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Formulations and Approximations of Branch 
Flow Model for General Power Networks
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Abstract——The formulations and approximations of the 
branch flow model for general (radial and mesh) power net‐
works (General-BranchFlow) are given in this paper. Using dif‐
ferent sets of the power flow equations, six formats of the exact 
General-BranchFlow model are listed. The six formats are 
mathematically equivalent with each other. Linear approxima‐
tion and second-order cone programming (SOCP) are then used 
to derive the six formats of the convex General-BranchFlow 
model. The branch ampacity constraints considering the shunt 
conductance and capacitance of the transmission line Π-model 
are derived. The key foundation of deriving the ampacity con‐
straints is the correct interpretation of the physical meaning of 
the transmission line Π-model. An exact linear expression of the 
ampacity constraints of the power loss variable is derived. The 
applications of the General-BranchFlow model in deriving 
twelve formats of the exact optimal power flow (OPF) model 
and twelve formats of the approximate OPF model are formu‐
lated and analyzed. Using the Julia programming language, the 
extensive numerical investigations of all formats of the OPF 
models show the accuracy and computational efficiency of the 
General-BranchFlow model. A penalty function based approxi‐
mation gap reduction method is finally proposed and numerical‐
ly validated to improve the AC-feasibility of the approximate 
General-BranchFlow model.

Index Terms——Branch flow, linear approximation, second-or‐
der cone programming, ampacity constraint, optimal power 
flow, radial network, mesh network.

NOMENCLATURE

A. Sets

NL 

CΩ 

Nn 

B. Indices
n(n′ )l

Sets of nodes (or buses) and lines (or branches)

Sets of cycles (or closed loops) and decision 
variables

Set of nodes with lines directly connected to 
node n

Indices of nodes and lines

C. Variables

θn 

θl 

θsl
, θrl

θnn′

f

f ′
K p

ol
K q

ol

pnqn

pdn
qdn

pgsl
qbsl

pgrl
qbrl

psl
qsl

 

p͂sl
q͂sl

 

prl
qrl

 

p͂rl
q͂rl

 

vnVn

vsl
vrl

Vsl
Vrl

D. Parameters

αnβnγn

θmin
n θmax

n

θmin
l θmax

l

θmin
nn′ θ

max
nn′

ξ 

A+
nlA

-
nl 

Bsl
Brl

 

Phase-to-ground voltage phase angle at node n

Phase angle difference between the sending-end 
and the receiving-end voltage of branch l

Sending-end and receiving-end voltage phase 
angles of branch l

Phase angle difference between nodes n and n′
Original objective function

Modified objective function

Equivalent ampacity constraints for active and 
reactive power losses

Active and reactive power generations at node n

Active and reactive power demands at node n

Sending-end shunt conductance active power 
and capacitance reactive power

Receiving-end shunt conductance active power 
and capacitance reactive power

Non-measurable sending-end active and reac‐
tive power flows for branch l

Measurable sending-end active and reactive 
power flows for branch l

Non-measurable receiving-end active and reac‐
tive power injections of branch l

Measurable receiving-end active and reactive 
power injections of branch l

Phase-to-ground voltage magnitude and voltage 
square at node n

Sending-end and receiving-end phase-to-ground 
voltages of branch l

Sending-end and receiving-end phase-to-ground 
voltage squares of branch l

Cost parameters of active power generation

Lower and upper bounds of θn

Lower and upper bounds of θl

Lower and upper bounds of θnn′

Penalty coefficient

Node-to-line incidence matrices

Sending-end and receiving-end shunt suscep‐
tances of branch l
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GnBn 

Gnn′Bnn′ 

Gsl

K͂lKl

pdn
qdn

pmin
n pmax

n

qmin
n qmax

n

vmin
n vmax

n

XlRl 

Shunt conductance and susceptance of node n

Real and imaginary parts of the element in the 
bus admittance matrix corresponding to the nth 
row and n′th column

Sending-end shunt conductance of branch l

Actual and approximate ampacities of branch l

Active and reactive power loads of node n

Lower and upper bounds of pn

Lower and upper bounds of qn

Lower and upper bounds of vn

Longitudinal reactance and resistance of branch 
l modelled as a passive Π-model

I. INTRODUCTION

EFFICIENT operations of power systems rely largely on 
the accurate modeling of power networks and the opti‐

mal solutions of the models [1]. Since the first formulation 
in the year of 1962, the optimal power flow (OPF) model 
has been investigated in enormous aspects and applied in 
many areas including operation, planning, control and mar‐
ket clearing [2]-[6]. Reference [7] reports that huge econom‐
ic benefits, in the scale of billions of US dollars, can be 
achieved for the global power industry by improving the ac‐
curacy or solution quality of the OPF model. A good summa‐
ry of traditional polar power-voltage, rectangular power-volt‐
age, and rectangular current-voltage formulations of the OPF 
model can be found in [7]. The large-scale integration of re‐
newable energy resources (RERs) and the growing penetra‐
tion of distributed energy resources (DERs) are pushing the 
power system operators to deploy the OPF model with more 
robust and powerful performance [8], [9]. The recent devel‐
opments of OPF modeling approaches include second-order 
cone programming (SOCP), semi-definite programming 
(SDP), and polynomial optimization [10] - [12]. These ap‐
proaches convexify the original nonconvex OPF model and 
thus are useful to find the global optimal solutions which are 
better than the local optimal solutions obtained from directly 
solving the original nonconvex OPF model. Compared with 
the local optimal solutions, the global optimal solutions can 
provide higher economic gains or engineering benefits. Ex‐
tensive research efforts have been put to find or prove the 
conditions of the exactness of the SOCP-based OPF models 
[13], to ensure the rank-1 solution of the SDP-based OPF 
models [14] and to improve the computational efficiency of 
the polynomial optimization based OPF models [15]. The 
SOCP-based OPF models feature in better computational ef‐
ficiency compared with the SDP or polynomial optimization 
based OPF models. This is majorly because the number of 
variables and constraints of the SOCP-based OPF models is 
less than those of the SDP or polynomial optimization based 
OPF models.

The dist-flow branch equations are firstly proposed in [16] 
to optimally size the capacitors in distribution networks. 
This formulation is valid only for radial power networks 
since no voltage phase angle constraints are considered. The 

voltage phase angle constraints are necessary for mesh pow‐
er networks according to the Kirchhoff’s laws for AC cir‐
cuits. References [17] and [18] reformulate the dist-flow 
branch equations in [16] and denote the derived model as 
branch flow model. For radial power networks, it is proved 
that the branch flow model in [17] and [18] is valid if there 
are no upper bounds for the power loads. Though this condi‐
tion of the power loads to validate the branch flow model in 
[17] and [18] for radial power networks is not realistic, this 
work has inspired a vast amount of research efforts to the 
branch flow model and its applications, for example, in the 
multi-period optimal gas-power flow (OGPF) problem and 
in the unbalanced three-phase distribution network context 
[19], [20]. References [17] and [18] also use SOCP to derive 
a convex relaxation of the branch flow model. It is shown in 
[21]-[23] that the ampacity constraint is not fully addressed 
in the branch flow model derived in [17] and [18]. Referenc‐
es [21] - [23] point out that the longitude current variable 
used in the branch flow model in [17] and [18] is not an ac‐
tual measurable current according to the physical interpreta‐
tion of the transmission line Π-model. As an improvement, 
[21]- [23] formulate an exact optimal flow (OPF) model for 
radial power networks. Another branch flow model for gener‐
al power networks (General-BranchFlow) including the volt‐
age phase angle constraint is firstly proposed in [24]. This 
General-BranchFlow model is then extended, reformulated, 
and applied in OPF, distribution locational marginal pricing 
(DLMP), coordination of transmission system operator 
(TSO) and distribution system operator (DSO), distributed 
economic dispatch, and super grid coordination [25] - [29]. 
Reference [26] also proposes a sequential programming 
method to tighten the relaxation or approximation gap of the 
General-BranchFlow model. The research work in [30] and 
[31] shows the applicability of the General-BranchFlow mod‐
el in the operations of voltage source converter based multi-
terminal DC (VSC-MTDC) system and flexible AC transmis‐
sion system (FACTS). The recent work [32] rigorously 
proves the relaxation property and accuracy of the reformu‐
lated convex General-BranchFlow model. This paper extends 
the work in [32] to formulate and validate more formats of 
the General-BranchFlow model, and to derive the transmis‐
sion line ampacity constraint in a more accurate way.

In this paper, a comprehensive investigation of the six 
equivalent formats of the exact General-BranchFlow model 
and the six formats of the approximate General-BranchFlow 
model is conducted. The work in [32] is extended to derive 
the ampacity constraints considering both shunt conductive 
and capacitive components of the transmission line Π-model. 
Taking the derived ampacity constraints into account, twelve 
formats of the exact OPF model and twelve formats of the 
approximate OPF model are formulated based on the Gener‐
al-BranchFlow equations. All the formats of the OPF model 
are implemented in Julia programming language and the 
JuMP optimization modeling package [33], [34]. A numeri‐
cal investigation is then conducted through various IEEE test 
cases. To improve the accuracy of the approximate General-
BranchFlow model, a penalty function based method is pro‐
posed and numerically validated. Compared with the work 
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in [32], the following contributions of this paper are original.
1) This paper provides and investigates six formats of the 

exact General-BranchFlow model and six formats of the con‐
vex General-BranchFlow model. Based on these, twelve for‐
mats of the exact OPF model and twelve formats of the con‐
vex OPF model are formulated and validated. The previous 
work [32] only formulates and investigates one format of the 
convex OPF model.

2) Although all the formats of the exact General-Branch‐
Flow model are mathematically equivalent, their numerical 
performance can be different for different test cases. This 
means more models are provided for the power system oper‐
ators to use, in case one model faces numerical difficulties 
or parameter non-availability problems in solving network 
operation problems. The numerical results in this paper con‐
firm this point.

3) For the proposed formats of the General-BranchFlow 
model, they are not equivalent to each other due to the dif‐
ferent approximations or relaxations to the different power 
network equations. These formats of the convex General-
BranchFlow model provide more methods or techniques to 
find the global optimal solutions of the OPF problem. This 
point is validated by the numerical results of this paper.

4) This paper considers both shunt conductance and capac‐
itance of the transmission line Π-model. The previous work 
[32] only considers the shunt capacitance of the transmission 
line Π-model.

5) This paper proposes and validates a penalty function 
based method to reduce the approximation gap of the con‐
vex OPF models, which is not mentioned in the previous 
work [32].

6) More numerical examinations of all the poposed for‐
mats of the General-BranchFlow model are conducted for 
the base power loads and heavy power loads conditions. On 
the contrary, only the base power loads and light power 
loads for one format of convex OPF model are considered in 
the previous work [32].

The rest of this paper is organized as follows. Section II 
presents the General-BranchFlow model including the exact 
mode, the approximate model, and the branch ampacity con‐
straint. Section III formulates the OPF problem including the 
exact and approximate OPF models, and provides the numer‐
ical validations. Section IV proposes the approximation gap 
reduction of the approximate General-BranchFlow model by 
using the penalty function based method, and numerically 
validates this method. Section V concludes this paper.

II. GENERAL-BRANCHFLOW MODEL

A.　Exact Model

It is assumed that the three-phase power network is bal‐
anced and the decision variables considered are constrained 
in (1)-(7).

vnÎ(vmin
n  vmax

n )Í (0.91.1)    "nÎN (1)

θnÎ(θmin
n  θmax

n )Í (02π)    "nÎN (2)

θl = θsl
- θrl

Î(θmin
l  θmax

l )Í ( )-
π
2

π
2

    "lÎL (3)

pnÎ(pmin
n  pmax

n )ÌR+    "nÎN (4)

qnÎ(qmin
n qmax

n )ÌR    "nÎN (5)

pdn
Î(pmin

dn
 pmax

dn
)ÌR+    "nÎN (6)

qdn
Î(qmin

dn
qmax

dn
)ÌR+    "nÎN (7)

Note the subscripts s and r in all the relevant variables 
and parameters θsl

θrl
vsl

vrl
Vsl

psl
Bsl

Gsl
 of this paper are 

not indexes but only to denote the meanings of sending-end 
and receiving-end. Similar reasoning holds for the subscripts 
d, o, which are to denote the meaning of demand and power 
loss in all the relevant variables pdn

qdn
pol

qol
 of this paper. 

pdn
qdn

 are taken as variables here to consider possible de‐

mand side responses. The demands are equal to fixed values 
if there is no demand side response. It is assumed that 

(vmin
n  vmax

n )Ì (0.91.1) in (1) and (θmin
l θmax

l )Ì ( )-
π
2

π
2

 in (3). 

These assumptions are valid in power system operations un‐
der normal conditions.

The nodal power balance equations of the General-Branch‐
Flow model are formulated as:

 pn - pdn
=∑

l

(A+
nl psl

-A-
nl pol

)+Gnv2
n     "nÎN (8)

 qn - qdn
=∑

l

(A+
nlqsl

-A-
nlqol

)-Bnv2
n     "nÎN (9)

Equation (8) represents the active power balance. Equa‐
tion (9) represents the reactive power balance. A+

nl and A-
nl 

are defined as A+
nl = 1 A-

nl = 0 if n is the sending-end of 
branch l, and A+

nl =-1  A-
nl =-1 if n is the receiving-end of 

branch l. The default convention of the sending-end or re‐
ceiving-end of the lines can be defined in anyway. The only 
difference is that, the results of the power flow variables 
psl
qsl

 from the OPF calculations are negative if the default 

sending-end or receiving-end is reversed. Figure 1 illustrates 
this issue. Note that we neglect the power loss in Fig. 1 for 
sake of simplicity. The default conventions are made before 
the OPF calculations are done. In convention 1, node n1 is 
referred as the sending-end and node n2 is referred as the re‐
ceiving-end. A contrary default setting is made in convention 2. 
In this set-up, after the OPF calculations are done, 100 kW 
power flow from node n1 to node n2 is equivalent to -100 kW 
power flow from the opposite direction. So the default con‐
vention of the sending-end or the receiving-end does not af‐
fect the OPF results.

To relate the power variables psl
qsl

pol
qol

 with the volt‐

age variables, the voltage drop phasor of branch l is used to 
derive the following equations:

 v2
sl
- v2

rl
= 2Rl psl

+ 2Xlqsl
-Rl pol

-Xlqol
    "lÎL (10)

n1 n2

Sending-end Receiving-end

100 kW
n1 n2

Sending-endReceiving-end

�100 kW

(a) (b)

Fig. 1.　Different conventions of sending-end and receiving-end of lines. 
(a) Convention 1. (b) Convention 2.
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 vsl
vrl

sin θl =Xl psl
-Rlqsl

    "lÎL (11)

 v2
sl
- vsl

vrl
cos θl =Rl psl

+Xlqsl
    "lÎL (12)

where Vsl
= v2

sl
  and  Vrl

= v2
rl
. According to the proof of Theo‐

rem 6 in [32], it is only necessary to use (10), (11) or (11), 
(12) to sufficiently express the voltage drop phasor. This rea‐
soning is used in listing all the necessary equations of the 
General-BranchFlow model in Table I.

The active power loss and reactive power loss pol
qol

 are 

expressed as:

pol
=

p2
sl
+ q2

sl

v2
sl

Rl    "lÎL (13)

qol
=

p2
sl
+ q2

sl

v2
sl

Xl    "lÎL (14)

A linear relationship between pol
 and qol

 exists:

pol
Xl = qol

Rl    "lÎL (15)

For mesh power networks, the sum of the phase angles of 
the voltage drop phasors along each closed network loop C 
should satisfy the following cyclic constraint:∑

lÎ C
θ l = 0 mod 2π (16)

As proved and explained in [32], this constraint is implic‐
itly satisfied if θl is expressed explicitly using θsl

θrl
 in con‐

straint (3). So the constraint (16) is not required in the Gen‐
eral-BranchFlow model of this paper.

For radial power networks, there are no closed loops. Us‐
ing θsl

θrl
 in constraint (3) does not enforce any cyclic con‐

straint which is not necessary for radial power networks.
The exact General-BranchFlow model expressed by select‐

ing different sets of power flow equations is summarized in 
Table I of this section. The six formats are mathematically 
equivalent. The exact General-BranchFlow model is valid 
for both radial and mesh power networks.

B. Approximate Model

Using Vn = v2
n to replace the voltage magnitude variables, 

the voltage magnitude bounds (1) can be replaced by:

VnÎ(V min
n  V max

n )Í (0.811.21)    "nÎN (17)

Equations (8)-(10) are linearized to [32]:

 pn - pdn
=∑

l

(A+
nl psl

-A-
nl pol

)+GnVn     "nÎN (18)

 qn - qdn
=∑

l

(A+
nlqsl

-A-
nlqol

)-BnVn     "nÎN (19)

 Vsl
-Vrl

= 2Rl psl
+ 2Xlqsl

-Rl pol
-Xlqol

    "lÎL (20)

Note the solutions of the original voltage variable vn can 
be obtained by vn = Vn  after solving the approximate Gen‐

eral-BranchFlow model.
Equation (11) can be linearized to [32]:

θl =Xl psl
-Rlqsl

    "lÎL (21)

It is proposed to linearize (12)-(22) in this paper as:
Vsl

-Vrl

2
=Rl psl

+Xlqsl
    "lÎL (22)

This linearization is based on the approximation 
vsl

vrl
cos θl » (Vsl

+Vrl
)/2 because vsl

vrl
» (Vsl

+Vrl
)/2 for 

vnÎ(0.91.1) and θl » 0 are valid in power system operations 
under normal conditions.

Using rotated second-order cone, (13) and (14) can be ap‐
proximated to:

pol
³

p2
sl
+ q2

sl

Vsl

Rl    "lÎL (23)

qol
³

p2
sl
+ q2

sl

Vsl

Xl    "lÎL (24)

Note that (20) - (24) are convex since they are rotated 
cones.

The approximate General-BranchFlow model expressed by 
selecting different sets of the linearized or convexified pow‐
er flow equations is summarized in Table II of this section. 
The six formats are not mathematically equivalent because 
of the linearizations and approximations of different power 
flow equations. They are approximate to each other. The ap‐
proximate General-BranchFlow model is valid for both radi‐
al and mesh power networks.

C. Branch Ampacity Constraint

The ampacity constraint of the transmission or distribution 
line is a very important constraint to avoid over-loading of 
the corresponding transmission or distribution line. It is im‐
portant to emphasize the significance of the ampacity con‐
straint considering that several big black-outs such as the 
Northeast blackout of 2003 in the United States and Canada 
were caused by the over-loading of transmission lines [35]. 
This paper extends the previous work [32] to consider both 
shunt conductance and capacitance of the transmission line 

TABLE II
APPROXIMATE GENERAL-BRANCHFLOW MODEL EXPRESSED BY SELECTING 

DIFFERENT SETS OF EQUATIONS

Format

1

2

3

4

5

6

Set of equations

{(2)-(7)},{(17)-(21)},{(23),(24)}

{(2)-(7)},{(17)-(21)},{(15)},{(23)}

{(2)-(7)},{(17)-(21)},{(15)},{(24)}

{(2)-(7)},{(17)-(19)},{(21),(22)},{(23),(24)}

{(2)-(7)},{(17)-(19)},{(15)},{(21),(22)},{(23)}

{(2)-(7)},{(17)-(19)},{(15)},{(21),(22)},{(24)}

TABLE I
EXACT GENERAL-BRANCHFLOW MODEL EXPRESSED IN DIFFERENT SETS OF 

EQUATIONS

Format

1

2

3

4

5

6

Set of equations

{(1)-(7)},{(8)-(11)},{(13),(14)}

{(1)-(7)},{(8)-(11)},{(13)},{(15)}

{(1)-(7)},{(8)-(11)},{(14),(15)}

{(1)-(7)},{(8),(9)},{(11),(12)},{(13),(14)}

{(1)-(7)},{(8),(9)},{(11),(12)},{(13)},{(15)}

{(1)-(7)},{(8),(9)},{(11),(12)},{(14),(15)}
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Π-model in deriving the ampacity constraint. Though the 
shunt conductance is normally very small, it is more accu‐
rate to quantify the ampacity constraint by considering this 
element. The key point here is a correct interpretation of the 
physical meaning of the transmission line Π-model, i.e., the 
line-to-ground shunt capacitance and conductance are actual‐
ly distributed and there is a difference between the actual 
measurable power flow variables p͂sl

q͂sl
 and the power flow 

variables psl
qsl

 used in the General-BranchFlow equations. 

The details about this difference are analyzed in [32]. The 
transmission line Π-model used in this paper and many other 
papers in the literature is a lumped representation of the actu‐
al line with distributed parameters (resistance, reactance, con‐
ductance, and capacitance) by nature. This representation is 
generally valid for transmission lines above 80 km and be‐
low 250 km [1]. Equivalent transmission line Π-model for 
other line lengths might be derived. Deriving the exact am‐
pacity constraint of the transmission line enables the accu‐
rate consideration of its loadability.

From the transmission line Π-model shown in Fig. 2, the 
following equations can be derived:

p͂sl
= psl

+ pgsl (25)

q͂sl
= qsl

- qbsl (26)

pgsl
=Vsl

Gsl (27)

qbsl
=Vsl

Bsl (28)

The branch ampacity constraint is derived as:

 i͂sl

2

=
p͂2

sl
+ q͂2

sl

Vsl

£ K͂l (29)

The amapcity bound of the transmission line K͂l is nor‐
mally provided by the transmission line manufacturer. 
q͂sl
p͂sl

i͂sl
 can be measured from the sending-end of the trans‐

mission line. But qsl
psl

isl
 can not be measured because they 

are physically distributed across the transmission line. From 
(25)-(29), the gap D2 I between the current amplitude square 

 isl

2

 and the measurable current amplitude square  i͂sl

2

 in 

(29) can be formulated as:

 D2 I =  isl

2

-  i͂sl

2

=
-q2

bsl
+ 2qsl

qbsl
- p2

gsl
- 2psl

pgsl

Vsl

=

-V 2
sl

B2
sl
+ 2qsl

Vsl
Bsl

Vsl

+
-V 2

sl
G2

sl
- 2psl

Vsl
Gsl

Vsl

=

-Vsl
B2

sl
+ 2qsl

Bsl
-Vsl

G2
sl
- 2psl

Gsl
(30)

The branch ampacity constraint (29) is equivalent to:

i2
sl
=

p2
sl
+ q2

sl

Vsl

£Kl = K͂l +D
2 I (31)

The upper bounds of active power loss and reactive power 
loss K p

olK
q
ol can be quantified as:

K p
ol
=Kl Rl = (K͂l +D

2 I)Rl =

(K͂l -Vsl
B2

sl
+ 2qsl

Bsl
-Vsl

G2
sl
- 2psl

Gsl
)Rl (32)

K q
ol
=Kl Xl = (K͂l +D

2 I)Xl =

(K͂l -Vsl
B2

sl
+ 2qsl

Bsl
-Vsl

G2
sl
- 2psl

Gsl
)Xl (33)

Since Gsl
  and  Bsl

 are constants, (32) and (33) are linear 

(the final expressions). The expressions of K p
ol
  and  K q

ol
 from 

(32) and (33) are used in the exact and approximate General-
BranchFlow models. The approximate General-BranchFlow 
model is still convex. In this way, any approximation on the 
branch ampacity constraint is avoided. This ampacity con‐
straint can be used to constrain the power loss variable 
which equivalently constrains the capacity of the transmis‐
sion lines expressed as:

pol
£K p

ol
(34)

qol
£K q

ol
(35)

III. OPF PROBLEM

The OPF problem is a fundamental mathematical optimiza‐
tion model used widely in power system operations. Power 
system operators solve the OPF problem to make optimal de‐
cisions in the control room. The objective of the decision 
making can be to minimize the economic generation cost 
(economic dispatch), to minimize the power loss or maxi‐
mize the security margin, etc. Any decisions in operating the 
power network must take into account physical laws of pow‐
er flow and various operational constraints. In this paper, 
ΩÍ{pnqnpdn

qdn
vnVnθlpsl

qsl
pol

qol
} is used to repre‐

sent the set of decision variables in expressing the OPF mod‐
el. For ease of the comparison with the proposed OPF mod‐
el in this paper, the original OPF formulation in the polar 
format is re-stated as the objective function (36) subject to 
constraints (1), (2), (4)-(7), and (37)-(39).

 min  f = f (Ω) (36)

 pn - pdn
= vn∑

n′ÎNn

vn′ (Gnn′ cos θnn′+Bnn′ sin θnn′ )    "nÎN  (37)

 qn - qdn
= vn∑

n′ÎNn

vn′ (Gnn′ sin θnn′-Bnn′ cos θnn′ )    "nÎN  (38)

 θnn′Î(θmin
nn′ θ

max
nn′ )    "nn′ÎN (39)

where n′ÎN is the alias of n. Equation (37) is the active 
power balance equation; (38) is the reactive power balance 
equation; and θnn′= θn - θn′.

By deploying one format of the exact General-Branch‐
Flow model in Table I or the approximate General-Branch‐
Flow model in Table II as the constraints of the OPF prob‐
lem, different formats of the exact OPF problem or the ap‐
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Fig. 2.　Transmission line Π-model considering shunt capacitance and con‐
ductance.
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proximate OPF problem can be formulated. For the branch 
ampacity constraint, either constraints (32)-(34) or (33)-(35) 
described in the Section II of this paper can be used. Twelve 
formats of the exact OPF model are listed in Table III. They 
are mathematically equivalent.

To improve the AC-feasibility of the approximate General-
BranchFlow model, the following conic constraint (40) is 
proven to be a necessary condition to recover the AC-feasi‐
ble solution [32]:

Vsl
Vrl

sin2 (θmax
l )³ θ 2

l     "lÎL (40)

This constraint is included in the approximate OPF model 
based on the approximate General-BranchFlow equations. 
Since this constraint is conic, it is convex. Twelve formats 
of the approximate OPF model are listed in Table IV. They 
are not mathematically equivalent but are approximate to 
each other.

For the approximate OPF model, the approximation gaps 
of active power loss gappo

l  and reactive power loss gapqo
l  are 

defined as:

gappo
l : =

|

|

|
||
|
|
||

|

|
||
|
|
|
pol

-
p2

sl
+ q2

sl

Vsl

Rl     "lÎL (41)

gapqo
l : =

|

|

|
||
|
|
||

|

|
||
|
|
|
qol

-
p2

sl
+ q2

sl

Vsl

Xl     "lÎL (42)

The corresponding maximum approximation gaps (of ac‐
tive and reactive power losses) are defined as:

gappomax: =max{gappo
l  "lÎL} (43)

gapqomax: =max{gapqo
l  "lÎL} (44)

These approximation gaps are useful to quantify the AC-
feasibility of the solutions from the approximate OPF model. 
A fully AC-feasible solution of the approximate OPF model 
means that gappomax = gapqomax = 0. When gappomax ¹ 0 or 
gapqomax ¹ 0, smaller values of gappomaxgapqomax mean better 
solution quality in terms of AC-feasibility.

A typical example of the OPF problem to minimize a qua‐
dratic power generation cost function as the objective func‐
tion f is formulated in (45). This formulation is also used in 
the OPF formulations in MATPOWER, which is a bench‐
mark OPF software package based on MATLAB.

f (pn )=∑
n

(αn p2
n + βn pn + γn ) (45)

where αnβnγn ³ 0. Numerical investigations of the OPF 
model using (45) as the objective function are conducted in 
this section.

TABLE III
FORMATS OF EXACT OPF MODEL

Format

1

2

3

4

5

6

7

8

9

10

11

12

Exact OPF Model

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)-(11)}{(13)(14)}{(32)}{(34)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)-(11)}{(13)}{(15)}{(32)}{(34)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)-(11)}{(14)(15)}{(32)}{(34)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)(9)}{(11)(12)}{(13)(14)}

{(32)}{(34)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)(9)}{(11)(12)}{(13)}{(15)}

{(32)}{(34)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)(9)}{(11)(12)}{(14)(15)}

{(32)}{(34)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)-(11)}{(13)(14)}{(33)}{(35)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)-(11)}{(13)}{(15)}{(33)}{(35)}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)-(11)}{(14)(15)}{(33)}{(35)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)(9)}{(11)(12)}{(13)(14)}

{(33)}{(35)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)(9)}{(11)(12)}{(13)}{(15)}

{(33)}{(35)}}

argmin
Ω

f (Ω): ={ΩÎ{(1)-(7)}{(8)(9)}{(11)(12)}{(14)(15)}

{(33)}{(35)}}

TABLE IV
FORMATS OF APPROXIMATE OPF MODEL

Format

1

2

3

4

5

6

7

8

9

10

11

12

Approximate OPF model

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(21)}{(23)(24)}{(32)}

{(34)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(21)}{(15)}{(23)}{(32)}

{(34)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(21)}{(15)}{(24)}{(32)}

{(34)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(19)}{(21)(22)}{(23)(24)}

{(32)}{(34)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(19)}{(15)}{(21)(22)}{(23)}

{(32)}{(34)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(19)}{(15)}{(21)(22)}{(24)}

{(32)}{(34)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(21)}{(23)(24)}{(33)}

{(35)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(21)}{(15)}{(23)}{(33)}

{(35)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(21)}{(15)}{(24)}{(33)}

{(35)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(19)}{(21)(22)}{(23)(24)}

{(33)}{(35)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(19)}{(15)}{(21)(22)}{(23)}

{(33)}{(35)}{(40)}}

argmin
Ω

f (Ω): ={ΩÎ{(2)-(7)}{(17)-(19)}{(15)}{(21)(22)}{(24)}

{(33)}{(35)}{(40)}}
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All the formats of the OPF model listed in Table III and 
Table IV are implemented in the Julia programming lan‐
guage and the JuMP optimization modeling package. The 
codes are running on the 64-bit Windows 10 operating sys‐
tem. A personal computer with Intel-i7 3 GHz CPU and 32 
GB RAM is deployed. The IPOPT solver is used to solve 
the exact OPF model and the approximate OPF model in Ju‐
lia [36]. Some test cases of the approximate OPF model are 
solved by the CPLEX solver. The power network data (in‐
cluding the cost parameters αnβnγn) from MATPOWER is 
used here [37]. The evaluated power networks include case9, 
IEEE14, case30, IEEE57, case89pegase, IEEE118, IEEE300, 
ACTIVSg200, and ACTIVSg500 [38] - [41]. The OPF solu‐
tions from MATPOWER are used as the benchmark. Note 
that even the test cases used in this paper are mesh power 
networks, while there are many radial branches in these pow‐
er networks. For example, in Fig. 3, one sub-network in radi‐
al topology is shown for the IEEE300 test case. These radial 
branches can be regarded as sub-networks in radial topology. 
In other words, the numerical results in this paper validate 
the OPF models for both radial and mesh power networks.

A.　Base Power Loads

The performance of the proposed OPF models for the 
base power loads is examined in this subsection. The base 
power loads are equal to the original power loads according 
to the test case data in MATPOWER.

The objective solutions of the exact OPF model are listed in 
Table V. All the proposed twelve formats of the exact OPF 
model have the same or very close objective solutions com‐
pared with MATPOWER. These results show that all the pro‐
posed formats of the exact OPF model are accurate. The com‐
putational CPU time of the exact OPF model are listed in Ta‐
ble VI. Note that the computational time for the proposed 
twelve formats of the OPF model includes both optimization 
model construction time in JuMP and the solver time in IPOPT.

With the increase of the network scale, the required com‐
putational CPU time increases. This is reasonable since the 
number of model variables and constraints increases. It can 
also be observed that, in some test cases, the computational 
time of one specific format of the OPF model is very differ‐
ent from the other formats. This is majorly because of the 
different formulations or constraints in different formats of 
the OPF model. These results also demonstrate the advantag‐
es of providing more formats of the OPF models to give 
power system operators more options in modeling and solv‐

ing network operation problems. In other words, if one for‐
mat of OPF models faces the numerical inefficiency problem 
for a specific power network, another format can be used.

The objective solutions of the approximate OPF model are 
listed in Table VII. The proposed twelve formats of the ap‐
proximate OPF model have slightly different objective solu‐
tions due to the approximations of different constraints and 
the different selection of the constraints. The computational 
time of the approximate OPF model is listed in Table VIII. 
Note that the computational time for the proposed twelve for‐

Subnetwork with radial topology

Fig. 3.　Network topology of IEEE300 test case.

TABLE V
OBJECTIVE SOLUTIONS OF EXACT OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

MATPOWER

Objective solution ($)

case9

5296.69

5314.02

5296.69

5296.69

5296.68

5296.69

5296.69

5296.68

5296.69

5296.69

5309.00

5296.69

5296.69

IEEE14

8081.61

8078.80

8081.61

8081.54

8080.11

8081.54

8081.61

8078.80

8081.61

8081.54

8080.12

8081.54

8081.53

case30

576.89

573.94

576.89

576.89

576.21

576.89

576.89

577.77

576.89

576.89

578.38

576.89

576.89

IEEE57

41738.11

41698.64

41738.11

41737.93

41696.02

41737.93

41738.11

41698.64

41738.11

41737.93

41696.02

41737.93

41737.79

case89pegase

5819.69

5814.88

5819.69

5819.51

5831.56

5819.51

5819.69

5849.61

5819.69

5819.51

5824.01

5819.51

5819.81

IEEE118

129660.63

129695.30

129660.63

129660.54

129930.62

129660.54

129660.63

129695.30

129660.63

129660.54

129930.62

129660.54

129660.70

ACTIVSg200

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

27557.57

IEEE300

719732.11

719377.57

719732.11

719732.22

719396.40

719731.22

719732.11

719377.57

719732.11

719731.22

719396.40

719731.22

719725.11

ACTIVSg500

71817.42

71817.42

71817.42

71817.42

71817.42

71817.42

71817.42

71817.42

71817.42

71817.42

71817.42

71817.42

72578.30
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mats of the approximate OPF model includes both optimiza‐
tion model construction time in JuMP and the solver time in 
IPOPT. Similarly, with the increase of the network scale, the 
required computational CPU time increases. This is reason‐
able since the numbers of model variables and constraints in‐
crease. Compared with the computational time of the exact 
OPF model, when the IPOPT solver converges, the required 

computational time of the approximate OPF model is more 
or less the same. The non-uniformity of the computational 
time listed in Table VIII is majorly because of the different 
network parameters in the test cases. For example, in the 
test case of IEEE300, some transmission lines have negative 
reactance values which is the major cause of the non-unifor‐
mity of the computational time.

The results of the maximum approximation gaps of active 
power loss of the approximate OPF model are listed in Table 
IX. Most values are very small or negligible. The results of 
the maximum approximation gaps of reactive power loss of 
the approximate OPF model are listed in Table X. Most of 
these values are larger compared with those of the maximum 
approximation gaps of active power loss listed in Table IX. 
Comparing the results of objective solutions in Table V and 
Table VII, most of the objective solutions of the convex 
OPF models are lower than the corresponding objective solu‐
tions of the original nonconvex OPF models. This means the 
convex OPF models can find the lower bounds of the objec‐

tive solution in most cases. When the relaxation (approxima‐
tion) gap is zero, the solutions from the convex OPF models 
are global optimal for the corresponding test cases. For ex‐
ample, for the test cases of ACTIVSg200, the relaxation (ap‐
proximation) gaps of most formats of the convex OPF mod‐
els are almost equal to 0 (below 10-9). In other words, the 
solutions of these test cases from the convex OPF models 
are globally optimal. For the test cases with non-zero or 
large relaxation (approximation) gaps, a method to reduce 
the approximation gaps is proposed and validated in the next 
section.

TABLE VI
COMPUTATIONAL TIME OF EXACT OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

MATPOWER

Computational time (s)

case9

0.03

0.16

0.05

0.03

0.33

0.03

0.05

0.94

0.05

0.05

1.61

0.05

1.20

IEEE14

0.02

0.03

0.02

0.02

0.03

0.02

0.03

0.03

0.03

0.02

0.03

0.03

1.67

case30

0.05

0.08

0.06

0.06

0.31

0.06

0.09

0.52

0.06

0.06

5.06

0.06

2.14

IEEE57

0.08

0.14

0.06

0.08

0.13

0.06

0.08

0.13

0.08

0.06

0.11

0.06

1.88

case89pegase

0.33

5.20

0.33

0.27

3.56

0.36

0.22

2.80

0.20

0.22

3.41

0.22

2.50

IEEE118

0.27

1.36

0.27

0.25

0.81

0.24

0.25

1.36

0.25

0.25

0.83

0.27

2.02

ACTIVSg200

0.63

0.59

0.83

0.66

0.86

0.86

0.59

0.56

0.55

0.61

0.55

0.56

2.09

IEEE300

0.95

2.33

0.88

0.98

1.36

0.95

0.95

2.12

0.91

1.02

1.34

0.95

2.13

ACTIVSg500

1.67

1.64

1.64

1.77

1.72

1.70

2.66

5.02

2.94

2.77

3.94

3.33

2.78

TABLE VII
OBJECTIVE SOLUTIONS OF APPROXIMATE OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

Objective solution ($)

case9

5296.69

5296.69

5296.69

5296.49

5315.48

5315.49

5296.69

5296.69

5296.69

5315.49

5315.48

5315.49

IEEE14

8080.44

8080.64

8081.55

8081.97

8081.43

8081.97

8080.44

8080.64

8081.55

8081.97

8081.43

8081.97

case30

575.33

576.51

576.85

575.68

576.28

576.29

576.66

576.51

576.85

576.15

576.28

576.29

IEEE57

41734.92

41728.82

41735.91

41726.41

41719.61

41726.41

41734.92

41728.82

41735.91

41726.41

41719.61

41726.41

case89pegase

5814.56

5819.04

5819.05

5813.30

5816.87

5816.87

5815.25

5819.04

5819.05

5813.30

5816.87

5816.87

IEEE118

129618.44

129625.35

129626.18

129606.68

129614.02

129615.15

129618.44

129625.35

129626.18

129606.68

129614.02

129615.15

ACTIVSg200

27553.67

27557.57

27557.57

27553.70

27557.58

27557.58

27553.79

27557.57

27557.57

27553.70

27557.58

27557.58

IEEE300

719596.69

719548.84

719699.91

719710.59

719456.87

719824.73

719596.69

719548.84

719699.91

719710.59

719456.87

719824.73

ACTIVSg500

71891.92

71893.41

71893.41

71930.49

71931.89

71931.89

71891.99

71893.42

71893.42

71930.49

71931.89

71931.89
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B.　Heavy Power Loads

The performance of the proposed OPF models for the 
heavy power loads is examined in this subsection. The 
heavy power loads are obtained by increasing the original 

TABLE IX
THE MAXIMUM APPROXIMATION GAP OF ACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

The maximum approximation gap

case9

0.00×100

7.70×10-14

0.00×100

0.00×100

3.02×10-13

0.00×100

0.00×100

7.06×10-11

0.00×100

0.00×100

7.06×10-11

0.00×100

IEEE14

0.00×100

1.29×10-10

0.00×100

0.00×100

1.30×10-10

0.00×100

0.00×100

1.29×10-10

0.00×100

0.00×100

1.30×10-10

0.00×100

case30

0.00×100

5.39×10-15

0.00×100

0.00×100

8.23×10-15

0.00×100

0.00×100

2.14×10-8

0.00×100

0.00×100

4.11×10-9

0.00×100

IEEE57

0.00×100

8.00×10-11

0.00×100

0.00×100

7.85×10-11

0.00×100

0.00×100

8.00×10-11

0.00×100

0.00×100

7.85×10-11

0.00×100

case89pegase

2.53×10-11

1.85×10-2

1.85×10-2

2.53×10-11

1.61×10-2

1.61×10-2

2.53×10-11

1.85×10-2

1.85×10-2

2.53×10-11

1.61×10-2

1.61×10-2

IEEE118

0.00×100

2.54×10-12

0.00×100

0.00×100

2.95×10-12

0.00×100

0.00×100

2.54×10-12

0.00×100

0.00×100

2.95×10-12

0.00×100

ACTIVSg200

2.01×10-12

3.49×10-12

3.49×10-12

3.42×10-13

2.09×10-12

2.09×10-12

2.01×10-12

3.49×10-12

3.49×10-12

2.01×10-12

2.09×10-12

2.09×10-12

IEEE300

5.15×10-14

2.84×10-13

3.39×10-14

5.60×10-14

4.38×10-3

4.32×10-3

5.15×10-14

2.84×10-13

3.39×10-14

5.60×10-14

4.38×10-3

4.32×10-3

ACTIVSg500

7.11×10-14

2.95×10-15

2.95×10-15

7.06×10-14

3.42×10-14

3.42×10-14

7.11×10-14

2.95×10-15

2.95×10-15

7.06×10-14

3.42×10-14

3.42×10-14

TABLE X
THE MAXIMUM APPROXIMATION GAP OF REACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

The maximum approximation gap

case9

3.32×10-1

2.40×10-1

3.32×10-1

2.07×100

1.71×100

2.12×100

2.41×10-1

1.41×10-1

2.41×10-1

1.85×10-1

1.01×10-1

1.85×10-1

IEEE14

2.43×10-1

4.63×10-10

4.07×10-10

2.13×10-1

8.65×10-2

9.58×10-2

2.43×10-1

4.63×10-10

4.07×10-10

2.13×10-1

8.65×10-2

9.58×10-2

case30

3.08×10-1

6.14×10-2

8.49×10-2

2.61×10-1

1.75×10-1

2.18×10-1

9.89×10-2

1.30×10-2

2.63×10-2

9.69×10-2

3.28×10-2

9.78×10-2

IEEE57

1.25×10-1

1.14×10-1

8.30×10-2

4.75×10-1

1.47×10-1

1.44×10-1

1.25×10-1

1.14×10-1

8.30×10-2

4.75×10-1

1.47×10-1

1.44×10-1

case89pegase

3.47×100

1.47×100

1.47×100

2.15×100

1.27×100

1.27×100

1.53×100

1.44×100

1.47×100

2.15×100

1.27×100

1.27×100

IEEE118

6.02×100

3.99×100

4.23×100

7.42×100

2.96×100

3.45×100

6.02×100

3.99×100

4.23×100

7.42×100

2.96×100

3.45×100

ACTIVSg200

4.84×10-1

2.55×10-10

2.55×10-10

3.20×10-1

1.52×10-10

1.52×10-10

3.69×10-1

2.55×10-10

2.55×10-10

5.42×10-1

1.52×10-10

1.52×10-10

IEEE300

3.13×100

1.00×100

8.14×10-1

2.27×104

1.00×105

1.05×104

3.13×100

1.00×100

8.14×10-1

2.27×104

1.00×105

1.05×104

ACTIVSg500

2.98×10-1

3.35×10-13

3.35×10-13

1.01×10-1

3.88×10-12

3.88×10-12

1.52×10-1

3.35×10-13

3.35×10-13

1.53×10-1

3.88×10-12

3.88×10-12

TABLE VIII
COMPUTATIONAL TIME OF APPROXIMATE OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

Computational time (s)

case9

0.03

0.05

0.03

0.03

0.06

0.03

0.03

0.05

0.03

0.03

0.06

0.05

IEEE14

0.05

0.05

0.03

0.05

0.06

0.03

0.05

0.05

0.03

0.05

0.05

0.03

case30

0.09

0.16

0.08

0.13

0.09

0.06

0.09

0.08

0.08

0.13

0.05

0.09

IEEE57

0.16

0.31

0.11

0.16

0.28

0.14

0.16

0.28

0.11

0.14

0.26

0.11

case89pegase

0.56

1.08

0.41

1.00

0.41

0.41

0.53

0.83

0.37

0.52

1.00

0.41

IEEE118

0.48

0.80

0.33

0.44

0.94

0.38

0.45

0.80

0.33

0.42

0.91

0.34

ACTIVSg200

0.77

0.64

0.62

0.78

0.72

0.69

0.72

0.69

0.66

0.78

0.69

0.67

IEEE300

1.49

4.06

1.38

1.56

5.67

1.75

1.77

4.00

1.49

1.75

5.42

1.88

ACTIVSg500

2.83

2.27

2.13

2.89

2.25

2.19

3.17

4.47

3.31

2.69

2.34

2.25
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power loads at all the nodes of the test case data from MAT‐
POWER. The heavy power loads range from 110% to 200% 
(with a gradual increment of 10%) of the base power loads. 
Since the IPOPT solver can find all the optimal solutions in 
heavy power loads for the case9 and IEEE118 in MATPOW‐
ER, we list all results for the proposed formats of the OPF 
models for case9 and IEEE118.

The objective solutions of the exact OPF model for heavy 
power loads of case9 are listed in Table XI. The computa‐
tional time of the exact OPF model for heavy power loads 
of case9 is listed in Table XII. The objective solutions of the 
exact OPF model for heavy power loads of IEEE118 are list‐
ed in Table XIII. The computational time of the exact OPF 
model for heavy power loads of IEEE118 is listed in Table 
XIV. The objective solutions of the approximate OPF model 
for heavy power loads of case9 are listed in Table XV. The 
computational time of the exact OPF model for heavy power 
loads of case9 is listed in Table XVI. The maximum approxi‐
mation gaps of the active power loss of the approximate 

OPF model for the heavy power loads of case9 are listed in 
Table XVII. The maximum approximation gaps of the reac‐
tive power loss of the approximate OPF model for the heavy 
power loads of case9 are listed in Table XVIII. The objec‐
tive solutions of the approximate OPF model for heavy pow‐
er loads of IEEE118 are listed in Table XIX. The computa‐
tional time of the exact OPF model for heavy power loads 
of IEEE118 is listed in Table XX. The maximum approxima‐
tion gaps of the active power loss of the approximate OPF 
model for the heavy power loads of IEEE118 are listed in 
Table XXI. The maximum approximation gaps of the reac‐
tive power loss of the approximate OPF model for the heavy 
power loads of IEEE118 are listed in Table XXII. These re‐
sults show that the proposed OPF models based on the Gen‐
eral-BranchFlow equations in this paper are robust in terms 
of the power loads, which can force the decision variables or 
line capacities to the limits. In most cases, the computational 
efficiency of the proposed OPF models executed in Julia out‐
performs MATPOWER.

TABLE XI
OBJECTIVE SOLUTIONS OF EXACT OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

MATPOWER

Objective solution ($)

110%

6114.27

6114.03

6114.27

6114.03

6114.03

6114.27

6114.27

6115.38

6114.27

6114.27

6129.82

6114.27

6114.27

120%

7006.02

7004.97

7006.02

7006.02

7005.23

7006.02

7006.02

7026.93

7006.02

7006.02

7008.02

7006.02

7006.02

130%

7972.52

7982.45

7972.52

7972.52

7975.05

7972.52

7972.52

8002.58

7972.52

7972.52

7976.51

7972.52

7972.52

140%

9014.71

9013.78

9014.71

9014.71

9011.40

9014.71

9014.71

9014.50

9014.71

9014.71

9016.57

9014.71

9014.71

150%

10133.71

10127.29

10133.71

10133.71

10144.66

10133.71

10133.71

10131.20

10133.71

10133.71

10142.61

10133.71

10133.71

160%

11330.27

11384.69

11330.27

11330.27

11323.91

11330.27

11330.27

11326.63

11330.27

11330.27

11328.90

11330.27

11330.27

170%

12605.50

12583.93

12605.50

12605.50

12616.04

12605.50

12605.50

12608.77

12605.50

12605.50

12625.99

12605.50

12605.50

180%

13960.63

13938.51

13960.63

13960.63

14018.66

13960.63

13960.63

14538.75

13960.63

13960.63

13969.64

13960.63

13960.63

190%

15397.09

15452.18

15397.09

15397.09

15422.55

15397.09

15397.09

15411.56

15397.09

15397.09

15400.50

15397.09

15412.54

200%

16916.52

16970.22

16916.52

16916.52

16870.09

16916.52

16916.71

16941.55

16916.71

16916.71

16903.12

16916.71

17004.28

TABLE XII
COMPUTATIONAL TIME OF EXACT OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

MATPOWER

Computational time (s)

110%

0.05

0.17

0.05

0.06

0.38

0.06

0.06

0.22

0.06

0.05

0.16

0.06

1.03

120%

0.05

0.23

0.03

0.03

0.89

0.03

0.03

3.00

0.05

0.08

0.27

0.08

1.05

130%

0.05

1.06

0.03

0.05

0.09

0.05

0.05

0.66

0.05

0.06

0.47

0.08

1.14

140%

0.03

0.53

0.03

0.08

0.13

0.08

0.14

0.08

0.06

0.09

0.27

0.13

1.30

150%

0.03

0.25

0.03

0.03

1.34

0.03

0.06

0.67

0.06

0.05

0.42

0.05

1.31

160%

0.03

0.08

0.03

0.03

0.09

0.03

0.03

0.05

0.05

0.03

1.45

0.03

1.25

170%

0.05

0.19

0.05

0.05

0.11

0.06

0.03

0.34

0.03

0.03

0.31

0.03

1.28

180%

0.03

0.31

0.03

0.03

0.03

0.08

0.14

0.34

0.24

0.09

0.33

0.06

1.30

190%

0.08

0.08

0.08

0.19

0.44

0.06

0.06

2.09

0.05

0.08

0.88

0.08

1.40

200%

0.05

0.08

0.05

0.03

0.38

0.03

0.03

1.44

0.03

0.06

0.27

0.05

1.25
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TABLE XIV
COMPUTATIONAL TIME OF EXACT OPF MODEL FOR HEAVY POWER LOADS OF IEEE118

Format

1

2

3

4

5

6

7

8

9

10

11

12

MATPOWER

Computational time (s)

110%

0.16

0.42

0.19

0.17

0.47

0.16

0.16

0.41

0.19

0.20

0.47

0.16

1.77

120%

0.22

0.50

0.17

0.16

0.38

0.16

0.16

0.53

0.14

0.19

0.38

0.16

1.90

130%

0.19

0.47

0.17

0.20

0.50

0.19

0.16

0.45

0.16

0.20

0.48

0.16

1.77

140%

0.20

0.72

0.20

0.25

0.83

0.23

0.24

0.64

0.19

0.27

0.80

0.22

2.09

150%

0.39

0.45

0.36

0.38

0.84

0.39

0.38

0.44

0.36

0.44

0.89

0.39

1.98

160%

0.25

0.47

0.28

0.30

0.50

0.23

0.25

0.48

0.28

0.31

0.49

0.23

1.84

170%

0.22

0.78

0.27

0.22

0.70

0.25

0.23

0.77

0.20

0.25

0.67

0.22

1.89

180%

0.20

0.66

0.22

0.22

0.69

0.22

0.24

0.67

0.20

0.24

0.70

0.22

1.98

190%

0.23

0.61

0.22

0.22

0.97

0.22

0.22

0.58

0.20

0.25

0.98

0.22

1.97

200%

0.22

0.63

0.24

0.24

0.89

0.25

0.25

0.63

0.22

0.25

0.83

0.23

2.14

TABLE XIII
OBJECTIVE SOLUTIONS OF EXACT OPF MODEL FOR HEAVY POWER LOADS OF IEEE118

Format

1

2

3

4

5

6

7

8

9

10

11

12

MATPOWER

Objective solution ($)

110%

146584.41

146629.57

146584.41

146584.34

146674.46

146584.34

146584.41

146629.57

146584.41

146584.34

146674.46

146584.34

146584.49

120%

163717.23

163767.22

163717.23

163717.15

163811.03

163717.15

163717.23

163767.22

163717.23

163717.15

163811.03

163717.15

163717.30

130%

181026.22

181076.43

181026.22

181026.15

181123.74

181026.15

181026.22

1810076.43

181026.22

181026.15

181123.74

181026.15

181026.29

140%

198505.38

198565.32

198505.38

198505.31

198611.39

198505.31

198505.38

198565.32

198505.38

198505.31

198611.39

198505.31

198505.42

150%

216185.52

216389.18

216185.52

216185.44

216447.91

216185.44

216185.52

216389.18

216185.52

216185.52

216447.91

216185.44

216185.54

160%

234071.02

234301.10

234071.02

234070.99

234459.16

234070.99

234071.02

234301.10

234071.02

234070.99

234459.16

234070.99

234070.66

170%

252203.09

252464.21

252203.09

252203.09

270777.81

252203.09

252203.09

252464.21

252203.09

252203.09

252629.32

252203.09

252202.15

180%

270661.72

270747.87

270661.72

270661.72

271214.68

270661.76

270661.72

270747.87

270661.72

270661.76

271214.68

270661.76

270659.85

190%

289547.38

289855.94

289547.37

289547.49

290280.28

289547.49

289547.38

289855.94

289547.38

289547.49

290280.28

289547.49

289544.15

200%

309049.00

309115.65

309049.00

309049.23

309101.80

309049.23

309049.00

309115.65

309049.00

309049.23

309101.80

309049.23

309043.83

TABLE XV
OBJECTIVE SOLUTIONS OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

Objective solution ($)

110%

6114.28

6114.14

6114.28

6113.90

6113.81

6113.90

6114.28

6114.14

6114.28

6113.90

6113.81

6113.90

120%

7006.04

7005.57

7006.04

7005.22

7004.94

7005.22

7006.04

7005.57

7006.04

7005.22

7004.94

7005.22

130%

7972.55

7971.77

7972.55

7971.39

7970.87

7971.39

7972.55

7971.77

7972.55

7971.39

7970.87

7971.39

140%

9014.76

9013.35

9014.76

9013.32

9012.09

9013.32

9014.76

9013.35

9014.76

9013.32

9012.09

9013.32

150%

10133.79

10131.27

10133.79

10131.76

10129.56

10131.76

10133.79

10131.27

10133.79

10131.76

10129.56

10131.76

160%

11330.38

11326.73

11330.38

11327.56

11324.30

11327.56

11330.38

11326.73

11330.38

11327.56

11324.30

11327.56

170%

12605.65

12600.42

12605.65

12601.78

12597.02

12601.78

12605.65

12600.42

12605.65

12601.78

12607.02

12601.78

180%

13960.84

13953.45

13960.84

13955.60

13948.75

13955.60

13960.84

13953.45

13960.84

13955.60

13948.75

13955.60

190%

15397.39

15387.04

15397.39

15390.36

15380.63

15390.36

15397.39

15387.04

15397.39

15390.36

15380.63

15390.36

200%

16916.93

16902.57

16916.93

16907.56

16893.90

16907.56

16917.12

16902.57

16917.12

16907.56

16893.90

16907.56
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TABLE XVI
COMPUTATIONAL TIME OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

Computational time (s)

110%

0.03

0.03

0.03

0.05

0.05

0.03

0.03

0.03

0.03

0.03

0.05

0.03

120%

0.05

0.05

0.03

0.05

0.05

0.05

0.05

0.05

0.03

0.03

0.03

0.03

130%

0.03

0.03

0.05

0.05

0.05

0.03

0.03

0.05

0.03

0.03

0.05

0.03

140%

0.03

0.05

0.05

0.05

0.05

0.05

0.03

0.05

0.05

0.03

0.05

0.05

150%

0.03

0.05

0.05

0.03

0.05

0.03

0.03

0.05

0.03

0.03

0.05

0.03

160%

0.05

0.03

0.03

0.06

0.05

0.05

0.06

0.03

0.05

0.06

0.05

0.05

170%

0.05

0.05

0.05

0.05

0.05

0.05

0.03

0.03

0.05

0.03

0.03

0.03

180%

0.03

0.03

0.06

0.03

0.03

0.06

0.05

0.03

0.06

0.03

0.03

0.03

190%

0.03

0.03

0.03

0.03

0.05

0.05

0.03

0.05

0.03

0.03

0.03

0.03

200%

0.03

0.03

0.03

0.03

0.05

0.03

0.03

0.03

0.05

0.05

0.03

0.03

TABLE XVII
THE MAXIMUM APPROXIMATION GAP OF ACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

The maximum approximation gap

110%

0.00×100

1.87×10-15

0.00×100

0.00×100

1.70×10-14

0.00×100

0.00×100

7.09×10-11

0.00×100

0.00×100

7.09×10-11

0.00×100

120%

0.00×100

2.11×10-13

0.00×100

0.00×100

1.88×10-13

0.00×100

0.00×100

7.14×10-11

0.00×100

0.00×100

7.18×10-11

0.00×100

130%

0.00×100

1.47×10-13

0.00×100

0.00×100

6.11×10-13

0.00×100

0.00×100

7.19×10-11

0.00×100

0.00×100

7.18×10-11

0.00×100

140%

0.00×100

3.57×10-13

0.00×100

0.00×100

4.11×10-13

0.00×100

0.00×100

7.30×10-11

0.00×100

0.00×100

7.23×10-11

0.00×100

150%

0.00×100

5.27×10-13

0.00×100

0.00×100

3.33×10-13

0.00×100

0.00×100

7.31×10-11

0.00×100

0.00×100

7.30×10-11

0.00×100

160%

0.00×100

5.47×10-15

0.00×100

0.00×100

2.62×10-13

0.00×100

0.00×100

7.39×10-11

0.00×100

0.00×100

7.37×10-11

0.00×100

170%

0.00×100

2.43×10-13

0.00×100

0.00×100

1.93×10-13

0.00×100

0.00×100

7.47×10-11

0.00×100

0.00×100

7.45×10-11

0.00×100

180%

0.00×100

1.85×10-13

0.00×100

0.00×100

3.14×10-15

0.00×100

0.00×100

7.56×10-11

0.00×100

0.00×100

7.53×10-11

0.00×100

190%

0.00×100

1.21×10-13

0.00×100

0.00×100

1.27×10-15

0.00×100

0.00×100

7.65×10-11

0.00×100

0.00×100

7.62×10-11

0.00×100

200%

0.00×100

1.69×10-13

0.00×100

0.00×100

7.81×10-15

0.00×100

0.00×100

7.75×10-11

0.00×100

0.00×100

7.71×10-11

0.00×100

TABLE XVIII
THEMAXIMUM APPROXIMATION GAP OF REACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

The maximum approximation gap

110%

2.54×10-1

1.84×10-1

2.55×10-1

2.04×100

1.65×100

1.99×100

2.04×10-1

1.16×10-1

2.04×10-1

1.71×10-1

8.28×10-2

1.71×10-1

120%

1.57×10-1

1.21×10-1

1.57×10-1

2.00×100

1.60×100

2.00×100

1.40×10-1

8.08×10-2

1.39×10-1

1.56×10-1

6.24×10-2

1.56×10-1

130%

5.82×10-2

4.41×10-2

5.84×10-2

1.95×100

1.54×100

1.95×100

5.56×10-2

2.90×10-2

5.50×10-2

1.40×10-1

3.95×10-2

1.40×10-1

140%

3.28×10-10

6.27×10-10

1.88×100

1.50×100

1.88×100

3.29×10-10

3.29×10-10

6.18×10-10

3.30×10-10

1.22×10-1

1.44×10-2

1.22×10-1

150%

1.60×10-10

7.08×10-10

1.82×100

1.81×100

1.44×100

1.82×100

1.60×10-10

6.95×10-10

1.60×10-10

1.04×10-1

6.75×10-10

1.04×10-1

160%

2.69×10-11

6.71×10-10

2.68×10-11

1.74×100

1.37×100

1.74×100

2.72×10-11

6.67×10-10

2.71×10-11

8.41×10-2

6.62×10-10

8.43×10-2

170%

7.64×10-11

6.68×10-10

7.65×10-11

1.66×100

1.29×100

1.67×100

7.62×10-11

6.33×10-10

7.62×10-11

6.41×10-2

6.31×10-10

6.48×10-2

180%

1.57×10-10

6.70×10-10

1.57×10-10

1.58×100

1.22×100

1.58×100

1.57×10-10

6.65×10-10

1.57×10-10

4.33×10-2

6.62×10-10

4.26×10-2

190%

2.21×10-10

6.73×10-10

2.21×10-10

1.50×100

1.14×100

1.49×100

2.21×10-10

6.68×10-10

2.21×10-10

2.19×10-2

6.64×10-10

2.18×10-2

200%

2.72×10-10

6.77×10-10

2.72×10-10

1.41×100

1.06×100

1.41×100

2.90×10-10

6.72×10-10

2.89×10-10

2.06×10-10

6.68×10-10

2.08×10-10
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TABLE XIX
OBJECTIVE SOLUTION OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF IEEE118

Format

1

2

3

4

5

6

7

8

9

10

11

12

Objective solution ($)

110%

146544.37

146550.23

146551.11

146531.65

146538.89

146540.11

146544.37

146550.23

146551.11

146531.65

146538.89

146540.11

120%

163678.09

163683.12

163684.06

163664.05

163671.16

163672.48

163678.09

163683.12

163684.06

163664.05

163671.16

163672.48

130%

180986.97

180991.60

180992.61

180971.26

180978.35

180979.76

180986.97

180991.60

180992.61

180971.26

180978.35

180979.76

140%

198463.56

198467.97

198469.05

198444.66

198451.76

198453.28

198463.56

198467.97

198469.05

198444.66

198451.76

198453.28

150%

216139.58

216143.89

216145.06

216115.93

216123.05

216124.68

216139.58

216143.89

216145.06

216115.93

216123.05

216124.68

160%

234018.65

234022.81

234024.47

233989.29

233996.20

233998.00

234018.65

234022.81

234024.47

233989.29

233996.20

233998.00

170%

252135.44

252138.26

252141.43

252097.65

252103.35

252107.05

252135.44

252138.26

252141.43

252097.65

252103.35

252107.05

180%

270575.68

270569.30

270580.54

270522.21

270522.29

270533.23

270575.68

270569.30

270580.54

270522.21

270522.29

270533.23

190%

289444.00

289423.11

289448.93

289373.44

289357.32

289384.36

289444.00

289423.11

289448.93

289373.44

289357.32

289384.36

200%

308925.65

308888.97

308931.22

308833.42

308797.67

308843.26

308925.65

308888.97

308931.22

308833.42

308797.67

308843.26

TABLE XX
COMPUTATIONAL TIME OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF IEEE118

Format

1

2

3

4

5

6

7

8

9

10

11

12

Computational time (s)

110%

0.53

0.91

0.66

0.44

1.00

0.39

0.50

0.89

0.67

0.45

0.97

0.39

120%

0.80

0.88

0.42

0.52

0.81

0.44

0.83

0.91

0.45

0.58

0.84

0.44

130%

0.66

1.00

0.56

0.53

0.84

0.45

0.64

1.01

0.56

0.50

0.78

0.42

140%

0.52

0.78

0.33

0.45

0.86

0.34

0.50

0.78

0.36

0.47

0.88

0.36

150%

0.50

0.92

0.36

0.44

0.92

0.36

0.50

0.97

0.39

0.52

0.94

0.36

160%

0.52

0.78

0.41

0.42

0.98

0.38

0.50

0.77

0.36

0.44

0.95

0.36

170%

0.52

0.76

0.34

0.44

0.80

0.36

0.50

0.81

0.34

0.44

0.80

0.36

180%

0.50

0.78

0.36

0.45

0.83

0.41

0.50

0.75

0.36

0.45

0.78

0.41

190%

0.50

0.95

0.36

0.58

0.72

0.41

0.50

0.97

0.36

0.52

0.77

0.39

200%

0.64

0.86

0.41

0.55

0.84

0.45

0.62

0.81

0.39

0.56

0.84

0.48

TABLE XXI
THE MAXIMUM APPROXIMATION GAP OF ACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF IEEE118

Format

1

2

3

4

5

6

7

8

9

10

11

12

The maximum approximation gap

110%

0.00×100

2.56×10-10

0.00×100

0.00×100

2.95×10-12

0.00×100

0.00×100

2.56×10-12

0.00×100

0.00×100

2.95×10-12

0.00×100

120%

0.00×100

2.57×10-12

0.00×100

0.00×100

2.55×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

0.00×100

2.55×10-12

0.00×100

130%

0.00×100

2.58×10-12

0.00×100

0.00×100

2.56×10-12

0.00×100

0.00×100

2.58×10-12

0.00×100

0.00×100

2.56×10-12

0.00×100

140%

0.00×100

2.58×10-12

0.00×100

0.00×100

2.56×10-12

0.00×100

0.00×100

2.58×10-12

0.00×100

0.00×100

2.56×10-12

0.00×100

150%

0.00×100

2.58×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

0.00×100

2.58×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

160%

0.00×100

2.58×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

0.00×100

2.58×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

170%

0.00×100

2.57×10-12

0.00×100

0.00×100

2.58×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

0.00×100

2.58×10-12

0.00×100

180%

0.00×100

2.57×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

190%

0.00×100

2.56×10-12

0.00×100

0.00×100

2.54×10-12

0.00×100

0.00×100

2.56×10-12

0.00×100

0.00×100

2.54×10-12

0.00×100

200%

0.00×100

2.57×10-12

0.00×100

0.00×100

2.54×10-12

0.00×100

0.00×100

2.57×10-12

0.00×100

0.00×100

2.54×10-12

0.00×100
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IV. APPROXIMATION GAP REDUCTION

To reduce the approximation gap of the reactive power 
loss for the approximate OPF model, a penalty function 
based method which adds an penalty term ξ∑

l

qol to the orig‐

inal objective function of the OPF model is proposed as:

f ′= f (pn )+ ξ∑
l

qol (46)

where the penalty coefficient ξ > 0. In this paper, ξ = 0.3 is 
used.

A.　Base Power Loads

The performance of the proposed penalty function based 
approximation gap reduction method to tighten the approxi‐
mation gap in the base power loads is shown in Tables 
XXIII and XXIV. It can be observed that the approximation 
gaps of the reactive power loss are much smaller than the 

values listed in Table X. For the maximum approximation 
gaps of the active power loss, the values are more or less 
the same compared with the results listed in Table IX. Since 
the maximum approximation gaps of the active power loss 
are very small, it is not necessary to reduce them.

B.　Heavy Power Loads

The performance of the proposed penalty function based 
approximation gap reduction method to tighten the approxi‐
mation gap in the heavy power loads for case9 is shown in 
Tables XXV and XXVI. The performance of the proposed 
method to tighten the approximation gap in the heavy power 
loads for IEEE118 is shown in Tables XXVII and XXVIII. 
It can be observed that the approximation gaps of the reac‐
tive power loss are much smaller than the values listed in Ta‐
bles XVIII and XVII. These results show that the proposed  
method is also useful for the power networks in heavy pow‐
er loads.

TABLE XXII
THE MAXIMUM APPROXIMATION GAP OF REACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF IEEE118

Format

1

2

3

4

5

6

7

8

9

10

11

12

The maximum approximation gap (×100)

110%

6.07

3.99

4.24

7.42

2.92

3.42

6.07

3.99

4.24

7.42

2.92

3.42

120%

6.09

4.00

4.25

7.42

2.88

3.37

6.09

4.00

4.25

7.42

2.88

3.37

130%

6.09

4.02

4.25

7.41

2.82

3.32

6.09

4.02

4.26

7.41

2.82

3.32

140%

6.05

4.03

7.40

2.76

2.76

3.26

6.05

4.03

4.28

7.40

2.76

3.26

150%

5.98

4.05

2.29

7.39

2.69

3.19

5.99

4.05

4.29

7.39

2.69

3.19

160%

5.73

4.03

4.28

7.39

2.63

3.13

5.73

4.04

4.28

7.39

2.63

3.13

170%

5.56

4.03

4.28

7.38

2.54

3.05

5.55

4.03

4.28

7.38

2.54

3.05

180%

5.00

4.01

4.26

7.38

2.50

3.12

5.00

4.01

4.26

7.38

2.50

3.12

190%

4.59

3.97

4.21

7.38

2.69

3.01

4.59

3.97

4.21

7.38

2.69

3.01

200%

4.08

3.92

4.16

7.37

2.66

2.88

4.08

3.92

4.16

7.37

2.66

2.88

TABLE XXIII
REDUCED MAXIMUM APPROXIMATION GAP OF ACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

Reduced maximum approximation gap

case9

0.00×100

3.68×10-15

0.00×100

0.00×100

1.09×10-14

0.00×100

0.00×100

7.08×10-11

0.00×100

0.00×100

7.07×10-11

0.00×100

IEEE14

0.00×100

1.29×10-10

0.00×100

0.00×100

1.30×10-10

0.00×100

0.00×100

1.29×10-10

0.00×100

0.00×100

1.30×10-10

0.00×100

case30

0.00×100

6.60×10-15

0.00×100

0.00×100

3.55×10-15

0.00×100

0.00×100

1.04×10-9

0.00×100

0.00×100

2.84×10-9

0.00×100

IEEE57

0.00×100

8.12×10-11

0.00×100

0.00×100

7.19×10-11

0.00×100

0.00×100

8.13×10-11

0.00×100

0.00×100

7.19×10-11

0.00×100

case89pegase

9.41×10-10

2.83×10-9

6.12×10-12

3.11×10-8

2.44×10-11

6.15×10-12

3.11×10-8

1.16×10-7

6.12×10-12

1.24×10-11

2.44×10-11

6.15×10-12

IEEE118

0.00×100

2.72×10-12

0.00×100

0.00×100

2.72×10-12

0.00×100

0.00×100

2.72×10-12

0.00×100

0.00×100

2.72×10-12

0.00×100

ACTIVSg200

1.96×10-12

7.77×10-13

7.77×10-13

1.96×10-12

1.37×10-12

7.80×10-13

1.96×10-12

1.37×10-12

7.77×10-13

1.96×10-12

7.80×10-13

7.80×10-13

IEEE300

3.70×10-7

3.99×10-8

7.34×10-8

4.55×10-7

6.97×10-8

1.61×10-3

3.70×10-7

3.99×10-8

7.34×10-8

4.55×10-7

6.97×10-8

1.61×10-3

ACTIVSg500

7.21×10-14

5.71×10-13

5.71×10-13

7.17×10-14

5.66×10-13

5.66×10-13

7.21×10-14

5.71×10-13

5.71×10-13

7.17×10-14

5.66×10-13

5.66×10-13
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TABLE XXIV
REDUCED MAXIMUM APPROXIMATION GAP OF REACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR BASE POWER LOADS

Format

1

2

3

4

5

6

7

8

9

10

11

12

Reduced maximum approximation gap

case9

3.94×10-10

6.64×10-10

3.95×10-10

3.94×10-10

5.74×10-10

3.94×10-10

3.94×10-10

6.60×10-10

3.95×10-10

3.94×10-10

5.72×10-10

3.94×10-10

IEEE14

3.62×10-10

4.74×10-10

4.07×10-10

3.56×10-10

4.42×10-10

4.11×10-10

3.62×10-10

4.74×10-10

4.07×10-10

3.56×10-10

4.42×10-10

4.11×10-10

case30

1.04×10-10

1.76×10-10

1.76×10-10

1.05×10-10

1.77×10-10

1.77×10-10

1.04×10-10

4.03×10-9

1.76×10-10

1.05×10-10

1.14×10-8

1.77×10-10

IEEE57

7.21×10-11

8.00×10-12

8.94×10-11

3.09×10-2

5.00×10-2

3.09×10-2

7.21×10-11

8.00×10-12

8.94×10-11

3.09×10-2

5.00×10-2

3.09×10-2

case89pegase

8.50×10-11

4.56×10-8

9.61×10-11

1.86×10-7

2.10×10-9

9.58×10-11

1.13×10-7

8.36×10-7

9.61×10-11

3.31×10-11

2.10×10-9

9.62×10-11

IEEE118

4.38×10-11

3.43×10-10

3.25×10-11

4.39×10-11

2.02×10-9

3.24×10-11

4.38×10-11

3.43×10-10

3.25×10-11

4.39×10-11

2.02×10-9

3.24×10-11

ACTIVSg200

7.05×10-11

9.84×10-12

9.84×10-12

7.06×10-11

2.07×10-11

9.87×10-12

7.05×10-11

2.07×10-11

9.84×10-12

7.06×10-11

9.87×10-12

9.87×10-12

IEEE300

4.75×10-2

3.09×10-2

7.53×10-7

8.96×10-2

3.04×10-2

4.60×10-2

4.75×10-2

3.09×10-2

7.53×10-7

8.96×10-2

3.04×10-2

4.60×10-2

ACTIVSg500

1.95×10-10

9.38×10-12

9.38×10-12

1.84×10-10

9.44×10-12

9.44×10-12

1.95×10-10

9.38×10-12

9.38×10-12

1.84×10-10

9.44×10-12

9.44×10-12

TABLE XXV
REDUCED MAXIMUM APPROXIMATION GAP OF ACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

Reduced maximum approximation gap

110%

0.00×100

4.18×10-14

0.00×100

0.00×100

3.84×10-14

0.00×100

0.00×100

7.11×10-11

0.00×100

0.00×100

7.10×10-11

0.00×100

120%

0.00×100

8.69×10-14

0.00×100

0.00×100

5.19×10-14

0.00×100

0.00×100

7.14×10-11

0.00×100

0.00×100

7.19×10-11

0.00×100

130%

0.00×100

7.43×10-15

0.00×100

0.00×100

4.69×10-14

0.00×100

0.00×100

7.20×10-11

0.00×100

0.00×100

7.19×10-11

0.00×100

140%

0.00×100

6.67×10-14

0.00×100

0.00×100

1.84×10-14

0.00×100

0.00×100

7.25×10-11

0.00×100

0.00×100

7.24×10-11

0.00×100

150%

0.00×100

2.96×10-13

0.00×100

0.00×100

4.65×10-14

0.00×100

0.00×100

7.32×10-11

0.00×100

0.00×100

7.30×10-11

0.00×100

160%

0.00×100

1.21×10-13

0.00×100

0.00×100

1.69×10-14

0.00×100

0.00×100

7.40×10-11

0.00×100

0.00×100

7.38×10-11

0.00×100

170%

0.00×100

3.65×10-13

0.00×100

0.00×100

8.38×10-14

0.00×100

0.00×100

7.48×10-11

0.00×100

0.00×100

7.45×10-11

0.00×100

180%

0.00×100

1.59×10-14

0.00×100

0.00×100

1.57×10-13

0.00×100

0.00×100

7.56×10-11

0.00×100

0.00×100

7.54×10-11

0.00×100

190%

0.00×100

1.05×10-13

0.00×100

0.00×100

1.56×10-13

0.00×100

0.00×100

7.65×10-11

0.00×100

0.00×100

7.65×10-11

0.00×100

200%

0.00×100

1.48×10-13

0.00×100

0.00×100

8.63×10-15

0.00×100

0.00×100

7.75×10-11

0.00×100

0.00×100

7.71×10-11

0.00×100

TABLE XXVI
REDUCED MAXIMUM APPROXIMATION GAP OF REACTIVE POWER LOSS OF APPROXIMATE OPF MODEL FOR HEAVY POWER LOADS OF CASE9

Format

1

2

3

4

5

6

7

8

9

10

11

12

Reduced maximum approximation gap (×10-10)

110%

3.97

6.03

3.97

3.99

6.03

3.99

3.97

6.21

3.97

3.99

6.28

3.99

120%

4.00

7.06

4.00

4.04

8.26

4.04

4.00

6.05

4.00

4.04

8.26

4.04

130%

4.03

6.66

4.03

4.01

6.78

4.01

4.03

6.62

4.03

4.01

6.74

4.01

140%

4.09

6.48

4.09

4.16

6.54

4.16

4.09

6.43

4.09

4.16

6.50

4.16

150%

4.12

6.99

4.12

4.19

6.23

4.19

4.12

6.99

4.12

4.19

6.76

4.19

160%

4.15

6.71

4.14

4.22

6.66

4.22

4.15

6.67

4.15

4.22

6.61

4.22

170%

4.17

6.69

4.17

4.26

6.65

4.26

4.17

6.64

4.17

4.26

6.60

4.26

180%

4.21

6.70

4.21

4.30

6.66

4.30

4.21

6.66

4.21

4.30

6.62

4.30

190%

4.24

6.73

4.24

4.34

6.70

4.34

4.24

6.69

4.24

4.34

6.48

4.34

200%

4.28

6.78

4.28

4.38

6.56

4.38

4.29

6.73

4.29

4.38

6.69

4.38
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V. CONCLUSION

This paper formulates six formats of the exact General-
BranchFlow model and six formats of the approximate Gen‐
eral-BranchFlow model. All the formats are valid for both ra‐
dial and mesh power networks. By taking into account the 
shunt conductive components of the transmission line Π-
model, a linear amapacity constraint is derived. Based on the 
formulated General-BranchFlow model and the ampacity 
constraint, twelve formats of the exact OPF model and 
twelve formats of the approximate OPF model are proposed. 
Providing different formats of the OPF models gives the 
power system operators more options in solving the network 
operation problems when using one format may face numeri‐
cal difficulties or parameter non-availability problems. The 
reason of proposing the approximate OPF model is to give a 
convex formulation which advantages in finding the globally 
optimal solution using available optimization solvers.

The numerical investigations using various IEEE test cas‐
es for different power loads prove the accuracy and computa‐
tional efficiency of all the twelve formats of the exact and 

approximate OPF models. For the twelve formats of the ap‐
proximate OPF model, non-negligible reactive power loss ap‐
proximation gaps exist for some test cases if the IPOPT solv‐
er is used. To reduce the approximation gaps, this paper pro‐
poses to use the penalty function in the objective function of 
the OPF model. The numerical results show that the approxi‐
mation gaps of reactive power loss are largely reduced. In 
this way, the AC-feasibility of the approximate General-
BranchFlow model is enhanced.
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