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Multiple Random Forests Based Intelligent 
Location of Single-phase Grounding Fault in 

Power Lines of DFIG-based Wind Farm
Yongli Zhu and Hua Peng

Abstract——To address the problems of wind power abandon‐
ment and the stoppage of electricity transmission caused by a 
short circuit in a power line of a doubly-fed induction genera‐
tor (DFIG) based wind farm, this paper proposes an intelligent 
location method for a single-phase grounding fault based on a 
multiple random forests (multi-RF) algorithm. First, the simula‐
tion model is built, and the fundamental amplitudes of the zero-
sequence currents are extracted by a fast Fourier transform 
(FFT) to construct the feature set. Then, the random forest clas‐
sification algorithm is applied to establish the fault section loca‐
tor. The model is resampled on the basis of the bootstrap meth‐
od to generate multiple sample subsets, which are used to estab‐
lish multiple classification and regression tree (CART) classifi‐
ers. The CART classifiers use the mean decrease in the node im‐
purity as the feature importance， which is used to mine the re‐
lationship between features and fault sections. Subsequently, a 
fault section is identified by voting on the test results for each 
classifier. Finally, a multi-RF regression fault locator is built to 
output the predicted fault distance. Experimental results with 
PSCAD/EMTDC software show that the proposed method can 
overcome the shortcomings of a single RF and has the advan‐
tage of locating a short hybrid overhead/cable line with multi‐
ple branches. Compared with support vector machines (SVMs) 
and previously reported methods, the proposed method can 
meet the location accuracy and efficiency requirements of a 
DFIG-based wind farm better.

Index Terms——Doubly-fed induction generator (DFIG) based 
wind farm, power line, multiple random forests (multi-RF), sin‐
gle-phase grounding fault, fault location.

I. INTRODUCTION 

THE proportion of wind power generation in power sys‐
tems is gradually increasing during the low carbon and 

intelligent energy transition period to achieve carbon neutrali‐
ty. As most of the power collection lines in wind farms are 
located in mountainous areas or seas with harsh environmen‐
tal conditions, they are prone to suffer from lightning strikes 

and the windage of insulators, resulting in short-circuit 
faults. Among these faults, single-phase grounding faults ac‐
count for approximately 80% in doubly-fed induction genera‐
tor (DFIG) based wind farms, with the highest probability of 
occurrence. A power line in a wind farm is usually com‐
posed of many wind turbine branches and short-distance 
overhead and cable lines, which increase the difficulty of lo‐
cating a fault [1]. Therefore, the rapid and accurate location 
of faults in power collection lines can effectively guide main‐
tenance personnel to repair them. Moreover, the interruption 
time in electricity transmission in these lines is decreased, 
and the power generation loss of the wind turbines of faulty 
lines can be significantly reduced, which increases the eco‐
nomic benefits of the wind farm.

The electric system of a wind farm is a typical multi-ter‐
minal power generation and transmission system. At present, 
there are a few studies on fault location for this type of net‐
work, resulting in a lack of effective diagnostic techniques 
and means of location. Fault location approaches can be 
mainly categorized into traveling wave approaches [2] - [7], 
fault analysis approaches [8] - [12], and artificial intelligence 
approaches [13]-[18]. Traveling wave approaches are simple, 
but there are multi-branch lines and hybrid lines in the distri‐
bution network and wind farm, which make it difficult to 
recognize the traveling wave head and determine the wave 
speed. Because the power lines in wind farms are short and 
the sampling frequency of the traveling wave is restricted, 
the fault location error increases. Considering the difference 
in the traveling wave velocity in overhead and cable sec‐
tions, the location of a fault in a hybrid distribution system 
is determined on the basis of the time difference in the ini‐
tial traveling wave [6]. In [7], a traveling wave location 
method is presented using the discrete wavelet transform 
(DWT) for a hybrid multi-terminal transmission system that 
interconnects an offshore wind farm and the main grid. How‐
ever, its location performance is reduced to a certain degree 
when a fault occurs near the joint points and ending termi‐
nals [7].

Fault analysis methods have a high stability. Nevertheless, 
the location precision is sensitive to variations in the fault re‐
sistances and system parameters. In [11], an active signal in‐
jection scheme is designed based on a soft open point. The 
low-frequency amplitudes of the zero-sequence currents ex‐
tracted by a fast Fourier transform (FFT) are compared with 
the value of a current threshold in turn to realize the accu‐
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rate judgment of a fault section in a resonant grounding dis‐
tribution network. As explained in [11], the scheme needs to 
search the fault section of feeders step by step. Consequent‐
ly, it has significant negative impacts such as the high redun‐
dancy during computation and the low location efficiency. 
The scheme in [12] is suitable for dual-end and T-connected 
transmission lines, but it is difficult to adapt to fault location 
for the wind farm power lines of hybrid short conductors 
and multiple branches, which cause a large number of calcu‐
lations with multiple iterations.

The construction of a digitally driven smart wind farm has 
opened an era of artificial intelligence in the field of wind 
power. Hence, it has become a trend that intelligent algo‐
rithms are selected for fault location for wind farms with 
multiple branches and hybrid short lines. In [17], the norm 
of the detail coefficients, which are extracted by a DWT 
from the voltage signal measured at the midpoint of the DC/
DC converter, is utilized as a feature vector. Subsequently, a 
pattern recognition method based on a three-layer feed-for‐
ward artificial neural network is carried out to identify the 
correct fault location in a photovoltaic system. In [18], the 
AC current and internal circulation current are analyzed 
when an open-circuit fault of a submodule occurs in differ‐
ent bridge arms in a modular multi-level converter (MMC). 
Then, a mixed-kernel support tensor machine (STM) is ap‐
plied to locate the faulty MMC, which achieves a better ac‐
curacy than that of a single-kernel STM [18].

The random forest (RF) algorithm [19] - [22] is an excel‐
lent ensemble learning algorithm based on the bagging and 
random subspace methods, which takes into account both 
the prediction accuracy and efficiency. Furthermore, the RF 
algorithm has been widely used in the fields of power quali‐
ty (PQ) complex disturbance recognition [20], multi-source 
partial discharge (PD) diagnosis of a transformer [21], and 
prediction of daily enterprise electricity consumption [22]. In 
[20], PQ disturbances are broadly classified into two classes 
on the basis of the FFT and the calculation of the number of 
peaks above a threshold. A modified S-transform is then 
used for feature extraction, and at the same time, the RF al‐
gorithm is used to effectively assess the PQ. Even at a noise 
level 20 dB, its classification result is still accurate, with a 
result of 99.61%. In [21], the S-transform aided RF algo‐
rithm is presented to detect the location of the PD, which 
employs the signature of an optical sensor, and the accuracy 
rate obtained for recognizing the location of the PD is 
95.6%. In [22], time-frequency features are extracted by an 
ensemble empirical mode decomposition FFT (EEMD-FFT). 
On this basis, the RF algorithm is used to predict the daily 
enterprise electricity consumption, which outperforms other 
predictors, e. g., the back propagation neural network 
(BPNN) and the least-squares support vector machine (LSS‐
VM). Accordingly, the RF algorithm has the following signif‐
icant advantages: ① high generalization ability and noise im‐
munity; ② capability of preventing overfitting; and ③ appli‐
cability to the rapid processing of large-scale power data.

With the background of wind power big data applications 
and smart wind farm construction, an intelligent single-phase 
grounding fault location method for power lines based on 
multiple random forests (multi-RF) is proposed in this paper. 

A 110 kV/35 kV simulation model is built, and the funda‐
mental amplitudes of the zero-sequence currents are extract‐
ed by the FFT to construct the feature set. Furthermore, an 
RF fault section locator is introduced to calculate the mean 
decrease in the value of the node impurity, which is used to 
select features for quantitative analysis and sorting. A fault 
section is accurately located through the voting mechanism of 
the RF fault section locator. On this basis, a multi-RF regres‐
sion fault locator is established to output the predicted fault 
distance. The experimental results obtained using PSCAD/EM‐
TDC software show that the proposed method is not affected 
by the fault location, transition resistance, or noise, and can be 
applied to locate faults in DFIG-based wind farms.

A few methods have been used for power line fault loca‐
tion in DFIG-based wind farms. Compared with these meth‐
ods, the proposed method has the following characteristics. 
First, it can cope with the fault locations of shorter hybrid 
power lines. Second, the dual-ended traveling wave method 
cannot adapt to the structure of a power network with wind 
farms, whose lines have multiple generator branches. Com‐
pared with this method, the proposed method adopts the fun‐
damental amplitudes of the zero-sequence currents of a pow‐
er line as features; hence, there is no location error caused 
by the clock synchronization problem. In addition, a high 
sampling frequency is not required; thus, the running speed 
and processing efficiency are naturally good. Third, com‐
pared with the impedance method, the proposed method 
avoids the need to solve complex equations, which makes it 
possible to quickly and accurately locate fault points without 
the problems of pseudo roots and pseudo fault points of the 
impedance method.

The remainder of this paper is organized as follows. Sec‐
tion II describes the topological structure of the electric sys‐
tem of a large-scale wind farm. Section III presents the simu‐
lation model of the DFIG-based wind farm and sets the con‐
ditions for generating the training set. Section IV presents 
the methodology for fault characteristic analysis and fault fea‐
ture extraction. Section V proposes an approach for construct‐
ing a multi-RF fault locator for DFIG-based wind farms. Sec‐
tion VI introduces the design of multi-RF fault locator for 
power lines of DFIG-based wind farms. Section VII analyzes 
and discusses the experimental results obtained using the pro‐
posed method. Finally, Section VIII concludes the paper.

II. TOPOLOGICAL STRUCTURE OF ELECTRIC POWER SYSTEM 
OF A LARGE-SCALE WIND FARM 

The topological structure of the electric power system of a 
large-scale wind farm, which is composed of wind turbines, 
power lines, and a booster substation, is shown in Fig. 1. At 
present, the system has the following general structural charac‐
teristics.

1) From the overall perspective, it is a typical radiation 
network, which adopts the connection form of a chain.

2) Its main voltage level is 35 kV. In order to ensure its 
safety and reliability, a zig-zag grounding transformer is usu‐
ally utilized to constitute its artificial neutral point.

3) Each associated power line is composed of hybrid over‐
head/cable sections and is connected to multiple wind tur‐
bines. Moreover, the lengths between adjacent wind turbines 
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are different and usually very short. III. SIMULATION MODEL OF DFIG-BASED WIND FARMS AND 
GENERATION OF TRAINING SETS 

The PSCAD/EMTDC software is utilized to obtain single-
phase grounding fault samples. The simulation model of a 
DFIG-based wind farm is shown in Fig. 2.

The simulation conditions are as follows. The sampling 
frequency is set to be 1600 Hz. There are 16 DFIGs with a 
single-unit capacity of 2 MW. In addition, the type of the ca‐
ble lines is YJLV23-26/35kV-3 × 240 (3 cores with the cross-
sectional area of 240 mm2), and their lengths are all 100 m. 
The type of the overhead lines is LGJ240, and their lengths 
between adjacent wind turbines are shown in Fig. 2. The rel‐
evant parameters for the cable and overhead lines are listed 
in Table I.

Indeed, a training set of fault samples is crucial for gener‐
ating a multi-RF fault locator. Therefore, appropriate and rep‐
resentative failure scenarios should be selected to obtain 
fault samples. The conditions for generating the training sam‐
ples are as follows: ① assume that a fault occurs on the up‐
per power line in Fig. 2; and ② consider the combinations of 
different fault locations and fault resistances when single-
phase grounding short circuits occur. These generation condi‐
tions for the training set of fault samples are listed in Table II.

The fault resistances listed in Table II range from 0 Ω to 
100 Ω, whereas the fault resistances related to the test set 
range from 0 Ω to 200 Ω.

IV. METHODOLOGY FOR FAULT CHARACTERISTIC ANALYSIS 
AND FAULT FEATURE EXTRACTION 

A. Fault Characteristic Analysis

Signal processing is the key point and premise for feature 
extraction for fault location. As an efficient spectrum analy‐
sis method, the FFT algorithm [23] can rapidly transform the 
time domain into the frequency domain and accurately ex‐
tract amplitude parameters. Thus, it is used in the characteris‐
tic analysis for fault signals of power lines of DFIG-based 
wind farms. If the complex exponential signal of a single fre‐
quency is selected as the input of the FFT algorithm, it can 
be expressed as:

x(n)=A0ei(nω0 + φ0 )=A0ei(2πnβ/N + φ0 ) (1)

where N is the number of signal sampling points per cycle; 
β is the signal frequency index; nÎ[-N + 1N - 1]; A0 is the 
amplitude; ω0 is the angular frequency; φ0 is the initial 
phase; and 2πβ N is the multiple forms of ω0.

Through an FFT analysis, the calculated amplitude-fre‐
quency expression can be obtained as:
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Fig. 1.　Topological structure of electric system of a large-scale wind farm.
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Fig. 2.　Simulation model of a DFIG-based wind farm.

TABLE I
RELATED PARAMETERS OF CABLE AND OVERHEAD LINES

Type

YJLV23-26/
35kV-3 × 240

LGJ240

Sequence 
component

Positive sequence

Zero sequence

Positive sequence

Zero sequence

Resistance 
(Ω/km)

0.1250

1.2500

0.1310

0.2810

Reactance 
(Ω/km)

0.1130

0.3955

0.3720

1.1160

Susceptance 
(10-6 S/km)

91.0000

57.0000

4.0506

2.7946

TABLE II
GENERATION CONDITIONS FOR TRAINING SET OF FAULT SAMPLES

Fault parameter

Fault location (interval between the two 
adjacent single-phase grounding fault 

points in each section (m))

Fault resistance (Ω)

Generation condition

1 (230), 2 (120), 3 (80), 
4 (130), 5 (50), 6 (100), 

7 (60), 8 (100)

0, 25, 50, 75, 100
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where k is an integer in the range of 0 to N - 1.
It is obvious that the simulation model of the DFIG-based 

wind farm contains two power lines, each of which can be 
divided into eight sections. Additionally, distributed measure‐
ment points are installed at the head end of a section, as 
shown in Fig. 2. During the electromagnetic transient simula‐
tion, phase A grounding faults with transition resistances of 
0, 25, 50, 75, and 100 Ω are set at different sections of the 
first power line of the DFIG-based wind farm. Taking the A-
phase grounding fault that occurs at 1-230 m with a transi‐
tion resistance of 100 Ω as an example, the waveform data 
at measurement point 1 and the FFT analysis results for the 
zero-sequence current are shown in Fig. 3.
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Fig. 3.　Waveform data and FFT analysis results for zero-sequence current 
when a phase A grounding fault occurs at 1-230 m with a transition resis‐
tance of 100 Ω. (a) Three-phase voltage waveform. (b) Zero-sequence cur‐
rent waveform. (c) Each frequency component of zero-sequence current.

The notation “1-230” indicates that the fault point is at 
section 1 of the faulty line and is 230 m away from the 35 
kV bus of the substation. More generally, k-b indicates that 

the fault point is at section k and the distance between the 
fault point and the 35 kV bus is b m. In fact, the measured 
data of the second cycle after the moment that a fault occurs 
are used to obtain accurate FFT results and avoid the unsta‐
ble stage of the transient currents in the first cycle after a 
power line fault.

In particular, the purple bar in Fig. 3(c) shows that the am‐
plitude of the fundamental frequency (50 Hz) of the zero-se‐
quence current calculated by the FFT algorithm is 13.1224 
A. Similarly, the values of the other measurement points can 
also be obtained in this manner. In conclusion, the fault char‐
acteristic analysis is effectively completed for the DFIG-
based wind farm.

B. Fault Feature Extraction for DFIG-based Wind Farms

Data and features determine the upper bound of machine 
learning, whereas models and algorithms are only applied to 
approach this upper bound. Therefore, feature engineering is 
the key to establishing the location model. Moreover, the 
quality of the extracted features will have a direct impact on 
the fault location performance for DFIG-based wind farms.

It is necessary to extract fault features from the measured 
data of power lines of a DFIG-based wind farm because 
they are time series and large. From a practical point of 
view, wind turbines do not inject a zero-sequence current 
when a single-phase grounding fault occurs, because the 
windings at 35 kV side of all box-type transformers of the 
wind turbines are delta connections. As a result, their zero-
sequence currents are not affected by the outputs of the 
wind turbines. In addition, an analysis of the feature impor‐
tance based on RF algorithm shows that the features of the 
fundamental amplitudes of the zero-sequence currents can re‐
flect the fault information and can be effectively used for 
fault location in power lines. In summary, the extraction of 
fault features is analyzed and designed according to Fig. 3. 
The FFT algorithm is used to extract the fundamental ampli‐
tudes of zero-sequence currents from waveform data mea‐
sured at the measurement point when single-phase grounding 
faults occur, thereby constituting features 1 to 8 (F1-F8), as 
listed in Table III, where Ik0 is the fundamental amplitude of 
the zero-sequence current at section k (k = 1, 2, , 8).

V. PROCEDURE TO CONSTRUCT MULTI-RF FAULT 
LOCATOR FOR DFIG-BASED WIND FARMS 

The procedure to construct the multi-RF fault locator is as 
follows: ① model the problem of fault location as a classifi‐
cation and regression problem; ② sample historical fault da‐

TABLE III
FEATURES OF ZERO-SEQUENCE CURRENTS OF SINGLE-PHASE GROUNDING 

FAULTS FOR POWER LINES OF DFIG-BASED WIND FARMS

Feature label

F1

F2

F3

F4

Specific feature 
description

I10

I20

I30

I40

Feature label

F5

F6

F7

F8

Specific feature 
description

I50

I60

I70

I80
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ta to train the optimal multi-RF fault locator; and ③ input 
the current sampled fault data into the optimal multi-RF 
fault locator to realize automatic location for power lines of 
DFIG-based wind farms.

A. RF Algorithm

The RF algorithm [19]-[22] constructs a supervised ensem‐
ble tree model whose base learners are all unpruned decision 
trees (DTs) constructed by the classification and regression 
tree (CART) algorithm. Moreover, it combines the ideas of 
the bagging and random subspace methods, which can effec‐
tively solve the bottleneck problems of single weak learner 
that are prone to overfitting and have difficulty in improving 
their performance.

Since a DT generated by the CART algorithm is used as 
the base learner to constitute the RF model, the classifica‐
tion strength s of a DT and the correlation ρ between DTs 
must be the main factors affecting the location performance, 
which can be characterized by the generalization error PE*:

PE* £
ρ̄(1 - s2 )

s2
(3)

where ρ̄ is the average value of ρ. When ρ̄ is smaller and s 
is larger, the upper bound of PE* will be lower. As a result, 
it strengthens the generalization ability and increases the lo‐
cation accuracy.

B. Feature Importance Theory Based on Node Impurity

During the training process for RF, the node impurity (Gi‐
ni index) is used as the binary partition criterion to evaluate 
the segmentation effects when different features split the 
nodes. Suppose that node t of DT v is made up of subset St 
that includes a samples and n classes of Ck  (k = 12...n). In 
addition, ak indicates the number of samples correctly classi‐
fied in the subset after adopting a feature to split node t. 
Then, the original Gini index of St is given as:

Giniv (S t )= 1 -∑
k = 1

n

p2
k (4)

where pk is the probability that the sample points belong to 
class k and pk = ak a. When an RF uses feature Fi to split 

node t, St is divided into subsets St1
 and St2

 according to the 

binary partition criterion. Thereafter, under the condition of 
feature Fi, the Gini index of St is expressed as:

Giniv (S tFi )=
at1

a
Giniv (S t1

)+
at2

a
Giniv (S t2

) (5)

where at1
 and at2

 are the numbers of samples in St1
 and St2

, 

respectively. From (4) and (5), the decrease in the node im‐
purity before and after splitting node t is determined as:

DGiniv (S tFi )=Giniv (S t )-Giniv (S tFi ) (6)

On the basis of completing the construction of RF model, 
if feature Fi divides u nodes in DT v and carries out CART 
modeling for r DTs, then the mean decrease in the node im‐
purity of the feature (feature importance) in the RF model is 
defined as:

DmGini(Fi )=
1
r∑v = 1

r ∑
t = 1

u

DGiniv (S tFi ) (7)

Similarly, the mean decrease in the node impurities of all 
features can be computed using the above formulas. A larger 
mean decrease in the node impurity of a feature means that 
the role of that feature in the prediction models is greater. 
Therefore, this theory can be used to select features and 
quantitatively analyze the validity of the fault feature extrac‐
tion to obtain a higher fault location accuracy.

C. Construction Process of Multi-RF Fault Locator

The corresponding steps for building the fault classifica‐
tion and regression models for power lines of DFIG-based 
wind farms using multi-RF algorithm are as follows.

Step 1: using the bagging method, w training sample sub‐
sets for fault classification are generated, which can be ex‐
pressed as {S1S2...Sw }. Then, the probability that a subset 
Sc (c = 12...w) does not contain a certain sample point in 
Bootstrap sample can be obtained as:

pOOB = ( )1 -
1
w

w

(8)

Its limit can be calculated as:

lim
w®¥

pOOB = lim
w®¥ ( )1 -

1
w

w

=
1
e
» 0.368 (9)

Therefore, approximately 36.8% of the unsampled sam‐
ples in S are called out-of-bag (OOB) data. Using the OOB 
data as a test set, the corresponding OOB error can be imme‐
diately evaluated once each CART base learner is construct‐
ed. Subsequently, an estimate of the generalization error of 
RF algorithm can be obtained by averaging the OOB errors 
of w DTs.

Step 2: for each training subset, a corresponding single 
DT is constructed according to the CART algorithm. The 
DTs built for w training sample subsets are denoted as 
{T1T2...Tw } and used in combination to form an RF fault 
section locator.

Step 3: during the training of each DT, the random sub‐
space method is used to split the nodes of the DT. More‐

over, m = ê
ë

ú
ûM  sub-variables are randomly extracted from 

M variables with equal probability in the feature space to 
form a node-splitting candidate feature subset. For each can‐
didate feature, its optimal splitting feature and splitting 
threshold are selected by (4) and (5) to divide a DT node un‐
til the DT stops growing according to the minimum princi‐
ple of the Gini index.

Step 4: after each DT is constructed using the stop thresh‐
old method, the integrity of the tree is preserved without 
pruning. In addition, the predicted fault section sequence can 
be obtained for a test fault sample X by w DTs, which is 
{T1 (X )T2 (X )...Tw (X )}.

Step 5: the predicted fault section sequence obtained in 
Step 4 is voted using (10), and the section with the highest 
number of votes on is selected as the final predicted fault 
section k of the RF fault section locator.

T(X )= arg max
Ck

∑
j = 1

w

I(Tj (X )=Ck )    k = 12...n (10)

where I(×) is the indicator function. When the equality condi‐
tion is true, the value of I(×) is 1; otherwise, it is 0. Tj (X )=
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Ck means that the output classification result of DT j is Ck.
Meanwhile, during the training in Steps 1-3, the mathemat‐

ical relationship between the OOB error and w DTs is de‐
fined as:

EOOB = 1 -
∑
a = 1

NO

I(T(Oa )=Ca )

NO

(11)

where NO is the total sample size of the OOB data; and 
T(Oa ) can be obtained in the form of (10), and T(Oa )=Ca 
means that the OOB sample Oa is classified and the result is 
correct.

Step 6: with the above steps, an RF fault section locator 
can be built. Similarly, a multi-RF regression fault locator 
can be constructed to output the fault distance. The differ‐
ence is that the average of the predicted values of all DTs is 
taken as the final location result for each RF regression fault 
locator.

VI. DESIGN OF MULTI-RF FAULT LOCATOR FOR POWER 
LINES OF DFIG-BASED WIND FARMS 

The RF algorithm has the following advantages for solv‐
ing the problem of predicting the fault distance of power 
lines of DFIG-based wind farms.

1) It possesses automatic parallel computing and a fast 
training speed and is suitable for processing large-scale pow‐
er data.

2) Using the tree structure model, there is no need to nor‐
malize the fault data collected from DFIG-based wind farms.

3) Training sample subsets and features are randomly ex‐
tracted using the bootstrap and random subspace methods, re‐
spectively, to minimize the correlation between DTs. Conse‐
quently, it has a strong generalization ability and high loca‐
tion accuracy.

The multi-RF algorithm has the advantages of the single-
RF algorithm. Further, the multi-RF algorithm can improve 
the utilization of samples and achieve a higher location accu‐
racy than the single-RF algorithm. In this paper, the multi-
RF fault location framework for power lines of DFIG-based 
wind farms is designed according to Fig. 4. In this frame‐
work, a single-RF fault section locator based on the classifi‐
cation algorithm and a multi-RF regression fault locator 
based on the regression algorithm are constructed. The sin‐
gle-RF fault section locator is used to identify the sections 
where fault points are located. When the fault sections are 
determined, the switches in these sections are closed, where‐
as those in the other sections remain open. In the multi-RF 
regression fault locator, only the RFs corresponding to the 
fault sections are activated, and the predicted values of the 
fault distance can be output. In contrast, the RFs of other 
sections are in the disabled state, and no location results are 
output.

As shown in Fig. 4, the brief summary of the steps for the 
fault location of power lines of DFIG-based wind farms 
based on multi-RF algorithm is as follows.

Step 1: data preprocessing. A model of DFIG-based wind 
farms is established to obtain the zero-sequence current sig‐

nals. Moreover, the fundamental amplitudes of the zero-se‐
quence currents are extracted by the FFT algorithm in the 
MATLAB 2018a environment to construct the eight original 
features in Table III.

Step 2: optimal classifier construction. The fault samples 
are input into a single-RF fault section locator for training, 
and test samples are used to identify the sections where the 
fault points are located. That is, the fault points in the sec‐
tions between two adjacent wind turbines are locked.

Step 3: optimal multi-regressor construction. For each sec‐
tion, an RF regression fault locator is established. On this ba‐
sis, Step 2 controls the on-off state of the switches in the 
flowchart to close the switches corresponding to the fault 
sections, thereby completing the prediction of the fault dis‐
tance.

VII. ANALYSIS AND DISCUSSION OF EXPERIMENTAL 
RESULTS 

A. Evaluation Indicators

Criteria for evaluating the prediction methods are impor‐
tant for quantifying the location error. Therefore, an analysis 
of the model results is intended to evaluate the accuracy of 
the fault locator for the test set. Four performance indicators, 

Start

End

Extract the fundamental

amplitude of zero-sequence

current by FFT algorithm

Design a single-RF fault

section locator based on

classification algorithm to

identify the fault points in the

sections between two adjacent

wind turbines

Output the accurate prediction

results of fault distance

Multi-RF regression

fault locator

Construct single-phase

grounding fault feature set

Section 1

RF 1

Section 2

RF 2

Section 3

RF 3

Section 4

RF 4

Section 5

RF 5

Section 6

RF 6

Section 7

RF 7

Section 8

RF 8

Build a DFIG-based wind farm

model to obtain zero-sequence

current signals

Fig. 4.　Multi-RF fault location framework for power lines of DFIG-based 
wind farms.
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i.e., the prediction error (PE), the mean absolute error (MAE), 
the root-mean-square error (RMSE), and correlation coeffi‐
cient (R) are selected as the evaluation indicators of the re‐
gression models. The mathematical definitions of these evalu‐
ation indicators are expressed as:

PE = yprei - yacti (12)

MAE =
1
Nt
∑
i = 1

Nt

|| yprei - yacti (13)

RMSE =
1
Nt
∑
i = 1

Nt

(yprei - yacti )
2 (14)

R = corr(YactYpre )=
cov(YactYpre )

σYact
σYpre

(15)

where yprei and yacti are the predicted and actual values of 
the ith fault location, respectively; Nt is the total number of 
test sample points; corr(×) is a correlation function; Yact and 
Ypre are the actual and predicted vectors of the fault location, 
respectively; cov(×) is a covariance function; and σYact

 and σYpre
 

are the standard deviations of Yact and Ypre, respectively.
The PE is introduced to measure the location error from 

the perspective of a single position, while the MAE, the 
RMSE, and R are used to evaluate the location and fitting ef‐
fects from the overall perspective. In particular, R is the only 
criterion that should be close to 1 to reflect a better predic‐
tion accuracy.

B. Design of Optimal Multi-RF Fault Locator for DFIG-
based Wind Farms

Before each RF algorithm is executed, the number of DTs 
ntree needs to be initialized with a default value of 500. Then, 
the OOB error is utilized to evaluate the selection of ntree to 
build the optimal multi-RF fault locator. The process for de‐
termining the number of DTs in an RF is shown in Fig. 5.

Figure 5 shows that the OOB error gradually decreases 
with the increase in the number of DTs when the number of 
DTs is less than 217. On the contrary, the OOB error tends 
to be stable; thus, the interval for the number of DTs is set 
as [217, 500]. Through testing and verification, taking the 
RF prediction accuracy and time cost as reference standards, 

and considering the complexity of RF structure, the optimal 
number of DTs is finally selected as 217 in the location 
stage.

The interpretability of the artificial intelligence model is 
an important index for the prediction of the fault distance, 
which can overcome the “black box” limitations of tradition‐
al artificial intelligence models. On the basis of determining 
the optimal number of trees, a DT in an RF is selected to 
display its splitting and growth processes. The optimal split‐
ting features and thresholds of each node of a DT in an RF 
are listed in Table IV. Meanwhile, Fig. 6 shows the structure 
of a DT in an RF constructed by the divide-and-conquer 
stop threshold method.

C. Feature Importance Analysis Based on Optimal Multi-RF 
Algorithm

The feature importance score is directly related to the utili‐
zation rate of the features in the construction of the ensem‐
ble tree model, which can be characterized by the Gini index 
for feature splitting. According to Fig. 6, the mean decrease 
in the node impurity of a fault feature can be calculated to 
obtain the importance index of a single tree. Then, the calcu‐
lated results of all trees are superimposed to obtain the fea‐
ture importance score of the entire model, which is helpful 
for intuitive understanding and mining the relative impor‐
tance of different quantities. In this paper, single-phase 
grounding fault points are set along different sections of the 
power line in the DFIG-based wind farm according to Table 
II, and five resistances of 0, 25, 50, 75, and 100 Ω are set at 
each fault point, which are used to train and generate the op‐
timal multi-RF fault locator. Taking the construction of the 
RF fault section locator as an example, the feature impor‐
tance score (mean decrease in node impurity) and sequence 
output from this process are shown in Fig. 7.

When a single-phase grounding fault occurs on the upper 
line in Fig. 2, the feature importance values of F2-F8 in Fig. 
7 are relatively high. Therefore, F2-F8 can reflect the fault in‐

TABLE IV
OPTIMAL SPLITTING FEATURES AND THRESHOLDS OF EACH NODE OF A DT 

IN AN RF

Node 
No.

1

2

3

4

5

6

7

8

9

10

11

Optimal 
splitting 
feature

F8

F3

—

F1

F7

F2

F7

F4

—

—

—

Optimal 
splitting 
threshold

6.79275

6.46630

—

15.53355

6.31175

6.73475

0.08285

6.46230

—

—

—

Node 
No.

12

13

14

15

16

17

18

19

20

21

Optimal 
splitting 
feature

F1

—

—

F6

—

—

F5

—

—

—

Optimal 
splitting 
threshold

16.55220

—

—

6.43825

—

—

6.29805

—

—

—

Note: “—” indicates that a node is a leaf node.
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Fig. 5.　Relationship between OOB error and number of DTs.
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formation and play an important role in the location of a 
fault section. Moreover, F1 has a low feature importance val‐
ue, which belongs to a redundant feature for the RF fault 
section locator mentioned in Section VI. However, it also 
plays a certain role in the training process of the model and 
can be used to identify faulty power lines. In this manner, 
the RF classification algorithm considers all of the above 
fault features to establish a fault section locator.

D. Applicability Analysis for Power Lines of DFIG-based 
Wind Farms in Different Fault Scenarios

To verify the effect of location using the proposed meth‐
od, the selected test samples should include all types of fault 
information and should be different from the training fault 
samples. Experiments are performed on a computer config‐
ured with an Intel(R) Core(TM) i7-4500U CPU running at 1.80 
GHz, 8 GB RAM, and 64 bits operating system.
1) Comparison of Fault Section Location Using Different Al‐
gorithms

Considering that the fault data for an actual wind farm are 
not large, the total sample library of simulated fault cases 
consists of 230 sets to approach the actual situation. Of 
these 230 sets, 200 sets are used as training fault data (ac‐
cording to the generation conditions in Table II) to construct 

the fault section locator, and the remaining 30 sets are used 
as test fault data for recognition and location. The RF and 
support vector machine (SVM) algorithms, which use the 
same fault feature quantities extracted by the FFT algorithm, 
are compared and analyzed in terms of their accuracy and ef‐
ficiency to illustrate the capability of locating a fault section 
for the RF algorithm. In the experiment for fault section lo‐
cation using the SVM, considering that the penalty factor C 
and radial basis function (RBF) parameter g directly affect 
the recognition accuracy, the grid search (GS) method is em‐
ployed to optimize these two parameters with 10-fold cross-
validation. The final optimized values of C and g are both 
0.1. A comparison of the fault section location results using 
different algorithms is presented in Table V, where FN 
stands for fault number.

From Table V, it can be concluded that both the RF and 
SVM algorithms can accurately identify the fault section for 
the power line in terms of the location accuracy, which dem‐
onstrates the effectiveness of feature extraction in this re‐
search. In terms of the location efficiency, the RF algorithm 
with a low computational complexity has higher classifica‐
tion efficiency than the SVM algorithm, reducing the opera‐
tion time by 11.2 s in total. From the above comparative 
analysis, the RF algorithm is more suitable for locating a 
fault section in DFIG-based wind farms, which requires high 
real-time performance.
2) Analysis of Anti-fault Distance for Multi-RF Fault Locator

A phase A grounding fault with a transition resistance of 
100 Ω is set on the power line of the DFIG-based wind 
farm, and the fault points are separately located at the same 
sections and different sections. Applying the single-RF fault 
section locator to classify the fault sections and trigger the 
corresponding switches to close, the prediction of fault 
points is carried out by the multi-RF regression fault locator. 
The experimental predicted results for different fault loca‐
tions are listed in Table VI.

From Table VI, no matter where the fault occurs in the 
power line, the single-RF fault section locator can accurately 
lock the fault point in the corresponding section and success‐
fully trigger the switch to close. The multi-RF regression 
fault locator ensures a high efficiency while making the pre‐
dicted distance close to the true value. Furthermore, 1-60 m 
represents a fault that occurs on the cable line near the bus 
node, indicating that the proposed method can overcome the 
misjudgement of the cable line fault near the node. There‐
fore, the multi-RF fault locator can realize the automatic and 
accurate recognition of fault points, which is applicable to 
the faults on both cable and overhead line.

F8≤6.79275

F8>6.79275

F3≤6.46630
F3>6.46630

F1≤15.53355

F1>15.53355

F2≤6.73475

F2>6.73475

F7≤0.08285

F7>0.08285

F7≤6.31175

F7>6.31175

F4≤6.46230

F6≤6.43825

F6>6.43825

F4>6.46230

F5≤6.29805

F5>6.29805

C1 C2 C2 C1 C1 C3 C4 C5 C6 C7 C8

F1>16.55220

F1≤16.55220

Fig. 6.　Structure of a DT in an RF.
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Fig. 7.　Feature importance score and sequence.

TABLE V
COMPARISON OF FAULT SECTION LOCATION RESULTS USING DIFFERENT 

ALGORITHMS

Classification 
algorithm

RF

SVM

Test fault sample 
set

T3 (FNs 1-30)

T3 (FNs 1-30)

Location 
accuracy (%)

100

100

Operation time (s)

1.13

12.33
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3) Comparison of Multi-RF Regression Fault Locator with 
Single-RF Regression, Single-SVR, and Multi-SVR Fault Lo‐
cators at Different Fault Distances

To further verify the superiority of the multi-RF regres‐
sion fault locator for fault location, the single-RF regression, 
single support vector regression (SVR), and multi-SVR fault 
locators are used to analyze the effects of locating test sam‐
ples with FNs 1-16 in the sample library, as listed in Table 
VII. A comparison of the PEs obtained by the four regression 
fault locators at different fault distances is shown in Fig. 8.

From Table VII and Fig. 8, it can be observed that for 
most faults, the location accuracy of the multi-RF regression 
fault locator is better than that of the single-RF regression, 
single-SVR, and multi-SVR fault locators, and the PE can 
be decreased by up to 713.92 m. Moreover, the effects of lo‐
cation are not significantly affected by different fault distanc‐
es, and the stability is high, which can realize the reliable lo‐
cation of fault points in complex DFIG-based wind farms.
4) Analysis of Anti-fault Resistance for Multi-RF Fault Locator

Considering that the actual faults of power lines in DFIG-
based wind farms are usually nonmetallic short circuits, 
there is often a transition resistance at each fault point. The 
resistance is usually uncertain and has a diversified trend, 
i.e., it significantly varies in different fault situations. There‐
fore, it is necessary to verify whether the proposed method 
is applicable for testing fault samples with different fault re‐
sistances. The experimental results for multi-RF fault locator 
when phase A grounding faults occur with different fault re‐
sistances are listed in Table VIII, where ① indicates that the 
fault resistance is the same as the training sample set, how‐
ever, the fault location is the opposite; and ② indicates that 
the fault resistance and fault location are different from the 
training sample set.

From Table VIII, in particular, with respect to ②, the sin‐
gle-RF fault section locator can still correctly identify the 
sections corresponding to nonmetallic faults without increas‐
ing the original training data. Switches are closed to start the 
multi-RF regression fault locator. In addition, the prediction 
results obtained by the optimal multi-RF regression fault lo‐
cator can maintain the accuracy at higher fault resistance val‐
ues. For example, when the fault resistance is 200 Ω and the 
fault point is located at 8-4400 m, the identification result is 
C8, and the location section is 8, which coincides with the re‐
al fault section. On this basis, the obtained prediction error 
of the fault distance is only -18.33 m. The results show that 
the multi-RF fault locator is insensitive to the changes in the 
fault resistance and can be applied to an actual wind farm 
system.

TABLE VI
EXPERIMENTAL PREDICTED RESULTS FOR DIFFERENT FAULT LOCATIONS

FN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Fault 
location 

(m)

1-60

1-210

1-360

1-510

1-660

1-810

1-960

1-1110

1-200

2-1360

3-1967

4-2390

5-3080

6-3366

7-3883

8-4215

Fault 
resistance 

(Ω)

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

100

Fault section 
classified by 

single-RF fault 
section locator

1

1

1

1

1

1

1

1

1

2

3

4

5

6

7

8

Multi-RF regression 
fault locator

Prediction 
result (m)

230.00

460.00

598.00

747.50

230.00

575.00

575.00

747.50

230.00

1424.73

1940.83

2511.85

2967.50

3401.08

3904.00

4381.67

PE (m)

170.00

250.00

238.00

237.50

-430.00

-235.00

-385.00

-362.50

30.00

64.73

-26.17

121.85

-112.50

35.08

21.00

166.67

TABLE VII
COMPARISON OF EFFECTS OF FAULT LOCATION WITH DIFFERENT 

FAULT LOCATORS AT DIFFERENT FAULT DISTANCES

FN

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

Single-RF regression

Prediction 
result (m)

943.92

747.50

828.00

816.50

724.50

942.94

1006.69

780.56

555.63

1398.25

1965.66

2508.23

3146.70

3373.50

3968.50

4147.58

PE (m)

883.92

537.50

468.00

306.50

64.50

132.94

46.69

-329.44

355.63

38.25

-1.34

118.23

66.70

7.50

85.50

-67.42

Single-SVR

Prediction 
result (m)

746.17

703.55

775.28

776.53

886.03

895.49

753.64

1006.94

924.14

1551.95

2047.42

2534.72

2990.13

3492.37

3837.16

4214.61

PE (m)

686.17

493.55

415.28

266.53

226.03

85.49

-206.36

-103.06

724.14

191.95

80.42

144.72

-89.87

126.37

-45.84

-0.39

Multi-SVR

Prediction 
result (m)

690.00

690.00

690.55

690.00

690.00

690.00

690.00

690.00

690.00

1523.94

2006.98

2579.63

3049.52

3465.72

3862.43

4133.36

PE (m)

630.00

480.00

330.55

180.00

30.00

-120.00

-270.00

-420.00

490.00

163.94

39.98

189.63

-30.48

99.72

-20.57

-81.64

1 2 3 4 5 6 7 8

FN

9 10 11 12 13 14 15 16
-900

-600

-300

0

300

600

900

P
E

 (
m

)

Multi-RF regression;

Single-RF regression;

Multi-SVR

Single-SVR

Fig. 8.　Comparison of PEs obtained by four regression fault locators at dif‐
ferent fault distances.
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5) Comparison of Multi-RF Regression Fault Locator with 
Single-RF Regression, Single-SVR, and Multi-SVR Fault Lo‐
cators for Different Fault Resistances

Table IX compares the effects of fault location for the test 
samples with FNs 17-30 in the sample library on the prem‐
ise of extracting the same fault feature quantities by differ‐
ent fault locators. Furthermore, to further illustrate the abili‐
ty of multi-RF regression fault locator to resist transition re‐
sistances when locating faults, Fig. 9 shows a comparison of 
the PEs of multi-RF regression fault locator with single-RF 
regression, single-SVR, and multi-SVR fault locators for dif‐
ferent fault resistances.

From Table IX and Fig. 9, it can be observed that among 
the four regression fault locators, the multi-RF regression 
fault locator has the highest level of anti-fault resistance. For 
example, the location result is 8 when the fault resistance is 
200 Ω and the fault point is located at 8-4400 m. Compared 
with the PEs of single-RF regression, single-SVR, and multi-
SVR fault locators, the PEs are reduced by 364.59, 875.81, 
and 70.10 m, respectively. In conclusion, the multi-RF re‐
gression fault locator can better adapt to the trend of uncer‐
tainty and diversification of fault resistances and ensure the 
accuracy in locating the faults in DFIG-based wind farms.

The average performance of data sets T1 (FNs 1-16), T2 
(FNs 17-30), and T3 (FNs 1-30) with different numbers of 
samples is tested using four fault locators, respectively. The 
final results are shown in Fig. 10.

It can be observed from Fig. 10 that the MAEs of the 
multi-RF regression and multi-SVR fault locators are lower 
than those of the single-RF regression and single-SVR fault 
locators when locating faults. Moreover, the multi-RF regres‐
sion fault locator is better than the multi-SVR fault locator, 
and the MAEs of T1, T2, and T3 are reduced by 43.15, 
29.25, and 36.66 m, respectively. These results demonstrate 
the validity and applicability of the multi-RF regression fault 
locator in different fault scenarios for DFIG-based wind 
farms.

The fitting performance of data sets T1, T2, and T3 is test‐

TABLE VIII
EXPERIMENTAL RESULTS FOR MULTI-RF FAULT LOCATOR WHEN PHASE A 

GROUNDING FAULTS OCCUR WITH DIFFERENT TRANSITION RESISTANCES

Case 
of 

testing 
fault 

samples

①

②

FN

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Fault 
resistance 

(Ω)

0

25

50

75

100

20

40

60

80

120

140

160

180

200

Fault 
location 

(m)

1-400

1-400

2-1566

2-1566

3-2020

4-2708

4-2708

5-2935

5-2935

6-3413

6-3413

7-3820

7-3820

8-4400

Fault section 
classified by 

single-RF 
fault section 

locator

1

1

2

2

3

4

4

5

5

6

6

7

7

8

Multi-RF regression
fault locator

Prediction 
result (m)

230.00

345.00

1647.27

1518.91

2081.00

2523.27

2487.92

2930.00

2967.50

3413.15

3459.49

3808.82

3812.67

4381.67

PE (m)

-170.00

-55.00

81.27

-47.09

61.00

-184.73

-220.08

-5.00

32.50

0.15

46.49

-11.18

-7.33

-18.33

TABLE IX
COMPARISON OF EFFECTS OF FAULT LOCATION WITH DIFFERENT FAULT 

LOCATORS FOR DIFFERENT FAULT RESISTANCES

FN

17

18

19

20

21

22

23

24

25

26

27

28

29

30

Single-RF regression

Prediction 
result (m)

449.94

969.31

1698.35

1655.08

1997.13

2623.96

2522.04

3070.10

3185.17

3494.66

3529.66

3886.46

3871.96

4017.08

PE (m)

49.94

569.31

132.35

89.08

-22.87

-84.04

-185.96

135.10

250.17

81.66

116.66

66.46

51.96

-382.92

Single-SVR

Prediction 
result (m)

884.07

664.48

1502.97

1527.23

2027.85

2581.88

2579.68

3027.01

2980.06

3403.90

3283.19

3639.67

3693.30

3505.86

PE (m)

484.07

264.48

-63.03

-38.77

7.85

-126.12

-128.32

92.01

45.06

-9.10

-129.81

-180.33

-126.70

-894.14

Multi-SVR

Prediction 
result (m)

689.96

690.72

1538.40

1532.05

2006.98

2579.62

2579.63

3001.65

3027.23

3465.72

3465.72

3862.43

3862.43

4311.57

PE (m)

289.96

290.72

-27.60

-33.95

-13.02

-128.38

-128.37

66.65

92.23

52.72

52.72

42.43

42.43

-88.43

FN

P
E

 (
m

)

Multi-RF regression;

Single-RF regression;

Multi-SVR

Single-SVR

17 18 19 20 21 22 23 24 25 26 27 28 29 30
-900

-600
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0

300

600

 

Fig. 9.　Comparison of PEs obtained by four regression fault locators for 
different fault resistances.
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Fig. 10.　Comparison of MAEs obtained by four regression fault locators 
using different test sets.
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ed using the four fault locators, respectively. The calculated 
RMSEs and R are presented in Tables X and XI. From these 
tables, the results for the multi-RF regression fault locator 
are the best. Thus, the proposed multi-RF regression fault lo‐
cator is suitable for the regression analysis of power line da‐
ta of DFIG-based wind farms to obtain accurate fault points.

6) Analysis of Anti-noise Properties of Multi-RF Fault Loca‐
tor

The measured data of a DFIG-based wind farm are in 
time series, usually accompanied by noise or electromagnetic 
interference. The fault location model should have good ro‐
bustness in different noise environments and be able to accu‐
rately predict the fault distance. For this purpose, Table XII 
lists the location results at 8-4400 m with a fault resistance 
of 200 Ω and signal-to-noise ratios (SNRs) of 50, 40, and 30 

dB. It can be observed from Table XII that the multi-RF 
fault locator is capable of dealing with noisy data and is ro‐
bust against noise and electromagnetic interference. Since 
the fundamental frequency components of the zero-sequence 
currents in the second cycle after the faults are used, the 
noise has no effect on the PE of the fault distance.

7) Comparison of Multi-RF Method with Other Methods
An experiment is carried out using the multi-RF method 

and data set T3, which contains fault attributes such as the 
fault location and fault resistance, as listed in Tables VI and 
VIII. The proposed method is compared with three previous‐
ly reported methods. These earlier methods are based on the 
dual-time transform and DT (method 1) [24], redundancy pa‐
rameter estimation (method 2) [1], and the dual-ended travel‐
ing wave (method 3) [1]. A comparison of the proposed 
method with these methods is presented in Table XIII. In ad‐
dition, a 1 μs synchronization error results in a location error 
of at least 300 m for the synchronization problem. There‐
fore, the latter two methods must consider the impact of syn‐
chronization. It is necessary to add 300 m to the original lo‐
cation error to suit the actual situation. The results in Table 
XIII clearly show that the overall efficacy of the proposed 
method is superior to that of previously reported methods 
for locating fault sections and predicting fault distances.

VIII. CONCLUSION

With the increasing use of wind farms, an intelligent sin‐
gle-phase grounding fault location method for power lines 
based on multi-RF algorithm is proposed in this paper. The 
main innovations and conclusions of this paper are as fol‐
lows.

1) An FFT algorithm is introduced to extract the funda‐
mental amplitudes of the zero-sequence currents to rapidly 
construct the original feature set, which is not affected by 

DFIGs and has a high reliability.
2) A quantitative analysis of the feature importance based 

on node impurity is designed, which verifies the effective‐
ness of feature extraction.

3) PSCAD/EMTDC software is used to produce the sam‐
ples of different and enriched fault scenarios, and a multi-RF 
fault locator is constructed for fault location. Compared with 
the MAEs of single-RF regression, single-SVR, and multi-
SVR fault locators, the MAEs are reduced by 63.41, 88.33, 
and 36.66 m, respectively, on data set T3.

TABLE X
CALCULATED RMSES OF FOUR FAULT LOCATORS FOR DIFFERENT 

DATA SETS

Data set

T1

T2

T3

Calculated RMSE (m)

Multi-RF 
regression

221.77

96.65

174.90

Multi-SVR

291.12

129.16

230.19

Single-RF 
regression

323.46

215.32

278.27

Single-SVR

324.45

294.92

311.02

TABLE XI
CALCULATED R OF FOUR FAULT LOCATORS FOR DIFFERENT DATA SETS

Data set

T1

T2

T3

Calculated R

Multi-RF 
regression

0.9871

0.9974

0.9923

Multi-SVR

0.9808

0.9958

0.9886

Single-RF 
regression

0.9821

0.9873

0.9863

Single-SVR

0.9848

0.9815

0.9840

TABLE XII
LOCATION RESULTS AT 8-4400 M WITH DIFFERENT SNRS USING MULTI-RF 

FAULT LOCATOR

SNR (dB)

Without noise

50

40

30

Fault section classified 
by single-RF fault 

section locator

8

8

8

8

Multi-RF regression 
fault locator

Prediction result (m)

4381.67

4381.67

4381.67

4381.67

PE (m)

-18.33

-18.33

-18.33

-18.33

TABLE XIII
COMPARISON OF PROPOSED METHOD WITH OTHER REPORTED METHODS

Method

1

2

3

Proposed

Sampling frequency for fault 
section location (Hz)

1000

1000000

1000000

1600

Sampling frequency for 
fault location (Hz)

10000

1000000

1000000

1600

The maximum fault 
resistance (Ω)

100

None

None

200

Location 
accuracy (%)

99.96

None

None

100.00

Does synchronization 
need to be considered?

No

Yes

Yes

No

MAE (m)

2624.00

362.92

467.83

127.54
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4) A comparison between the proposed and previously re‐
ported methods shows that the proposed method is more fea‐
sible for locating the multi-branch and hybrid short lines of 
a DFIG-based wind farm.

Although the proposed method has distinct advantages in 
locating the single-phase grounding fault for power lines of 
DFIG-based wind farms, it has certain limitations. For in‐
stance, the fundamental amplitudes of the zero-sequence cur‐
rents are used as the feature quantities in this method, which 
makes it impossible to locate three-phase symmetrical faults. 
Therefore, future work will focus on improving the method 
to further enhance the applicability of fault location.
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