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Abstract——Constraints on each node and line in power sys‐
tems generally have upper and lower bounds, denoted as two-
sided constraints. Most existing power system optimization
methods with the distributionally robust (DR) chance-con‐
strained program treat the two-sided DR chance constraint sep‐
arately, which is an inexact approximation. This letter derives
an equivalent reformulation for the generic two-sided DR
chance constraint under the interval moment based ambiguity
set, which does not require the exact moment information. The
derived reformulation is a second-order cone program (SOCP)
formulation and is then applied to the optimal power flow
(OPF) problem under uncertainty. Numerical results on several
IEEE systems demonstrate the effectiveness of the proposed
SOCP formulation and show the differences with other DR
chance-constrained OPF approaches.

Index Terms——Two-sided chance constraint, distributionally
robust, conic reformulation, interval moment, optimal power
flow.

I. INTRODUCTION

DISTRIBUTIONALLY robust (DR) chance-constrained
program is an efficient approach for decision-making in

uncertain environments [1] and has received much attention
in power system planning [2] and operations, especially for
optimal power flow (OPF) problems [3] - [5]. There exists a
major concern in most of existing works on DR chance-con‐
strained formulations. It is commonly known that buses and
transmission lines in power systems have both lower and up‐
per bounds. However, most works (e.g., [3], [4]) manage the
two-sided DR chance constraint separately, which is an inac‐
curate approximation and may cause unpredictable errors. To
make this issue clear, taking the line power flow limits as an
illustration, the line chance constraint is given as:

P(-p̄l £ pl £ p̄l )³ 1 - ε (1)

where pl and p̄l are the power flow across line l and its ca‐
pacity, respectively; ε is the allowable violation probability;
and P(×) is the probability function.

Let A1 and A2 denote the events of {pl £ p̄l } and {-p̄l £ pl },
respectively. The two-sided chance constraint (1) can be ex‐
pressed as:

P(A1A2 )³ 1 - ε (2)

In fact, the two-sided chance constraint (1) is a joint
chance constraint including two individual chance con‐
straints. The common choice treats (2) separately, i.e., using
two individual chance constraints given in (3) and (4) to ap‐
proximate (2).

P(A1 )=P(pl £ p̄l )³ 1 - ε (3)

P(A2 )=P(-p̄l £ pl )³ 1 - ε (4)

Obviously, P(A1A2 )<P(A1 )+P(A2 ), which indicates
that the common treatment mentioned above is an inexact ap‐
proximation. An inspiring published work [5] treats the low‐
er and upper bounds in the two-sided DR chance constraint
simultaneously in a single-period OPF problem and provides
an exact second-order cone program (SOCP) reformulation
under a specific moment-based ambiguity set. Later, the de‐
rived results in [5] are extended to a multi-period optimal
power-gas flow problem with two-sided DR chance con‐
straints for an electricity-gas coupled system [6]. In [5] and
[6], the moment-based ambiguity set describing the wind
power forecasting errors is built on the exact mean and cova‐
riance, and the setup of mean is zero. However, although the
mean and covariance could be generally estimated from the
available historical data, the exact moment information is
very difficult to determine in reality since the accuracy of
the estimation related to the quality and quantity of histori‐
cal data is unascertainable. Reference [4] considers an inex‐
act moment-based ambiguity set, in which the mean and co‐
variance are bounded by ellipsoid and semi-definite cone, to
deal with the uncertain moment information. Then, the sin‐
gle-sided DR chance constraint is reformulated as a semi-def‐
inite program while the computational complexity is signifi‐
cantly raised in contrast to the SOCP formulation under the
exact moment-based ambiguity set [4]. Based on the above
literature analysis, the key question herein is how to obtain a
tractable yet efficient reformulation for the generic two-sided
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DR chance constraint without the assumption of exact mo‐
ment information. This letter seeks to answer this question.
Compared with acquiring the exact mean and covariance
from historical data, their upper and lower bounds are rela‐
tively easier to obtain [7]. Inspired by this point, this letter
introduces an interval moment based ambiguity set to handle
the uncertain moment information and then derives a tracta‐
ble SOCP formulation for a generic two-sided DR chance
constraint. The derived result only relies on the historical da‐
ta of uncertainty for supporting the estimation of interval mo‐
ment information, which can be directly applied to power
system optimization problems involving two-sided DR
chance constraints.

II. CONVEX REFORMULATION OF TWO-SIDED DR CHANCE

CONSTRAINT

To tackle the issue of uncertain moment information, an
interval moment based ambiguity set P defined in (5) is in‐
troduced to characterize the random variable vector ξ.

P = {P: P(ξÎRK )= 1
EP (ξ)= μEP ((ξ - μ)(ξ - μ)T )=Σ

-
μ ≼ μ≼ μ̄-Σ ≼Σ≼ -

Σ} (5)

where the first line describes that ξ is constrained within a
support set RK, and K is the dimension of ξ; the second line
describes the moment information of ξ, and EP (ξ) is the ex‐
pectation function; and the third line suggests that the mean
μ and covariance Σ lie in a box region specified by upper
and lower bounds, and

-
(×) and

-
(×) denote the upper and lower

bounds, respectively.
In accordance with two-sided DR chance constraints in

power system optimization models, for ease of illustration, a
generic two-sided DR chance constraint is defined as:

inf
PÎP

Pξ( l(x)£ a(x)Tξ + b(x)£ u(x)) ³ 1 - ε (6)

where l(x), a(x), b(x), and u(x) are all affine mappings in x.
Theorem 1: supposing the ambiguity set is defined in (5),

the generic two-sided DR chance constraint (6) is equivalent
to the following SOCP:

min
yzλ1λ2λ3λ4

{y2 + a(x)T-Σ a(x)£ ε(T1 (x)- z)2 } (7)

s.t.
λ1 μ̄ - λ2-

μ + (b(x)- T2 (x))£ y + z (8)

λ3 μ̄ - λ4-
μ - (b(x)- T2 (x))£ y + z (9)

ì
í
î

a(x)= λ1 - λ2

-a(x)= λ3 - λ4

(10)

ì

í

î

ïïïï

ïïïï

0 £ z £ T1 (x)

y ³ 0

λ1λ2λ3λ4 ³ 0
(11)

Proof: see Appendix A.

III. CASE STUDY

A. Simulation Setup

Consider a power system where the sets of buses, lines,

generators, and wind farms are denoted as B, L, G, and W,
respectively. Each bus iÎB has load di. For each iÎW, the
uncertain wind power is modeled by pi + ξ i, where pi is the
forecasting value, and ξ i is the uncertain forecasting error.
To compensate for the total forecasting deviations of wind
power, each generator adjusts its output using the affine poli‐
cy similar to [4] - [6]. The actual generation output is mod‐
eled by gi - α i (e

Tξ), where gi is the generation output with‐
out consideration of forecasting deviations; the term
-α i (e

Tξ) represents the activated reserve of generator i for
uncertainty mitigation; α i is the participation factor; and e de‐
notes a vector of all ones. Following [5], a DR chance-con‐
strained OPF problem is formulated as:

min
ì
í
î

ü
ý
þ

∑
iÎG

c1i g 2
i + c2i gi + cR

i (r up
i + r dn

i ) (12)

∑
iÎG

gi +∑
iÎW

pi -∑
iÎB

di = 0 (13)

∑
iÎG
α i = 1 α i ³ 0 (14)

infPÎP P ( -g i
£ gi - α i (e

Tξ)£ ḡi ) ³ 1 - ε "iÎG (15)

infPÎP P ( - r dn
i £-α i (e

Tξ)£ r up
i ) ³ 1 - ε "iÎG (16)

infPÎP P(-pl £ΨGl (g - α(eTξ))+ΨWl (p + ξ)-ΨBld £ pl )³ 1 - ε

"lÎL (17)

The objective function (12) minimizes the total operation
cost including generation cost and reserve cost, where c1i

and c2i are the generation cost coefficients, and cR
i is the re‐

serve cost coefficient. Constraints (13) and (14) enforce pow‐
er balance without and with wind power forecasting errors,
respectively. Constraint (15) imposes the generation output
within its limits [

-
g

i
ḡi ]. Constraint (16) restricts the activat‐

ed reserve -α i (e
Tξ) by upward and downward reserve capaci‐

ties r up
i and r dn

i . Constraint (17) restricts the line power flow
within its capacity limit pl, where ΨGl, ΨWl, and ΨBl are
power transfer distribution factor vectors mapping genera‐
tors, wind farms, and loads to line l, respectively. Con‐
straints (15)-(17) are two-sided DR chance constraints. With
the derived result (7)-(11), problem (12)-(17) can be reformu‐
lated as an SOCP presented in Appendix B.

We test our approach on several IEEE systems whose data
are obtained from MATPOWER 3.1 [8]. The following three
methods are compared. ① M1: DR chance-constrained OPF
method in [4], which treats two-sided DR chance constraints
separately under the exact moment-based ambiguity set. ②
M2: DR chance-constrained OPF method in [5], which treats
two-sided DR chance constraints simultaneously under the
exact moment-based ambiguity set. ③ M3: the proposed DR
chance-constrained OPF method based on the derived result
(7) - (11) under the interval moment-based ambiguity set de‐
scribed in Section II. All the models are solved by Guro‐
bi 9.1.0.

To ensure the reproducibility of all case studies, we herein
consider a unified setup on IEEE test systems. We assume
that each generator bus connects a wind farm. The forecast‐
ing value of wind power is set to be 10% of the capacity of
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the local generator. For the moment-based ambiguity set in
M1 and M2, the mean is set to be 0 in consistent with that
in [5], and the covariance matrix is diagonal with the diago‐
nal element (i. e., variance) being 625. For the interval mo‐
ment-based ambiguity set in M3, the upper and lower
bounds of the mean are set to ±5 MW deviating from 0, and
the upper and lower bounds on the diagonal element of cova‐
riance matrix are set to deviate ±5% of that in M1 and M2.

B. Simulation Results

1) Reliability Comparisons Among M1, M2, and M3
We generate 50000 samples from uncertain wind power

forecasting errors obeying Gaussian distributions with mean
and covariance given above and check the joint violation
probability of solutions, which is defined as the percentage
of samples for which any chance constraint is violated. In
Fig. 1, the joint violation probability of solutions in M3 is
evidently less than those in M1 and M2 under all tested risk
parameters in the IEEE 39-bus system. Furthermore, with
the growth of risk parameter, joint violation probabilities in
M1 and M2 increase notably while that in M3 rises moder‐
ately. Even when the risk parameter is 0.3, the joint viola‐
tion probability in M3 is just 0.05. These observations show
that the proposed method (M3) holds a higher solution reli‐
ability and is robust to the risk parameter. As observed in
Fig. 2, the total operation costs provided in M1-M3 decrease
with the increase of the risk parameter. Therefore, the conser‐
vativeness of these methods can be adjusted by the risk pa‐
rameter. Another observation is that the total operation cost
in M3 is higher than those in M1 and M2, which indicates
that M3 is more conservative. This is because the ambiguity
set in M3 just uses the interval moment information while
those in M1 and M2 require the exact moment information.

2) Influence of Different Interval Sizes of Moments
The key feature of the proposed interval moment-based

ambiguity set is the inclusion of uncertain moments de‐
scribed by the interval. Hence, this part investigates the influ‐
ence of different interval sizes on the solutions in the IEEE
39-bus system. The interval sizes of mean and covariance in
M3 are enlarged gradually as follows: ① the upper and low‐
er bounds of the mean are set to ±αμ MW deviating from 0;② the upper and lower bounds of diagonal element of cova‐
riance are set to ±αΣ% deviating from those in M1 and M2,
where αμ and αΣ increase from 1 to 5 with step size 1. The
risk parameter is set to be 0.1 in these tests. The total opera‐
tion cost in M3 under different interval sizes is depicted in
Fig. 3. It is clear that the total operation cost increases when
the interval sizes expand. Besides, the interval size of mean
poses a higher impact on the total operation cost than that of
covariance. Therefore, in practice, system operators can ad‐
just the total operation cost by changing the interval sizes of
moments according to the obtained interval estimated from
the historical data.

3) Computation Time
This part compares the computation time of M1, M2, and

M3 by solving different MATPOWER cases, i. e., case9,
case24, case39, and case118 corresponding to IEEE 9-bus,
24-bus, 39-bus, and 118-bus systems, respectively, on a com‐
puter with Inter Core i5 2.5 GHz CPU and 24 GB memory.
As shown in Table I, all methods can be solved efficiently
within 30 s even for the large-scale IEEE 118-bus system
(case118). Another observation is that the computation time
of M3 is more than that of M1 and M2 since M3 requires at
most (4|L| + 8|G||)|W| more variables than M2 and (6|L| +
12|G||)|W| more than M1, but M3 still holds a decent compu‐
tational efficiency.
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Fig. 1. Joint violation probabilities in M1, M2, and M3 in IEEE 39-bus
system.
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Fig. 2. Total operation costs in M1, M2, and M3 in IEEE 39-bus system.
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Fig. 3. Total operation costs under different interval sizes of moments in
IEEE 39-bus system.

TABLE I
COMPUTATION TIME OF M1, M2, AND M3

Case

case9

case24

case39

case118

Data

|B |

9

24

39

118

|L |

9

38

46

186

|G |

3

33

10

54

|W |

3

33

10

54

Time (s)

M1

0.297

0.529

0.366

19.291

M2

0.453

0.798

0.351

13.719

M3

0.360

0.929

0.479

25.717
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IV. CONCLUSION

This letter derives a tractable SOCP formulation for the
generic two-sided DR chance constraint with interval mo‐
ment information and then applies this result to a DR
chance-constrained OPF problem. The derived formulation
does not rely on the assumption of exact moment informa‐
tion. Numerical results show that the proposed SOCP formu‐
lation can be solved efficiently and the obtained solutions
hold a higher reliability with a lower violation probability
and are more robust to the risk parameter compared with the
existing methods on two-sided DR chance constraints, i. e.,
the inexact approximation by two single-sided DR chance
constraints and the conic reformulation under the ambiguity
set built on exact moment information.

APPENDIX A

Proof: it is clear that (6) can be transformed to a generic
symmetrical two-sided DR chance constraint:

infPÎP Pξ (-T1 (x)£ a(x)Tξ + b(x)- T2 (x)£T1 (x))³ 1 - ε (A1)

where T1 (x)= (u(x)- l(x))/2; and T2 (x)= (u(x)+ l(x))/2.
Constraint (A1) can be then reformulated as:

sup
(μΣ)ÎU

infPÎP1

Pξ (-T1 (x)£ a(x)Tξ + b(x)- T2 (x)£T1 (x))³ 1 - ε (A2)

P1 ={P: P(ξÎRK )= 1EP (ξ)= μEP ((ξ - μ)(ξ - μ)T )=Σ}
(A3)

U = {(μΣ):
-
μ £ μ £ -

μ ; -Σ £Σ £ -
Σ} (A4)

Now in (A2), we first conduct the reformulation deriva‐
tion for the inner infimum problem under P1 and then outer
supremum problem under U.

Let ω = a(x)Tξ + b(x)- T2 (x), the inner infimum problem in
the left-hand side of (A2) is equivalent to infPÎP2

Pω (|ω| £ T1 (x)),

where P2 is expressed as:
P2 ={P: ℙ(ωÎR)= 1EP (ω)= a(x)Tμ + b(x)- T2 (x)

EP ((ω -EP (ω))(ω -EP (ω))T )= a(x)TΣa(x)} (A5)

The infPÎP2

Pω (|ω| £ T1 (x)) is equivalently unfolded as:

min
f (ω) ∫R IA (ω) f (ω)dω (A6)

s.t. ∫R f (ω)dω = 1 (A7)

∫Rωf (ω)dω = a(x)Tμ + b(x)- T2 (x) (A8)

∫Rω2 f (ω)dω = a(x)TΣa(x)+ (a(x)Tμ + b(x)- T2 (x))2 (A9)

where IA (ω) is an indicator function，which is 1 if ωÎAA =
{ω: |ω| £ T1 (x }) and 0 otherwise. By conic duality [5], prob‐
lem (A6)-(A9) can be reformulated as:

max
λγδ

{λ + (a(x)Tμ + b(x)- T2 (x))γ +

[a(x)TΣa(x)+ (a(x)Tμ + b(x)- T2 (x))2 ]δ} (A10)

s.t.

λ +ωγ +ω2δ £ 1 "ωÎR (A11)

λ +ωγ +ω2δ £ 0 "ω ³ T1 (x) (A12)

λ +ωγ +ω2δ £ 0 "ω £-T1 (x) (A13)

where λ, γ, and δ are the dual variables for constraints (A7) -
(A9). Note that the feasible region of (A10)-(A13) is nonempty
when δ£ 0 and |γ/(2β)|£T1 (x). Otherwise, sup

ω
(λ +ωγ +ω2δ)

holds and leads to EP (λ +ωγ +ω2δ)= λ + (a(x)Tμ + b(x)-
T2 (x))γ + (a(x)TΣa(x)+ (a(x)Tμ + b(x)- T2 (x))2 )δ £ 0， which
contradicts infPÎP2

Pω (|ω| £ T1 (x))³ 1 - ε > 0.

Owing to δ £ 0 and |γ/(2δ)| £ T1 (x), problem (A10)-(A13) is
equivalent to:

max
λγδ

{λ + (a(x)Tμ + b(x)- T2 (x))γ +

[a(x)TΣa(x)+ (a(x)Tμ + b(x)- T2 (x))2 ]δ} (A14)

s.t.
λ - γ2 /(4δ)£ 1 (A15)

λ + |T1 (x)|γ + T 2
1 (x)δ £ 0 δ £ 0 (A16)

It is clear that, to maximize the objective function in (A14),
the optimal γ must have the same sign as a(x)Tμ + b(x)- T2 (x).
Thus, infPÎP2

Pω (|ω| £ T1 (x))³ 1 - ε is equivalent to:

max
λγδ

{λ + |(a(x)Tμ + b(x)- T2 (x))||γ| +

(a(x)TΣa(x)+ (a(x)Tμ + b(x)- T2 (x))2 )δ}³ 1 - ε (A17)

s.t.
λ - γ2 /(4δ)£ 1 (A18)

λ + |T1 (x)|γ + T1 (x)2δ £ 0 δ £ 0 (A19)

Let θ =-1/δγ̂ =- |γ| δ λ̂ =-λ/δ, problem (A17) - (A19) is

equivalent to:

max
λ̂γ̂θ

{λ̂ + (a(x)Tμ + b(x)- T2 (x))|γ̂| - a(x)TΣa(x)-

(a(x)Tμ + b(x)- T2 (x))2 }³(1 - ε)θ (A20)

s.t.
λ̂ + γ̂2 /4 £ θ (A21)

λ̂ + |T1 (x)|γ̂ - T 2
1 (x)£ 0 γ̂ £ 0 (A22)

Using Fourier-Motzkin procedure to eliminate λ̂ and θ in
(A20)-(A22), we have:

ì
í
î

ïï

ïï

min
γ̂

{(|a(x)Tμ+b(x)-T2 (x)|- γ̂/2)2+a(x)TΣa(x)}£ε(T1 (x)- γ̂/2)2

s.t. γ̂³0
(A23)

Problem (A23) can be unfolded as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min
γ̂ {a(x)TΣa(x)-(|a(x)Tμ+b(x)-T2 (x)|- εT1 (x))γ̂+

1- ε
4

γ̂2+

}(a(x)Tμ+b(x) -T2 (x))2 £ εT1 (x)2

s.t. γ̂³0

(A24)

The optimal solution γ̂ in (A24) is distinguished by the fol‐
lowing two cases.

1) Case 1: if |a(x)Tμ + b(x)- T2 (x)| £ εT1 (x), then γ̂* = 0.
Problem (A24) can be reformulated as:
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(a(x)Tμ + b(x)- T2 (x))2 + a(x)TΣa(x)£ εT1 (x)2 (A25)

|a(x)Tμ + b(x)- T2 (x)| £ εT1 (x) (A26)

2) Case 2: if |a(x)Tμ + b(x)- T2 (x)| ³ εT1 (x), then γ̂* =
2(|a(x)Tμ + b(x)- T2 (x)| - εT1 (x))/(1 - ε). Problem (A24) can be
reformulated as:

1 - ε
ε

a(x)TΣa(x)£(T1 (x)- |a(x)Tμ + b(x)- T2 (x)|)2 (A27)

|a(x)Tμ + b(x)- T2 (x)| ³ εT1 (x) (A28)

It follows that X =X1X2, where X, X1, and X2 denote the
sets of x defined by (A23), (A25) and (A26), and (A27) and
(A28), respectively.

From optimizing γ̂ in the above two cases (Case 1 and Case
2), it can be observed that the optimal γ̂ in (A23) must be less
than |a(x)Tμ + b(x)- T2 (x)|. Otherwise, the derived formula‐
tion from (A23) will yield a smaller restriction on x. Let
z = γ̂/2, problem (A23) is thus equivalent to:

min
z

{(|a(x)Tμ + b(x)- T2 (x)| - z)2 + a(x)TΣa(x)}£ ε(T1 (x)- z)2

(A29)

s.t.
0 £ z £ |a(x)Tμ + b(x)- T2 (x)| (A30)

Now we claim that the problem described in (A29) and
(A30) is equivalent to:

min
zy

{y2 + a(x)TΣa(x)}£ ε(T1 (x)- z)2
(A31)

s.t.
|a(x)Tμ + b(x)- T2 (x)| £ y + z (A32)

ì
í
î

0 £ z £ T1 (x)

y ³ 0
(A33)

The claim is proven as below. Let X ′ denote the set of x de‐
fined by (A31)-(A33).

1) First, we show XÍX ′. Given xÎX, there exists a z such
that (xz) meets (A29) and (A30). Let y = |a(x)Tμ + b(x)-
T2 (x)| - z, it is clear that (xzy) satisfies (A31) - (A33). Thus,
xÎX ′, which implies XÍX ′.

2) Then, we show X ′ÍX. Given xÎX ′, there exists a (zy)
such that (xzy) meets (A31)-(A33). Two cases are discussed
as follows.
① If 0 £ z £ |a(x)Tμ + b(x) - T2 (x)| , then we have y ³

|a(x)Tμ +b(x) - T2 (x)| - z ³ 0. Together with (A31), we fur‐
ther have (|a(x)Tμ + b(x)- T2 (x)| - z)2 + a(x)TΣa(x)£ y2 +
a(x)TΣa(x)£ε(T1 (x)- z)2. Thus，(xz) meets (A29) and (A30),
which implies xÎX.
② If |a(x)Tμ + b(x)- T2 (x)| £ z £ T1 (x), together with (A31),

we have:
a(x)TΣa(x)£ y2 + a(x)TΣa(x)£ ε(T1 (x)- z)2 £

ε(T1 (x)- |a(x)Tμ + b(x)- T2 (x)|)2 (A34)

Now in (A34), we analyze the following two situations:
Situation 1: if |a(x)Tμ + b(x)- T2 (x)| £ z £ T1 (x), we have

a(x)TΣa(x)£ ε(T1 (x)- |a(x)Tμ + b(x)- T2 (x)|)2 £
εT1 (x)2 - (2 - ε)(a(x)Tμ + b(x)- T2 (x))2 £
εT1 (x)2 - (a(x)Tμ + b(x)- T2 (x))2 (A35)

where the first inequality holds due to (A34), the second in‐

equality holds due to |a(x)Tμ + b(x)- T2 (x)| £ εT1 (x), and the
third inequality holds due to εÎ(01). It follows that xÎX1ÌX.

Situation 2: if |a(x)Tμ+ b(x)-T2 (x)|³ εT1 (x), (A34) implies
that [(1- ε)/ε]a(x)TΣa(x)£(T1 (x)- |a(x)Tμ+ b(x)-T2 (x)|)2 since
(1 - ε)/ε £ 1/ε. Thus, it follows that xÎX2ÌX.

Summarizing the analysis in the above situations, we have
X ′ÍX. Thus X ′=X, i. e., the problem described in (A29) and
(A30) is equivalent to (A31)-(A33). The proof of the claim is
completed.

Recalling problem (A2), we know problem (A31)-(A33) un‐
der uncertainty set U and the robust counterpart in problem
(A2) can be reformulated as:

min
xyz { }y2 + max

Σ
a(x)TΣa(x) £ ε(T1 (x)- z)2

"Σ:-Σ ≼Σ≼ -
Σ Σ≽ 0 (A36)

s.t.
max

μ
{a(x)Tμ + b(x)- T2 (x)}£ y + z "μ:

-
μ £ μ £ μ̄ (A37)

max
μ

{-(a(x)Tμ + b(x)- T2 (x))}£ y + z "μ:
-
μ £ μ £ μ̄ (A38)

ì
í
î

0 £ z £ T1 (x)

y ³ 0
(A39)

Note that in (A36), since Σ≼ -
Σ, a(x)T (

-
Σ -Σ)a(x)³ 0 holds.

Thus, we have max
-Σ ≼Σ≼ -

Σ Σ≽ 0
a(x)TΣa(x)= a(x)T-Σ a(x). For the

max form in the left-hand side of (A37) and (A38) with re‐
spect to μ, their dual forms are as follows:

max
-Σ ≼Σ≼ -

Σ Σ≽ 0
a(x)TΣa(x)= a(x)T-Σ a(x), s. t. a(x)= λ1 - λ2; λ1, λ2 ³ 0,

and min
λ3 λ4

λ3

-
μ - λ4-

μ, s.t. -a(x)= λ3 - λ4; λ3, λ4 ³ 0. Thus, problem

(A36)-(A39) can be equivalently reformulated as:

min
yzλ1λ2λ3λ4

{y2 + a(x)T-Σ a(x)}£ ε(T1 (x)- z)2
(A40)

s.t.
λ1

-
μ - λ2-

μ + (b(x)- T2 (x))£ y + z (A41)

λ3

-
μ - λ4-

μ - (b(x)- T2 (x))£ y + z (A42)

ì
í
î

a(x)= λ1 - λ2

-a(x)= λ3 - λ4

(A43)

ì

í

î

ïïïï

ïïïï

0 £ z £ T1 (x)

y ³ 0

λ1λ2λ3λ4 ³ 0
(A44)

APPENDIX B

The SOCP reformulation of the DR chance-constrained
OPF problem (12)-(17) is presented as:

min
ì
í
î

ü
ý
þ

∑
iÎG

c1i g 2
i + c2i gi + cR

i (r up
i + r dn

i ) (B1)

∑
iÎG

gi +∑
iÎW

pi -∑
iÎB

di = 0 (B2)

∑
iÎG
α i = 1 α i ³ 0 (B3)
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y2
gi + (-α ie

T )T-Σ (-α ie
T )£ ε ( )ḡi - -

g
i

2
- zgi

2

"iÎG (B4)

λ1gi μ̄ - λ2gi-
μ + ( )gi -

ḡi + -
g

i

2
£ ygi + zgi "iÎG (B5)

λ3gi μ̄ - λ4gi-
μ - ( )gi -

ḡi + -
g

i

2
£ ygi + zgi "iÎG (B6)

-α ie
T = λ1gi - λ2gi "iÎG (B7)

-(-α ie
T )= λ3gi - λ4gi "iÎG (B8)

0 £ zgi £
ḡi - -

g
i

2
"iÎG (B9)

ì
í
î

ygi ³ 0

λ1giλ2giλ3giλ4gi ³ 0
"iÎG (B10)

y2
ri + (-α ie

T )T-Σ (-α ie
T )£ ε ( )r up

i + r dn
i

2
- zri

2

"iÎG (B11)

λ1ri μ̄ - λ2ri-
μ + ( )-

r up
i - r dn

i

2
£ yri + zri "iÎG (B12)

λ3ri μ̄ - λ4ri-
μ - ( )-

r up
i - r dn

i

2
£ yri + zri "iÎG (B13)

(-α ie
T )= λ1ri - λ2ri "iÎG (B14)

-(-α ie
T )= λ3ri - λ4ri "iÎG (B15)

0 £ zri £
r up

i + r dn
i

2
"iÎG (B16)

ì
í
î

yri ³ 0

λ1riλ2riλ3riλ4ri ³ 0
"iÎG (B17)

y2
li + (ΨGl (-αeT )+ΨWl )

T-Σ (ΨGl (-αeT )+ΨWl )£ ε(pl - zli )
2

"lÎL (B18)

λ1li μ̄ - λ2li-
μ + (ΨGl g +ΨPl p -ΨBld)£ yli + zli "lÎL (B19)

λ3li μ̄ - λ4li-
μ - (ΨGl g +ΨPl p -ΨBld)£ yli + zli "lÎL (B20)

(ΨGl (-αeT )+ΨWl )= λ1li - λ2li "lÎL (B21)

-(ΨGl (-αeT )+ΨWl )= λ3li - λ4li "lÎL (B22)

0 £ zli £ pl "lÎL (B23)

ì
í
î

yli ³ 0

λ1liλ2liλ3liλ4li ³ 0
"lÎL (B24)
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