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Abstract—Modern power systems are experiencing larger fluc-
tuations and more uncertainties caused by increased penetra-
tion of renewable energy sources (RESs) and power electronics
equipment. Therefore, fast and accurate corrective control ac-
tions in real time are needed to ensure the system security and
economics. This paper presents a novel method to derive real-
time alternating current (AC) optimal power flow (OPF) solu-
tions considering the uncertainties including varying renewable
energy and topology changes by using state-of-the-art deep rein-
forcement learning (DRL) algorithm, which can effectively as-
sist grid operators in making rapid and effective real-time deci-
sions. The presented DRL-based approach first adopts a super-
vised-learning method from deep learning to generate good ini-
tial weights for neural networks, and then the proximal policy
optimization (PPO) algorithm is applied to train and test the ar-
tificial intelligence (AI) agents for stable and robust perfor-
mance. An ancillary classifier is designed to identify the feasibil-
ity of the AC OPF problem. Case studies conducted on the Illi-
nois 200-bus system with wind generation variation and V-1
topology changes validate the effectiveness of the proposed
method and demonstrate its great potential in promoting sus-
tainable energy integration into the power system.

Index Terms—Alternating current (AC) optimal power flow
(OPF), deep learning, deep reinforcement learning (DRL), re-
newable integration, proximal policy optimization.

1. INTRODUCTION

LTERNATING current (AC) optimal power flow (OPF)

remains an essential but challenging optimization prob-
lem for the operation and control of modern power system
with high penetration of renewable energy sources (RESs).
Many approaches in the literature have been proposed in re-
cent decades to solve this non-convex and NP-hard problem,
the solution of which is typically time-intensive to achieve
the convergence for real-time application [1]. With the in-
creasing penetration of RES, modern power systems are ex-
periencing larger fluctuations and more uncertainties, caus-
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ing grand challenges for operators to make prompt deci-
sions. Thus, there is a compelling need for deriving real-
time AC OPF controls to tackle the uncertainties caused by
the RES for secure and economic operation of power system.

To address this issue, [1] proposes a single-iteration quasi-
Newton method to expedite the real-time AC OPF solutions
with the prerequisite for an accurate estimation of the sec-
ond-order information. In [2], linearized AC power flow
equations are applied to achieve real-time OPF in distribu-
tion systems. With the recent success of deep learning (DL),
several supervised-learning-based methods are proposed to
approximate OPF solutions with improved solution speed. In
[3] and [4], deep neural networks (DNNs) are utilized to
solve the direct current (DC) OPF problem. In [5], the worst-
case guarantees of the DNN for DC OPF are analyzed. Ref-
erence [6] applies the DNN and [7] uses the graph neural
network to approximate optimal generator set-points from
the solutions of AC OPF problem. However, the small train-
ing and testing loss values cannot guarantee the feasibility of
solutions under various operating conditions. To deal with
this issue, [8] and [9] utilize the penalized loss function to
capture the operational constraints. Reference [10] adopts the
zero-order optimization technique on the IEEE 30-bus sys-
tem that achieves the feasibility among 98% of the testing
data. With the recent success of deep reinforcement learning
(DRL) algorithms adopted in power system controls, multi-
agent O(1) learning is implemented to perform OPF tasks un-
der discretized action spaces in [11]. In [12], an agent is
trained to achieve the optimality while satisfying feasibility
under continuous action space by applying the deep deter-
ministic policy gradient algorithm aiming at solving the AC
OPF problem. However, the robustness of these methods re-
garding load variations, uncertainties of RES, and topology
changes (N—1 contingencies) needs to be further investigat-
ed.

Inspired by the efforts above, this paper presents a novel
DRL-based approach, the contributions of which are summa-
rized below.

1) It adopts the proximal policy optimization (PPO) algo-
rithm introduced in [13] to first train DRL agents offline for
solving the AC OPF problem considering RES and N—1 to-
pology changes. The well-trained agents are then applied in
real-time applications with periodic updating. The state
space uses diagonal elements of the network admittance ma-
trix to represent grid topology; hence, the well-trained agent
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remains effective and robust during the online implementa-
tion regarding the uncertainty of topology changes.

2) To facilitate the agent’s learning speed and perfor-
mance during the offline training process, the supervised-
learning regression method is applied to initialize the
weights for the DRL agent, serving as an “initial guide”.

3) A reward function is carefully designed to tackle the
feasibility issue, where the DRL agent learns an optimal sto-
chastic policy. Therefore, compared with running many sto-
chastic scenarios regarding the uncertainties under high pene-
tration of RES and N—1 topology changes, the proposed
method has the advantage to be applied in real-time security-
constrained economic dispatch applications.

Numerical experiments conducted on the Illinois 200-bus
system with RES and realistic operational data extracted
from [14] demonstrate the effectiveness and robustness of
the proposed approach. The online testing results show that
a well-trained agent can obtain near-optimal solutions with a
computation time of at least one order less than that ob-
tained by the interior point solver (IPS). It manifests a great
promise of employing artificial intelligence (AI) techniques
in the real-time control of power system, especially with
large penetration of RES. Moreover, an ancillary and inde-
pendent “alarm” function is designed to help system opera-
tors rapidly identify the feasibility of the AC OPF problem
under various operating conditions.

The remainder of this paper is organized as follows. Sec-
tion II provides the problem formulation and the preliminar-
ies of DRL algorithms. In Section III, the detailed proce-
dures of the proposed methodology are illustrated. In Sec-
tion IV, numerical experiments are conducted on the Illinois
200-bus system to demonstrate the performance of DRL
agents and the effectiveness of the proposed method. Finally,
Section V draws the conclusion and presents future work.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation of AC OPF

Considering an AC system with a set of buses N,=
{1,2,...,n,}, a set of transmission lines L with a total of n,,
branches, and the generator buses G N, with a total num-
ber of n, generators, the AC OPF problem can be formulat-
ed as:

min sz(ng) :ckngk+c,dng+ck0 Vke G
keG
s.t. P;‘}:“SngSP;}f" Vke G
Q;,S“SngSQé‘;}f"‘ Vke G
yrn|v <V YkeN, )
1S,,| <Spe (l,m)e L
Py—Py= z Re{Vk(Vk*_V/*)yZI}
1EN, (k)
ng_Qdk: z Im{Vk(Vk*_Vl*)yZl}
1EN, (k)

where y,, is the admittance between buses k and /; subscripts
g and d represent the generator and load, respectively; P and
O are the active power and reactive power, respectively; and
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V. and S, are the bus voltage magnitudes at bus k& and
branch flow limit between bus / and m, respectively. In the
model above, the wind farm is also considered as a PV (con-
stant power and constant voltage) bus, and thus the corre-
sponding operational limit of the first constraint in (1) be-
comes ngmﬂ:Pgiwmdik:Pz‘jfmik, where P, .., is the active
power output regarding the k" wind power plant. Also, the
modeled wind farms follow a real-world protocol for reac-
tive power constraints, which requires the power factor to be
0.95 or less [15]. The objective is to find the optimal set
points for all generators in the system, such that the quadrat-
ic cost function is minimized subject to operational security
limits shown in (1).

B. DL for Solving AC OPF

The motivation of applying DL to solve the AC OPF is to
find a mapping function represented by a DNN g, parameter-
ized by { between the operating states and optimal generator
settings such that the solving speed can be improved signifi-
cantly. Unlike [8]-[12], N—1 topology changes are also con-
sidered in this paper to make it more robust for power sys-
tem operation during the online application process. There-
fore, the loads at each bus and admittance information (the
magnitude and angle of diagonal elements in the admittance
matrix ¥), s=[P,, O |Y yiel> £¥ 4o, are applied as the input,
and the optimal generator set-points for each generator a=
[P,, V,] are set as the output. The learning task can be for-
mulated as a supervised regression problem to minimize the
L—-2 norm loss function shown in (2), where the optimal
generator set-points shown as the “labels” a, could be ob-
tained by running the AC OPF solver offline for the training
dataset D, . with a size of N,

train®
min z
[

(6.8)e Dy,

train

la— B (als); )

However, if the DNN is only trained by adopting (2), the
feasibility of the AC OPF problem cannot be guaranteed af-
ter running the power flow (PF) solver during online imple-
mentation even though the loss is small due to operational
security limit violations defined in (1). Although [8]-[10]
adopt the penalty function to deal with the feasibility issue,
the penalty coefficient needs to be further tuned regarding
the training performance. In this paper, the DRL framework
is adopted to address the feasibility issue.

N,

train

C. PPO Algorithm with Clipped Surrogate Loss

The goal of DRL is to train an agent aiming at learning
an optimal policy 7" that maximizes the expected reward re-
turn by continuously interacting with the environment [16].
Compared with other state-of-the-art policy gradient algo-
rithms, PPO has been verified to have the best or compara-
ble performance in the various DRL benchmark game envri-
onments with the continuous control spaces while its hyper-
parameters are simpler to be tuned compared with other
DRL algorithms [17]. There are two versions of the PPO al-
gorithm: an adaptive KL-divergence penalty version and a
clipped surrogate loss version. And the second version has
been validated to have the best performance on all continu-
ous control tasks [17]. Therefore, the PPO with surrogate
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loss version is chosen as the DRL algorithm in this paper. A
brief introduction of the PPO with the clipped surrogate loss
function is shown as follows.

Categorized as one actor-critic type of RL algorithms, the
PPO agent consists of two DNNs, where the first DNN, the
“actor”, is trained to learn the stochastic optimal policy, and
the second DNN, the “critic”, is designed to estimate the val-
ue function. The PPO algorithm ensures an improved perfor-
mance compared with other policy gradient algorithms due
to the following two kinds of enhancement regarding the
“actor” updates. Firstly, the generalized advantage estima-
tion (GAE) function 49" is utilized during the “actor”
training process to reduce the variance of the estimation as
shown in (3) [18].

AFECD = (1 = YAV + 24P+ 1249+ ..)

k-1
AP = 23/5/"” =—V(s,)+7,+7r  + .t 3)
=0

yk_]rt+k—l +ka” (st+k)

where V7" (s,) is the state value representing how good a
state is by calculating the expected reward starting from
state s, at time step ¢ following a certain policy, which is the
output of the “critic” network; A4 controls the average degree
of n-step advantage values; r, is the immediate reward from
the environment at time step ¢ and y €[0, 1] is the discount
factor on the future reward.

Secondly, the PPO algorithm updates the “actor” parame-
ters within an appropriate trust region, and this helps avoid
falling off the “cliff” from the hyper-surfaces of the reward
functions which may be hard to escape from. Such a safe up-
date is achieved by modifying the objective function L™
shown in (4). E, is the expectation operator; and clip()
means when the value of %,(0) is outside the range of [1 —¢,
1+¢], h,(0) will be forced to be either 1 —¢ or 1 +e¢.

L7 0)=E,[min(h, (9)A, ", clip(h,(0). 1 —&,1 +&)A, )]
”9 (at|s t )
”HUM (at|st )

h(0)= @

where 0 indicates the parameters of the DNN = ,(as,) of the
“actor”; ¢ determines the range of the trust region for the up-
date; and the advantage value 4, is calculated from (3)
AP**0P The minimization operator makes sure that the new
policy does not benefit from going too far away from the
old policy and thus regulates the update of the DNN parame-
ters.

Besides, the policy 7, in PPO is stochastic, which is pa-
rameterized as a conditional Gaussian policy 7,~N(u,(s),2 ).
The mean value p,(s) is the output of the DNN in the “ac-
tor”, and the covariance X, is initially assigned manually
but will be updated during backpropagation. Besides, 8,,, in-
dicates the policy parameters before updating the “actor”.

As for the DNN in the “critic” parameterized by ¢, which
is designed to estimate the value function V' (s,), the objec-
tive function to update the “critic” is shown in (5).

1

batch

min IR~V M )

(5 R)E Dy
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el—1
k

R,= ZV Vivkel (6)

k=0
where R, is the discounted accumulated reward; D, , is the
trajectories accumulated from the agent interacting with the
environment with batch size N, ,; and e/ is the episode
length when the agent interacts with its environment.

III. PROPOSED DRL-BASED AC OPF SOLUTIONS

The proposed DRL-based framework for AC OPF solu-
tions is illustrated in Fig. 1, which is referenced from the
“Grid-Mind” framework [19]. The PPO agent firstly is
trained offline by interacting with the power system simula-
tion environment to learn an optimal policy; then the well-
trained agent can provide the suggested actions based on the
measured state data in the power system to achieve near-opti-
mal AC OPF solutions in real time.

Actions: adjusting generator
power and voltage set points

Power system environment
with various operation

e
PPO ; gent condition database
X 1
L Update PPO agent if | State & reward |
training mode is on
| Offlinetraining ||| Onlinetestng |
1 Power system

3 Controlaﬂ{ PPO agent for AC OPF task }—» environment
! ; Suggested | (simulator)
|| Power system environment 3

| Power Feasibility
(simulator) State &! | State & | system check

|
|

|

|

|

l

> |
actions ] !
|

|

|

|

|

|

|

reward | ' reward
\

Fig. 1. DRL-based framework to solve AC OPF problem.

A. State and Action Spaces

The state, which is the input for the PPO agent, includes
the active and reactive power (P, and Q,) of system loads
at all buses (i € N,), the magnitude and angle of the diagonal
elements of the admittance matrix ¥, and all n, generators’
initial active power setting P, and voltage setting V,, (j € G),
as denoted in (7). The MinMax scaling preprocessing tech-
nique [20] is conducted on the [0, 2n,) columns and [2n,,
4n,) columns of this vector individually before passing it to
the agent to handle different scales of various parameters.

state=[P ., P, "'7PdnB’ Qu: Qs -+ anﬂv 1Y diag 1l

|Ydiag72|’ b |Ydiag7n8‘7 ZYdiagJ ’ ZYdialng’ b ZYdiaginB’
PPy, ... an g Vs Veas oves Vg"G] (7

The action spaces are the incremental adjustments made
to generator set-points shown in (8) instead of optimal gener-
ator set points due to the training interactions between the
DRL agent and its environment. Then, the well-trained DRL
agent could adaptively achieve the optimal status with sever-
al adjustment steps during the online testing process, al-
though our training target is to achieve the optimality in one
step.

action =[AP Asz,...,APg,,G,AVgl,AVg2,...,AVg,,G] (®)

gl
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B. Neural Network Structure

The DNN structures for the “actor” and the “critic” in
PPO are shown in Fig. 2 and Fig. 3, respectively, where the
input, state, is denoted in (7).

Due to the consideration of system topology information,
the input state dimension is two times larger compared with
those in [8]-[10]; therefore, to further effectively extract the
features from the inputs for the “actor”, one convolutional
layer from the convolutional neural network (CNN) is uti-
lized first and then connects a fully connected (FC) layer
with the following hidden layers shown in Fig. 2. Similar to
the applications of CNN in DL for image processing, a con-
volutional kernel conducts the convolutional feature extrac-
tion calculations, and thus, this structure is more suitable for
our application with large input dimension spaces. However,
to maintain the information of every bus in the “actor”, the
pooling layer is not adopted. The convolutional layer parame-
ters are set as follows: (D) the “stride” parameter, which is

Input: [Py, O [Yaiaeh £ Yiaglaxn,
Filter size: 4x4x1xk,,,

Convolutional layer
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the step size for moving the kernel window (yellow block
shown in Fig. 2) in the convolutional calculation, is set to be
1; @ “zero padding” is applied to maintain the width and
height of the input. In addition, the kernel filter size is set as
[4, 4, 1, k] as shown in Fig. 2, and the rectified linear unit
(ReLU) activation function is applied. In the hidden layers
for both “actor” and “critic”, the ReLU activation function
is adopted to effectively prevent the vanishing gradient. Be-
sides, the sigmoid activation in the “actor” output layer
makes sure that the output can have bounded negative or
positive values. And this output of the DNN in the “actor”
acts as the mean value of the stochastic policy in the PPO
training shown in Section II-C. On the other hand, the one
neuron in the output layer of “critic” has no activation,
which outputs the state value ¥ (s,). Moreover, as different
generator set points represent different state values, all ele-
ments in (7) are applied as the input for the neural network
in “critic”. The outputs of the output layer are the optimal
generator settings.

Orange block: [Py, Py, ooy Py Vais Veos o5 Ve, ]
FC layer| | mihiicii(ie;niliaglérisi . 71} Output layer
Flattening ) RN 3 ;Q ;Q 3 p
V . P%__ N 2 S~ S

Shape: 4xnpxk,,, Q/ | \CD/ \CD/ | \O W] rmmmmeeae-s
b . . B ; . Actions |
O 'l ReLU |...| ReLU | '| Sigmoid ! !
Dimension: 0 Dir;ension: : l;‘)c?uatlor-l(S) 3
2%n . Xng . Dimension:
o Q - 2Xng |

Fig. 2. DNN structure for “actor” in PPO training.

Yellow block: [Py, P, -y Pyys Qts Oy -
Oy Yaiag 11 Yatag 2l -+ Wiag_n,>
ZYdif/gﬁl’ ZYdiagﬁZ’ R ZYdiagﬁn,,]
********** Orange block: [P,,, P, ..., P,

gt g2 et gng

| 3 Vets Veo s Vengl
Dimension: 1 ; 3 } d hidden layers }
4y ! : ! 3 3 Output layer
| O\ | ) L T~ \:i
! = | PSI A
! Y " I
Dimension: | : n \O/ O/ 1
g, d ''| ReLU |---| ReLU | |No activation
B Dimension: 1
Input for the DNN: yellow block
and orange block
Output: state value V"(s)
Fig. 3. DNN structure for “critic” in PPO training.

C. DL-based Initialization
To facilitate the DRL training process for solving the AC

Input: [P, O Yiiagls £ Yiiaglasn,

and orange block

OPF problem with large state and action spaces, if the agent
starts training from a good initial status, it could solve the
sample inefficiency caused by numerous trials and errors
without experts’ demonstration. Therefore, the DRL training
process could be sped up and become more effective. On the
other hand, the DL training result could serve as a validation
process for the structure of the DNN in the “actor”. Howev-
er, the difference here is that the “labels” in the initialization
process become optimal generator setting adjustments shown
in (8) for further DRL training. After collecting the optimal
action labels and states to by the training dataset D, with
the size of N,, by running AC OPF solver offline, adopting
(9) as the loss function and applying the first-order optimiz-
er such as stochastic gradient descent, the initial mean value
Ly (s) of the stochastic policy 7, in PPO agent could be
trained to clone the optimal generator settings from AC OPF
solution results.
. 1
min 2 —

NDL Hdr_:ua(at‘st)”% (9)

;;;;;
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D. Offline Training Process of PPO Agents in Solving AC
OPF Problem

Figure 4 illustrates the interaction between the DRL agent
and the power system environment within one episode (one
training case), which starts from the initialization of the case
through “reset(')” until the “end” in the figure with “done”
set by “step()”. “reset()” function initializes a training case
by retrieving the loads, generators settings and current sys-
tem topology information to formulate the initial state s,
“step()” function applies the agent’s action, runs the AC
power flow with enforced generators’ reactive power limits,
and then provides the agent with the resulting state, “done”
signal, the corresponding reward, and updates the generator
set-points. Since it is difficult to determine whether the opti-
mal cost has been reached, the “done” signal becomes
“true” when D the reward is positive; () the PF solver is di-
verged, which indicates the status of “game over” and thus a
large negative reward of —5000 is given to train the agent to
avoid such actions; or (3 the maximum number of steps has
been reached.

For the i episode
(the i training data)

"
h

n Retrieve the current loads,
' generator settings, and

n calculate admittance matrix
! 1 according to the current

! 3 topology information

| Let agent take action |

l Action a,

| Modify the generator settings |
i

Is the
maximum
episode length
reached?

(enforce generator reactive power
limits) to generate next state s,

!

:|Run Newton-Raphson power flow solver|,

Fig. 4. Flowchart of power system environment interacting with an agent.

The detailed design of the reward function is given in
(10).
-5000
reward: Rpgiv + R\Lv + Rbrﬁv

1000-0.01Costs,,, solutions are feasible

PF solver is diverged
there are constraint violations

(10)
where R, , R, ,, and R,  are shown in (11) corresponding
to negative rewards if violations of any inequality con-
straints are detected, including: (D the active power limits of
generators; (2) the voltage magnitude limits of buses; and 3
the thermal flow limits (in both directions) of transmission
lines. Variable Costs,,, in (10) is the total generation cost val-
ue of the power system. Equation (11) corresponds to the op-

erational limits in the original problem shown in (1); on the
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other hand, running the PF solver with the generator reactive
power enforcement in the “step()” function corresponds to
the operational limits in the original problem shown in (1).
Therefore, positive rewards suggest feasible solutions. Be-
sides, if solutions are feasible, (10) linearly transforms the
convex cost function into a concave reward function for the
DRL training, which aims at maximizing the rewards.

- (2<Pg,—P;;“ )+ (PR -P, ))
Ry, =1 "' o VieG
P,—Py*>00r P3"—P,>0
0 otherwise
- (ZW GOV A V,->)
R, ,= = = _ VieN, (11)
- V.=V™>00r V™ -V,>0
0 otherwise
- ( E(S/mii - Sll:lni)z( )+ z(SmLi - rrTlif ))
b= V(i mye L
) Sim i=Smi>00rS,,,;—S,5>0
0 otherwise

With the DL-based initialization, the DRL training can
produce more reliable and improved results. A brief illustra-
tion of PPO training is shown in Fig. 5 and further illustrat-
ed in Algorithm 1. After interacting with the power system
environment to collect batch-sized trajectories, the PPO
agent is updated/trained accordingly.

State value

B Vo(s)
ffffffff S @ Updating “critic”
v
’ reward

—j {GAEG. 7)
! Updating “actor”
F“Actor” -
- Action a,

+ '] | Discounted _J

1

Power system | ¢ 1

1+ environment |
1

|

|

Collecting trajectories

Fig. 5. A brief illustration of PPO training in this paper.

In Algorithm 1, one epoch means that all the training data
have been trained once in the DRL. The hyper-parameter
KL tar controls the dynamic training updates for the “ac-
tor”, which additionally oversees the balance between explo-
ration and exploitation by PPO agents.

As for the computational time analysis, the process of the
proposed approach for solving the AC OPF problem during
the online implementation consists of two parts: the feed-for-
ward calculation time only in the well-trained “actor” DNN
shown in Fig. 2, and the power flow calculation. The feed-
forward neural network calculation takes polynomial time re-
garding the input dimensions [21]-[23], even though one con-
volutional layer is adopted. Since the input dimension for
the “actor” DNN is 4n,,, this number is manageable even
for a large-scale power system; therefore, this feed-forward
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calculation time could be regarded as a small constant. As
for the second part (the power flow calculation), the feasible
region of the AC OPF problem (NP-hard and non-convex) is
the subset of the power flow calculation solution set, and
thus, it will require less computational time than solving the
non-convex optimization problem by applying the conven-
tional interior-point solver, which has been adopted by many
vendors’ commercial software. Besides, if the GPU is ap-
plied, the feed-forward calculation time in the proposed ap-
proach can be further reduced.

Algorithm 1: PPO training for solving AC OPF problem

1: initialize: the number of training data £, . episode length 7, KL tar,

batch size N, ,, policy log covariance X, training epoch numbers
epo, “actor” as policy parameterized by 0, “critic” as value-fn param-
eterized by ¢, updating numbers of neural networks N,,, and related

NN
hyper-parameters in [13]

2: parse in the training dataset D
and generator settings

i CONtaining the information of load
3: for each epoch in range(epo):
shuffle the training data and set index=0

while index<E

p_max

4
5
6.  get a new batch of training data with size N, ,
7
8

for each episode e in range(N,,,,):

collect the trajectories’ information for every step including (s,, a,,
r,s,.,) from Fig. 4

9: end for

10: for i=1,2,...N,, do

11: train policy w.r.t. 6 via Adam optimizer [24]
12: break if KL-divergence>KL tar

13: end for

14: for i=1,2,...N,, do

15: train value-fn w.r.t. ¢ via Adam optimizer [24]
16: end for

17: index = index + N,,,,
18: end while

19: end for

20: return: policy

Because of the improved solving time to obtain the near-
optimal solutions, the well-trained agent could run more sto-
chastic scenarios resulted from the RES uncertainties and to-
pology changes compared with the conventional interior-
point solver. Since the well-trained agent could learn the sto-
chastic optimal policy of the feasible AC OPF solutions, the
agent could be applied online as shown in Fig. 1, which has
the advantage in real-time economic dispatch applications.

IV. CASE STUDY

The proposed approach to solve the AC OPF problem con-
sidering wind integration and N—1 topology changing sce-
narios is tested on the Illinois 200-bus system (with 200 bus-
es, original 38 generators, 1 wind farm connected with bus
161, and 245 lines) [25]. The simulation platform is devel-
oped using Python 3.7, Tensorflow, and PYPOWER [26],
which is the python version of Matpower [27] that provides
Newton-Raphson AC power flow solver and interior-point
AC OPF solver, i.e., IPS. The power factor of the wind
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farm’s output is set to be 0.95 following a real-world proto-
col in ERCOT, which determines the reactive power limits
of the wind farm [15].

1) Data generation: each load is randomly perturbed be-
tween [0.6, 1.4] p.u. with uniform distribution, where the
original data file is considered as the base case; each genera-
tor’s set point including the wind farm’s output is also ran-
domly perturbed between [P, P,,,] for active power con-
trol and [V, Ve for reactive power control; a transmis-
sion line is randomly chosen to be tripped to simulate the
N—1 topology changing scenarios under the uniform distri-
bution (only including the data with feasible solutions from
IPS).

2) Label creation: the IPS is adopted to generate the opti-
mal action labels for the “actor” initialization, and to indi-
cate whether the AC OPF problem is feasible or not.

3) Data arrangement: all the data with feasible AC OPF
solutions are collected and divided into 3 datasets: 130000
data with both original system’s topology and N—1 trans-
mission line tripping conditions forms the training dataset
used for “actor” initialization and PPO training; 23489 data
with original system topology in the testing dataset I and
11511 data with N—1 topology changes form testing dataset
IT (35000 testing data in total) used for testing the trained
agent online and verifying its performance. Besides, to fur-
ther validate the well-trained agent’s performance regarding
the realistic operating scenarios with uncertainties, both the
real-time load and wind power data per 5 min from CAISO
in August 2019 [14] are applied as online testing cases.

The cost comparison in percentage «, feasibility rate, and
the total computation time are chosen as performance evalua-
tion indices during the online testing process. The cost com-
parison in percentage x, which describes the optimality
shown in (12) [6], is only calculated when the agent’s ac-
tions are feasible, where cost,,,, and cost, are the system
cost obtained through the PPO agent and IPS solver, respec-
tively. The feasibility rate denotes the percentage of the on-
line testing datasets that the agent’s actions lead to feasible
solutions.

Kk =(Cost,,,— COSt ,p,,,, )/ COSL

(12)

In this paper, a rated 150 MW wind farm is connected to
bus 161 and all bus voltage magnitude limits are modified
from [0.9, 1.1]p.u. to [0.95, 1.05]p.u.. Accordingly, the di-
mensions of the state and action space are 878 and 78, re-
spectively. The maximum episode length 7 is set to be 100.
One convolutional layer with [4, 4, 1, 32] filter size connect-
ed with eight hidden layers with 1024, 1024, 1024, 512,
512, 512, 512, 512 neurons is applied in the “actor” and
five hidden layers with 8770, 781, 128, 128, 64, 32, 1 neu-
rons are applied in the “critic”.

The initialization results applying (9) to train the “actor”
with the convolutional layer is shown in Fig. 6, where 99%
of the data in the training dataset are used as a sub-training
dataset and the remaining 1% data is regarded as a sub-test-
ing dataset. During the initialization process, the total train-
ing iterations are 100000. For each iteration, a random batch
of training data is fed into the neural network, and the train-
ing loss values are recorded every 100 iterations. From Fig.

agent
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6, it is verified that the neural network structure of the “ac-
tor” is valid with small relative errors. However, when the
initialized “actor” is applied for the online testing process,
the results shown in Table I indicate that the feasibility is
not achieved under various testing operating conditions with
uncertainties, indicating an overlearning issue. Then the pro-
posed DRL training framework is adopted for 2 epochs. To
further demonstrate the necessity and effectiveness of the ini-
tialization process, PPO training without initialization is also
performed and the results are shown in Fig. 7. It can be ob-
served that the PPO agent can be trained more efficiently
and effectively with the help of the initialization. Because of
the special design for the agent’s neural network utilizing a
convolutional layer, after the initialization process is adopt-
ed, although the agent’s outputs may provide infeasible solu-
tions, the outputs are very close to the true solutions from
the interior-point solver. During the PPO training process, as
the episode length is set to be 100 (it means that the agent
can try up to 100 times to get a positive reward) and the ini-
tialization process has already been adopted, the actions sam-
pled by the agent based on the Gaussian distribution can fi-
nally provide near-optimal solutions when the agent interacts
with the power system environment. That is why the training
curve appears to be flat. However, at the early stage of PPO
training, the average steps taken by the agent to achieve
near-optimal solutions are high (for some data, it may take
30 steps to achieve positive reward), whereas, at the end of
the training process, the average step taken by the agent is 1
for most of the training data, which is also the objective of
PPO training for providing an optimal stochastic policy.
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Fig. 6. DL initialization results. (a) Training loss curve. (b) Relative error
for P,. (c) Relative error for V.

The well-trained PPO agent is then adopted to perform
the online AC OPF task on the testing dataset and the corre-
sponding results are shown in Table I, where “DL-initial” re-
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fers to only the initialization process and “initialized PPO”
represents the initialization plus PPO training processes. The
initialization process aims at minimizing the mean square er-
rors between the outputs of the neural network and the “la-
bels”; therefore, the weights of the neural network are not
trained via regularization. After the initialization, the outputs
of the neural network, which provides the feasible solutions,
are very close to the results from the interior-point solver.
That is why the optimality gap is very close to 0. However,
as the constraints of the AC OPF problem are not considered
in this initialization process while the DRL training further
models the constraints in the reward function, the feasibility
rate is significantly improved while the optimality gap in-
creases a little bit to improve the generalization of the neural
network’s performance. From Table I, after adopting the
DRL training, the feasibility rate for the PPO agent is im-
proved significantly. More importantly, the well-trained
agent can achieve 100% feasibility and near-optimal solu-
tions under the original system topology conditions of the
testing dataset I. Compared with the DL-based methods
shown in [8]-[10], which can be regarded as directly apply-
ing the mean vector of the policy (it will always take one
step for the agent to attempt to achieve the near-optimal so-
lution), because the PPO agent learns a stochastic policy,
even though it may take several more steps to achieve the
near-optimal solutions, it can improve the feasibility rate by
adaptively tuning the generator settings. On the other hand,
99.83% of testing dataset II containing N—1 topology chang-
es can be solved by the trained agent while achieving near-
optimal solutions simultaneously, which suggests that the
trained stochastic policy is effective and robust.

Due to a smaller feasible region in N—1 scenarios, all vio-
lation data in testing dataset II trigger the bus voltage magni-
tude violation flag. The PPO’s on-policy characteristic may
be eligible to explain why the agent cannot solve the very
small portion of violation data shown in Table 1. Therefore,
another test is performed by relaxing the bus voltage magni-
tude constraint from [0.95, 1.05]p.u. to [0.94, 1.06]p.u., which
can be regarded as a preventative measure regarding the se-
curity concerns of a well-trained agent. Under this relaxed
situation shown in Table I, the PPO agent can achieve the
feasibility for all the previous violation data, and near-opti-
mal solutions are attained simultaneously. However, the re-
sult of the feasibility rate from the initialization is not im-
pacted.

TABLE 1
COMPARISON OF TRAINED AGENTS’ PERFORMANCE ON TESTING DATASET

Training method  Testing dataset number Feasibility rate (%)

Maximum [«| (%)

Minimum |«| (%) Average || (%) Percentage using 1 step (%)

DL-initial I 51.75 2.95 4.7x107 0.046 51.75
DL-initial 1I 53.88 3.42 48x107° 0.063 53.88
DL-initial II (relaxed) 55.77 4.12 3.4x107° 0.076 55.77
Initialized PPO I 100.00 1.08 6.5x10™ 0.401 99.88
Initialized PPO 1I 99.83 433 4.6x107° 0.402 99.07
Initialized PPO 1I (relaxed) 100.00 4.63 2.0x1072 0.416 99.69

Furthermore, the running time comparison is made by us-
ing a desktop equipped with Intel i7-7700 CPU and 8 GB

RAM. To obtain near-optimal solutions for the 23489 data in
the testing dataset I, the running time from the IPS (the ini-
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tial-point vector is set as the mean values of the decision
variables’ lower and upper bounds as the default in the PY-
POWER) costs 6.1 hours, while it only takes 0.41 hours
from the proposed method, indicating an average speedup
factor of approximately 14 times. It could be even faster if a
GPU is used.

Re-scaled reward

100000 150000 200000 250000
Episode
— PPO with initialization; - - - PPO without initialization

0 L
0 50000

Fig. 7. PPO training process where reward is rescaled 1000 times smaller.

To verify the effectiveness of securing the N—1 post-con-
tingencies on the topology changes, another new testing data-
set with 1000 data is generated regarding the selective 21
contingency scenarios, which are shown in Table II. In Table
I, there are a total of 21 pre-screened contingency scenari-
os, and the index 0 represents the condition that the system
is under the original topology scenario. The corresponding
results are shown in Fig. 8.

TABLE 11
SELECTIVE N—1 CONTINGENCY SCENARIOS

Tripped line Tripped line Tripped line
Index  (from bus to Index (from bus to || Index (from bus to
bus) bus) bus)
0 None 8 81-178 16 149-87
1 1-119 9 83-146 17 176-88
2 124-1 10 83-186 18 171-190
3 193-1 11 84-113 19 195-171
4 44-42 12 85-120 20 180-172
5 43-84 13 86-101 21 199-172
6 44-200 14 142-86
7 46-45 15 88-87
K (%)
0
0 -0.1
S0.2% -0.2
& -04 -0.3
< -0.4
< -0.6 05
-0.8 -
S (0 [ ; 0.6
0 ve ] -0.7
> 10 ] 1000 -0
Cony; 15 800
ngene,, > 20 57 200 400 600 09
Ibde;{ CCnary, Data index
Fig. 8. Online testing results of initialized PPO agent under selective post-
contingencies.

As shown in Fig. 8, the well-trained agent is capable of
securing the N—1 post-contingency scenarios on the topolo-
gy changes (the average x value shown in (12) is —0.385%),
which validates the effectiveness of the methodology pro-
posed in the paper.
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To further show the effectiveness and robustness of the
proposed approach, the real-time data with 5 min intervals
of CAISO in August 2019 is applied as the new on-line test-
ing data shown in Fig. 9. Besides, to validate the advantages
of adopting the convolutional layer for DRL training, anoth-
er agent is trained with multi-layer perceptron (MLP) struc-
ture (2048, 1024, 1024, 1024, 512, 512, 512, 512, 512 neu-
rons) [28], where only the first layer is different from the
previous “actor” and the “critic” also has the same structure.
The corresponding testing results are shown in Fig. 10.
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Fig. 9. Real-time load and wind power profiles per 5 min from CAISO in
August 2019.
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Fig. 10. Online testing results of initialized PPO agents for real-time data
from CAISO in August 2019 under original system topology.
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Fig. 11. Online testing results of initialized PPO agent for real-time data
from CAISO in August 2019 under topology change conditions (one ran-
dom transmission line is tripped).
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The positive rewards in Fig. 10 reveal that both the well-
trained agents with the convolutional layer and MLP struc-
ture are capable of solving the real-time data without con-
straint violations. However, the agent with the convolutional
layer has much better performance regarding the optimality
(average x value shown in (12) is —0.321% versus —1.96%)
and only takes 1 step to solve all the cases. Besides, to fur-
ther test the robustness of the DRL agent, one transmission
line is randomly chosen to be tripped in the online testing
process with the same load data shown in Fig. 9, and the
corresponding results are shown in Fig. 10. By comparing
the results in Fig. 11 with Fig. 10, it is noticed that with the
changes in the network topology introduced by one random
line tripping, the agent with the convolutional layer may
take more steps to achieve solutions, but the solution quality
regarding the optimality (average x value is —0.397%) is at
the similar level. Figures 10 and 11 validate the robustness
of the proposed method and demonstrate the advantage of
the convolutional layer in the “actor” structure.

To deal with the randomness and uncertainty brought in
by high-penetration RESs, it is envisioned that faster con-
trol and decision-making are needed in operating the power
systems in the future. Therefore, in this paper, we randomly
pick real-time data from Fig. 9 on August 2, 2019, and in-
terpolate the data to change the time granularity to 6 s as
the base-load and wind power generation profiles. Then we
perturb the load at each bus in the system between [0.8,
1.2]p. u. with uniform distribution for active power and
[0.95, 1.05]p.u. with uniform distribution for reactive power
to simulate load variations and uncertainty. As for the wind
power profile, we add Gaussian noise to simulate its uncer-
tainty [29]. The interpolated load and wind power data with
noises added are applied as another new testing case shown
in Fig. 12, and the corresponding testing results of a well-
trained agent under the original system topology scenario
and topology change scenarios (one random transmission
line is tripped) are shown in Figs. 13 and 14, respectively.

- - - Wind power with randomness
—— Original wind power

Load with randomness e,
---- Original load ol

Load and wind power
e
o
N

12:00 18:00

Time

0
00:00

06:00 24:00

Fig. 12. Real-time load and wind power profiles from CAISO with interpo-
lation per 6 s and added noises on August 2, 2019.

Figure 13 shows that a well-trained agent is capable of
controlling the system with uncertainties in real time to
achieve optimal costs adaptively (proximal to the IPS results
with 99.96% of data taking only 1 step) during a 24-hour pe-
riod. As shown in Fig. 14, the well-trained agent still effec-
tively provides near-optimal solutions for 99.95% of the data
samples, among which 98.82% takes only 1 step (the x val-
ue shown in (12) is manually set to be —2% for violation da-
ta and the maximum episode length is set to be 20). Similar-

JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 5, September 2022

ly, when the bus voltage magnitude constraint is relaxed
from [0.95, 1.05]p.u. to [0.94, 1.06]p.u., the PPO agent
could achieve the feasibility for all the previous violation da-
ta, and near-optimal solutions are reached simultaneously.
Figures 13 and 14 further demonstrate the advantages of the
proposed approach for the secure and economic operations
of real-time power system when dealing with uncertainties.

g 600
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& 400 . . . ¥
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00:00 06:00 12:00 18:00 24:00
Time

Fig. 13. Online testing results of initialized PPO agent for real-time data
from CAISO with interpolation per 6 s and added noises on August 2, 2019
under original system topology.
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Fig. 14. Online testing results of initialized PPO agent for real-time data
from CAISO with interpolation per 6 s and added noises on August 2, 2019
under topology change conditions (one random transmission line is tripped).

Moreover, the selective post-contingencies shown in Table
II based on the original CAISO load data on August 2, 2019
are applied for further validating the effectiveness of the
well-trained agent, and the corresponding results are shown
in Fig. 15.
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Fig. 15. Online testing results of initialized PPO agent for real-time data
from CAISO on August 2, 2019 under selective post-contingencies.
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From Fig. 15, the well-trained agent can successfully han-
dle all the selective post-contingencies, where the average x
value shown in (12) is —0.385% compared with IPS results.
This further demonstrates the advantages of the proposed
well-trained agent for the real-time secure and economic op-
eration of power system when dealing with post-contingen-
cies.

An additional ancillary and independent “alarm” function
can be designed to help system operators identify whether
the current load, RES power outputs, and system topology
information would lead to infeasibility from IPS. This is for-
mulated as a classification problem (the label is 0 if infeasi-
ble, otherwise 1). By running the IPS to generate data under
various conditions including topology changes (one random
transmission line is tripped), 140000 data samples are adopt-
ed as a training dataset. Figure 16 shows the DNN structure
and its training process. Another 115357 data records are
generated as the testing dataset, and the classification accura-
cy for the testing dataset reaches 98.6%, which demonstrates
the effectiveness of the proposed design. This ancillary
“alarm” function can be combined with the well-trained
DRL agent. If it detects that the current system status is fea-
sible, it will then adopt the well-trained DRL agent to pro-
vide the near-optimal solutions; otherwise, it will send an
alarm to the system operators.
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Fig. 16. Training process for feasibility classification of AC OPF problem.

(a) DNN structure. (b) Accuracy of training process.

V. DISCUSSION ON FULL N—1 CONTINGENCIES ON
TOPOLOGY CHANGES

We choose three representative operating conditions from
Fig. 12 and apply the full N—1 contingencies on topology

1107

changes, respectively.

1) Peak time at 18:02, where the load is around 1.19 p.u.
and wind power output is around 0.63 p.u..

2) Off-peak time at 03:11, where the load is around 0.66 p.
u. and wind power output is around 0.52 p.u..

3) Time at 12:38, where the wind power output is at the
relatively low level with 0.045 p.u. output and the load is
around 0.85 p.u..

The corresponding results are shown in Fig. 17, where the
horizontal axis represents the index of the tripped transmis-
sion line. From Fig. 17, the well-trained agent can provide
the near-optimal adjustments of the generator set points com-
pared with the results coming from the IPS. As for the spe-
cific infeasible scenarios, the IPS cannot provide feasible so-
lutions under these topology conditions; thus, the results are
manually set as —2% for infeasible conditions. From Fig. 17,
the well-trained agent could successfully mimic the AC OPF
solver results. Therefore, if the solver can successfully solve
the full N—1 contingencies on topology changes, and is ad-
opted in the training, the well-trained agent should also be
capable of mimicking the solver results. However, due to the
large number of post-contingency states and the non-convexi-
ty of the AC power flow equations, the power system opera-
tors are still adopting the DC OPF scheme due to its convex-
ity and computational benefits [30], and thus, it is still very
challenging for the AC OPF solver to achieve full N—1 secu-
rity.
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Fig. 17. Cost comparison for all N—1 contingencies on topology changes
for peak time, off-peak time, and low wind power output time on August 2,
2019 from CAISO profile. (a) Peak time. (b) Off-peak time. (¢c) Low wind
power output time.

VI. CONCLUSION

This paper proposes a novel framework of deriving fast
AC OPF solutions for real-time applications using deep rein-
forcement learning. Case studies are based on the Illinois
200-bus system, and real-time data from CAISO is also ad-
opted. The testing results demonstrate that after the offline
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DRL training, the near-optimal AC OPF solutions can be ac-
complished with at least 14 times speedup compared with
the interior-point method. Moreover, the well-trained DRL
agent is robust to achieve near-optimal status to deal with
the uncertainties of RES and topology changes, which pro-
vides great potential for the operation and control of modern
power system with high penetration of renewable energy. Al-
though only the outage of one random transmission line is
included as the uncertainty regarding the topology change
scenarios, it could be expanded to the outages of multiple
transmission lines with higher computation burden. Further-
more, an efficient and robust classifier, which serves as an
independent “alarm™ function, is designed to help system op-
erators identify the feasibility of the AC OPF problem under
the present conditions of loading, RES outputs, and topology.

Future work includes further improvements on the Al
agent to gain higher accuracy, application of GPU for pro-
cess parallelization and better speedup, and test of the pro-
posed approach on larger power systems. Besides, the con-
straint of the ramping rate limits for the generators will be
considered for solving the multi-period AC OPF problem.
On the other hand, as the results from the solver are applied
for the initialization process of the agent and IPS in this pa-
per only considers pre-contingency states, it requires further
investigation to guarantee the security when considering full
N—1 contingencies for solving the AC OPF problem.
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