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Abstract——Accurate transient stability assessment (TSA) and 
effective preventive control are important for the stable opera‐
tion of power systems. With the superiorities in precision and 
efficiency, data-driven methods are widely used in TSA nowa‐
days. Data-driven TSA model can be adopted in the stability 
constraints of preventive control optimization, but existing 
methods are mostly iteration-based ones, which may result in 
low efficiency, sometimes even non-convergence. In this paper, 
an analytical representation method of data-driven transient sta‐
bility constraint is proposed based on a non-parametric regres‐
sion model built for TSA. Key feature extraction and dominant 
sample selection are proposed to reduce the scale of the TSA 
model, and bi-level linearization is applied to further modify it. 
Optimal preventive control model is then formulated as a 
mixed-integer linear program (MILP) problem with the linear‐
ized analytical data-driven transient stability constraint, which 
can be solved without iterations. An overall procedure of data-
driven TSA and preventive control is finally developed. Case 
studies show that the proposed method has high accuracy in 
TSA and can achieve effective preventive control of power sys‐
tem with high efficiency.

Index Terms——Data-driven, critical clearing time, transient 
stability constraint, non-parametric regression, optimal preven‐
tive control.

I. INTRODUCTION 

TRANSIENT stability assessment (TSA) is a critical 
means to monitor the operation of modern power sys‐

tem [1], which can determine the stability and stability mar‐
gin of the pre-fault system in case of a specific contingency 
[2]. Many transient stability indices (TSIs) can be used to 

quantify the transient stability margin, and the critical clear‐
ing time (CCT) is one of the most commonly used TSIs [3]. 
When the TSI of a power system obtained by TSA exceeds 
the preset stability range, the system is identified as unsta‐
ble. At this time, preventive control is necessary for power 
system to maintain stable operation [4]- [6]. Preventive con‐
trol generally refers to adjusting the steady-state operation 
point of the pre-fault power system through efficient calcula‐
tion, so that the system can withstand the occurrence of the 
specific contingency [7].

The preventive control of transient stability is usually real‐
ized by solving the transient stability constrained-optimal 
power flow (TSC-OPF) [8]. By adding the stability con‐
straints to the optimal power flow model, preventive control 
can achieve the coordination between economics and stabili‐
ty requirements of power system [9]. However, the high non-
linearity of power system transient stability makes the calcu‐
lation of TSC-OPF difficult in two aspects [10]: ① how to 
construct the transient stability constraints that need to be 
added to the conventional OPF model; ② how to solve the 
optimization problem with these transient stability con‐
straints.

The conventional methods for TSC-OPF can be classified 
as dynamic optimization methods, simplification-based meth‐
ods, and meta-heuristics methods according to [7], [11].

Simultaneous discretization [12], constraint transcription 
[13], and multiple shooting [14] are three widely-used dy‐
namic optimization methods for solving TSC-OPF problems. 
As for simultaneous discretization, [15] and [16] discretize 
all the differential equations in the transient stability con‐
straints to non-linear algebraic equations. With gradient cal‐
culation using trajectory sensitivities [17], constraint tran‐
scription methods can decouple the optimization algorithms 
and simulation tools [18]. Multiple shooting is introduced to 
solve TSC-OPF problems as it is a hybridization of simulta‐
neous discretization and constraint transcription [19]. Howev‐
er, once the system scale increases, these three kinds of dy‐
namic optimization methods will face high computational 
burden and thus lose their efficiency and practicability.

The simplification-based methods introduce the direct 
TSA methods such as single machine equivalent to the TSC-
OPF problems [20]. These methods may face convergence is‐
sues during the TSC-OPF iterations and suffer from inconsis‐
tent solution in practical use [11].
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The meta-heuristics methods are problem-independent, 
and their applications for solving TSC-OPF include the parti‐
cle swarm optimization (PSO) algorithm [21], non-dominat‐
ed sorting genetic algorithm II (NSGA-II) [22], genetic algo‐
rithm [23] and so on. These algorithms often require a con‐
siderable number of iterations and cannot guarantee the opti‐
mality and applicability of results.

Comparing with the aforementioned conventional preven‐
tive transient stability control methods, data-driven methods 
have clear superiority in accuracy and efficiency, and thus 
have been applied in power system stability in recent years 
[24]. A basic idea of using data-driven methods for preven‐
tive control is to build a data-driven TSA model first, then 
construct the transient stability constraints based on it, and 
solve the TSC-OPF model including the data-driven tran‐
sient stability constraints.

There are many data-driven methods such as artificial neu‐
ral network (ANN) [25], support vector machine (SVM) 
[26], decision tree [27], K-nearest neighbor [28], and deep 
learning [29], [30] have been applied to implement TSA in 
the power system. Lots of research has shown that data-driv‐
en methods can achieve fast and accurate TSA, which leads 
to its rapid development.

When the TSA result shows that the power system is tran‐
sient unstable, the preventive control is essential. However, 
there are few researches on how to implement preventive 
control if the stability constraint is composed of a data-driv‐
en TSA model and a preset stability threshold [7]. The exist‐
ing preventive control methods proposed in relevant research 
are mostly iteration-based, which can be classified into four 
schemes.

1) The iterative sensitivity method [31]-[34]. The sensitivi‐
ties of the TSI to the control variables (usually the outputs 
of generators) are calculated by the information provided by 
the data-driven or linearized TSA model. Then, according to 
the value of the corresponding sensitivity sorted from large 
to small, the control variables are iteratively adjusted until 
the system is stable.

2) The iterative gradient method [35]. The gradient de‐
scent method is one of the most fundamental iterative optimi‐
zation methods for unconstrained optimization problem. 
When it is used in preventive control, the stability con‐
straints directly formed by the data-driven TSA model and 
other constraints all need to be put into the loss function.

3) The iterative probability method. Bayesian optimiza‐
tion, which uses the pattern with the highest probability in 
each iteration, is adopted to solve the preventive control 
problem in [36]. Probability is also estimated in each itera‐
tion in [37]. Reference [38] finds the nearest secure pattern 
in each iteration to test if power flow is converged, which al‐
so can be classified into iterative probability method.

4) The intelligent optimization method [39]. Stochastic 
search algorithms based on biological intelligence or physi‐
cal phenomena, which are called intelligent optimization 
methods, have also been used to solve preventive control 
strategy.

However, these data-driven control methods have limita‐
tions in four aspects: ① the convergence of the optimization 

algorithms in these methods cannot be guaranteed, and the 
obtained solution may not be optimal [40]; ② when there 
are too many constraints in the optimal control model, it is 
difficult to design the iterative algorithm flowchart; ③ most 
of the intelligent optimization algorithms in these methods 
lack the support of mathematical theory; ④ the searching 
rates of these methods are usually slow, which leads to low 
efficiency [41].

The source of these limitations mainly lies in the lack of 
transparency in the existing data-driven models, which 
makes it difficult to summarize the analytical expression of 
data-driven stability constraints. Without analytical expres‐
sion, the stability-constrained preventive control model can‐
not be directly solved by frequently-used optimization solv‐
ers, and the mechanism of stability constraints is hard to ana‐
lyze. If the analytical derivation of the data-driven stability 
constraints is realized, it will not only lay the foundation for 
the unified solution of the preventive control optimization 
model, but also provide the possibility to analyze the mecha‐
nism of the preventive control model. Therefore, the analyti‐
cal representation method of data-driven transient stability 
constraint and its application in preventive control are pro‐
posed in this paper.

The premise of realizing the analytical representation of 
stability constraints is to choose the appropriate data-driven 
TSA method. The data-driven methods generally fall into 
two categories [42]: parametric regression and non-paramet‐
ric regression. The general form of non-parametric model is 
a regression expression of the labels of all training samples. 
Compared with parametric model, non-parametric model is 
easier to analyze the influence of each training sample on 
the final result [43]. Therefore, this paper adopts non-para‐
metric regression to construct the TSA model, and then mod‐
ifies it to form the analytical representation of data-driven 
transient stability constraints according to the requirements 
of preventive control, so as to realize the efficient solution 
of the preventive control optimization model.

The main contributions of this paper are as follows.
1) The analytical representation of data-driven transient 

stability constraint is first proposed based on a non-paramet‐
ric regression based TSA model. Key feature extraction and 
dominant sample selection are proposed to reduce the scale 
of the analytical stability constraints. The data-driven tran‐
sient stability constraint is linearized as a mixed-integer lin‐
ear program (MILP) problem.

2) An optimal preventive control (OPC) model based on 
the proposed analytical stability constraints is innovatively 
built and efficiently solved. The hot-start linear power flow 
equations [44] are adopted as the power flow equality con‐
straint.

3) A novel procedure of data-driven TSA and OPC is pre‐
sented. The solution of the OPC problem can be obtained by 
solving a programming problem without iterations.

The rest of the paper is organized as follows. Section II in‐
troduces the formulation of data-driven OPC and the necessi‐
ty of analytic processing. In Section III, the analytical repre‐
sentation of transient stability constraint is proposed, in 
which the construction and modifications of TSA model are 
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elaborated. In Section IV, the procedure of data-driven TSA 
and OPC is illustrated. In Section V, case studies are present‐
ed to validate the effectiveness of the proposed method. The 
conclusion and the future work are drawn in Section VI.

II. FORMULATION OF DATA-DRIVEN OPC 

A. Data-driven TSA

The construction of data-driven TSA model is the founda‐
tion of data-driven preventive control. For a power system 
with fixed network topology, its transient stability can be de‐
termined by the contingency and the pre-fault power flow, 
and therefore the mapping can be expressed as:

ì
í
î

S = fΔ( )p

ΔÎB
(1)

where S is the selected TSI; p is the pre-fault power flow; 
and Δ represents the contingency, which is generally consid‐
ered from a specific set B. Equation (1) also indicates that 
the mapping fΔ( × ) between p and S is different under differ‐
ent contingencies.

With massive simulation data accumulated from practical 
TSA, various machine-learning algorithms can be applied to 
train the mapping (1), and the data-driven TSA model is 
thus obtained.

B. OPC Model

For transient stability, the mathematical nature of preven‐
tive control is the TSC-OPF problem [7]. Combined with the 
data-driven TSA model, the TSC-OPF model can be de‐
scribed in a concise form by:

min C ( xu) (2)

s.t.

gs( xu) = 0 (3)

h-
s £ hs( xu) £ h+

s (4)

S = fΔ( p) ÎK (5)

where u is a set of control variables, including the active 
power and voltage magnitude square of the generator bus, 
and the voltage angle and voltage magnitude square of the 
swing bus; x is a set of dependent variables, including the 
active and reactive power of the swing bus, the voltage an‐
gle and reactive power of the generator bus, and the voltage 
angle and voltage magnitude square of the load bus; C ( xu) 
is the objective function; gs( xu) is the set of equality con‐
straints, which usually contains the nodal power balance 
equations and the power flow equations in a specific opera‐
tion scenario; hs( xu) is the set of inequality constraints, 
which represents the limits of the control variables and the 
power system operation state; and K is the preset stability re‐
quirement. A simplified expression of the data-driven tran‐
sient stability constraints is shown as (5), in which S = fΔ( p) 
is the explicit data-driven expression of TSI.
1)　Objective Function

The goal of preventive control is to minimize the regula‐
tion of generator while adjusting the power system to tran‐

sient stability. As the transient stability of the system is guar‐
anteed in the form of constraints, the objective function of 
the control model is to minimize the regulation of generator 
output relative to the initial operation mode.

min C ( xu) =∑
g

(PGg -P 0
Gg )2

(6)

where PGg is the active power output of generator g in the 
current operation scenario; and P 0

Gg is the output of genera‐
tor g in the original operation scenario.
2)　Steady-state Equality Constraints

The steady-state equality constraints (3) consist of nodal 
power balance constraint and power flow equality constraint. 
Considering the reactive power injection of grounded capaci‐
tors, the nodal power balance constraint is expressed as:

∑
gÎGi

PGg -PL i = ∑
(ij)ÎKi

Pij +V 2
i∑

j = 1

N

gij    iÎ SN (7)

∑
gÎGi

QGg -QLi = ∑
(ij)ÎKi

Qij +V 2
i∑

j = 1

N

(-bij )+Qsc

i
    iÎ SN (8)

where SN is the collection of total buses; PGg and QGg are 
the active and reactive outputs of the generator g, respective‐
ly; PLi and QLi are the active and reactive loads of bus i, re‐
spectively; Pij and Qij are the active and reactive power 
flows of line ( ij ), respectively; gij and bij are the conduc‐

tance and susceptance of line ( ij ), respectively; Qsc

i
 is the re‐

active power injection of grounded capacitor i; Vi is the volt‐
age amplitude of bus i; Gi is the set of generators connected 
to bus i; and Ki is the set of lines connected to bus i.

The power flow equality constraint is generally formulat‐
ed as:

Pij = gij (V
2

i -ViVj cos θ ij )- bijViVj sin θ ij (9)

Qij =-bij (V
2

i -ViVj cos θ ij )- gijViVj sin θ ij (10)

where Vj is the voltage amplitude of bus j; and θ ij is the 
phase angle difference between bus i and bus j. Since this 
constraint is non-linear, the method in [44] is adopted to lin‐
earize it so as to obtain an analytical expression which can 
help to realize the efficient solution of the OPC model. The 
specific linearized expression will be introduced in Section 
IV-A.
3)　Steady-state Inequality Constraints

The upper and lower limits of voltage square, active pow‐
er, and reactive power of generators typically constitute the 
steady-state inequality constraints (4) as given by:

(V min
i ) 2

£V 2
i £ (V max

i ) 2
    iÎ SN (11)

P min
gi £Pgi £P max

gi     iÎ SG (12)

Qmin
gi £Qgi £Qmax

gi     iÎ SG (13)

where SG is the collection of generator buses; superscripts 
max and min represent the maximum and minimum values 
of the corresponding variable, respectively; and Pgi and Qgi 
are the active and reactive power outputs of generator i, re‐
spectively.
4)　Data-driven Transient Stability Constraint

The traditional transient stability constraint in power sys‐
tem is expressed by differential-algebraic equations, which 
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are often solved by time-domain simulation method, only at 
the cost of long calculation time.

The data-driven transient stability constraints proposed in 
this paper can be expressed as a whole in (5) and further di‐
vided into the following two formulas:

S = fΔ( p) (14)

S * = f *
Δ ( p) ÎK (15)

These two formulas show that the construction of tran‐
sient stability constraints needs to go through two steps: ① 
the expression (14) of the selected TSI S is obtained by a 
non-parametric regression method; ② the trained TSA mod‐
el (14) is modified to obtain the approximate expression S * =
f *
Δ ( p) of TSI in (15) according to the requirement of preven‐

tive control. The stability range K is set for the final stability 
index S *. The expression (15) obtained finally is the analyti‐
cal representation of transient stability constraint therefrom.

C. Significance of Analytical Representation

Instead of the traditional transient stability constraints, the 
analytical transient stability constraints can avoid the repeat‐
ed calculation of time-domain simulation in the process of 
solving the OPC problem, thus greatly saving calculation 
time. In addition, the estimation accuracy of data-driven 
TSA model can be guaranteed with sufficient training data. 
Therefore, as long as the method of modifying the TSA mod‐
el to the stability constraints is reasonable and effective, the 
analytical transient stability constraints can also maintain 
high accuracy.

The acquisition of a concise and accurate analytical stabili‐
ty constraint enables the general optimizer to solve the pre‐
ventive control problem directly, which greatly improves the 
efficiency of optimization. Meanwhile, since the transient sta‐
bility constraint ultimately exists in a definite expression, 
other constraints do not need to be satisfied by iteration.

III. ANALYTICAL REPRESENTATION OF TRANSIENT 
STABILITY CONSTRAINT 

There are two key points to obtain the analytical expres‐
sion of transient stability constraint: ① select an appropriate 
data-driven method to build the TSA model as shown in 
(14); and ② make reasonable and effective modifications to 
obtain a refined and accurate analytical expression of TSI as 
in (15).

A. Data-driven TSA Model Based on Kernel Regression

Since the non-parametric regressions do not presuppose 
the mathematic form of function, they have better perfor‐
mance than the parametric methods in complex problems 
such as TSA. The kernel regression, one of the most popular 
non-parametric methods, can identify the similarity between 
the labeled data and the data to be estimated by the inner 
product in the kernel function, and then determine the contri‐
bution of each training sample in the final estimation result. 
The obtained kernel regression has clear physical signifi‐
cance and explicit expression, which lays a foundation for 
its analytical representation in preventive control.

In this paper, CCT is taken as the TSI, and the MD-kernel 

regression method proposed in [42], [45] which combines 
the Nadaraya-Watson kernel regression and the Mahalanobis 
distance, is adopted to construct the TSA model. The target 
of this method is to determine the mapping as:

ŷCCT( )X = fΔ( X ) (16)

where ŷCCT( )X  is the estimated CCT value with the pre-fault 
power flow X.

Since the Mahalanobis distance can consider the correla‐
tion among different dimensions of variables, the MD-kernel 
regression model proposed in [42] is constructed by adopt‐
ing the Mahalanobis distance to replace the Euclidean dis‐
tance in the conventional Nadaraya-Watson kernel regression 
function.

The specific expression of the Mahalanobis distance is:

DM( x ix ) = ( )x i - x
T
M ( )x i - x (17)

where M is the Mahalanobis distance metric matrix; and 
DM( x ix ) is the dissimilarity between two input scenarios x i 
and x when applied in TSA [42].

The MD-kernel regression constructed by DM( x ix ) can 
be expressed as:

κMD( )x ix = exp ( )-
γ
2

D2
M( )x ix (18)

where γ is a smoothing parameter.
By substituting (18) into the general Nadaraya-Watson ker‐

nel regression function, the final expression of transient sta‐
bility estimator based on MD-kernel regression is obtained 
as:

ŷCCT( X ) =
∑
i = 1

N train

κMD( )X train
i X Y train

i

∑
i = 1

N train

κMD( )X train
i X

=∑
i = 1

N train

μ iY
train

i (19)

μ i =
exp ( )-

γ
2

D2
M( )X train

i X

∑
i = 1

N train

exp ( )-
γ
2

D2
M( )X train

i X
(20)

where N train is the total number of training samples; X train
i  is 

the input vector of the ith training sample; Y train
i  is the CCT 

of the ith training sample; X is the input vector of the sample 
to be estimated; and μ i is the weighting coefficient of the 
CCT value of the ith training sample on estimated result 
ŷCCT( X ).

The core issue of obtaining the final expression (19) is to 
determine the distance DM( X train

i X ), that is to find the opti‐
mal M in (17). Inspired by [42], the objective function of 
the optimization model to obtain M can be summarized as:

min l ( )M = g ( )M + h ( )M (21)

g ( M ) =∑
i = 1

N train

é

ë

ê

ê

ê

ê
êê
ê

ê

ê

ê ∑
j = 1j ¹ i

N train

κMD( )X train
i X train

j y train
CCTj

∑
j = 1j ¹ i

N train

κMD( )X train
i X train

j

- y train
CCTi

ù

û

ú

ú

ú

ú
úú
ú

ú

ú

ú
2

(22)

h ( M ) = α M
2

(23)
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where g ( M ) is the leave-one-out error of stability estima‐
tion; h ( M ) is the regularization terms of the elements in M; 
y train

CCTi and y train
CCTj are the CCT values of the ith and j th training 

samples, respectively; and α is the amplification coefficient, 
which is set to be 10-8. The optimization problem shown in 
(21)-(23) can be solved by the leave-one-out method and the 
gradient descent algorithm [42].

B. Complexity of Kernel Regression Model

After the data-driven CCT estimator is trained, the thresh‐
old of CCT value can be set to define the transient stability 
constraint, which is added to the preventive control model to 
make the transient stability of power system meet certain sta‐
bility margin. Therefore, the transient stability constraint can 
be preliminarily expressed as:

ŷCCT( X ) =
∑
i = 1

N train

exp ( )-
γ
2

D2
M( )X train

i X Y train
i

∑
i = 1

N train

exp ( )-
γ
2

D2
M( )X train

i X
³ y thre (24)

where y thre is a preset stability threshold.
However, the TSA model constructed by data-driven meth‐

od is non-linear and has certain complexity. If this model is 
directly inserted into the OPC model as a constraint, it is dif‐
ficult to achieve the integrated solution. Meanwhile, differ‐
ent from the input variables of the TSA model, the variables 
are divided into control variables and dependent variables in 
preventive control. Therefore, only after a series of modifica‐
tions to the trained TSA model in accordance with the re‐
quirements of preventive control, the analytical transient sta‐
bility constraint can be finally obtained and added into the 
preventive model.

The complexity and non-linearity of the TSA model main‐
ly come from the exp(·) function and the square of Mahalano‐
bis distance D2

M( )X train
i X  in the MD-kernel regression given 

by (18), in which the concrete expression of D2
M( )X train

i X  
can be obtained by expanding and deducing (17):

D2
M( )X train

i X =∑
p = 1

k

mpp( xp ) 2
+ 2∑

p ¹ q

mpq xp xq -∑
p = 1

k

C p
ai x

p +Cbi

 (25)

C p
ai =∑

v = 1

k

( )mpv +mvp xv
traini (26)

C p
bi =∑

p = 1

k ( )∑
v = 1

k

mvp xv
traini xp

traini (27)

where mpq is the element at row p and column q in the ma‐
trix M; mpv is the element at row p and column v in the ma‐
trix M; mvp is the element at row v and column p in the ma‐
trix M; mpp is the pth diagonal element in M; xp and xq are 
the pth and qth features of the input vector X, respectively; 
xp

traini is the pth feature of the ith sample in the training set; 
xv

traini is the vth feature of the ith sample in the training set; 
C p

ai is the coefficient of the term xp; and C p
bi is the constant 

term. Formula (25) represents the power flow distance be‐
tween the ith sample in the training set and the j th sample in 
the testing set. It can be observed from (25) that the power 

flow distance between a testing sample and any training sam‐
ple is the sum of the square terms, cross multiplication 
terms, linear terms, and constant terms of the input power 
flow X under this training sample.

Further analysis shows that:
1) The coefficients of the square terms and the cross mul‐

tiplication terms in the distance expression are only related 
to elements of matrix M, while the linear and constant terms 
are related to both the elements of M and the training sam‐
ple.

2) Since the square term and cross multiplication term in 
D2

M( )X train
i X  exist in both the numerator and denominator of 

the CCT estimator given by (25), they can be crossed out at 
the same time, therefore their values actually have no effect 
on the estimation result ŷCCT.

3) The existence of the square terms and cross multiplica‐
tion terms makes the distance meet the range requirement as 
DM( X train

i X ) ³ 0. If the square terms and cross multiplica‐
tion terms are deleted, the remaining part will not meet the 
definition of distance and it is difficult to determine its 
range for linearization. Therefore, they are retained in the 
modification process of preventive control.

Since the variables in the TSA model involve data from 
two dimensions of input features and training samples, the 
stability constraints directly constituted by the trained TSA 
model without modification will have high complexity and 
the compute scale of the OPC problem will be very large. 
Taking the IEEE 10-machine 39-bus (10M39B) system as an 
example, assuming that 300 variables are selected as input 
features, the element amount of matrix M obtained after 
training can reach 90000, and the number of training sam‐
ples usually needs to be more than 10000. Therefore, the 
specific formula of the TSA model is actually very complex 
and such a large-scale optimization model of preventive con‐
trol with other constraints cannot be solved directly.

In order to solve the aforementioned complexity problem, 
the TSA model needs to go through the processes of key fea‐
ture extraction and dominant sample selection to form a re‐
fined expression of transient stability constraints. The ob‐
tained expression needs to be further linearized as explained 
in Section III-E to be applied to the preventive control mod‐
el as the final transient stability constraints.

C. Key Feature Extraction

It is found that the absolute values of most elements in 
matrix M are close to 0 [46], which makes it possible to re‐
alize feature extraction.

In essence, the calculation of the Mahalanobis distance is 
to rotate and stretch the two vectors x and x i involved in the 
distance formula (17) successively. Since the property of dis‐
tance requires DM( X train

i X ) ³ 0, it is necessary to ensure 
that matrix M is positive semidefinite and symmetric.

When the absolute values of some elements in M are 
close to 0, the corresponding terms in (25) are also approxi‐
mately equal to 0. Therefore, in the presence of elements 
with absolute values significantly greater than 0, the deletion 
of terms about 0 has little effect on the value of distance the‐
oretically.
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In addition, the value of the coefficient γ in the MD-ker‐
nel regression given by (18) is mostly tens or even hundreds 
obtained by training, which enlarges the value of each term 
in distance D2

M( )X train
i X . The exp(·) function will also en‐

large the value of the MD-kernel regression. The double am‐
plification of coefficient γ and exp(·) function makes the ab‐
solute value difference of the elements in M be magnified 
by several orders of magnitude. Therefore, the accuracy of 
the stability estimation results will not be significantly re‐
duced by simplifying the elements of M theoretically.

According to (25), since the features related to the undelet‐
ed elements are retained in the final stability constraint, the 
deletion of elements in matrix M can actually realize the ex‐
traction of key features. The way to realize the element se‐
lection of matrix M is to set the threshold of absolute value 
m thre, which needs to be determined by balancing the require‐
ments of estimation accuracy and the amounts of key fea‐
tures reserved.

The specific process of key feature extraction can be di‐
vided into five steps.

Step 1: define the initial threshold m thre as 1/2 of the maxi‐
mum absolute value of elements in matrix M, i. e., m thre =
max ( )|| M 2.

Step 2: set the elements in matrix M with absolute value 
less than m thre to be 0, and thus get the final distance metric 
matrix Mfea.

Step 3: use Mfea to calculate the predicted CCT value of 
each sample in the testing set, and obtain the average predic‐
tion accuracy Pfea of the testing set when Mfea is adopted.

Step 4: compare Pfea with the initial average accuracy P0 
of the testing set when using the matrix M for CCT predic‐
tion, and calculate the accuracy loss DP =P0 -Pfea. If DP £
0.05%, the matrix Mfea at this time is the final distance met‐
ric matrix which can meet the requirement of key feature ex‐
traction. Otherwise, if DP > 0.05%, set Mfea = Mfea 2 and re‐
turn to Step 2.

Step 5: for the final distance metric matrix Mfea, from i = 1 
to i =Nfea, judge whether the elements on the ith row and ith 
column are all 0. If so, it means that the feature X i corre‐
sponding to the serial number i is redundant and needs to be 
removed from the initial feature set X. After filtering, the re‐
maining features constitute the key feature set Xkey.

In the feature extracting process, the features which are 
treated as control variables in preventive control should be 
retained as much as possible to preserve the influence of 
those control variables on the stability assessment result. In 
this paper, the active power outputs of all generators are re‐
tained in the transient stability constraint after the feature ex‐
traction based on threshold m thre. Therefore, the modified dis‐
tance metric matrix Mfea is finally obtained.

D. Dominant Sample Selection

After feature extraction with element screening of matrix 
M as the main means, the complexity problem from input 
features of the stability assessment model is solved to a cer‐
tain extent. However, the solution of estimated CCT also 
needs the weighted sum of CCT values of all the training 
samples, which makes the model still have high complexity. 

Therefore, dominant sample selection is also an important 
modification for the trained CCT estimator to construct the 
transient stability constraints.

The basic idea of the TSA model based on the MD-kernel 
regression is to obtain the estimation result by using the sam‐
ples most similar to the scenario to be estimated. The closer 
the power flow distance between the training sample and the 
scenario to be estimated, the higher the similarity between 
them, and the higher the weight of the CCT value of this 
training sample in the estimation model. Moreover, due to 
the double amplification effect of the coefficient - γ 2 and 
the exp(·) function in (18), the weights of training samples 
with different similarity degrees to the scenario to be estimat‐
ed are quite different. Since the essence of the distance term 
D2

M is to measure the degree of similarity, the set of training 
samples that really determine the estimation result is the 
training samples with the smallest distance from the scenario 
to be estimated, which can be called as the dominant sam‐
ples of stability assessment.

Inspired by the above analysis, it is noticed that seeking 
the dominant samples of preventive control is the key to con‐
struct the stability constraint. The process of preventive con‐
trol is: given an initial power flow scenario X0, a new opera‐
tion scenario Xstable is obtained by changing the control vari‐
ables Xu in X0, so as to meet the requirements of transient 
stability margin and other operation constraints. Meanwhile, 
the dependent variables Xd in the initial scenario X0 will 
change along with the changes of Xu, so only part of fea‐
tures Xc in X0 remains unchanged before and after control. 
Since the change of load is generally not considered in the 
preventive control, Xc often refers to the active and reactive 
power consumptions of each load in the power system. 
Therefore, the load distances between the initial operation 
scenario and all training samples can be calculated, and the 
dominant samples for control can be obtained by selecting 
specified number of training samples with the smallest load 
distances.

Based on the above analysis, the specific procedure of the 
dominant sample selection method proposed in this paper 
contains the following four steps.

Step 1: define the features except Xc in the input features 
of all the training samples as the values of corresponding 
features in the initial power flow scenario X0, which means 
only the loads of all training samples are different from the 
initial power flow scenario X0, and the modified training set 
X TRAIN

mo  composed of the changed training samples is thus ob‐
tained. Calculate the load distance D2

M (imo0) between each sam‐

ple in X TRAIN
mo  and the initial scenario X0, and select N load sam‐

ples with the smallest distance to constitute the dominant 
sample set X TRAIN

1 .
Step 2: calculate the power flow distance D2

M (i0) between 
each sample in the original training sample set X TRAIN and 
the initial scenario X0, and select Nadd samples with the small‐
est distance to constitute the dominant sample set X TRAIN

2 .
Step 3: select N thre training samples whose CCT value is 

close to the threshold y thre to form the dominant sample 
set X TRAIN

3 .
Step 4: take the union set of the three sample sets X TRAIN

1 , 
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X TRAIN
2  and X TRAIN

3  to get the final dominant sample set 
X TRAIN

selected which contains Nsel training samples.
Therefore, tens of thousands of training samples in the 

TSA model can be reduced to any number of samples in the 
transient stability constraints of preventive control model ac‐
cording to the requirements of solving efficiency and estima‐
tion accuracy, so as to simplify the model scale of preven‐
tive control and eliminate the complexity problem caused by 
the large-scale training sample set.

E. Bi-level Linearization

After key feature extraction and dominant sample selec‐
tion, the expression of stability constraint is obtained as:

D2
M( X train

i X ) = ( X -X train
i ) Mfea( X -X train

i ) T
(28)

κMD( X train
i X ) = exp ( - γ

2
D2

M( X train
i X ) ) (29)

ŷCCT( X ) =
∑
i = 1

Nsel

κMD( )X train
i X y train

i

∑
i = 1

Nsel

κMD( )X train
i X

³ y thre (30)

With the non-linear term D2
M and the exp(·) function in the 

constraint, it is impossible to solve the OPC model directly. 
Therefore, the linearization method is adopted to obtain the 
final solvable transient stability constraints. Since the terms 
in D2

M and the exp(·) function are nested in the MD-kernel re‐
gression as in (29), the linearization process is called bi-lev‐
el linearization.

For the square terms and cross multiplication terms in the 
inner expression D2

M given by (25), the linearization method 
around the initial operation point is adopted:

( xp ) 2
= 2xp

0 xp - ( xp
0 ) 2

(31)

xp xq = xp
0 xq + xq

0 xp - xp
0 xq

0 (32)

where xp
0 and xq

0 are the pth and qth features of the original op‐
eration scenario X0, respectively.

For the outer exp(·) function, the piecewise linearization 
method is adopted as:

Di =∑
l = 1

Lexp

α l
i( )-

D
l

i - -D
l

i
+∑

l = 1

Lexp

-D
l

i
β l

i    "iÎNsel (33)

Zi =∑
l = 1

Lexp

α l
i( )-

Z
l

i - -Z
l

i
+∑

l = 1

Lexp

-Z
l

i
β l

i    "iÎNsel (34)

ì

í

î

ï
ïï
ï

ï
ïï
ï

-
Z

l

i = exp ( )-
γ
2
-
D

l

i

-Z
l

i
= exp ( )-

γ
2 -D

l

i

    "lÎ LexpiÎNsel (35)

α l
i £ β l

i    "lÎ LexpiÎNsel (36)

∑
l = 1

Lexp

β l
i = 1    "iÎNsel (37)

where Di represents the D2
M( X train

i X ) from the initial scenar‐
io to the ith training sample; Zi represents the corresponding 

linearized MD-kernel regression; 
-
D

l

i and -D
l

i
 are the upper 

and lower limits of the l th segment of Di, respectively; 
-
Z

l

i 
and -Z

l

i
 are the linearized MD-kernel regression Zi corre‐

sponding to 
-
D

l

i and -D
l

i
, respectively; Lexp is the number of 

linearized segments; and α l
i and β l

i are two related variables 
introduced in the l th segment of Di for linearization, in which 
α l

i is a continuous variable with a value ranging from 0 to 1 
and β l

i is a binary variable. The constraints (36) and (37) can 
guarantee that the values of Di and Zi can only be located in 
a single position within a certain segment.

Therefrom, the linearization of all non-linear terms is real‐
ized. By passing through the above three links of modifica‐
tions, the final transient stability constraint can be concluded 
as the combination of (28), (31)-(38).

∑
i = 1

Nsel

Zi y
train
i ³ y thre∑

i = 1

Nsel

Zi (38)

Formula (38) is the linearized version of the stability con‐
straint corresponding to (30) and the set of these final stabili‐
ty constraints is the detailed form of (15).

IV. PROCEDURE OF DATA-DRIVEN TSA AND OPC 

In order to realize the direct solution of the OPC problem, 
it is also necessary to linearize the general power flow equal‐
ity constraints shown as (9) and (10). This paper adopts the 
hot-start linear power flow equations proposed in [44] to sup‐
plant the general power flow equality constraints, which will 
lead to the change of some input variables in TSA model 
and the corresponding variables in preventive control.

After obtaining the linear analytical expression of tran‐
sient stability constraints and power flow equality con‐
straints, the overall procedure of data-driven TSA and OPC 
can be summarized for practical application.

A. Hot-start Linear Power Flow Equations

The non-linearity of the power flow equations leads to the 
non-convex of OPC problem, making the convergence or the 
global optimality not be guaranteed by the existing algo‐
rithms. The hot-start linear form of power flow equations 
proposed in [44] is introduced into the OPC model to re‐
move the non-linear terms of power flow equations while 
the precision loss is small enough.

Through a series of variable transformations proposed in 
[44], the hot-start linear power flow equations can be ex‐
pressed as:

Pij = gijV
2

i - g P
ij

V 2
i +V 2

j

2
- bP

ij (θ ij - θ ij0 )+ g P
ij

V s
ijL

2
(39)

Qij =-bijV
2

i + bQ
ij

V 2
i +V 2

j

2
- g Q

ij (θ ij - θ ij0 )- bQ
ij

V s
ijL

2
(40)

V s
ijL = 2

Vi0 -Vj0

Vi0 +Vj0
(V 2

i -V 2
j ) -V 2

ij0 (41)

g P
ij = ( )gijc

0
ij + bij s

0
ij + ( )gijc

1
ij + bij s

1
ij θ ij0 = gij cos θ ij0 + bij sin θ ij0

  (42)
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bP
ij = ( )gijc

1
ij + bij s

1
ij Vi0Vj0 (43)

bQ
ij = ( )-gij s

0
ij + bijc

0
ij - ( )gij s

1
ij - bijc

1
ij θ ij0 =

-gij sin θ ij0 + bij cos θ ij0 (44)

g Q
ij = ( )gij s

1
ij - bijc

1
ij Vi0Vj0 (45)

ì
í
î

ïï
ïï

s1
ij = cos θij0

s0
ij = sin θij0 - θij0cos θij0

(46)

ì
í
î

ïï
ïï

c1
ij =-sin θij0

c0
ij0 = cos θij0 + θij0sin θij0

(47)

where θ ij0, Vi0, and Vj0 are the initial values of the variables 
θ ij, Vi, and Vj, respectively.

The formulas (39) and (40) are the final power flow equal‐
ity constraints adopted in the OPC model proposed in this 
paper. Since it can be regarded as a linear equation only 
when the square of voltage amplitude V 2 is regarded as an 
independent variable, all the voltage amplitudes V in the 
OPC model including the transient stability constraints 
should be replaced by V 2 to ensure the consistency of vari‐
ables.

B. Variables of TSA Model and OPC Model

Since the transient stability constraints in the OPC model 
are composed of the modified data-driven TSA model, the in‐
put variables of TSA model should be consistent with the 
OPC model. Therefore, the input variables of the data-driven 
TSA model, which are actually the variables in the pre-fault 
power flow vector X of the mapping (16), are listed in Ta‐
ble I.

Compared with the variables listed in [42], there are two 
differences in the variables describing pre-fault power flow.

1) In order to meet the requirements of the hot-start linear 
power flow equality constraints introduced in Section IV-A, 
the square of voltage amplitude V 2

a  and phase angle θa are 
taken as variables of each bus.

2) Since the capacitive charging power Qca of each AC 
line or each transformer is proportional to V 2

a  of the corre‐
sponding bus, the variable Qca is not included in the input 
feature set so as to avoid the collinearity problem of the da‐
ta-driven model.

The selected variables are finally normalized to the range 

[-11] through the method employed in [42].
It should be noted that the variable space composed of 

control variables and dependent variables in the OPC model 
is different from that of input variables in the TSA model. 
There is an intersection between the two variable spaces. 
Specifically, the load related variables PL a and QL a are con‐
stant in the preventive control model. And there maybe also 
some variables in the control model that are not considered 
in the TSA model, most of which are the redundant features 
eliminated in the feature extraction process of data-driven 
method.

C. Overall Procedure

The overall procedure of the proposed data-driven TSA 
and OPC can be illustrated as Fig. 1. The two green dashed 
boxes in this figure represent the construction processes of 
the data-driven transient stability constraint and the low non-
linearity power flow equality constraint, respectively.

The central issue of this procedure is the construction of 
the OPC model, in which the analytical representation of da‐
ta-driven transient stability constraint is the most crucial. Be‐
fore that, a data-driven TSA model based on the non-para‐
metric regression is built and well-trained to determine the 
transient stability of power system. After that, considering 
the requirements of preventive control, the trained TSA mod‐
el is processed successively by key feature extraction, domi‐
nant sample selection, and bi-level linearization. The explicit 
expression of data-driven transient stability constraints is 
thus obtained.

In addition, the AC power flow equations are considered 
in the OPC model. In order to facilitate the efficient and uni‐
fied solving of this model, a hot-start linear power flow mod‐
el proposed in [44] is obtained by the linearization of the 
AC power flow equations and applied to the OPC model as 
the low non-linearity power flow equality constraint.

Therefore, the proposed OPC model is transformed into a 
MILP problem which can be solved without iteration, thus 
avoiding the non-convergence problem of the traditional iter‐
ative methods. And a higher quality solution is obtained by 
comprehensively considering the global constraints.

TABLE I
VARIABLES IN PRE-FAULT POWER FLOW VECTOR

Element type

Bus

AC line (including 
transformer)

Generator

Load

Variable

V 2
a , θa

Pab Qab

PG a QG a

PL a QL a

Description

Square of voltage amplitude and phase 
angle of bus a

Active and reactive power injected from 
bus a through line Lab

Active and reactive power generations 
of the generator connected to bus a

Active and reactive power consumptions 
of the load connected to bus a

Data-driven TSA model

based on non-parametric

regression

Key feature

extraction

Dominant

sample

selection

Data-driven

transient stability

constraint

AC power flow equations

Low non-linearity

power flow

equality constraint

Linearization

Objective function

Constraints

Uniformly

solving

Preventive control

strategy

OPC model

Bi-level

linearization

Other steady state

constraints

Fig. 1.　Overall procedure of data-driven TSA and OPC.
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V. CASE STUDY 

The validity of the proposed data-driven TSA and OPC is 
tested and verified in the IEEE 10M39B system and IEEE 
300-bus system. The PSASP 7.40, an integrated power sys‐
tem simulation tool, is applied to build the simulation mod‐
els of the two systems and calculate the CCT value of differ‐
ent samples. The static parameters of two simulation systems 
are set referring to the models in MATPOWER 6.0 [47], and 
the dynamic parameters are taken from the real power sys‐
tem. All the simulations and calculations in this paper are 
conducted on an 8-core workstation, each with a 3.50 GHz 
CPU (Intel Xeon CPU E5-2637). The solver for MD-kernel 
regression training is Python 3.7 and the solver for optimal 
control of power system is CPLEX 12.4. The result analysis 
of IEEE 10M39B system will be introduced in the following 
three subsections and the results of IEEE 300-bus system 
will be presented in Section V-D.

A. Effect Analysis of One Single Case

The IEEE 10M39B system is constructed of 10 power 
units, 34 transmission lines, 12 transformers, and 21 loads. A 
case to be controlled with CCT value of 0.2719 in initial op‐
eration scenario is used to explain the effect of the proposed 
method in detail and more cases will be shown in Section 
V-B.
1)　Data-driven TSA

In this paper, a sample is an operation scenario of the sys‐
tem labelled with the CCT value of a given fault. As shown 
in Table I, each sample has 8 kinds of features as the inputs 
and the CCT value as the output. After feature processing, 
298 features are selected as the inputs of the data-driven 
TSA model. The generated 12400 samples are randomly di‐
vided into a training set consisting of 10000 samples and a 
testing set consisting of 2400 samples. The mean accuracy 
rate (MAR) of the testing set is 98.74%, which is defined as:

MAR =
1

N test
∑
n = 1

Ntest ( )1 -
|

|

|
||
||

|

|
||
| ŷCCTn - yCCTn

yCCTn

´ 100% (48)

where ŷCCTn and yCCTn are the estimation of CCT and the ac‐
tual value of CCT, respectively; and N test is the total number 
of testing samples.

The accuracy of most cases in the testing set is higher 
than 96%, which indicates that the non-parametric regression 
model has high accuracy in TSA. And the estimation results 
can meet the requirement of conservatism in the power sys‐
tem according to [42].
2)　Key Feature Extraction

Table II shows the accuracy of the proposed key feature 
extraction. It can be observed that the MAR of the testing 
set is still quite high even with only a few key features. The 
MAR of the testing set can reach 98.69%, only 0.05% lower 
than the MAR with full features, if 1297 elements of 88804 
elements in the matrix M are extracted. Therefore, 197 re‐
dundant features are eliminated. The proposed key feature 
extraction can significantly reduce the scale of the problem 
while maintaining the high accuracy.

3)　Dominant Sample Selection
There are 10000 samples in the training set. The weight‐

ing coefficients of the CCT values of the training samples 
on the estimated CCT value of the initial case in the data-
driven TSA model are shown in Fig. 2, in which the training 
samples are sorted by the Mahalanobis distance between 
each training sample and the case to be controlled from 
small to large.

The weighting coefficients in Fig. 2 are actually the pa‐
rameter μ i in (19) and (20). The closer the weighting coeffi‐
cient is to 1, the greater the influence of the corresponding 
training sample on the estimated CCT value. On the con‐
trary, when the weight is close to 0, the influence of the cor‐
responding training sample on the estimated CCT value is 
negligible. Therefore, it can be observed from Fig. 2 that 
most of the training samples have little impact on the esti‐
mated result. Only a few samples with small Mahalanobis 
distance and large weighting coefficients have significant im‐
pact on the estimated result.

In the dominant sample selection process, 80% of the se‐
lected training samples have the smallest load distance from 
the case to be controlled and 20% of the selected samples 

TABLE II
ACCURACY OF KEY FEATURE EXTRACTION

Threshold of 
absolute value of 

elements in M

0.052700

0.026300

0.013200

0.006600

0.003300

0.001600

0.000820

0.000410

0.000206

Number of 
remaining 

elements in M

10

34

92

205

409

639

889

1110

1297

MAR of testing 
set (%)

88.01

90.51

93.25

95.15

97.58

98.39

98.47

98.51

98.69

MAR with full 
features (%)

98.74
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Fig. 2.　Weighting coefficients of training samples in TSA model with dif‐
ferent Mahalanobis distances.
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have the smallest power flow distance from the case to be 
controlled. The estimation accuracy of the data-driven TSA 
model with different numbers of retained training samples 
that are sorted by the distance from small to large is shown 
in Fig. 3, in which the dominant samples are a part of train‐
ing samples with the smallest Mahalanobis distance from the 
case to be controlled.

It can be observed that the proposed dominant sample se‐
lection method has little loss of accuracy. Besides, abandon‐
ing the ineffective training samples can even improve the es‐
timation accuracy of the initial operation point. Based on the 
analysis, only 50 samples are selected as dominant samples 
in the final model, which can already meet the accuracy re‐
quirement.
4)　OPC Strategy

In the proposed OPC model, the MD-kernel function is 
linearized into 5 segments, which is shown as Fig. 4.

Each segment corresponds to a binary variable. If the 
dominant sample selection is not adopted, there will be 
50000 binary variables in the model, which makes the scale 
of the problem too large to be solved efficiently. After the 
dominant sample selection, only 50 samples remain, which 
significantly reduce the number of binary variables to 250 
and thus greatly reduce the scale of the problem.

The CCT results after the preventive control are shown in 
Table III. CCT control targets are set separately. It can be ob‐

served that all the CCT control targets can be achieved with 
the proposed OPC model. The CCT value of time-domain 
simulation after control is also higher than the preset thresh‐
old of CCT value and is very close to the estimated CCT 
value, which indicates that the proposed OPC model can re‐
alize integrated optimization and control of the power sys‐
tem.

After control, the sample with the smallest Mahalanobis 
distance to the case to be controlled in the entire training set 
is already within the selected 50 samples obtained from the 
dominant sample selection process, which indicates that the 
proposed dominant sample selection method can select the 
appropriate samples.

The computation time of the proposed OPC model is dif‐
ferent with various threshold settings, which is mainly deter‐
mined by the density of dominant samples near the thresh‐
old. In general, the proposed OPC model is of high computa‐
tional efficiency compared with other existing control meth‐
ods and can be applied to large-scale power system.

B. Different Operation Conditions

Various operation conditions to be controlled with differ‐
ent CCT values are further tested with the proposed OPC 
model, and the results are shown in Table IV.

It can be observed that the proposed model is effective 
and efficient under different operation conditions. In fact, 
dozens of initial operation conditions with different CCT val‐
ues have been tested, and the results fully demonstrate the 
robustness of the proposed OPC model.

Furthermore, as for the case with initial CCT value of 
0.2531, the CCT values under different settings of the data-
driven stability constraints after preventive control are ana‐
lyzed as shown in Table V. In Table V, the difference be‐
tween ④ and ③ is the error caused by the bi-linearization 
process, which is about 0.76%; the difference between ⑤ 

TABLE III
CCT RESULTS AFTER CONTROL

Threshold of 
CCT value

0.30

0.35

0.40

0.42

Estimated CCT 
value of proposed 

OPC model

0.3109

0.3596

0.4048

0.4249

CCT value of time-
domain simulation 

after control

0.3218

0.3625

0.4125

0.4344

Computation 
time (s)

2.06

9.20

4.63

2.52

TABLE IV
CONTROL EFFECT UNDER DIFFERENT OPERATION CONDITIONS

CCT of initial 
operation 
condition

0.1938

0.2125

0.2531

0.3219

Threshold 
of CCT 

value

0.4500

0.4500

0.4500

0.4500

Estimated 
CCT value 
of proposed 
OPC model

0.4560

0.4597

0.4659

0.4511

CCT value of 
time-domain 
simulation 
after control

0.4641

0.4615

0.4734

0.4547

Computation 
time (s)

47.22

37.93

13.16
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Fig. 4.　Piecewise linearization of MD-kernel regression function.
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and ⑦ is the error caused by the dominant sample selection 
process, which is about 1.64%; the difference between ⑥ 
and ⑦ is the error caused by the key feature extraction pro‐
cess, which is about 0.96%. It can be observed that the er‐
rors in each step during the construction of the data-driven 
OPC model are relatively small. These kinds of errors are al‐
so calculated in sufficient cases, and the results show that 
these errors are acceptable.

Considering the conservatism of the control results, the to‐
tal error of the control results is negative, i.e., the real CCT 
value of the operation scenario after control needs to be 
greater or equal to the estimated value obtained by the pro‐
posed OPC model. In the TSA process, the data-driven TSA 
method based on kernel regression can obtain the estimation 
results under the required degree of conservatism [42], so as 
to control the direction of estimation error. And in the OPC 
process, the conservatism can be improved by properly add‐
ing the training samples with lower CCT value into the dom‐
inant sample set. The control of the error will be introduced 
in the further research.

C. Comparison with Classical Method

The comparison with a classical method is necessary to il‐
lustrate the control performance. The most common classical 
method is to iteratively solve the operation condition that 
meets the stability requirements. Generally, the intelligent op‐
timization algorithm is used to search the feasible point, and 
the stability judgment needs to call time-domain simulation 
repeatedly. Therefore, as a typical classical method, the com‐
bination of PSO algorithm and time-domain simulation [48] 
is used to solve the preventive control problem, and the re‐
sults are compared with the proposed method.

The fitness function in the PSO algorithm is constructed 
by the regulation of generator output and the stability con‐
straint in the form of penalty function, which can be ex‐
pressed as:

ffit =w1∑
i

|| PGi -P 0
Gi -w2( yCCT - y thre ) (49)

where yCCT is the CCT value of the current operation condi‐
tion calculated by time-domain simulation; and w1 and w2 
are the penalty coefficients of generator output regulation 

and stability constraint, respectively. The position vector of 
particle i is constructed by the output of each generator, 
which can be represented as X i =[PG1PG2PGNgen

]. The di‐

mension, size, iterations, and the maximum speed of particle 
are set to be 10, 20, 1000, and 0.5, respectively.

The same operation condition with CCT value of 0.2531 
in Table IV is selected as the comparative case, and the re‐
sults are shown as Table VI. To ensure the consistency, the 
time-domain simulation is implemented by calling the 
PSASP 7.40 in the iterative process.

From the control results shown in Table VI, it can be ob‐
served that the CCT value of the proposed method is slight‐
ly higher than that of the classical method, mainly due to 
the consideration of conservatism in the proposed method. 
Moreover, although the total output regulation of the pro‐
posed method is slightly higher than the classical method, 
the calculation time of the former is much shorter than that 
of the latter. These results show that the control effect of the 
proposed method is not inferior to that of the classical meth‐
od, and can greatly improve the computational efficiency.

D. Preventive Control in Larger System

The proposed method is further verified in the IEEE 300-
bus system, which consists of 69 generators, 206 loads, and 
411 transmission lines. The initial pre-fault power flow vec‐
tor obtained from PSASP contains 3616 variables. After data 
preprocessing and feature selection [49], 2535 variables are 
retained as the inputs of the data-driven TSA model. The 
training set and testing set of a given contingency contain 
32000 and 8000 samples, respectively. The MAR of the test‐
ing set in IEEE 300-bus system is 97.16%.

After passing through the key feature extraction process, 
352 key features are extracted, which have a greater impact 
on the CCT value and thus the control effects caused by 
them are more obvious.

The control effects of three initial operation conditions 
with different thresholds in the IEEE 300-bus system are 
shown in Table VII, which indicates that the proposed meth‐
od is applicable to the stability assessment and preventive 
control of a larger power system, and further demonstrates 
its application prospects in the actual power grid. For each 
operation conditions to be controlled, 100 dominant samples 
are selected. Note that the effective application of the pro‐
posed method in actual system is based on the sufficient re‐
serve of training samples and the construction of TSA model 
with high prediction accuracy, which should be realized be‐
fore the implementation of preventive control process.

TABLE V
ERRORS OF EACH STEP IN CONTROL PROCESS

Item

CCT value under initial operation condition

Threshold of CCT value

CCT value after control obtained by 
analytical stability constraint

CCT value after control (dominant sample 
set, modified matrix Mfea)

CCT value after control (dominant sample 
set, initial matrix M)

CCT value after control (full sample set, 
modified matrix Mfea)

CCT value after control (full sample set, 
initial matrix M)

CCT value

0.2531

0.4500

0.4500

0.4534

0.4585

0.4616

0.4659

Serial number

①
②
③
④
⑤
⑥
⑦

TABLE VI
CONTROL RESULTS OF DIFFERENT METHODS

Method

Proposed 
method

Classical 
method

Estimated 
CCT value 
of proposed 
OPC model

0.4659

CCT value of 
time-domain 
simulation 
after control

0.4734

0.4673

Absolute value 
of total 

regulation

14.4980

13.4702

Computation 
time (s)

13.16

1228.00
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It is worth noting that the computation time does not in‐
crease significantly with the increase of system scale. This is 
because the number of binary variables added by the linear‐
ization is the main factor that affects the computation time 
of the optimization model, and the process of dominant sam‐

ple selection can greatly decrease the number of binary vari‐
ables. Since the number of dominant samples is controllable, 
the computation efficiency is thus guaranteed, which is one 
of the most significant advantages compared with other 
methods.

VI. CONCLUSION 

An analytical representation method of data-driven tran‐
sient stability constraint in the OPC model is proposed in 
this paper. It is constructed from a TSA model based on non-
parametric regression. After the kernel regression model is 
built for TSA, key feature extraction and dominant sample 
selection are proposed, which can significantly reduce the 
scale of the problem while maintaining high accuracy of 
TSA. After linearizing the transient stability constraints and 
the AC power flow equality constraints, the optimal control 
problem is finally formulated as an MILP problem, which 
can be solved without iterations. Case studies in the IEEE 
10M39B system and IEEE 300-bus system show that the 
proposed method can greatly reduce the scale of the preven‐
tive control model while maintaining the key features of 
TSA, and the requirements of high accuracy and high effi‐
ciency are met at the same time. All the cases can meet the 
transient stability constraints after the preventive control, and 
the computation time indicates that the proposed method has 
broad application prospects.

It is worth noting that the proposed method is a general 
method to solve the optimal power flow problem with data-
driven dynamic security constraints. Future work will focus 
on the effectiveness of this method applied in actual sys‐
tems, changed topologies, and other stability problems.
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