncertain DG output will result in se‐
vere pressure (e.g., voltage increases and line overloads) on 
the distribution system. To successfully and economically in‐
tegrate renewable-energy-based DG into a distribution net‐
work, a hosting capacity assessment process is required to 
quantify the uncertainty of local renewable energy sources 
and determine the amount of DG that can be installed in the 
distribution network without network enhancement.

Recently, many capacity assessment methods that include 
uncertain renewable energies have been proposed. In [1], a 
probabilistic approach is proposed to assess the maximum 
DG penetration levels in low-voltage networks. In [2], an an‐
alytical method is proposed to calculate the DG hosting ca‐
pacity of the feeder considering the hourly variation in the 
load demand and DG outputs. In [3], a probabilistic frame‐
work considering the uncertainties associated with the type, 
amount, location, and hourly variation of DGs is presented. 
In [4], the uncertainty of DG forecasting and active manage‐
ment methods are considered. Additional literature reviews 
of existing hosting capacity assessment technologies are pro‐
vided in [5].

Although many studies on the uncertainties associated 
with renewable energies have been conducted, they solely fo‐
cus on the randomness of the DG outputs. The spatial vari‐
ability and dependencies among DG outputs are not consid‐
ered. As is well-known, the outputs of neighboring DG out‐
puts usually have strong spatial correlations owing to similar 
meteorological conditions in the distribution system area; 
these correlations amplify the uncertainty in the distribution 
network [6]. Reference [7] demonstrates that such such cor‐
relation has a strong impact on PV hosting capacity. Further‐
more, the complex geographical environment of the distribu‐
tion system area leads to various abnormal marginal distribu‐
tions and structures of the nonlinear dependencies among dif‐
ferent DG outputs [8], [9]. Ignoring the spatial correlation or 
modeling the correlation incorrectly may result in a severe 
underestimation of the power flow volatility and erroneous 
capacity evaluation results [10], [11]. For an accurate assess‐
ment of the capacity, a flexible multivarite distribution mod‐
el is required to address the complex dependencies among 
geographically dispersed DGs.

Copula functions are powerful tools for modeling abnor‐
mal joint distributions with nonlinear dependencies. Accord‐
ing to Sklar’s theorem, joint distribution functions can be 
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constructed from arbitrary marginal distributions and appro‐
priate copula functions [12]. However, due to the parameter 
restriction, the existing copula functions are mostly restricted 
to bivariate cases [13]. Thus, an advanced high-dimensional 
modeling tool called vine copula is proposed. In vine copu‐
la, a cascade pair-copula construction (PCC) is used to cap‐
ture the structure of the high-dimensional dependencies 
across a large number of variables [14]. Such a PCC struc‐
ture substantially increases the flexibility of the model and 
allows the modeling of complex dependencies. Recently, 
vine copula has been proven to be successful in modeling 
large-scale photovoltaic (PV) generation [15] and wind gen‐
eration forecasting errors [13]. However, there are no studies 
on the assessment of the hosting capacity that apply the vine 
copula method to model the spatial correlations between DG 
outputs.

Another problem arises when assessing the DG capacity 
with the consideration of nonlinear dependencies. The capaci‐
ty assessment is an optimization problem in nature. To date, 
two predominant methods, i.e., robust optimization (RO) [4], 
[16] and scenario-based stochastic programming (SBSP) 
[17]-[19], have been applied to address the uncertainty in the 
DG hosting capacity assessment problem. In the RO method, 
the uncertainty is represented by norm-based uncertainty 
sets, which cannot account for the complex dependencies 
among variables. In SBSP, the uncertainty is treated as sto‐
chastic variables with a given probability density function 
(PDF). Unlike RO, SBSP can fully consider the stochastic 
nature of renewable energy and derive an optimal result of 
DG installation schemes. Nevertheless, some infrequent ex‐
treme DG output scenarios are also considered in SBSP, 
which leads to conservative and costly DG allocation results 
[20]. To prevent an overly conservative assessment of the ca‐
pacity caused by extreme scenarios, the chance-constrained 
programming (CCP) approach is proposed to consider rea‐
sonable DG curtailment. By adjusting the DG curtailment 
probabilities (constraint violation probabilities), the distribu‐
tion network operator (DNO) can control the trade-off be‐
tween the DG hosting capacity and the renewable energy 
curtailment level [21]. However, due to the implicit form of 
chance constraints, the CCP with general multivariate distri‐
bution cannot be efficiently solved by off-the-shelf optimiza‐
tion tools [22]-[24].

To address these two problems while considering the com‐
plex dependencies among DWG outputs, we first employ the 
vine copula in the assessment model of DWG hosting capaci‐
ty and then propose a novel bilinear chance-constrained 
DWG capacity model. Finally, a customized bilinear Bend‐
ers decomposition (BD) method is applied and developed to 
reduce the computational cost. The main contributions of 
this paper can be summarized as follows.

1) To obtain comprehensive knowledge of the joint distri‐
bution of DG outputs, an advanced vine copula method is 
applied to construct the multivariate distribution of adjacent 
wind speeds in the distribution system area. Unlike the tradi‐
tional Gaussian copula approach, vine copula can deal with 
various tail dependencies.

2) To consider the spatial correlations between the DG 

outputs when assessing the hosting capacity, a scenario-
based chance-constrained DG capacity assessment problem 
is formulated. Unlike the previous capacity assessment mod‐
el in the literature, the DNO can achieve the desired trade-
offs between the hosting capacity and the curtailment proba‐
bility by adjusting the constraint violation probabilities. In 
addition, the proposed chance-constrained capacity assess‐
ment model can be efficiently solved using off-the-shelf 
commercial optimization platforms by linearizing the chance 
constraints with its bilinear variant. Furthermore, to achieve 
a better computational performance, a customized bilinear 
BD method is applied and developed to solve the proposed 
model.

3) A case study with real datasets is presented to verify 
the effectiveness of the proposed method. A comparison with 
the Gaussian copula and canonical vine (C-vine) copula is al‐
so carried out to show the flexibility of the vine copula mod‐
el. In addition, the traditional Big-M method is applied to 
solve the chance-constrained capacity assessment model for 
comparison.

The remainder of this paper is organized as follows. In 
Section II, the vine copula model and scenario generation 
process are presented to capture the complex spatial correla‐
tions between DG outputs. In Section III, the formulation of 
the novel bilinear chance-constrained DG hosting capacity 
assessment model is explained. Section IV introduces the bi‐
linear BD algorithm. In Section V, a typical 38-bus distribu‐
tion system located in eastern China is used to demonstrate 
the effectiveness of the proposed method and algorithm. Fi‐
nally, this paper is concluded in Section VI.

II. MODELING HIGH-DIMENSIONAL DISTRIBUTIONS BY 
C-VINE COPULA 

A. Copula Theory

For d random variables x1 x2  xd having a joint distri‐
bution F(x1 x2  xd ) and the associated joint density func‐
tion f (x1 x2  xd ), Sklar’s theorem states that 
F(x1 x2  xd ) can be decomposed into its marginal distri‐
butions F1 (x1 ) F2 (x2 )  Fd (xd ) and a copula function 
C(×) [25].

F(x1x2xd )=C(F1 (x1 )F2 (x2 )Fd (xd )) (1)

Using the chain rule, f (x1 x2  xd ) is decomposed as:

f (x1x2xd )= c(F1 (x1 )F2 (x2 )Fd (xd ))∏
m = 1

d

f (xm ) (2)

where c(×) denotes the density of the copula.
Sklar’s theorem allows arbitrary marginal distributions 

when constructing joint distributions as long as they increase 
strictly and continuously. Therefore, several methods such 
as parametric distribution fitting and nonparametric methods, 
e.g., the empirical distribution and kernel density estimation 
(KDE), can be applied to model the marginal distribution. 
Here, the KDE method with a Gaussian kernel is applied to 
obtain a smooth distribution curve.

Two families of copula functions, i.e., Archimedean copu‐
las and elliptical copulas, are widely used to model the joint 
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distribution. These two copula families have different 
strengths in describing dependence structures. Archime‐
dean copulas (e. g., Clayton, Frank, and Gumbel copulas) 
have superior performance in modeling the tail and asymmet‐
ric dependencies, but they cannot model a dependence struc‐
ture with more than two dimensions. Elliptical copulas, e.g., 
the Gaussian copula and t-copula, can be easily extended to 
multivariate formulations. However, the Gaussian copula can‐
not fit the tail dependence, and the t-copula fails to model 
the asymmetric tail dependence structure. Thus, these two ex‐
isting copula families are limited in capturing complex multi‐
variate dependencies.

The PCC is proposed in [25] to overcome the limitations 
of the existing copula families when fitting multivariate dis‐
tributions. By combining different bivariate copulas as 
blocks to construct a high-dimensional dependence structure, 
PCC can make full use of existing copulas in high-dimen‐
sional distribution modeling. This substantially increases the 
flexibility in multivariate distribution fitting, especially in 
modeling the structures having tail dependencies with differ‐
ent characteristics, and has performed much better than mul‐
tivariate elliptical copulas.

B. Pair-copula and C-vine Structures

The main idea of PCC is to convert a joint density func‐
tion into a product of bivariate density functions using recur‐
sive conditioning. According to the chain rule, a d-dimen‐
sional joint density function can be recursively factorized as:

f (x1x2xd )= f1 (x1 ) f2|1 (x2|x1 ) f3|21 (x3|x2x1 )  × ×
   fd|d - 1d - 21 (xd|xd - 1xd - 2x1 ) (3)

Each univariate conditional probability distribution in (3) 
can be decomposed into the appropriate (conditional) pair‐
wise copula times a conditional marginal density as fol‐
lows [26]:

f (x|v)= cxvm|v-m
{Fx|v-m

(x|v-m )Fvm|v-m
(vm|v-m )} f (x|v-m ) (4)

where cxvm|v-m
 denotes an appropriate pair-copula density for 

the pair of variables Fx|v-m
(x|v-m ) and Fvm|v-m

(vm|v-m ); v is a d-

dimensional vector; vm is an arbitrary component of v; and 
v−m denotes v without vm.

By using (4) recursively, all conditional densities can be 
expressed as the products of bivariate copula densities and 
the corresponding marginal densities. Note that the decompo‐
sition of the joint density in (4) is not unique due to the arbi‐
trarily chosen sequence from vector v. In fact, there are 2d! 
ways to decompose a d-dimensional joint probability func‐
tion. To help organize all possible PCCs, a specific graphical 
model called regular vine is proposed in [25]. In regular 
vine, the dependence structures are represented as a se‐
quence of nested trees with nodes and edges. Each edge cor‐
responds to a bivariate copula block. Although the regular 
vine structure is flexible when modeling the dependence 
structure, the enormous number of possible vine tree se‐
quences makes it impossible to calculate all of these vines 
and choose the best one in practice [27]. Thus, a special 
case of the regular vine called C-vine is more frequently 
used when fitting the spatial correlations [28]-[30].

In the C-vine copula, each tree Tn has a unique node (de‐
noted as the root node) with d - n edges, which gives d!/2 
different C-vines on the d nodes. This significantly reduces 
the computational cost when selecting the tree structure. Fig‐
ure 1 shows one possible C-vine tree structure with five vari‐
ables. 

The d-dimensional density corresponding to C-vine is giv‐
en by:

f (x1x2xd )=∏
k = 1

d

fk (xk ) ×

∏
m = 1

d - 1∏
n = 1

d -m

cmm + n|12m - 1 (F(xm|x1xm - 1 )F(xm + n|x1xm - 1 ))

(5)

where the index m represents the trees; and the index n de‐
notes the edges in each tree. Furthermore, we use the h-func‐
tion notation introduced in [25] to denote the conditional dis‐
tribution functions:

h(UnUmΘ)=F(Un|Um )=
¶Cunum

(UnUmΘnm )

¶Um

(6)

where Θ is the set of parameters for the bivariate copula; 
and Un and Um are two uniformly distributed variables.

C. Summary of C-vine Fitting and Simulation

To describe a multivariate dependence structure with the 
C-vine copula, the best C-vine tree structure and the associat‐
ed optimal copula parameter should be identified. To obtain 
the best fit of a C-vine tree structure, a useful approach is to 
use Kendall’s τ as a criterion to find the root node in each 
tree. Then, the optimal parameters of each edge are estimat‐
ed using the maximum likelihood estimation and Akaike’s 
information criterion (AIC).

After constructing the C-vine copula model, N correlated 
wind speed samples are generated on the basis of the proba‐
bility integral transformation method and the inverse condi‐
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Fig. 1.　C-vine tree structure with five variables. (a) T1. (b) T2. (c) T3. (d) 
T4.
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tional distribution given by the h-function. The procedure of 
the sampling algorithm can be summarized as follows. First, 
generate a d-dimensional independent and identically distrib‐
uted (i. i. d.) random vector [u1 u2  ud ], which follows a 
uniform distribution on [0, 1]. Then, the nth variable is sam‐
pled, and the conditional distribution functions needed for 
sampling the (n + 1)th variable are computed by repeatedly us‐
ing the h-function defined in (6). A detailed description of 
the sampling method is given in Appendix A Algorithm A1.

III. MATHEMATICAL FORMULATION OF CHANCE-
CONSTRAINED ASSESSMENT MODEL FOR DWGHC 

A. Stochastic Assessment Model for DG Hosting Capacity 

The DG hosting capacity assessment problem is an optimi‐
zation problem. To consider the dependencies among DG 
outputs, SBSP is employed to build a scenario-based DG ca‐
pacity assessment model (SDGCAM). In this model, the de‐
pendent DG outputs are represented by numerous scenarios 
sampled from vine copula and there is no DG curtailment in 
any circumstances. The proposed SDGCAM is presented as 
follows.
1)　Objective Function

The aim of assessing the DG hosting capacity is to deter‐
mine the maximum DG capacity that can be installed in the 
distribution network without violating operation constraints. 
Thus, the objective function (7) sums up all of the DG ca‐
pacities at any candidate bus:

max ∑
iÎΨDG

cDG
i (7)

where ΨDG is the set of all candidate nodes connected to 
DG; and cDG

i  is the DG capacity installed at bus i.
2)　DG Installation Constraints

A DNO should know the maximum DG installation capac‐
ity limited by the local environment before assessing the ca‐
pacity through a careful investigation. Such an investigation 
will help improve the usability of the assessment results. 
However, if an investigation cannot be performed in advance 
of time, all buses in the distribution network could be set as 
candidate buses to obtain the extreme hosting capacity. The 
DG installation location and geographical constraints associ‐
ated with the local environment are expressed as:

0 £ cDG
i £C DGmax

i "iÎΨDG (8)

where C DGmax
i  is the maximum installation capacity at bus i.

3)　DG Output Constraints
Wind generation is a common form of renewable energy 

generation in a distribution network; thus, DWG is em‐
ployed in this paper to represent the intermittent and stochas‐
tic renewable-energy-based DG in a distributed network. 
However, the uncertainty and dependence of the output of 
wind generation originate from the wind speeds. Thus, (9) is 
employed to convert the wind speeds into DG outputs [31]. 
For simplicity, all the DGs are assumed to operate in the 
maximum power point tracking mode to make full use of re‐
newable energy. Note that for other renewable energy re‐
sources (such as PVs), we can employ (10) for the expected 
output in scenario s.

ηDG
s =

ì

í

î

ï
ïï
ï

ï
ïï
ï

0 0 £V DG
s £V ciV DG

s >V co

V DG
s -V ci

V r -V ci
V ci <V DG

s <V r

1 V r £V DG
s £V co

(9)

ì
í
î

ïï
ïï

P DG
is = η

DG
s cDG

i

QDG
is = tan φi P

DG
is

    "iÎΨDGsÎ S (10)

where S is the set of all scenarios; ηDG
s  is the efficiency fac‐

tor of the DG output at bus i in scenario s; V DG
s  is the wind 

speed in scenario s; V ci, V co, and V r are the cut-in speed, cut-
out speed, and related output speed of the wind turbine, re‐
spectively; P DG

is  and QDG
is  are the active and reactive DG out‐

puts at bus i in scenario s, respectively; and φi is the power 
factor angle of the DG output at bus i in scenario s.
4)　Power Balance Constraints

Power balance is a basic operation constraint in the distri‐
bution system. The active and reactive power balances at 
each bus are represented as:

ì

í

î

ïïïï

ï
ïï
ï

∑
ijÎΦbjÎ ξ(i)

pijs =P sub
is +P DG

is -P L
is

∑
ijÎΦbjÎ ξ(i)

qijs =Qsub
is +QDG

is -QL
is

      "iÎΨnsÎ S (11)

where ξ(i) denotes the bus connected to bus i; pijs and qijs 
are the active and reactive power flows in branch ij, respec‐
tively; P L

is and QL
is are the active and reactive load demands 

at bus i in scenario s, respectively; P sub
is  and Qsub

is  are the ac‐
tive and reactive power outputs of the substation at bus i in 
scenario s, respectively; Φb is the set of all branches; and Ψn 
is the set of all buses.
5)　Bus Voltage Constraints

The bus voltage limits play a vital role when assessing the 
hosting capacity. Here, the Distflow formulation is employed 
to describe the power flow constraints and the relation be‐
tween each bus. Equations (12) and (13) provide the bounds 
on the bus voltage, and (14) gives the Distflow formulation 
of the power flow.

Uis =V 2
is "iÎΨnsÎ S (12)

-V
2
i £Uis £

-
V

2
i "iÎΨn sÎ S (13)

Uis -Ujs = 2(rij pijs + xijqijs )- (x2
ij + x2

ij )
p2

ijs + q2
ijs

Uis
    

"ijÎΦbsÎ S (14)

where Vis and Uis are the bus voltage and its square in sce‐

nario s, respectively; -V i and 
-
V i are the lower and upper val‐

ues of Vi, respectively; and rij and xij are the resistance and 
reactance of each branch, respectively.

Equation (14) is nonconvex owing to the quadratic term 
of line power. It is intractable for an on-the-shelf commer‐
cial solver for the computation of a large distribution sys‐
tem. Nevertheless, the quadratic term is far smaller than the 
linear terms, and ignoring the quadratic term does not signifi‐
cantly impact the allocation results [19]. Therefore, ignoring 
this term leads to the following linear power flow constraint:

Uis -Ujs = 2(rij pijs + xijqijs ) "ijÎΦbsÎ S (15)
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6)　Branch Thermal Constraints
The thermal constraint is also vital in the hosting capacity 

assessment. Traditionally, the branch thermal constraint is ex‐
pressed in a quadratic form as:

p2
ijs + q2

ijs £ S max
ij     "ijÎΦbsÎ S (16)

where S max
ij  is the maximum apparent power of line ij.

However, the quadratic form in (16) cannot be efficiently 
handled by the commercial solver. Thus, a circular constraint 
linearization method that employs several square constraints 
to approximate the quadratic constraint is adopted to linear‐
ize (16) [32]. The linearized branch thermal constraint is giv‐
en in (17), and a schematic diagram of the circular con‐
straint linearization method is shown in Fig. 2, where the 
blue circular denotes the branch thermal constraints in (16); 
and the overlapping area of the two rectangles denotes the 
relaxed (16) after linearization.

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

-S max
ij £ pijs £ S max

ij

-S max
ij £ qijs £ S max

ij

- 2 S max
ij £ pijs + qijs £ 2 S max

ij

- 2 S max
ij £ pijs - qijs £ 2 S max

ij

    "ijÎΦbsÎ S (17)

The SDGCAM in (7)-(13), (15), and (17) is formulated as 
a linear programming (LP) problem, which has good perfor‐
mance for computing the hosting capacity in a large number 
of scenarios.

B. Modeling DG Curtailment

Although the SDGCAM can represent the uncertainty and 
dependencies between DG outputs, the assumption of full ac‐
commodation in all scenarios will lead to conservative and 
impractical DG integration. In fact, a DNO can control the 
output of DG in some extreme scenarios and curtail it if nec‐
essary, with the help of advanced distribution automation 
and active distribution management schemes. Thus, the secu‐
rity constraints in extreme scenarios can be ignored for eco‐
nomic hosting capacity. To balance the cost and curtailment 
risks, CCP is employed on the basis of the SDGCAM, and a 
chance-constrained DG capacity assessment model (CDG‐

CAM) is built by replacing the constraints in (11) with con‐
straint (18).

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

Pr ( )∑
ijÎΦb

pijs =P sub
is +P DG

is -P L
is ³ 1 - δ

Pr ( )∑
ijÎΦb

qijs =Qsub
is +QDG

is -QL
is ³ 1 - δ

    "ijÎΦbsÎ S   (18)

Equation (18) implies that the probability of violating the 
power balance constraints in (11) is less than a predefined 
risk level (1 - δ)%. A DNO can obtain a trade-off between 
the curtailment risk and the level of DG penetration by ad‐
justing the risk level.

C. Bilinear Reformulation of Chance Constraints

Due to the non-convex distribution, the chance-constraint 
cannot be handled by the commercial solvers. Thus, the 
chance constraints are usually reformulated as a set of linear 
constraints using the Big-M formulation [33]:

ì

í

î

ïïïï

ï
ïï
ï

-Mws £ ∑
ijÎΦb

pijs -P sub
is -P DG

is +P L
is £Mws

-Mws £ ∑
ijÎΦb

qijs -Qsub
is -QDG

is +QL
is £Mws

    "iÎΨnsÎ S

(19)

where M is a sufficiently large number.
However, the Big-M formulation incurs a large computa‐

tional burden, which cannot be applied to large-scale plan‐
ning problems. Therefore, we follow the idea in [34] and ap‐
ply a new bilinear reformulation of the chance constraints in 
this paper. This bilinear reformulation has exhibited better 
performance than the Big-M formulation for the unit commit‐
ment problem [35] but has not been applied to the hosting 
capacity assessment. The bilinear formulation of the con‐
straints in (18) is as follows:

ì

í

î

ï
ïï
ï
ï
ï

ï

ï
ïï
ï

ï

( )∑
ijÎΦb

pijs -P sub
is -P DG

is +P L
is (1 -ws )= 0

( )∑
ijÎΦb

qijs -Qsub
is -QDG

is +QL
is (1 -ws )= 0

    "iÎΨnsÎ S   (20)

∑
s = 1

S

πsws £ δ sÎ S (21)

where ws is a binary indicator of whether the associated con‐
straint is satisfied in scenario s or not; and πs is the probabil‐
ity of occurrence of scenario s. In this paper, we assume that 
each scenario has the same probability of occurrence, i. e., 
πs = 1/N (N = |S|). The validity of the reformulation (20) is 
clear; by setting the scenario indicator variable ws as 1, a 
nonresponsive scenario will be removed from the entire for‐
mulation. Equation (21) is equivalent to the chance con‐
straints in (18), where the predefined risk level is converted 
to the total number of nonresponsive scenarios. In addition, 
the bilinear terms pijsws, P DG

i ws, qijsws, and QDG
i ws in (20) 

can be linearized using the McCormick linearization tech‐
nique [36], which theoretically provides the tightest convex 
hull.

P

Q

S

� 2Smaxij

� 2Smaxij

�Smaxij

S
max

ij

2S
max

ij

2S
max

ij

�Smaxij S
max

ij

Fig. 2.　Linearization of circular constraint.
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ì

í

î

ïïïï

ï
ïï
ï

∑
ijÎΦb

pijs - ∑
ijÎΦb

p͂ijs + P͂ sub
is -P sub

is + P͂ DG
is -P DG

is +P L
is (1 -ws )= 0

∑
ijÎΦb

qijs - ∑
ijÎΦb

q͂ijs + Q͂sub
is -Qsub

is + Q͂DG
is -QDG

is +QL
is (1 -ws )= 0

    

                                                                   "iÎΨnsÎ S (22)

ì

í

î

ï

ïï
ï
ï

ï

ï

ï
ïï
ï

ï

-S max
ij ws £ p͂ijs £ S max

ij ws

S max
ij (ws - 1)+ pijs £ p͂ijs £ pijs - S max

ij (ws - 1)

0 £ P͂ DG
is £ η

DG
s C DGmax

i ws

P DG
is + η

DG
s C DGmax

i (1 -ws )£ P͂ DG
is £P DG

is

     "iÎΨnijÎΦbsÎ S (23)

ì

í

î

ï

ïï
ï
ï

ï

ï

ï
ïï
ï

ï
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     "iÎΨnijÎΦbsÎ S (24)

where p͂ijs = pijsws, q͂ijs = qijsws, P͂ sub
is =P sub

is ws, P͂ DG
is =P DG

is ws, 
Q͂sub

is =Qsub
is ws, and Q͂DG

is =QDG
is ws. Through the McCormick lin‐

earization technique, (20) is rewritten as (22). The convex 
McCormick envelopes of the bilinear terms are given in (23) 
and (24). The CDGCAM in (7) - (13), (15) - (17), and (20) -
(23) is thus converted to a large-scale deterministic mixed-in‐
teger linear programming (MILP) problem.

IV. BILINEAR BD OF CDGCAM 

A large number of scenarios are required to obtain an ac‐
curate approximation of the multivariate distribution. Howev‐
er, the associated large-scale MILP problem cannot be effi‐
ciently solved using off-the-shelf MILP solvers. To deal with 
the computational burden resulting from large-scale scenari‐
os, a specific approach of BD called bilinear BD algorithm 
is applied to solve the large-scale CDGCAM [36]. In the bi‐
linear BD algorithm, the CDGCAM is reformulated in a 
master-subproblem structure, where the master problem de‐
termines the capacity of each DG and the subproblem 
checks the feasibility corresponding to all selected scenarios 
and feeds back Benders cuts to the master problem. Then, 
the master problem and subproblem are solved iteratively.

A. Master Problem

In the master problem, the aim is to maximize the total 
DG hosting capacity with respect to constraints (8) - (10), 
(21) and the Benders cut in (25).

é

ë

ê
êê
ê ù

û

ú
úú
ú

Φ̂(k)
s + ∑

iÎΨDG

μ(k)
is (cDG

i - ĉDG(k)
i ) (1 -ws )£ 0 (25)

where Φ̂(k)
s  is the optimal objective of the feasibility check 

subproblem in scenario s at the k th iteration; ĉDG(k)
i  is the 

fixed value of the first-stage variables cDG
i  at the k th iteration; 

and μ(k)
is is the dual variables provided by the subproblem at 

the k th iteration.
Since the objective function (7) only contains the capacity 

of each DG, we only consider the Benders feasibility cut in 

the master problem. Unlike the conventional BD method, 
which simply generates Benders cuts from the dual variable 
in the subproblem, we follow the method in [34] and modify 
our Benders cut into a bilinear form. The binary integer vari‐
able ws indicates the inclusion or omission of feedback from 
the feasibility check subproblem in scenario s. If ws is set to 
be 1, the Benders cut in scenario s will be ignored. The k th it‐
eration of the bilinear master problem is described as:

ì
í
î

ïï

ïïïï

max ∑
iÎΨDG

cDG
i

s.t.  (8)-(10) (21) (25)
(26)

Similar to the former transformations, the bilinear terms 
of constraints in (25) can be linearized using McCormick lin‐
earization method as (27)-(29). Then, (25) is converted into 
linear inequalities, and the whole formulation is converted in‐
to an MILP problem.

Φ̂(k)
s + ∑

iÎΨDG

μ(k)
is (cDG

i - ĉDG(k)
i ) -wsΦ̂

(k)
s -

∑
iÎΨDG

μ(k)
is (c͂DG

i - ĉDG(k)
i ws ) £ 0 (27)

0 £ c͂DG
i £C DGmax

i ws (28)

cDG
i -C DGmax

i (1 -ws )£ c͂DG
i £ cDG

i (29)

Equations (27)-(29) are the McCormick convex envelopes 
of the bilinear terms c͂DG

i = cDG
i μ(k)

is.

B. Subproblem

As the name suggests, the feasibility check is utilized to 
check whether the installed DG can be accommodated in 
each scenario, with respect to the constraints (12), (13), (15), 
(17), (30), (31).
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î

ïïïï

ï
ïï
ï

∑
ijÎΦb

pijs -P sub
is -P DG

is +P L
is + ε

+
is - ε

-
is = 0

∑
ijÎΦb

qijs -Qsub
is -QDG

is +QL
is + ζ

+
is - ζ

-
is = 0

    "ijÎΦbsÎ S

(30)

cDG
i = ĉDG(k)

i μ(k)
is "iÎΨDGsÎ S (31)

In scenario s at the k th iteration, the feasibility check sub‐
problem is modeled as:

ì
í
î

ïï

ïïïï

min Φ(k)
s =∑

iÎΨn

(ε+is + ε
-
is + ζ

+
is + ζ

-
is )

s.t.  (12) (13) (15) (17) (30) (31)
(32)

By introducing nonnegative slack variables ε+is, ε
-
is, ζ

+
is, 

and ζ -
is into the power balance constraint (11), the feasibility 

of the problem is ensured. The objective of the problem is to 
minimize the sum of all slack variables. Specifically,  Φ(k)

s  de‐
notes whether the DG allocation result at the k th iteration is 
acceptable in scenario s. If  Φ(k)

s  is larger than a preset thresh‐
old (denoted as 0 in this paper), the DG allocation result can‐
not match the operation constraints, and the curtailment of 
DG output is triggered. In this case, the linearized bilinear 
feasibility cut in (27)-(29) is generated and added to the mas‐
ter problem to guide the master problem to find another 
proper DG allocation result in the next iteration. Equation 
(31) denotes the DG capacity used in the subproblem that 
comes from the master problem at the k th iteration.
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C. Solution Algorithm

The procedure of the proposed bilinear BD algorithm is 
shown in Algorithm 1. Furthermore, the flow chart of the al‐
gorithm is presented in Fig. 3.

V. CASE STUDY 

To verify the proposed method, we study a typical 38-bus 
distribution system located in eastern China. In the test distri‐
bution system, there are six neighboring wind speed observa‐
tion stations. The wind speed dataset consists of measure‐
ments over one year with a quarter-hourly resolution (35040 
periods). Figure 4 shows the locations of six wind speed ob‐
servation stations W1-W6, where the maximum distance 
among the observation stations is 3.2 km (W1 and W5). The 

linear correlation matrix of the six wind speeds is illustrated 
by the heat map in Fig. 5, which shows strong correlations 
between the geographically dispersed wind speed observa‐
tion stations in the distribution system. Figure 6 shows the 
marginal distributions of the observed wind speeds. Since 
there are no obstacles around W1, the marginal distribution 
of W1 is different from the others. The network structure of 
the 38-bus distribution system is shown in Fig. 7, where the 
candidate wind generation is integrated at buses 17, 18, 21, 
34, 36, and 38. Note that the integrated bus of DG will im‐
pact the hosting capacity of the distribution network; howev‐
er, we only present one selected interconnected bus combina‐
tion plan in this paper to verify the effectiveness of the pro‐
posed method. The maximum DG capacity C DGmax

i  of each 
bus is set to be 10 MW. As we focus on the planning of 
small enough and geographically DWG, the wake effect of 
wind generation can be omitted. Detailed data of the test sys‐
tem are given in Appendix A Tables AI and AII.

For a better illustration of the proposed model, we assume 
that the cut-in speed, cut-out speed, and related output speed 
of all wind turbines are 3 m/s, 25 m/s, and 12 m/s, respective‐
ly. The voltage at the point of common coupling (PCC) node is 
set to be 1.05 p. u.. The R package vine copula [36] is em‐
ployed to determine the optimal parameter of vine copula. The 
formulations of the DG hosting capacity assessment in the 
SDGCAM and CDGCAM are programmed in GAMS environ‐
ment and solved using CPLEX 12.5. The optimality gap of 
CPLEX is set to be 10-4, and the time limit is set to be 3600 s. 
In the BD, the optimality tolerance σ is set to be 0.02. 

s = s + 1

Initialization

s = 1

Compute master problem and get UB

w
s
 = 0 ?

Compute feasibility check problem

Is it infeasible?

Generate feasibility cut

Is it the last scenario?

|UB � LB|/LB ≤ σ?

k = k + 1

Y

Y

N

N

N

N

Start

End

Compute LB with fixed w
s

Y

Y

Fig. 3.　Flow chart of bilinear BD algorithm.

Algorithm 1: procedure of proposed bilinear BD algorithm

Initialization: set the iteration counter k = 0; set the lower bound LB =-¥ 
and the upper bound UB =+¥; and set the optimality tolerance σ.

Iteration:
Step 1: compute the bilinear master problem; derive its optimal value V̂ (k)

U , 
the optimal place and size solution ĉDG(k)

k , and the scenario indicator 
ŵ(k)

s ; update the upper bound UB = V̂ (k)
U .

Step 2: for all scenarios, solve the feasibility check subproblem, and de‐
rive the optimal value Φ(k)

s . If Φ(k)
s  is larger than zero (original problem 

infeasible), then generate the linearized Benders feasibility cut in equa‐
tions (27)-(29), and provide feedback to the master problem.

Step 3: construct an MILP to derive the LB. This problem is composed of 
the objective function in (7) and the constraints in (8)-(13), (17), and 
(20) with fixed ŵs from the master problem. Then, solve this problem 
and obtain its optimal objective V̂ (k)

L . Finally, update LB =max{LBV̂ (k)
L }.

Stop Criteria: if |UB - LB|/LB £ σ, terminate with the DG capacity solu‐
tion associated with the latest LB; otherwise, update the iteration k = k +
1 and return to Step 2. h

h

h

h

h

h

500 m

W1
W2

W3

W4
W5

W6

Fig. 4.　Locations of six wind speed observation stations.
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Fig. 5.　Linear correlation matrix of wind speed.
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All experiments are implemented on an HP Z840 worksta‐
tion with 10-core processors clocked at 2.4 GHz and 16 GB 
of RAM.

A. Modeling Correlated Wind Speed with Copula and C-
vine Copula

In this paper, the families of Gaussian copula, t-copula, 
Frank copula, Gumbel copula, and Clayton copula are con‐
sidered as candidate bivariate copulas. To show the differenc‐
es in their abilities to describe complicated dependence struc‐
tures, the results of a statistical model quality index called 
AIC and scatter plots of some variable pairs are shown in 
Figs. 8 and 9. The AIC is obtained by:

AIC =-2L(θ|u)+ 3ς (33)

where L is the log-likelihood; θ is the parameter set; ς is the 
number of parameters estimated by the model; and u is the 
observation. The AIC provides a means for model selection 
by estimating the quality of each model. The model with the 
lowest AIC is regarded as the best-fit copula model. For a 
better illustration of the dependence structures in the scatter 
plots, the variables in Figs. 8 and 9 are transformed into a 
uniform domain with their marginal distributions.

Owing to different types of tail dependencies and symme‐
tries of these copula functions, the fitting results are distinct 
from each other. For instance, the Gaussian copula and t-cop‐
ula cannot capture the tail dependence. The Gumbel copula 
is sensitive to the lower tail dependence. 

On the contrary, the Clayton copula is heavily concentrat‐
ed in the upper tail. The Frank copula has a wide and uni‐
form degree of scattering. In Fig. 8, the blue scatters are 
mainly dispersed at the lower-left corner of Fig. 8(a), which 
shows a distinct lower tail dependence; therefore, the Gum‐
bel copula has a better fit than the other copula functions. In 
Fig. 9, the blue scatters are distributed evenly along the diag‐
onal of Fig. 9(a) and spread out at the lower-left corner. It is 
difficult to obtain a proper function just by the shape of the 
scatters, since it shows the characteristics of both of the 
Gumbel copula and Frank copula. The AIC provides a more 
convincing and precise result. The Frank copula has a lower 
AIC and fits the observations more appropriately. However, 
neither the Gumbel copula nor the Frank copula can exactly 
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Fig. 6.　Marginal distributions of observed data at different locations.
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Fig. 7.　Diagram of 38-bus distribution network in eastern China.
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Fig. 8.　Scatter diagrams of W2 and W6. (a) Actual data. (b) Gaussian cop‐
ula, AIC =-5609.38. (c) t-copula, AIC =-5718.23. (d) Gumbel copula, AIC =
-6132.38. (e) Clayton copula, AIC =-5878.17. (f) Frank copula, AIC =
-5602.55.
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Fig. 9.　Scatter diagrams of W4 and W5. (a) Actual data. (b) Gaussian cop‐
ula, AIC =-9245.88. (c) t-copula, AIC =-9399.91. (d) Gumbel copula, AIC =
-9693.72. (e) Clayton copula, AIC =-8797.128. (f) Frank copula, AIC =
-9789.12.
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fit all of the bivariate models. Actually, the dependence rela‐
tion varies with the installation locations, and such a vari‐
able dependence structure is far beyond the fitness of any 
specific bivariate copula.

The bivariate case demonstrates the necessity of using a 
mix of different bivariate copula functions. Thus, we com‐
pare the performance of the C-vine copula and the popular 
multivariate Gaussian copula in modeling geographically dis‐
persed wind speed distribution. To quantify the performance 
of each copula model, three indexes including AIC, Bayes‐
ian information criterion (BIC), and log-likelihood are adopt‐
ed. As we know, a higher log-likelihood value indicates a 
better approximation. However, a higher log-likelihood is 
usually accompanied by overfitting. Like the AIC, the BIC 
is also a criterion for model selection, which attempts to 
choose a model with fewer parameters and a high likelihood 
value to avoid overfitting. The BIC is obtained by:

BIC = k ln(n)- 2L(θ|u) (34)

where n is the number of observations. The model with the 
lowest BIC is preferred.

The results of the fitting tests of different copula models 
are summarized in Table I.

It can be observed that the C-vine copula has smaller val‐
ues of the AIC and BIC and larger values of the log-likeli‐
hood than those of the Gaussian copula, which means that 
the C-vine copula has better performance in fitting this data 
sample, while the Gaussian copula is relatively inaccurate.

B. DG Hosting Capacity of Typical Distribution System

1)　Chance-unconstrained Case
In this subsection, detailed experiments are presented us‐

ing SDGCAM to reveal the impact of different dependence 
models of renewable resources on the maximum hosting ca‐
pacity. The computation results are listed in Table II. Four 
test datasets with different dependence relations are specified 
as follows.

1) IND: the wind speeds are assumed to be independent, 
and the marginal distributions of the wind speeds are the 
same as those of the actual data. The Monte Carlo sampling 
method is applied to generate 1000 scenarios.

2) VINE: the correlations between different wind speeds 
are modeled by C-vine copula, and 1000 samples are gener‐
ated by Appendix A Algorithm A1.

3) COPULA: the correlations between wind speeds are 
modeled by Gaussian copula, and the probability integral 
transformation method is applied to generate 1000 samples.

4) ACTUAL: the actual data of the wind speeds (35040 pe‐
riods) are used to directly compute the SDGCAM.

After sampling a sufficient number of scenarios from the 
cases, the SDGCAM is computed to determine how many 

DGs can be installed in the testing network without curtail‐
ment. The DG hosting capacities for the four cases are pre‐
sented in Table II.

It can be observed from Table II that the total hosting ca‐
pacity will be highly overestimated (3.59 MW, 21.38% of 
the actual DG hosting capacity) if the spatial dependence is 
not taken into account. This overestimate originates from the 
ignorance of the positive spatial correlations between DG 
outputs. Such positive spatial correlations aggravate the fluc‐
tuation in the total wind generation and lead to more ex‐
treme scenarios and lower DG hosting capacity. The optimis‐
tic results given by the assumption of independence pose a 
significant threat to the operation of the distribution system. 
The results in Table II demonstrate that it is necessary to 
consider the spatial correlation between DG outputs in the 
DG hosting capacity scheme.

In addition, the hosting capacity at each bus is shown in 
Fig. 10 to reveal the impact of different dependence models. 

As shown in Fig. 10, the C-vine copula is the best fit to 
the actual data, whereas the Gaussian copula leads to errone‐
ous capacity evaluation results at W4, W5, and W6. In par‐
ticular, the hosting capacity of W5 is zero in the ACTUAL 
dataset, while the hosting capacity is more than 3 MW for 
the IND and COPULA datasets. The reasons for these differ‐
ences are understandable. In the IND dataset, the wind 
speeds at different locations can be quite different, which 
may cause complementary wind speeds (power) at different 
locations at the same time, which is the reason why the ca‐
pacity of each wind farm is positive and close in the IND da‐
taset. In the COPULA dataset, the complementary wind 
speeds are limited by the correlation between wind farms, 
which leads to different hosting capacities than those of the 
IND dataset. However, other main dependence structures 

TABLE I
FITTING TEST OF DIFFERENT COPULA MODELS

Index

Gaussian copula

C-vine copula

AIC

-72782.54

-77875.87

BIC

-72633.91

-77621.07

Log-likelihood

36412.27

38973.94

TABLE Ⅱ
HOSTING CAPACITIES OF SDGCAM FOR DATASETS WITH 

DIFFERENT DEPENDENCIES

Dataset

IND

COPULA

VINE

ACTUAL

Hosting capacity (MW)

20.38

16.77

16.56

16.79

Time (s)

7.01

9.61

5.80

2180.63
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Fig. 10.　 Hosting capacity at each bus for IND, COPULA, VINE, and 
ACTUAL datasets.
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such as tail and asymmetric dependencies are not considered 
because only linear correlations are considered in the Gauss‐
ian copula model, and the hosting capacity is still far from 
that of the ACTUAL dataset. Neither an assumption of inde‐
pendence nor a copula-based model can correctly reflect the 
true wind speed correlations in this case. For the best fit of 
the various tail dependencies among wind speeds, the C-vine 
copula is the best choice. Note that although the ACTUAL 
dataset leads to the most actual result, computing this datas‐
et is intractable in CDGCAM. Considering both the runtime 
and accuracy, the C-vine copula method is adopted as the 
primary modeling method in the following tests.
2)　Chance-constrained Case

In this subsection, the impact of the acceptable wind cur‐
tailment probability is studied using the proposed CDGCAM 
model. Here, 1000 data samples are generated from indepen‐
dent marginal distributions, the C-vine copula, and the 
Gaussian copula. The wind generation capacity assessment 
results obtained via the CDGCAM with different curtailment 
probabilities are presented in Table III. Note that the CDG‐
CAM model will be reduced to the SDGCAM model when 
the wind curtailment probability is set to be 0.

From the results in Table III, it is obvious that the hosting 
capacity has a monotonically increasing relation with the cur‐
tailment probability. In fact, a higher curtailment probability 
leads to more discarded scenarios. Therefore, more optimis‐
tic results can be obtained for the hosting capacity. By con‐
trolling the curtailment probability, the DNO can achieve a 
satisfactory trade-off between the level of penetration and 
the renewable energy curtailment probability. Moreover, the 
modeling errors of the independence and Gaussian models 
are amplified in the higher curtailment probability case, 
which increases the operation risk of the DG planning 
scheme. Hence, it is important to select a proper dependence 
model to assess the DG hosting capacity.

For better understanding of the impact of different wind 
curtailment probabilities, we present the results for the bus 
voltage and apparent power of each line of the C-vine-copu‐
la-based CDGCAM in Figs. 11 and 12, respectively. Accom‐
modating a high penetration of DG will lead to a reverse 
power flow, which increases the bus voltages at the DG 
nodes. As shown in Fig. 11, the voltages of buses 17, 18, 
and 21 reach the upper limit in the full accommodation case. 
When we relax the power balance constraint to a chance con‐
straint, the bus voltage in some extreme scenarios can reach 

a higher level to accommodate more renewable energy. Com‐
pared with the bus voltage, the apparent power in Fig. 12 is 
less sensitive to the wind curtailment probability, which will 
not exceed the line capacity limit until the wind curtailment 
probability increases to 15%. This sensitivity analysis pro‐
vides a hint for distribution system management, which 
means that the current distribution system can accommodate 
16.56 MW of DWG without further network management 
and accommodate up to 18.40 MW of DWG with proper 
voltage management. Further, network expansion may be re‐
quired to accommodate more than 18.40 MW of DWG.

3)　Performance Comparisons
In this subsection, comparisons of the performance of the 

Big-M method, bilinear variant, and bilinear BD via 1000 C-
vine-copula data samples are presented. If an optimal solu‐
tion cannot be derived owing to the time limit (3600 s), the 
instance is labeled with an “F” The computational perfor‐
mance is summarized in Table IV.

It can be observed from Table IV that even a small in‐
crease in the wind curtailment probability can lead to a sig‐
nificant increase in the computational time. Moreover, the 
state-of-the-art CPLEX solver does not have the capacity to 
handle cases with a wind curtailment probability greater than 
10% with the Big-M formulation. In contrast, the proposed 
bilinear variant of the chance-constrained formulation has a 

TABLE Ⅲ
HOSTING CAPACITY RESULTS OF CDGCAM FOR DATASETS WITH 

DIFFERENT DEPENDENCIES AND DIFFERENT WIND 
CURTAILMENT PROBABILITIES

Curtailment probability (%)

1

5
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15

20

Hosting capacity (MW)

IND

20.76

21.44

21.76

22.39

23.98

COPULA

17.36

18.56

19.39

20.70

21.69

VINE

16.72

17.34

17.72

18.40

19.37
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Fig. 11.　Bus voltage with different wind curtailment probabilities.
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better solution capacity and better computational perfor‐
mance. Compared with direct solution of the Big-M formula‐
tion and bilinear variant formulations, the bilinear BD meth‐
od shows a drastically improved solution capacity and better 
performance and solves all cases within the time limit.

VI. CONCLUSION 

In this paper, we propose a novel approach for assessing 
the DG hosting capacity that considers the spatial correla‐
tions between uncertain DG outputs and the risk preference 
of DNO. In this approach, an advanced C-vine copula is ap‐
plied to model the complex high-dimensional dependencies 
among geographically dispersed DGs. After generating a suf‐
ficient number of scenarios from the C-vine copula model, 
the dependencies of the geographically dispersed DG outputs 
are introduced to the chance-constrained assessment model 
for DWGHC, where the risk preference of DNO is consid‐
ered by a predefined DG curtailment probability. Further‐
more, a bilinear variant of the chance constraints and a cus‐
tomized BD algorithm are developed to solve the chance-
constrained assessment model for DWGHC and to deal with 
the computational challenge resulting from the large number 
of random scenarios.

Numerical results for wind generation in a real distribu‐
tion system in eastern China verify the effectiveness of the 
proposed method and algorithm. The results show that the 
maximum hosting capacity would be too optimistic without 
the consideration of the spatial correlations between wind 
generation outputs, which will lead to inaccurate and unreal‐
istic solutions during the assessment of the capacity. Specifi‐
cally, the hosting capacity of the test system under the as‐
sumption that the independent wind speed is 21% higher 
than that of the actual wind speed scenario. Thus, the corre‐
lations between DG outputs should be considered for authen‐
tic hosting capacity results. After further investigation of the 
dependence models, we find that the selection of the depen‐
dence model has a significant impact on the accuracy of the 
capacity assessment results. In the test system, the C-vine 
copula has better fitting performance than Gaussian copula, 
and thus provides a more accurate hosting result for each 
candidate bus. Overall, the correlations between renewable 
energy sources impact the total hosting capacity of the distri‐
bution network, and the dependence structure has an impact 
on the hosting capacity of each bus. The dependencies be‐
tween DG resources should be carefully handled in the host‐
ing capacity problem.

Another numerical test shows the impact of wind genera‐

tion curtailment. On the basis of the proposed bilinear 
chance-constrained assessment model, we found that the cur‐
tailment probability has a significant impact on the hosting 
capacity; a higher curtailment probability leads to a higher 
hosting capacity. These results are consistent with previous 
experience in the operation of distribution networks. A fur‐
ther study found that hosting capacity models with different 
dependence structures have different sensitivities to wind cur‐
tailment. In our case study, the vine copula model is less sen‐
sitive than the Gaussian copula model.

Further study can use a more powerful dependence model‐
ing tool to analyze the impacts of the correlations among dif‐
ferent loads and renewable resources on the hosting capacity.

APPENDIX A 

TABLE Ⅳ
COMPUTATIONAL TIME OF CDGCAM WITH DIFFERENT CURTAILMENT 

PROBABILITIES

Curtailment 
probability (%)

1

5

10

15

20

Computational time (s)

Big-M

234.97

2821.93

3374.47

F(N/A)

F(N/A)

Bivariant

122.49

1033.74

1461.37

3567.64

F(N/A)

BD

29.91

550.81

1356.79

1834.67

3257.20

TABLE AI
LOAD DATA

Bus No.

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

Active 
load (kW)

83.640

65.290

87.390

122.471

102.760

163.232

81.600

102.695

30.600

61.265

37.678

132.636

22.112

51.230

61.240

81.600

122.403

28.969

20.410

Reactive 
load (kvar)

22.018

21.942

27.957

38.880

34.484

50.462

21.629

33.145

10.329

18.435

11.170

41.179

6.695

17.190

18.605

21.310

32.038

9.167

6.360

Bus No.

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

Active 
load (kW)

28.988

68.320

77.210

183.630

208.080

106.510

49.612

24.500

36.720

32.640

112.200

116.530

97.850

22.177

28.980

20.400

22.179

20.480

Reactive 
load (kvar)

7.631

22.961

24.700

58.295

69.828

32.927

13.150

7.907

12.395

9.822

33.262

36.179

29.625

7.441

8.804

5.328

5.805

6.481

Algorithm A1: simulation algorithm for a canonical vine

Sample u1 u2  ud independent uniform on [0, 1].

x1 = v11 = u1 

for n = 2 3 d

   vn,1 = un

   for k = n - 1 n - 21

      vn1 = h-1 (vn1 vkk Θkn - k ) 

   end for

   xn = vn1

   if n = = d then

     stop

   end if

   for j = 12n - 1

     vnm + 1 = h(vnmvmmΘmn -m )

   end for

end for
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