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Abstract——Modern power systems are experiencing larger fluc‐
tuations and more uncertainties caused by increased penetra‐
tion of renewable energy sources (RESs) and power electronics 
equipment. Therefore, fast and accurate corrective control ac‐
tions in real time are needed to ensure the system security and 
economics. This paper presents a novel method to derive real-
time alternating current (AC) optimal power flow (OPF) solu‐
tions considering the uncertainties including varying renewable 
energy and topology changes by using state-of-the-art deep rein‐
forcement learning (DRL) algorithm, which can effectively as‐
sist grid operators in making rapid and effective real-time deci‐
sions. The presented DRL-based approach first adopts a super‐
vised-learning method from deep learning to generate good ini‐
tial weights for neural networks, and then the proximal policy 
optimization (PPO) algorithm is applied to train and test the ar‐
tificial intelligence (AI) agents for stable and robust perfor‐
mance. An ancillary classifier is designed to identify the feasibil‐
ity of the AC OPF problem. Case studies conducted on the Illi‐
nois 200-bus system with wind generation variation and N -- 1 
topology changes validate the effectiveness of the proposed 
method and demonstrate its great potential in promoting sus‐
tainable energy integration into the power system.

Index Terms——Alternating current (AC) optimal power flow 
(OPF), deep learning, deep reinforcement learning (DRL), re‐
newable integration, proximal policy optimization.

I. INTRODUCTION

ALTERNATING current (AC) optimal power flow (OPF) 
remains an essential but challenging optimization prob‐

lem for the operation and control of modern power system 
with high penetration of renewable energy sources (RESs). 
Many approaches in the literature have been proposed in re‐
cent decades to solve this non-convex and NP-hard problem, 
the solution of which is typically time-intensive to achieve 
the convergence for real-time application [1]. With the in‐
creasing penetration of RES, modern power systems are ex‐
periencing larger fluctuations and more uncertainties, caus‐

ing grand challenges for operators to make prompt deci‐
sions. Thus, there is a compelling need for deriving real-
time AC OPF controls to tackle the uncertainties caused by 
the RES for secure and economic operation of power system.

To address this issue, [1] proposes a single-iteration quasi-
Newton method to expedite the real-time AC OPF solutions 
with the prerequisite for an accurate estimation of the sec‐
ond-order information. In [2], linearized AC power flow 
equations are applied to achieve real-time OPF in distribu‐
tion systems. With the recent success of deep learning (DL), 
several supervised-learning-based methods are proposed to 
approximate OPF solutions with improved solution speed. In 
[3] and [4], deep neural networks (DNNs) are utilized to 
solve the direct current (DC) OPF problem. In [5], the worst-
case guarantees of the DNN for DC OPF are analyzed. Ref‐
erence [6] applies the DNN and [7] uses the graph neural 
network to approximate optimal generator set-points from 
the solutions of AC OPF problem. However, the small train‐
ing and testing loss values cannot guarantee the feasibility of 
solutions under various operating conditions. To deal with 
this issue, [8] and [9] utilize the penalized loss function to 
capture the operational constraints. Reference [10] adopts the 
zero-order optimization technique on the IEEE 30-bus sys‐
tem that achieves the feasibility among 98% of the testing 
data. With the recent success of deep reinforcement learning 
(DRL) algorithms adopted in power system controls, multi-
agent Q(λ) learning is implemented to perform OPF tasks un‐
der discretized action spaces in [11]. In [12], an agent is 
trained to achieve the optimality while satisfying feasibility 
under continuous action space by applying the deep deter‐
ministic policy gradient algorithm aiming at solving the AC 
OPF problem. However, the robustness of these methods re‐
garding load variations, uncertainties of RES, and topology 
changes (N - 1 contingencies) needs to be further investigat‐
ed.

Inspired by the efforts above, this paper presents a novel 
DRL-based approach, the contributions of which are summa‐
rized below.

1) It adopts the proximal policy optimization (PPO) algo‐
rithm introduced in [13] to first train DRL agents offline for 
solving the AC OPF problem considering RES and N - 1 to‐
pology changes. The well-trained agents are then applied in 
real-time applications with periodic updating. The state 
space uses diagonal elements of the network admittance ma‐
trix to represent grid topology; hence, the well-trained agent 
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remains effective and robust during the online implementa‐
tion regarding the uncertainty of topology changes.

2) To facilitate the agent’s learning speed and perfor‐
mance during the offline training process, the supervised-
learning regression method is applied to initialize the 
weights for the DRL agent, serving as an “initial guide”.

3) A reward function is carefully designed to tackle the 
feasibility issue, where the DRL agent learns an optimal sto‐
chastic policy. Therefore, compared with running many sto‐
chastic scenarios regarding the uncertainties under high pene‐
tration of RES and N - 1 topology changes, the proposed 
method has the advantage to be applied in real-time security-
constrained economic dispatch applications.

Numerical experiments conducted on the Illinois 200-bus 
system with RES and realistic operational data extracted 
from [14] demonstrate the effectiveness and robustness of 
the proposed approach. The online testing results show that 
a well-trained agent can obtain near-optimal solutions with a 
computation time of at least one order less than that ob‐
tained by the interior point solver (IPS). It manifests a great 
promise of employing artificial intelligence (AI) techniques 
in the real-time control of power system, especially with 
large penetration of RES. Moreover, an ancillary and inde‐
pendent “alarm” function is designed to help system opera‐
tors rapidly identify the feasibility of the AC OPF problem 
under various operating conditions.

The remainder of this paper is organized as follows. Sec‐
tion II provides the problem formulation and the preliminar‐
ies of DRL algorithms. In Section III, the detailed proce‐
dures of the proposed methodology are illustrated. In Sec‐
tion IV, numerical experiments are conducted on the Illinois 
200-bus system to demonstrate the performance of DRL 
agents and the effectiveness of the proposed method. Finally, 
Section V draws the conclusion and presents future work.

II. PROBLEM FORMULATION AND PRELIMINARIES 

A. Problem Formulation of AC OPF

Considering an AC system with a set of buses Nb =
{12nB }, a set of transmission lines L with a total of nbr 
branches, and the generator buses GÌNb with a total num‐
ber of nG generators, the AC OPF problem can be formulat‐
ed as:
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(1)

where ykl is the admittance between buses k and l; subscripts 
g and d represent the generator and load, respectively; P and 
Q are the active power and reactive power, respectively; and 

Vk and Slm are the bus voltage magnitudes at bus k and 
branch flow limit between bus l and m, respectively. In the 
model above, the wind farm is also considered as a PV (con‐
stant power and constant voltage) bus, and thus the corre‐
sponding operational limit of the first constraint in (1) be‐
comes P min

g_wind_k =Pg_wind_k =P max
g_wind_k, where Pg_wind_k is the active 

power output regarding the kth wind power plant. Also, the 
modeled wind farms follow a real-world protocol for reac‐
tive power constraints, which requires the power factor to be 
0.95 or less [15]. The objective is to find the optimal set 
points for all generators in the system, such that the quadrat‐
ic cost function is minimized subject to operational security 
limits shown in (1).

B. DL for Solving AC OPF

The motivation of applying DL to solve the AC OPF is to 
find a mapping function represented by a DNN βζ parameter‐
ized by ζ between the operating states and optimal generator 
settings such that the solving speed can be improved signifi‐
cantly. Unlike [8]-[12], N - 1 topology changes are also con‐
sidered in this paper to make it more robust for power sys‐
tem operation during the online application process. There‐
fore, the loads at each bus and admittance information (the 
magnitude and angle of diagonal elements in the admittance 
matrix Y), s =[Pd, Qd, |Ydiag|, ÐYdiag ], are applied as the input, 
and the optimal generator set-points for each generator â =
[Pg, Vg ] are set as the output. The learning task can be for‐
mulated as a supervised regression problem to minimize the 
L - 2 norm loss function shown in (2), where the optimal 
generator set-points shown as the “labels” â, could be ob‐
tained by running the AC OPF solver offline for the training 
dataset Dtrain with a size of Ntrain.

min
ζ
∑

(sâ)ÎDtrain

1
Ntrain

||â - βζ (a|s)||2
2 (2)

However, if the DNN is only trained by adopting (2), the 
feasibility of the AC OPF problem cannot be guaranteed af‐
ter running the power flow (PF) solver during online imple‐
mentation even though the loss is small due to operational 
security limit violations defined in (1). Although [8] - [10] 
adopt the penalty function to deal with the feasibility issue, 
the penalty coefficient needs to be further tuned regarding 
the training performance. In this paper, the DRL framework 
is adopted to address the feasibility issue.

C. PPO Algorithm with Clipped Surrogate Loss

The goal of DRL is to train an agent aiming at learning 
an optimal policy π* that maximizes the expected reward re‐
turn by continuously interacting with the environment [16]. 
Compared with other state-of-the-art policy gradient algo‐
rithms, PPO has been verified to have the best or compara‐
ble performance in the various DRL benchmark game envri‐
onments with the continuous control spaces while its hyper‐
parameters are simpler to be tuned compared with other 
DRL algorithms [17]. There are two versions of the PPO al‐
gorithm: an adaptive KL-divergence penalty version and a 
clipped surrogate loss version. And the second version has 
been validated to have the best performance on all continu‐
ous control tasks [17]. Therefore, the PPO with surrogate 
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loss version is chosen as the DRL algorithm in this paper. A 
brief introduction of the PPO with the clipped surrogate loss 
function is shown as follows.

Categorized as one actor-critic type of RL algorithms, the 
PPO agent consists of two DNNs, where the first DNN, the 
“actor”, is trained to learn the stochastic optimal policy, and 
the second DNN, the “critic”, is designed to estimate the val‐
ue function. The PPO algorithm ensures an improved perfor‐
mance compared with other policy gradient algorithms due 
to the following two kinds of enhancement regarding the 
“actor” updates. Firstly, the generalized advantage estima‐
tion (GAE) function AGAE(γ,λ)

t  is utilized during the “actor” 
training process to reduce the variance of the estimation as 
shown in (3) [18]. 
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(3)

where V π (st ) is the state value representing how good a 
state is by calculating the expected reward starting from 
state st at time step t following a certain policy, which is the 
output of the “critic” network; λ controls the average degree 
of n-step advantage values; rt is the immediate reward from 
the environment at time step t; and γÎ[01] is the discount 
factor on the future reward.

Secondly, the PPO algorithm updates the “actor” parame‐
ters within an appropriate trust region, and this helps avoid 
falling off the “cliff” from the hyper-surfaces of the reward 
functions which may be hard to escape from. Such a safe up‐
date is achieved by modifying the objective function LPPO 
shown in (4). Êt is the expectation operator; and clip(×) 
means when the value of ht (θ) is outside the range of [1 - ε, 
1 + ε], ht (θ) will be forced to be either 1 - ε or 1 + ε.
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LPPO (θ)= Êt [min(ht (θ)A
πθold
t clip(ht (θ)1 - ε1 + ε)A

πθold
t )]

ht (θ)=
πθ (at|st )
πθold

(at|st )
(4)

where θ indicates the parameters of the DNN πθ(at|st) of the 
“actor”; ε determines the range of the trust region for the up‐
date; and the advantage value At is calculated from (3) 
AGAE(γ,λ)

t . The minimization operator makes sure that the new 
policy does not benefit from going too far away from the 
old policy and thus regulates the update of the DNN parame‐
ters.

Besides, the policy πθ in PPO is stochastic, which is pa‐
rameterized as a conditional Gaussian policy πθ~N(μθ (s)Σπθ ). 
The mean value μθ (s) is the output of the DNN in the “ac‐
tor”, and the covariance Σπθ is initially assigned manually 
but will be updated during backpropagation. Besides, θold in‐
dicates the policy parameters before updating the “actor”.

As for the DNN in the “critic” parameterized by φ, which 
is designed to estimate the value function V π

φ (st ), the objec‐
tive function to update the “critic” is shown in (5).

min
φ
∑

(stRt )ÎDbatch

1
Nbatch

||Rt -V π
φ (st )||

2
2 (5)

Rt =∑
k = 0

el - 1

γkrt + k + 1 (6)

where Rt is the discounted accumulated reward; Dbatch is the 
trajectories accumulated from the agent interacting with the 
environment with batch size Nbatch; and el is the episode 
length when the agent interacts with its environment.

III. PROPOSED DRL-BASED AC OPF SOLUTIONS 

The proposed DRL-based framework for AC OPF solu‐
tions is illustrated in Fig. 1, which is referenced from the 
“Grid-Mind” framework [19]. The PPO agent firstly is 
trained offline by interacting with the power system simula‐
tion environment to learn an optimal policy; then the well-
trained agent can provide the suggested actions based on the 
measured state data in the power system to achieve near-opti‐
mal AC OPF solutions in real time.

A. State and Action Spaces

The state, which is the input for the PPO agent, includes 
the active and reactive power (Pdi and Qdi) of system loads 
at all buses (iÎNb), the magnitude and angle of the diagonal 
elements of the admittance matrix Y, and all nG generators’  
initial active power setting Pgj and voltage setting Vgj (jÎG), 
as denoted in (7). The MinMax scaling preprocessing tech‐
nique [20] is conducted on the [0, 2nB) columns and [2nB, 
4nB) columns of this vector individually before passing it to 
the agent to handle different scales of various parameters.

state ==[Pd1Pd2PdnB
Qd1Qd2QdnB

|Ydiag_1|
|Ydiag_2||Ydiag_nB

|ÐYdiag_1ÐYdiag_2ÐYdiag_nB


Pg1Pg2PgnG
Vg1Vg2VgnG

] (7)

The action spaces are the incremental adjustments made 
to generator set-points shown in (8) instead of optimal gener‐
ator set points due to the training interactions between the 
DRL agent and its environment. Then, the well-trained DRL 
agent could adaptively achieve the optimal status with sever‐
al adjustment steps during the online testing process, al‐
though our training target is to achieve the optimality in one 
step.

action =[DPg1DPg2...DPgnG
DVg1DVg2...DVgnG

] (8)
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Fig. 1.　DRL-based framework to solve AC OPF problem.
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B. Neural Network Structure

The DNN structures for the “actor” and the “critic” in 
PPO are shown in Fig. 2 and Fig. 3, respectively, where the 
input, state, is denoted in (7).

Due to the consideration of system topology information, 
the input state dimension is two times larger compared with 
those in [8]-[10]; therefore, to further effectively extract the 
features from the inputs for the “actor”, one convolutional 
layer from the convolutional neural network (CNN) is uti‐
lized first and then connects a fully connected (FC) layer 
with the following hidden layers shown in Fig. 2. Similar to 
the applications of CNN in DL for image processing, a con‐
volutional kernel conducts the convolutional feature extrac‐
tion calculations, and thus, this structure is more suitable for 
our application with large input dimension spaces. However, 
to maintain the information of every bus in the “actor”, the 
pooling layer is not adopted. The convolutional layer parame‐
ters are set as follows: ① the “stride” parameter, which is 

the step size for moving the kernel window (yellow block 
shown in Fig. 2) in the convolutional calculation, is set to be 
1; ② “zero padding” is applied to maintain the width and 
height of the input. In addition, the kernel filter size is set as 
[4, 4, 1, kcnn] as shown in Fig. 2, and the rectified linear unit 
(ReLU) activation function is applied. In the hidden layers 
for both “actor” and “critic”, the ReLU activation function 
is adopted to effectively prevent the vanishing gradient. Be‐
sides, the sigmoid activation in the “actor” output layer 
makes sure that the output can have bounded negative or 
positive values. And this output of the DNN in the “actor” 
acts as the mean value of the stochastic policy in the PPO 
training shown in Section II-C. On the other hand, the one 
neuron in the output layer of “critic” has no activation, 
which outputs the state value V π

φ (st ). Moreover, as different 
generator set points represent different state values, all ele‐
ments in (7) are applied as the input for the neural network 
in “critic”. The outputs of the output layer are the optimal 
generator settings.

C. DL-based Initialization

To facilitate the DRL training process for solving the AC 

OPF problem with large state and action spaces, if the agent 
starts training from a good initial status, it could solve the 
sample inefficiency caused by numerous trials and errors 
without experts’  demonstration. Therefore, the DRL training 
process could be sped up and become more effective. On the 
other hand, the DL training result could serve as a validation 
process for the structure of the DNN in the “actor”. Howev‐
er, the difference here is that the “labels” in the initialization 
process become optimal generator setting adjustments shown 
in (8) for further DRL training. After collecting the optimal 
action labels and states to by the training dataset Dtrain with 
the size of NDL by running AC OPF solver offline, adopting 
(9) as the loss function and applying the first-order optimiz‐
er such as stochastic gradient descent, the initial mean value 
μθ (s) of the stochastic policy πθ in PPO agent could be 
trained to clone the optimal generator settings from AC OPF 
solution results.

min
θ
∑

(stât )ÎDtrain

1
NDL

||ât - μθ (at|st )||
2
2 (9)
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D. Offline Training Process of PPO Agents in Solving AC 
OPF Problem

Figure 4 illustrates the interaction between the DRL agent 
and the power system environment within one episode (one 
training case), which starts from the initialization of the case 
through “reset(·)” until the “end” in the figure with “done” 
set by “step(·)”. “reset(·)” function initializes a training case 
by retrieving the loads, generators settings and current sys‐
tem topology information to formulate the initial state st; 
“step(·)” function applies the agent’s action, runs the AC 
power flow with enforced generators’  reactive power limits, 
and then provides the agent with the resulting state, “done” 
signal, the corresponding reward, and updates the generator 
set-points. Since it is difficult to determine whether the opti‐
mal cost has been reached, the “done” signal becomes 
“true” when ① the reward is positive; ② the PF solver is di‐
verged, which indicates the status of “game over” and thus a 
large negative reward of -5000 is given to train the agent to 
avoid such actions; or ③ the maximum number of steps has 
been reached.

The detailed design of the reward function is given in 
(10). 

reward =
ì

í

î

ïïïï

ïïïï

-5000                            PF solver is diverged

Rpg_v +Rv_v +Rbr_v        there are constraint violations

1000 - 0.01Costsgen    solutions are feasible

(10)

where Rpg_v, Rv_v, and Rbr_v are shown in (11) corresponding 
to negative rewards if violations of any inequality con‐
straints are detected, including: ① the active power limits of 
generators; ② the voltage magnitude limits of buses; and ③ 
the thermal flow limits (in both directions) of transmission 
lines. Variable Costsgen in (10) is the total generation cost val‐
ue of the power system. Equation (11) corresponds to the op‐
erational limits in the original problem shown in (1); on the 

other hand, running the PF solver with the generator reactive 
power enforcement in the “step(·)” function corresponds to 
the operational limits in the original problem shown in (1). 
Therefore, positive rewards suggest feasible solutions. Be‐
sides, if solutions are feasible, (10) linearly transforms the 
convex cost function into a concave reward function for the 
DRL training, which aims at maximizing the rewards.
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(11)

With the DL-based initialization, the DRL training can 
produce more reliable and improved results. A brief illustra‐
tion of PPO training is shown in Fig. 5 and further illustrat‐
ed in Algorithm 1. After interacting with the power system 
environment to collect batch-sized trajectories, the PPO 
agent is updated/trained accordingly.

In Algorithm 1, one epoch means that all the training data 
have been trained once in the DRL. The hyper-parameter 
KL_tar controls the dynamic training updates for the “ac‐
tor”, which additionally oversees the balance between explo‐
ration and exploitation by PPO agents.

As for the computational time analysis, the process of the 
proposed approach for solving the AC OPF problem during 
the online implementation consists of two parts: the feed-for‐
ward calculation time only in the well-trained “actor” DNN 
shown in Fig. 2, and the power flow calculation. The feed-
forward neural network calculation takes polynomial time re‐
garding the input dimensions [21]-[23], even though one con‐
volutional layer is adopted. Since the input dimension for 
the “actor” DNN is 4nbus, this number is manageable even 
for a large-scale power system; therefore, this feed-forward 
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calculation time could be regarded as a small constant. As 
for the second part (the power flow calculation), the feasible 
region of the AC OPF problem (NP-hard and non-convex) is 
the subset of the power flow calculation solution set, and 
thus, it will require less computational time than solving the 
non-convex optimization problem by applying the conven‐
tional interior-point solver, which has been adopted by many 
vendors’  commercial software. Besides, if the GPU is ap‐
plied, the feed-forward calculation time in the proposed ap‐
proach can be further reduced.

Because of the improved solving time to obtain the near-
optimal solutions, the well-trained agent could run more sto‐
chastic scenarios resulted from the RES uncertainties and to‐
pology changes compared with the conventional interior-
point solver. Since the well-trained agent could learn the sto‐
chastic optimal policy of the feasible AC OPF solutions, the 
agent could be applied online as shown in Fig. 1, which has 
the advantage in real-time economic dispatch applications.

IV. CASE STUDY

The proposed approach to solve the AC OPF problem con‐
sidering wind integration and N - 1 topology changing sce‐
narios is tested on the Illinois 200-bus system (with 200 bus‐
es, original 38 generators, 1 wind farm connected with bus 
161, and 245 lines) [25]. The simulation platform is devel‐
oped using Python 3.7, Tensorflow, and PYPOWER [26], 
which is the python version of Matpower [27] that provides 
Newton-Raphson AC power flow solver and interior-point 
AC OPF solver, i. e., IPS. The power factor of the wind 

farm’s output is set to be 0.95 following a real-world proto‐
col in ERCOT, which determines the reactive power limits 
of the wind farm [15].

1) Data generation: each load is randomly perturbed be‐
tween [0.6, 1.4] p. u. with uniform distribution, where the 
original data file is considered as the base case; each genera‐
tor’s set point including the wind farm’s output is also ran‐
domly perturbed between [Pgmin, Pgmax] for active power con‐
trol and [Vgmin, Vgmax] for reactive power control; a transmis‐
sion line is randomly chosen to be tripped to simulate the 
N - 1 topology changing scenarios under the uniform distri‐
bution (only including the data with feasible solutions from 
IPS).

2) Label creation: the IPS is adopted to generate the opti‐
mal action labels for the “actor” initialization, and to indi‐
cate whether the AC OPF problem is feasible or not.

3) Data arrangement: all the data with feasible AC OPF 
solutions are collected and divided into 3 datasets: 130000 
data with both original system’s topology and N - 1 trans‐
mission line tripping conditions forms the training dataset 
used for “actor” initialization and PPO training; 23489 data 
with original system topology in the testing dataset I and 
11511 data with N - 1 topology changes form testing dataset 
II (35000 testing data in total) used for testing the trained 
agent online and verifying its performance. Besides, to fur‐
ther validate the well-trained agent’s performance regarding 
the realistic operating scenarios with uncertainties, both the 
real-time load and wind power data per 5 min from CAISO 
in August 2019 [14] are applied as online testing cases.

The cost comparison in percentage κ, feasibility rate, and 
the total computation time are chosen as performance evalua‐
tion indices during the online testing process. The cost com‐
parison in percentage κ, which describes the optimality 
shown in (12) [6], is only calculated when the agent’s ac‐
tions are feasible, where costagent and costips are the system 
cost obtained through the PPO agent and IPS solver, respec‐
tively. The feasibility rate denotes the percentage of the on‐
line testing datasets that the agent’s actions lead to feasible 
solutions.

κ = (costips - costagent )/costips (12)

In this paper, a rated 150 MW wind farm is connected to 
bus 161 and all bus voltage magnitude limits are modified 
from [0.9, 1.1]p. u. to [0.95, 1.05]p. u.. Accordingly, the di‐
mensions of the state and action space are 878 and 78, re‐
spectively. The maximum episode length T is set to be 100. 
One convolutional layer with [4, 4, 1, 32] filter size connect‐
ed with eight hidden layers with 1024, 1024, 1024, 512, 
512, 512, 512, 512 neurons is applied in the “actor” and 
five hidden layers with 8770, 781, 128, 128, 64, 32, 1 neu‐
rons are applied in the “critic”.

The initialization results applying (9) to train the “actor” 
with the convolutional layer is shown in Fig. 6, where 99% 
of the data in the training dataset are used as a sub-training 
dataset and the remaining 1% data is regarded as a sub-test‐
ing dataset. During the initialization process, the total train‐
ing iterations are 100000. For each iteration, a random batch 
of training data is fed into the neural network, and the train‐
ing loss values are recorded every 100 iterations. From Fig. 

Algorithm 1: PPO training for solving AC OPF problem

1: initialize: the number of training data Ep_max, episode length T, KL_tar, 
batch size Nbatch, policy log covariance Σπθ, training epoch numbers 
epo, “actor” as policy parameterized by θ, “critic” as value-fn param‐
eterized by φ, updating numbers of neural networks NNN, and related 
hyper-parameters in [13]

2: parse in the training dataset Dtrain containing the information of load 
and generator settings

3: for each epoch in range(epo):

4: shuffle the training data and set index = 0

5: while index < Ep_max

6.  get a new batch of training data with size Nbatch

7:  for each episode e in range(Nbatch):

8:   collect the trajectories’  information for every step including (st, at,
 rt, st + 1 ) from Fig. 4

9:  end for

10:  for i = 12...NNN do

11:   train policy w.r.t. θ via Adam optimizer [24]

12:   break if KL-divergence > KL_tar

13:  end for

14:  for i = 12...NNN do

15:   train value-fn w.r.t. φ via Adam optimizer [24]

16:  end for

17:  index = index + Nbatch

18: end while

19: end for

20: return: policy
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6, it is verified that the neural network structure of the “ac‐
tor” is valid with small relative errors. However, when the 
initialized “actor” is applied for the online testing process, 
the results shown in Table I indicate that the feasibility is 
not achieved under various testing operating conditions with 
uncertainties, indicating an overlearning issue. Then the pro‐
posed DRL training framework is adopted for 2 epochs. To 
further demonstrate the necessity and effectiveness of the ini‐
tialization process, PPO training without initialization is also 
performed and the results are shown in Fig. 7. It can be ob‐
served that the PPO agent can be trained more efficiently 
and effectively with the help of the initialization. Because of 
the special design for the agent’s neural network utilizing a 
convolutional layer, after the initialization process is adopt‐
ed, although the agent’s outputs may provide infeasible solu‐
tions, the outputs are very close to the true solutions from 
the interior-point solver. During the PPO training process, as 
the episode length is set to be 100 (it means that the agent 
can try up to 100 times to get a positive reward) and the ini‐
tialization process has already been adopted, the actions sam‐
pled by the agent based on the Gaussian distribution can fi‐
nally provide near-optimal solutions when the agent interacts 
with the power system environment. That is why the training 
curve appears to be flat. However, at the early stage of PPO 
training, the average steps taken by the agent to achieve 
near-optimal solutions are high (for some data, it may take 
30 steps to achieve positive reward), whereas, at the end of 
the training process, the average step taken by the agent is 1 
for most of the training data, which is also the objective of 
PPO training for providing an optimal stochastic policy.
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Fig. 6.　DL initialization results. (a) Training loss curve. (b) Relative error 
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The well-trained PPO agent is then adopted to perform 
the online AC OPF task on the testing dataset and the corre‐
sponding results are shown in Table I, where “DL-initial” re‐

fers to only the initialization process and “initialized PPO” 
represents the initialization plus PPO training processes. The 
initialization process aims at minimizing the mean square er‐
rors between the outputs of the neural network and the “la‐
bels”; therefore, the weights of the neural network are not 
trained via regularization. After the initialization, the outputs 
of the neural network, which provides the feasible solutions, 
are very close to the results from the interior-point solver. 
That is why the optimality gap is very close to 0. However, 
as the constraints of the AC OPF problem are not considered 
in this initialization process while the DRL training further 
models the constraints in the reward function, the feasibility 
rate is significantly improved while the optimality gap in‐
creases a little bit to improve the generalization of the neural 
network’s performance. From Table I, after adopting the 
DRL training, the feasibility rate for the PPO agent is im‐
proved significantly. More importantly, the well-trained 
agent can achieve 100% feasibility and near-optimal solu‐
tions under the original system topology conditions of the 
testing dataset I. Compared with the DL-based methods 
shown in [8]-[10], which can be regarded as directly apply‐
ing the mean vector of the policy (it will always take one 
step for the agent to attempt to achieve the near-optimal so‐
lution), because the PPO agent learns a stochastic policy, 
even though it may take several more steps to achieve the 
near-optimal solutions, it can improve the feasibility rate by 
adaptively tuning the generator settings. On the other hand, 
99.83% of testing dataset II containing N - 1 topology chang‐
es can be solved by the trained agent while achieving near-
optimal solutions simultaneously, which suggests that the 
trained stochastic policy is effective and robust.

Due to a smaller feasible region in N - 1 scenarios, all vio‐
lation data in testing dataset II trigger the bus voltage magni‐
tude violation flag. The PPO’s on-policy characteristic may 
be eligible to explain why the agent cannot solve the very 
small portion of violation data shown in Table I. Therefore, 
another test is performed by relaxing the bus voltage magni‐
tude constraint from [0.95, 1.05]p.u. to [0.94, 1.06]p.u., which 
can be regarded as a preventative measure regarding the se‐
curity concerns of a well-trained agent. Under this relaxed 
situation shown in Table I, the PPO agent can achieve the 
feasibility for all the previous violation data, and near-opti‐
mal solutions are attained simultaneously. However, the re‐
sult of the feasibility rate from the initialization is not im‐
pacted.

TABLE I
COMPARISON OF TRAINED AGENTS’  PERFORMANCE ON TESTING DATASET

Training method

DL-initial

DL-initial

DL-initial

Initialized PPO

Initialized PPO

Initialized PPO

Testing dataset number

I

II

II (relaxed)

I

II

II (relaxed)

Feasibility rate (%)

51.75

53.88

55.77

100.00

99.83

100.00

Maximum |κ| (%)

2.95

3.42

4.12

1.08

4.33

4.63

Minimum |κ| (%)

4.7 ´ 10-5

4.8 ´ 10-5

3.4 ´ 10-3

6.5 ´ 10-4

4.6 ´ 10-3

2.0 ´ 10-2

Average |κ| (%)

0.046

0.063

0.076

0.401

0.402

0.416

Percentage using 1 step (%)

51.75

53.88

55.77

99.88

99.07

99.69

Furthermore, the running time comparison is made by us‐
ing a desktop equipped with Intel i7-7700 CPU and 8 GB 

RAM. To obtain near-optimal solutions for the 23489 data in 
the testing dataset I, the running time from the IPS (the ini‐
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tial-point vector is set as the mean values of the decision 
variables’  lower and upper bounds as the default in the PY‐
POWER) costs 6.1 hours, while it only takes 0.41 hours 
from the proposed method, indicating an average speedup 
factor of approximately 14 times. It could be even faster if a 
GPU is used.

To verify the effectiveness of securing the N - 1 post-con‐
tingencies on the topology changes, another new testing data‐
set with 1000 data is generated regarding the selective 21 
contingency scenarios, which are shown in Table II. In Table 
II, there are a total of 21 pre-screened contingency scenari‐
os, and the index 0 represents the condition that the system 
is under the original topology scenario. The corresponding 
results are shown in Fig. 8.

As shown in Fig. 8, the well-trained agent is capable of 
securing the N - 1 post-contingency scenarios on the topolo‐
gy changes (the average κ value shown in (12) is -0.385%), 
which validates the effectiveness of the methodology pro‐
posed in the paper.

To further show the effectiveness and robustness of the 
proposed approach, the real-time data with 5 min intervals 
of CAISO in August 2019 is applied as the new on-line test‐
ing data shown in Fig. 9. Besides, to validate the advantages 
of adopting the convolutional layer for DRL training, anoth‐
er agent is trained with multi-layer perceptron (MLP) struc‐
ture (2048, 1024, 1024, 1024, 512, 512, 512, 512, 512 neu‐
rons) [28], where only the first layer is different from the 
previous “actor” and the “critic” also has the same structure. 
The corresponding testing results are shown in Fig. 10.
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TABLE II
SELECTIVE N - 1 CONTINGENCY SCENARIOS

Index

0

1

2

3

4

5

6

7

Tripped line 
(from bus to 

bus)

None

1-119

124-1

193-1

44-42

43-84

44-200

46-45

Index

8

9

10

11

12

13

14

15

Tripped line 
(from bus to 

bus)

81-178

83-146

83-186

84-113

85-120

86-101

142-86

88-87

Index

16

17

18

19

20

21

Tripped line 
(from bus to 

bus)

149-87

176-88

171-190

195-171

180-172

199-172
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Fig. 8.　Online testing results of initialized PPO agent under selective post-
contingencies.
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The positive rewards in Fig. 10 reveal that both the well-
trained agents with the convolutional layer and MLP struc‐
ture are capable of solving the real-time data without con‐
straint violations. However, the agent with the convolutional 
layer has much better performance regarding the optimality 
(average κ value shown in (12) is -0.321% versus -1.96%) 
and only takes 1 step to solve all the cases. Besides, to fur‐
ther test the robustness of the DRL agent, one transmission 
line is randomly chosen to be tripped in the online testing 
process with the same load data shown in Fig. 9, and the 
corresponding results are shown in Fig. 10. By comparing 
the results in Fig. 11 with Fig. 10, it is noticed that with the 
changes in the network topology introduced by one random 
line tripping, the agent with the convolutional layer may 
take more steps to achieve solutions, but the solution quality 
regarding the optimality (average κ value is -0.397%) is at 
the similar level. Figures 10 and 11 validate the robustness 
of the proposed method and demonstrate the advantage of 
the convolutional layer in the “actor” structure.

To deal with the randomness and uncertainty brought in 
by high-penetration RESs, it is envisioned that faster con‐
trol and decision-making are needed in operating the power 
systems in the future. Therefore, in this paper, we randomly 
pick real-time data from Fig. 9 on August 2, 2019, and in‐
terpolate the data to change the time granularity to 6 s as 
the base-load and wind power generation profiles. Then we 
perturb the load at each bus in the system between [0.8, 
1.2]p. u. with uniform distribution for active power and 
[0.95, 1.05]p.u. with uniform distribution for reactive power 
to simulate load variations and uncertainty. As for the wind 
power profile, we add Gaussian noise to simulate its uncer‐
tainty [29]. The interpolated load and wind power data with 
noises added are applied as another new testing case shown 
in Fig. 12, and the corresponding testing results of a well-
trained agent under the original system topology scenario 
and topology change scenarios (one random transmission 
line is tripped) are shown in Figs. 13 and 14, respectively.

Figure 13 shows that a well-trained agent is capable of 
controlling the system with uncertainties in real time to 
achieve optimal costs adaptively (proximal to the IPS results 
with 99.96% of data taking only 1 step) during a 24-hour pe‐
riod. As shown in Fig. 14, the well-trained agent still effec‐
tively provides near-optimal solutions for 99.95% of the data 
samples, among which 98.82% takes only 1 step (the κ val‐
ue shown in (12) is manually set to be -2% for violation da‐
ta and the maximum episode length is set to be 20). Similar‐

ly, when the bus voltage magnitude constraint is relaxed 
from [0.95, 1.05]p. u. to [0.94, 1.06]p. u., the PPO agent 
could achieve the feasibility for all the previous violation da‐
ta, and near-optimal solutions are reached simultaneously. 
Figures 13 and 14 further demonstrate the advantages of the 
proposed approach for the secure and economic operations 
of real-time power system when dealing with uncertainties.

Moreover, the selective post-contingencies shown in Table 
II based on the original CAISO load data on August 2, 2019 
are applied for further validating the effectiveness of the 
well-trained agent, and the corresponding results are shown 
in Fig. 15.
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From Fig. 15, the well-trained agent can successfully han‐
dle all the selective post-contingencies, where the average κ 
value shown in (12) is -0.385% compared with IPS results. 
This further demonstrates the advantages of the proposed 
well-trained agent for the real-time secure and economic op‐
eration of power system when dealing with post-contingen‐
cies.

An additional ancillary and independent “alarm” function 
can be designed to help system operators identify whether 
the current load, RES power outputs, and system topology 
information would lead to infeasibility from IPS. This is for‐
mulated as a classification problem (the label is 0 if infeasi‐
ble, otherwise 1). By running the IPS to generate data under 
various conditions including topology changes (one random 
transmission line is tripped), 140000 data samples are adopt‐
ed as a training dataset. Figure 16 shows the DNN structure 
and its training process. Another 115357 data records are 
generated as the testing dataset, and the classification accura‐
cy for the testing dataset reaches 98.6%, which demonstrates 
the effectiveness of the proposed design. This ancillary 
“alarm” function can be combined with the well-trained 
DRL agent. If it detects that the current system status is fea‐
sible, it will then adopt the well-trained DRL agent to pro‐
vide the near-optimal solutions; otherwise, it will send an 
alarm to the system operators.

V. DISCUSSION ON FULL N - 1 CONTINGENCIES ON 
TOPOLOGY CHANGES 

We choose three representative operating conditions from 
Fig. 12 and apply the full N - 1 contingencies on topology 

changes, respectively.
1) Peak time at 18:02, where the load is around 1.19 p.u. 

and wind power output is around 0.63 p.u..
2) Off-peak time at 03:11, where the load is around 0.66 p.

u. and wind power output is around 0.52 p.u..
3) Time at 12:38, where the wind power output is at the 

relatively low level with 0.045 p. u. output and the load is 
around 0.85 p.u..

The corresponding results are shown in Fig. 17, where the 
horizontal axis represents the index of the tripped transmis‐
sion line. From Fig. 17, the well-trained agent can provide 
the near-optimal adjustments of the generator set points com‐
pared with the results coming from the IPS. As for the spe‐
cific infeasible scenarios, the IPS cannot provide feasible so‐
lutions under these topology conditions; thus, the results are 
manually set as -2% for infeasible conditions. From Fig. 17, 
the well-trained agent could successfully mimic the AC OPF 
solver results. Therefore, if the solver can successfully solve 
the full N - 1 contingencies on topology changes, and is ad‐
opted in the training, the well-trained agent should also be 
capable of mimicking the solver results. However, due to the 
large number of post-contingency states and the non-convexi‐
ty of the AC power flow equations, the power system opera‐
tors are still adopting the DC OPF scheme due to its convex‐
ity and computational benefits [30], and thus, it is still very 
challenging for the AC OPF solver to achieve full N - 1 secu‐
rity.

VI. CONCLUSION 

This paper proposes a novel framework of deriving fast 
AC OPF solutions for real-time applications using deep rein‐
forcement learning. Case studies are based on the Illinois 
200-bus system, and real-time data from CAISO is also ad‐
opted. The testing results demonstrate that after the offline 

Conv_1

+ReLU

Filter size:

4×4×1×8 4×4×1×16 4×4×1×32

Conv_2

+ReLU

Filter size:

Conv_3

+ReLU

Filter size:

3 hidden layers with

ReLU activation fuction:

(1024, 1024, 512)
Input

Alarm

Classification

labels

Output layer + 

softmax

(activation)

Flattening

CNN layers

Feasible

Infeasible

[Pd, Qd, |Ydiag|,�Ydiag]4×nB

(a)

(b)

0 100 200 300 400 500 600

No. of epochs

20

40

60

80

100

A
cc

u
ra

cy
 (

%
)

Fig. 16.　Training process for feasibility classification of AC OPF problem. 
(a) DNN structure. (b) Accuracy of training process.
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DRL training, the near-optimal AC OPF solutions can be ac‐
complished with at least 14 times speedup compared with 
the interior-point method. Moreover, the well-trained DRL 
agent is robust to achieve near-optimal status to deal with 
the uncertainties of RES and topology changes, which pro‐
vides great potential for the operation and control of modern 
power system with high penetration of renewable energy. Al‐
though only the outage of one random transmission line is 
included as the uncertainty regarding the topology change 
scenarios, it could be expanded to the outages of multiple 
transmission lines with higher computation burden. Further‐
more, an efficient and robust classifier, which serves as an 
independent “alarm” function, is designed to help system op‐
erators identify the feasibility of the AC OPF problem under 
the present conditions of loading, RES outputs, and topology.

Future work includes further improvements on the AI 
agent to gain higher accuracy, application of GPU for pro‐
cess parallelization and better speedup, and test of the pro‐
posed approach on larger power systems. Besides, the con‐
straint of the ramping rate limits for the generators will be 
considered for solving the multi-period AC OPF problem. 
On the other hand, as the results from the solver are applied 
for the initialization process of the agent and IPS in this pa‐
per only considers pre-contingency states, it requires further 
investigation to guarantee the security when considering full 
N - 1 contingencies for solving the AC OPF problem.
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