
JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 4, July 2022

Generalized Energy Storage Allocation Strategies
for Load Aggregator in Hierarchical Electricity
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Abstract——The uncertainty of user-side resource response will
affect the response quality and economic benefit of load aggre‐
gator (LA). Therefore, this paper regards the flexible user-side
resources as a virtual energy storage (VES), and uses the tradi‐
tional narrow sense energy storage (NSES) to alleviate the un‐
certainty of VES. In order to further enhance the competitive
advantage of LA in electricity market transactions, the opera‐
tion mechanism of LA in day-ahead and real-time market is an‐
alyzed, respectively. Besides, truncated normal distribution is
used to simulate the response accuracy of VES, and the re‐
sponse model of NSES is constructed at the same time. Then,
the hierarchical market access index (HMAI) is introduced to
quantify the risk of LA being eliminated in the market competi‐
tion. Finally, combined with the priority response strategy of
VES and HMAI, the capacity allocation model of NSES is estab‐
lished. As the capacity model is nonlinear, Monte Carlo simula‐
tion and adaptive particle swarm optimization algorithm are
used to solve it. In order to verify the effectiveness of the mod‐
el, the data from PJM market in the United States is used for
testing. Simulation results show that the model established can
provide the effective NSES capacity allocation strategy for LA
to compensate the uncertainty of VES response, and the eco‐
nomic benefit of LA can be increased by 52.2% at its maxi‐
mum. Through the reasonable NSES capacity allocation, LA is
encouraged to improve its own resource level, thus forming a
virtuous circle of market competition.

Index Terms——Load aggregator, generalized energy storage,
narrow sense energy storage, capacity allocation strategy, ancil‐
lary service market.

I. INTRODUCTION

WITH the increase of renewable energy penetration,
the instantaneous dynamic balance of “production-

transmission-consumption” of traditional “rigid” power sys‐
tem is becoming more and more difficult [1]. Future power

systems have to be “flexible” enough to accommodate the
new normal of high-penetration renewable energy [2]. At the
same time, with the maturity of electricity market, the eco‐
nomic operation of power system is no longer only a prob‐
lem to be considered at generation side. User-side resources
that under the access conditions can also participate in elec‐
tricity market transactions [3]. With coordinated dispatching
between user side and generation side, source-load interac‐
tion can be achieved, and a “win-win” situation for the eco‐
nomic operation of power system can be achieved. To real‐
ize successful transformation of future power system and
steady progress of the electricity market reform, it is obvi‐
ous that the demand for user-side flexibility will further in‐
crease sharply.

Since user-side resources such as industrial, commercial,
residential and other resources are mostly scattered and the
controllable capacity of a single resource is uncertain, it will
inevitably be difficult for grid managers to directly incorpo‐
rate these resources into dispatch. In order to fully collect
and utilize these scattered small- and medium-sized resourc‐
es, a specialized demand response (DR) provider has
emerged in developed countries, i. e., load aggregator (LA).
As a new type of commercial organization, LA integrates us‐
er-side resources through technical and economic strategies
and introduces them into the electricity market. In this way,
small- and medium-sized resources can participate in DR
projects or bid in the electricity market, which stabilizes the
operation of the system and makes the market mechanism
more mature. According to different types of resources, LA
can be further divided into distributed power generation ag‐
gregator, electric vehicle (EV) aggregator, DR resource ag‐
gregator, intelligent housing aggregator, etc. The LA partici‐
pates in electricity market transactions by integrating and
controlling EVs, temperature control loads, and other flexi‐
ble user-side resources.

In this context, as an emerging electricity seller that aggre‐
gates a large number of flexible user-side resources, LA has
been developing rapidly [4]. The practical applications in
Australia and Europe show that LA plays a crucial role in
easing the peak power demand of power grid, slowing down
the expansion of transmission and distribution capacity, and
tapping the flexibility of user-side resources [5], [6]. Howev‐
er, user-side resources are characterized by various types,
scattered layouts, different sizes, and uncertainty, which con‐
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strain LA’s participation in commercial application of elec‐
tricity ancillary service market [7], [8]. Therefore, in the pro‐
cess of market improvement, how to efficiently manage and
control the user-side resources and rationally configure the
electric energy storage to deal with the uncertainty of LA re‐
sponse has become a research hotspot in recent years.

Current researches on LA mostly focus on operational con‐
trol and market competition strategies. Reference [9] pro‐
posed the implementation approaches to promote the com‐
mercialization model of LA from the perspective of integrat‐
ing user-side resources. The influence of the uncertainty of
the user-side resources on the bidding decision of LA was
studied in [10]. Reference [11] proposed an information gap
decision theory-based approach to avoid the charging and
discharging risk of EVs in default, which can provide pre-de‐
termined profit protection for aggregators. In [12], three
types of DR were considered to optimize the power and heat
consumption scheduling of customers, from which the cost
was reduced by 8.5%, the pollution emission was reduced
by 47.4%, and the customer satisfaction was raised to
79.3%. Through demand side management (DSM), [13] opti‐
mized the energy scheduling problem of residential intelli‐
gent distribution network, from which the operation cost can
be reduced by 30.15%, and the expected load loss can be re‐
duced by 64.25%. Reference [14] improved the economic
and technical indicators of smart independent microgrid oper‐
ation through demand transfer and demand reduction. In
[15], a new DSM strategy was proposed. By introducing us‐
er incentives into the smart microgrid, this strategy can re‐
duce operation costs by 21.22%, and increase users satisfac‐
tion and wind power penetration by 1.6% and 12.64%, re‐
spectively. Through the evaluation of the various strategies
of EV aggregators, the optimal strategy formulated in [16]
can reduce the total cost by 10.26%. Reference [17] estab‐
lished the Cournot model to reasonably price the DR. In
practice, due to the aggregation of a large-scale small- and
medium-sized user-side resources to participate in the elec‐
tricity market, the controllability and response accuracy of
LA were poor [18], [19], resulting in that the economic bene‐
fits were not obvious. In this paper, user-side flexible loads
with certain power regulation capabilities were collectively
referred to as virtual energy storage (VES). LA conducted
unified management and control of VES with the trading en‐
ergy structure. The process of LA stimulating users to adjust
their own power is called VES response.

In addition, traditional energy storage system such as bat‐
tery energy storage, flywheel energy storage, etc., is called
narrow sense energy storage (NSES). Because of its advan‐
tages in separating the generation and consumption of elec‐
tric energy from time and space dimensions, it has gradually
become one of the key supporting technologies for future
power systems. In recent years, scholars world-wide have
carried out relevant research on energy storage allocation of
grid side, new energy side, and user side. Reference [20] al‐
located grid-side NSES from the perspective of installation
subject. The goal of decision-making was to ensure the maxi‐
mum economic and environmental benefits. NSES on the
new energy side aimed to stabilize the randomness of renew‐

able energy and improve the schedulability on hourly time
scale [21], [22]. Starting from the user side, [23] summa‐
rized the commercialization mode of NSES applied to DR,
and provided new opportunities for the development of user-
side NSES. Although NSES had gradually become a new
way to ensure the participation of small- and medium-sized
users in electricity markets with its flexibility and strong con‐
trollability [24], previous researches show that in current sit‐
uations, due to the high investment and construction costs,
the static investment payback period (SIPP) of the user-side
NSES participating in DR can reach up to 10-20 years [25].
Therefore, this paper does not take NSES as the main means
of DR, but as a method to reduce the uncertainty of VES re‐
sponse. NSES was allocated on the user side and combined
with VES to form complementary advantages, so as to im‐
prove the response quality and benefits of LA. When the
VES response is insufficient, LA will dispatch NSES for dis‐
charging. When the VES response overflows, LA schedules
the NSES for charging.

To sum up, this paper proposes a generalized energy stor‐
age (GES) concept that combines VES and NSES from the
perspective of power system “load-storage”. As stated in
[26] and [27], GES can be defined as “all devices and mea‐
sures that can change the temporal and spatial characteristics
of electrical energy”. Specifically, it can act as a buffer be‐
tween power supply and demand, e. g., NSES, EV charging
and discharging management, multi-energy interconnection
system. In order to improve the response accuracy of GES, a
GES response strategy based on VES priority response is
proposed. On this basis, an optimal allocation model of
NESE based on hierarchical market access index (HMAI) is
established to maximize the economic benefits. Finally, the
income of LA with different compensation schemes is ana‐
lyzed, which provides a reference for compensation prices to
guide more LAs to participate in the electricity market. For
the sake of clarity, Table SI in Supplementary Material
shows the differences between this paper and the above-men‐
tioned research works.

The main contributions of this paper are as follows.
1) This paper analyzes the operating mechanism of LA in

both day-ahead and real-time markets. In day-ahead market,
according to the probability distribution of GES response,
the service contract is signed with independent system opera‐
tor (ISO). In real-time market, the response gap caused by
the uncertainty of VES response is compensated by NSES.

2) According to the response characteristics, truncated nor‐
mal distribution is used to simulate the response accuracy of
VES. And the response models of VES and NSES are estab‐
lished, respectively. On this basis, according to the strategy
of VES priority response, the operation strategy of LA is an‐
alyzed.

3) The HMAI is designed to measure the risk of LA being
eliminated when participating in market competition. In or‐
der to improve the market competitiveness of LA, an opti‐
mal capacity allocation model of NSES considering the
HMAI is established. Through the rational allocation of NS‐
ES, both the income and response quality of LA can be sig‐
nificantly improved.

The rest of this paper is organized as follows. Section II
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is the market analysis of LA considering GES. Section III
presents the model of VES and NSES response. In Section
IV, the analysis of LA scheduling strategy considering VES
response uncertainty is given. In Section V, an optimal ca‐
pacity allocation model of NSES for LA based on HMAI is
constructed. In Section VI, the numerical results based on
PJM market and the corresponding explanations are given.
Finally, Section VII gives the conclusions of this paper.

II. MARKET ANALYSIS OF LA CONSIDERING GES

A. Analysis of LA Based on Real-time Power Balancing

Based on the principle of real-time power balance [28],
the power system needs to maintain energy balance at each
time-space intersection, i. e., the state of each grid node in
each time period. This energy balance state can be divided
into instantaneous balance, short-term balance, and time bal‐
ance on long-term scale. Due to the storage characteristics of
energy storage, electrical energy can be transferred in differ‐
ent time periods. Coupled with the rise of mobile energy
storage such as EVs, electric energy can also be transmitted
at different nodes. In short, GES realizes the wide-area shar‐
ing of electric energy in both time and space dimensions.
And the intervention of GES transforms the real-time bal‐
ance of electric energy in the power system from the origi‐
nal point balance to the plane balance [29]. The point bal‐
ance here means that electric energy can neither be transmit‐
ted in neither the time dimension nor the spatial dimension.
The blue shaded area (S*) in Fig. 1 shows the wide-area
shared power of GES in both time and spatial dimensions.
In addition, GES spreads the cost of maintaining point bal‐
ance to the plane, greatly reducing the cost of power balance
and increasing the market revenue of LA.

B. Operation Mechanism of LA in Electricity Market

Dispatching GES through technical and economic means,
LA participates in transactions as the power supply, and
signs DR contracts with ISO. The main income of LA partic‐
ipating in services comes from policy subsidies for electrici‐
ty cost savings and DR, and NSES’s profit through peak-to-
valley arbitrage. With reference to the transaction process of
the PJM electricity market in the United States [30], the pro‐
cess of LA participating in the electricity market transactions
can be divided into two stages. As shown by the red dashed
line in Fig. 1, the electricity market can be divided into day-
ahead and real-time markets with “day” as the demarcation.

1) In the day-ahead market, LA forecasts the probability

distribution of “virtual electricity” that can be provided by
VES resources in the next day according to the historical da‐
ta. Combined with the response power provided by the NS‐
ES, the final response power of LA is reported to ISO. ISO
selects one or more qualified aggregators from several LAs
to sign the DR service contracts. The unified contract price
mode is adopted to clear the day-ahead market.

2) In the real-time market, LA dispatches GES to com‐
plete the DR contract signed in the day-ahead market, and
uses the contract price for clearing. If the actual response
power of LA reaches the contractual commitment level, LA
will be rewarded, including contract compensation and real-
time response compensation. Otherwise, if the actual re‐
sponse power of LA does not reach the committed level, the
real-time marginal price will be taken as the unit power pen‐
alty. The penalty price is a single form, i. e., the penalty
price for over-response and under-response is the same.

The above trading processes are shown in Fig. S1 in Sup‐
plementary Material. Since electricity consumption behav‐
iours of the users are simultaneously affected by multiple
factors such as subjective factors and real-time electricity
prices, the VES response is often uncertain and time-vary‐
ing. Therefore, for different response requirements at differ‐
ent time, the probability distribution of the actual response
of LA is different. In order to best satisfy the response de‐
mands at all time, the market should try to avoid using a uni‐
form incentive price for LA. Therefore, this paper divides
different response levels according to the stability of LA re‐
sponse, and formulates hierarchical electricity markets for
different response levels. Different hierarchical electricity
markets have different incentive prices. The hierarchical elec‐
tricity market can stimulate the competition among LAs,
thereby obtaining better response services for the power sys‐
tem.

III. MODEL OF VES AND NSES RESPONSE

A. Model of VES Response

The aggregation of VES resources of different scales by
LA is a complex behavior with many influencing factors, so
the response of VES has greater uncertainty [31]. In order to
facilitate the solution, the sequential operation theory is ap‐
plied to the uncertainty analysis of the VES response [32],
[33]. This paper assumes that different types of VES respons‐
es are independent each other. And the set of discretized
probability sequences of different types of VES responses in
the same time period is {At

1 (i), At
2 (i), , At

k (i)}, i = 12nk,
where At

k (i) is the sequence of the kth VES response during
the tth period, and nk is the length of the probability se‐
quence of the kth VES response. Then, the probability distri‐
bution Ot ( j) of the VES response during the tth period is the
volume sum of the discretized probability sequence of the
various VES resources during the period, which is calculated
as:

O t ( j)=At
1 (i)ÅAt

2 (i)ÅÅAt
k (i) i = 12nk  j =∑

k = 1

K

nk (1)

where Å is the volume sum in the theory of sequence opera‐
tions; and K is the number of types of VES responses.
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Fig. 1. Analysis of LA with GES based on real-time power balancing.
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Through the analysis of historical data, the uncertainty of
VES response follows normal distribution [34]. Since the
VES response has power, time, and continuity constraints
[27], truncated normal distribution is used to simulate the re‐
sponse accuracy of VES in this paper. The absolute value of
the actual response power of VES is distributed in the non-
negative interval [0Qmax

VES ].
In order to further quantitatively describe the realized

VES response in LA dispatching process, the VES response
ratio δ t is defined as the ratio between VES realized re‐
sponse Q real

VESt and scheduled response QC
VESt during the tth peri‐

od.

δ t =
Q real

VESt

QC
VESt

(2)

where QC
VESt > 0 denotes the increase of load; and QC

VESt < 0
denotes the reduction of load.

Since the response accuracy of VES follows the truncated
normal distribution, δ t should also follow a truncated normal
distribution δ t~N(μ tσ 2

t δmin
t δmax

t ), whose probability density
function is (3):

f (δ t; μ tσ tδmin
t δmax

t )=

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

φ ( )δ t - μ t

σ t

σ t( )Φ ( )δmax
t - μ t

σ t

-Φ ( )δmin
t - μ t

σ t

δmin
t £ δ t £ δmax

t

0 others

(3)

where φ(×) and Φ(×) are the probability density function and
cumulative distribution function of the standard normal distri‐
bution, respectively; μ t is the expection of VES response ra‐
tio during the t th period; σ t is the standard deviation of VES
response riatio during the t th period; and δmax

t and δmin
t are the

maximum and minimum VES response ratios of during the
t th period, respectively. The lower limit of the probability dis‐
tribution (δmin

t ) is 0, which means that the VES will not re‐
spond.

When dispatched by LA, the random distribution of VES
response depends on its resource conditions [34]. For this
reason, characteristic coefficients α and β are introduced to
reflect the performance difference of VES with different
scheduling requirements. The expectation of random distribu‐
tion is μ t = μ(αQC

VESt ), standard deviation is σ t = σ(αQC
VESt ),

and the maximum response ratio is δmax
t = βμ(αQC

VESt ). Ac‐
cording to the expectation expression of truncated normal
distribution in [35], the expected response ratio E[δ t ] of VES
can be obtained.

E[δ t ]= μ(αδ t )+ σ(αδ t )

φ ( )-μ t

σ t

- φ ( )δmax
t - μ t

σ t

Φ ( )δmax
t - μ t

σ t

-Φ ( )-μ t

σ t

(4)

With time scale τ, the expected value of VES response
can be obtained as:

QE
VESτ = ∫

0

τ

E[δ t ]P
C
VEStdt =∑

t = 1

τ/t

E[δ t ]Q
C
VESt (5)

where P C
VESt is the VES scheduled power.

B. Model of NSES Response

Various types of traditional energy storage systems consti‐
tute NSES resources that can participate in LA scheduling.
The NSES is regarded as a measure to deal with the uncer‐
tainty of the VES response, so the uncertainty that may exist
in the NSES response is not considered. Since NSES has
multi-time scales and state dependence, the response provid‐
ed by NSES is related to its state of charge (SOC) and
charging and discharging power. With a certain time scale τ,
the response provided by the kth NSES is:

q+
k( τ ; P st, +

k t ; E st
k (t)) =min ( )∫

0

τ

P st, +
k t dt ; E max

k -E st
k (t) (6)

q-
k( τ ; P st, -

k t ; E st
k (t)) =min ( )∫

0

τ

P st, -
k t dt ; E st

k (t)-E min
k (7)

where kÎANSES, and ANSES is the set of NSES; q+
k (τ ; ×) and

q-
k (τ ; ×) are the quantities of charging and discharging respons‐

es for the kth NSES, respectively; P st, +
k t and P st, -

k t are the vari‐
ables representing charging and discharging power of the kth

NSES during the tth period, respectively; E st
k (t) is a variable

representing the quantity of energy stored in the kth NSES
during the tth period; and E max

k and E min
k are the upper and

lower limits of power, respectively.
Taking the charging response of NSES as an example, the

visualization result of (6) is shown in Fig. 2. As shown in
Fig. 2(a), if the accumulated electric quantity of NSES does
not exceed the upper limit, the response quantity of the kth

NSES is equal to its charging electric quantity ∫
0

τ

P st, +
k t dt.

When the SOC of the kth NSES reaches the upper limit, the
response quantity is E max

k -E st
k (t), as shown in Fig. 2(b).

Then, in the case of a certain time scale τ, the quantity of
response that all NSESs in the region Q±

st can provide is:

Q±
st = ∑

kÎANSES

q±
k( )τ ; P st ±

k t ; E st
k (t) (8)

max
E

k
st

E
k  

(t)
max

E
k

st
�E

k  
(t)

Energy storage capacity

Energy storage capacity

Timet1 t2

τ

max
E

k

st
E

k  
(t)

max
E

k

st
�E

k  
(t) st,+

0∫  P
k,t  dt

τ

st,+
0∫  Pk,t  dt
τ

(a)

Timet1 t2

τ

(b)

Fig. 2. Response quantity of the kth NSES in charging state. (a) Not reach‐
ing upper limit of NSES capacity. (b) Reaching upper limit of NSES capaci‐
ty.
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IV. LA SCHEDULING STRATEGY CONSIDERING VES
RESPONSE UNCERTAINTY

In order to give full play to the dominant role of VES
when participating in DR, LA can firstly schedule VES. In
the case of VES priority response, NSES is used to compen‐
sate for the deviation caused by VES response and to im‐
prove the response level. To quantitatively evaluate the re‐
sponse level of GES, the response confidence level (RCL) is
introduced in this paper. RCL is the probability value of ac‐
tual response in the specified response deviation range, as
shown in Fig. 3.

The RCL of GES is calculated as:
RCL =F(Q2 )-F(Q1 )=∫

Q1

Q2

f (QGES; Qconσ(QstQVES )QstQmax
GES (QstQVES )) dQGES

(9)

where [Q 1Q 2 ] is the response deviation interval; F(×) is the
cumulative distribution function of GES response; QGES is
the actual response of GES; Qcon is the scheduled response
of GES; Qst is the dispatched response of NSES, and also
the lower limit of QGES when VES response is 0; and Qmax

GES is
the maximum response quantity of GES response.

Assume that the deviation of VES response is DQVES.
With this strategy, the deviation of GES response is:

DQGES =DQVES -Qst (10)

The VES probability density curves before and after NS‐
ES response are presented in Fig. 4, where f1 (QGES ) is the
probability density function (PDF) of GES response when
the NSES response is 0, and the standard deviation is σ =
σ(αQcon ); f2 (QGES ) is the PDF when NESE response is Qst;
and the standard deviation is σ = σ(αQcon -Qst ). When the
NESE response is Qst, the RCL in the response deviation in‐
terval [Qcon -DQGESQcon +DQGES ] is equal to that in the inter‐
val [Qcon -DQVESQcon +DQVES ] of no NESE response, i.e., the
area of shadow S1 is equal to the area of shadow S2.

RCLf2
=RCLf1

ÞF2 (DQGES +Qcon )-F2 (Qcon -DQGES )=
F1 (DQVES +Qcon )-F1 (Qcon -DQVES ) (11)

where F1 (×) is the cumulative distribution function of GES re‐
sponse when NESE response is 0; and F2 (×) is the cumula‐
tive distribution function when NESE response is Qst.

It can be seen from Fig. 4 that the narrower the deviation
range of the GES response is (reduced from [Qcon -
DQVESQcon +DQVES ] to [Qcon -DQGESQcon +DQGES ]), the more

accurate the response is. Moreover, the larger Qst is, the nar‐
rower the deviation range is. In other words, the larger Qst

is, the smaller the standard deviation of PDF of GES is. And
the standard deviation σG is a single-valued function:

σG = g(Qcon ; Qst ) (12)

If the above relation is converted to the response ratio of
GES, (11) can be rewritten as:

∫
1 -DQGES/Qcon

1 +DQGES/Qcon

f *
2 (δG; μσG0δG

max )dδG =

∫
1 -DQVES/Qcon

1 +DQVES/Qcon

f *
1 (δG; μσN0δN

max )dδG (13)

where δN
max and δG

max are the upper limits of the GES response
ratio before and after NSES response, respectively; f *

1 (×) is
the probability density function of GES response ratio when
the NSES response is 0; and f *

2 (×) is the probability density
function when the NSES response is Qst.

The expected value of GES response ratio is:

E[δG ]= ∫δG f *
2 (δ; μσG0δG

max )dδG (14)

V. OPTIMAL CAPACITY ALLOCATION MODEL OF NSES FOR

LA BASED ON HMAI

A. Hierarchical Electricity Market Evaluation Criteria

Affected by the bonus calculation rules, this paper defines
HMAI. This index is used to measure the risk of LA being
eliminated when participating in market competition. Accord‐
ing to the response fluctuation of LA, the response quality is
divided into three levels. The corresponding HMAI reward
rules are formulated, in order to support and cultivate high-
quality LA.

M = |1 -E[δG ] | (15)

where M is a variable representing the HMAI of LA. Set ωq

and ωg as a threshold of qualified response and a threshold
of high-quality response, respectively. The response levels of
LA are divided as follows: ① the first level is high-quality
response (HQR), M £ωg; ② the second level is qualified re‐
sponse (QR), ωg <M £ωq; ③ the third level is low-quality
response (LQR), M >ωq.

PDF
RCL

maxQGESQ2Q1 QconQst Amount of

GES response

Fig. 3. RCL of GES.

f1(QGES)

f2(QGES)

S1

S2

PDF

∆QGES
QGES

∆QVES

Qcon

Qst

max

QGES�Qst
max

Amount of

GES response

Fig. 4. VES probability density curve before and after NSES response.
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If the value of HMAI is in the LQR, the risk of LA being
eliminated in the market competition is greater under such
response conditions. Therefore, LA needs to choose the ap‐
propriate GES scheduling scheme and NSES allocation strat‐
egy to avoid losing market competitiveness due to the exces‐
sive HMAI value.

B. Optimal Capacity Allocation Model of NSES for LA

LA can install a certain quantity of NSES to suppress the
uncertainty of VES response. The established optimal capaci‐
ty allocation model of NSES for LA is shown as below.

1) Objective function
Dividing one day into n time intervals by time interval Dt,

ISO usually issues multiple intermittent peak and valley con‐
tinuous response periods. For example, assume that the
“charging” response period and “discharging” response pe‐
riod of GES are (01:00-05:00) and (11:00-13:00; 19:00-
21: 00), respectively. That is, there are three continuous re‐
sponse periods, and there is usually a long-time interval be‐
tween them. During the interval of no response demand (00:00-
01:00; 05:00-11:00; 13:00-19:00; 21:00-24:00), the NSES re‐
sources in GES can be charged or idle. In view of the com‐
plex response characteristics and coupling relationship of re‐
sources in GES, it is assumed that various response resourc‐
es in GES are independent each other.

As shown in Section II-B, the income of LA mainly con‐
sists of two parts: market compensation rewards including
IV, IG, and Ie and sales profit INSES when NSES releases the
electricity.

According to the realized VES response, the compensation
revenue of LA can be expressed as:

IV = ( )E[δG
t ] ||QC

VESt π inct (16)

where t is the tth response period, tÎ[12n]; and π inct is
the unit compensation price during the tth response period.

Considering response mechanism and HMAI, the market
penalties that LA can circumvent after installing NSES are:

IG =∑
t = 1

n

(1 -E[δ t ]) |QC
VESt | πpun -∑

t = 1

n

(1 -E[δG
t ]) |QC

VESt | πpun =

∑
t = 1

n

(E[δG
t ]-E[δ t ]) |QC

VESt | πpun (17)

where E[δ t ] and E[δG
t ] are the expected response ratios be‐

fore and after the addition of NSES during the tth period, re‐
spectively; and πpun is the unit price for penalty.

If the NSES installation reaches a certain capacity, the re‐
sponse level of the LA can be improved, and an additional
compensation income can be obtained:

Ie =∑
t = 1

n

(λ′- λ)E[δG
t ] |QC

VESt | π inc t (18)

where λ and λ′ are the reward multiples before and after the
addition of NSES, respectively.

In addition, the sales profit (discharging) and purchasing
cost (charging) of LA dispatching NSES are:

INSES =∑
t = 1

n é

ë

ê
êê
ê
ê
ê ∑

kÎANSES
( )∫0

Dkt

-H st +
k t P st +

k t dt + ∫0

Dkt

H st -
k t P st -

k t dt
ù

û

ú
úú
ú
ú
ú
π rr

t

(19)

where Dkt is the duration of the tth response period; if
P st +

k t > 0, then H st +
k t = 1; if P st -

k t > 0, then H st -
k t = 1; and π rr

t is
the retail price during the tth response period. To maximize
the revenue of LA, NSES is controlled to charge during the
valley load period.

The life cycle cost (LCC) of an NSES usually consists of
the initial investment cost C in

k and the operation and mainte‐
nance cost C op

k . The initial investment cost C in
k is directly re‐

lated to the rated capacity and rated power of NSES. More‐
over, for convenience, C op

k in this paper is estimated as a per‐
centage of C in

k .

C in
k = (me

k Ek +mp
k P max

k )
(1 + r)Tkr

(1 + r)Tk - 1
(20)

C op
k = (akm

e
k Ek + bkm

p
k P max

k )
(1 + r)Tkr

(1 + r)Tk - 1
(21)

where ak is the percentage of operation and maintenance
cost of the kth NSES in rated capacity cost; bk is the percent‐
age of operation and maintenance cost of kth NSES in rated
power cost; me

k is the unit capacity cost of the kth NSES; mp
k

is the unit power cost of the kth NSES; r is the discount ra‐
tio; Tk is the life cycle of the kth NSES; and Ek and P max

k are
the variables representing the rated capacity and the maxi‐
mum power of the kth NSES, respectively.

The objective function of the optimal capacity allocation
model is to maximize the annual revenue of LA scheduling
GES to participate in DR. With one year as the calculation
period, the net revenue of LA can be calculated as:

max R = ρ(INSES + IV + Ie + IG )- ∑
kÎANSES

(C in
k +C op

k ) (22)

where ρ is the number of days in a year for LA participating
in DR.

2) Constraints
The constraints are:

M £ωTHR (23)

P st, +
k t £min

ì
í
î

ïï

ïï

|| (δ t -E[δ t ])Q
C
VES t

Dτ t

P max
k 

(SOC max
k - SOC st

k (τ))Ek

Dτ t × ηch
k

ü
ý
þ

ïïïï

ïï

(24)

P st, -
k t £

min
ì
í
î

ïï

ïï

|| (δ t -E[δ t ])Q
C
VES t

Dτ t

P max
k 

(SOC st
k (τ)- SOC min

k )Ekη
dch
k

Dτ t

ü
ý
þ

ïïïï

ïï

(25)

SOCk (τ t )= SOCk (τ t - 1)+
( )H st, +

k t P st, +
k t η

ch
k -

H st, -
k t P st, -

k t

ηdch
k

Dτ t

Ek

(26)

∑
t = 1

n ∫0

Dτ t

ηch
k P st +

k t dτ t =∑
t = 1

n ∫0

Dτ t P st, -
k t

ηdch
k

dτ t (27)

H st, -
k t + H st, +

k t £ 1 (28)

where ωTHR is the HMAI threshold; Dτ t is the duration of the
response period; H st, +

k t and H st, -
k t are the boolean variables rep‐

resenting the charging and discharging flag bits of the kth NS‐
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ES during the tth response period, respectively; and SOCk (τ t )
is the SOC of NSES at the end of the tth response period and
SOC max

k and SOC min
k are the maximum and minimum SOCs

of the kth NSES, respectively. Inequality (23) is the LA re‐
sponse level constraint. The target of different response lev‐
els can be achieved by setting the value of the constraint up‐
per limit ωTHR. Constraints (24) and (25) can be derived
from (6) and (7). They represent the charging and discharg‐
ing power limits of NESE, respectively. Taking (24) as an
example, the first item is the expected value of charging
power obtained from the expected value of response ratio;
the second item is the maximum charging and discharging
power of the kth NSES; and the third item is the charging
power evaluated by the current charging state of NSES. The
final charging power is based on the minimum of these three
terms. Constraint (26) is the constraint of the SOC. Con‐
straint (27) requires that the charging capacity of the NSES
is equal to the discharging capacity. Constraint (28) limits
that the NSES cannot charge and discharge at the same time.

C. Solution Process

After the establishment of the proposed model, in the
MATLAB software environment, this paper firstly simulates
the expected response ratio of GES by Monte Carlo method.
Then the adaptive particle swarm optimization algorithm is
used to solve the above optimization problem, and the capac‐
ity allocation strategy of the LA installed NSES is obtained
[38]. It should be noted that in the first iteration, the expect‐
ed response ratio of GES is equal to that of VES because
NSES has not been configured. The termination condition of
the optimization process is set as whether the maximum
number of iterations is satisfied. The detailed solution pro‐
cess is shown in Fig. S2 in Supplementary Material.

VI. CASE STUDY

A. Case Study Conditions

Based on the data from PJM market in the United States
[36], it is assumed that the 8 response time periods by ISO
are 01:00-05:00, 11:00-13:00, and 19:00-21:00, respectively.
The response demand capacity in the corresponding period
is 3.5 , 3, 3, 3.2, -3.5, -3, -3.7, and -3.7 MWh, respective‐
ly. The time-of-use (TOU) electricity prices of PJM are
shown in Table I [37]. Through the analysis of historical da‐
ta of an LA [37], in the first iteration, the parameters of
VES response ratio are μ = μ(αQC

VES )= 1 and σ = σ(αQC
VES )=

0.2. The characteristic coefficients are α = 0.05 and β = 1.5.
The upper and lower limits of GES response ratio are 1.5
and 0, respectively.

TABLE I
TOU ELECTRICITY PRICES FOR CONSUMERS

Time interval

00:00-08:00, 21:00-24:00 (valley)

11:00-17:00 (flat)

08:00-11:00, 17:00-21:00 (peak)

Price ($/MWh)

52.10

103.20

162.26

Due to the various NSES resources on the user side, a uni‐

fied scheduling reward and punishment system has not yet
been formed. Therefore, this paper assumes that the NSES
installed in LA only includes lithium batteries for large-scale
applications. And during the response process, the charging
and discharging power of the NSES and VES are constant.
The capacity cost and power cost parameters of NSES are
me

1 = 224 $/kWh and mp
1 = 90 $/ kW, respectively. Its capacity

and the maximum charging and discharging power meet a
certain proportion, i.e., E 1 = 2P max

1 . Life cycle of NSES is T1 =
10 days. The charging and discharging efficiencies of the
battery are ηch

k = ηdch
k = 90%. The annual operation and mainte‐

nance cost ratios are a = b = 2%. The discount ratio is
r = 10%.

Finally, the parameters of the algorithm are set as follows.
The individual learning factor and population learning factor
of adaptive particle swarm optimization are 2 and 1.5, re‐
spectively, and the population size is 50. The value of inertia
weight ranges from 0.5 to 0.9, and its evolution coefficient
is 1.12. The maximum number of iterations is 200. The num‐
ber of Monte Carlo simulation is 5000, i. e., 5000 sampling
points. The above optimization model is implemented on a
computer with an Intel i7-10710U processor and 16 GB
RAM.

B. Iterative Solution Process

For reasonably setting the standard deviations, the δ with
different standard deviations is observed for 5000 times. δ of
truncated normal distribution with different standard devia‐
tions is shown in Fig. 5.

The simulation results show that when the standard devia‐
tion is less than 0.1, the VES response ratio is concentrated
in a small range. In this case, there is basically no possibili‐
ty of user default, which is not in line with realistic logic.
That is, this scenario does not reflect the advantages of con‐
figuring NSES. When the standard deviation of normal distri‐
bution exceeds 0.5, the distribution of sampling points is al‐
most uniform. In this situation, the probability of user de‐
fault is too high. That is, the resource response level of LA
is so low that it cannot compete in the market. When the
standard deviation of truncated normal distribution is 0.2,

0 1000 2000 3000 4000 5000
Sampling times

(a)

0 1000 2000 3000 4000 5000
Sampling times

(c)

0 1000 2000 3000 4000 5000
Sampling times

(d)

0.5

1.0

1.5

0.5

1.0

1.5

0 1000 2000 3000 4000 5000
Sampling times

(b)

0.5

1.0

1.5

δ δ

δ δ

0.5

1.0

1.5

Fig. 5. δ of truncated normal distribution with different standard devia‐
tions. (a) μ = 1σ = 0.1. (b) μ = 1σ = 0.2. (c) μ = 1σ = 0.5. (d) μ = 1σ = 1.
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the distribution of sampling points not only reflects the re‐
sponse positivity of users, but also reflects the uncertainty of
the VES response. Therefore, the standard deviation of the
truncated normal distribution obeyed by δ is set to be 0.2.

Taking the promotion of LA response level to QR in Sec‐
tion VI-C as an example, Fig. 6 shows the convergence pro‐
cess. The results show that the model is optimal at about the
30th iteration, and the total calculation time is about 7500 s,
which is acceptable for day-ahead calculation.

C. Analysis on Influence of Different HMAIs

Firstly, this paper analyzes the impact of HMAI classifica‐
tion standard on upgrading the resource quality of LA. As‐
sume that the market is divided into the following three spe‐
cific categories of response quality: HQR, whose HMAI is
less than 10%; QR, whose HMAI is between 10% and 20%;
and LQR, whose HMAI is greater than 20%. The thresholds
of the above conditions are ωg = 10% and ωq = 20%.

The HMAI of LA without participation of NSES can be
observed in Table II, all of which are greater than 20%. In
order to guarantee the LA response quality and improve the
market competitiveness of LA, NSES allocations with differ‐
ent market access index thresholds are calculated. The re‐
sults are shown in Table II.

1) The HMAI threshold ωTHR is set to be 20%, i. e., the
LA response quality is upgraded to QR after the allocation
of NSES. The NSES capacity to be installed at this time is
2.66 MW/5.32 MWh. And the cost of avoiding punishment
for LA is $5.5×105.

2) ωTHR is set to be 10%, i.e., the LA response quality is
upgraded to HQR after the allocation of NSES. The NSES

capacity to be installed at this time is 3.23 MW/6.46 MWh.
Due to the level promotion, the cost of avoiding punishment
for LA is $14.7×105.

From Table II, it can be found that the optimized alloca‐
tion of NSES capacity can effectively reduce the HMAI val‐
ue and improve the LA response quality. The revenue of LA
under different targets of response level is shown in Fig. 7.

As can be seen from Fig. 7, the total revenue of LA in‐
creases steadily with the improvement of response quality
(from the original total revenue of $9.0×105 to the total reve‐
nue of QR of $1.2×106, and then to the total revenue of
HQR of $1.37×106). Among them, the total income at the
QR level increases by 33.3%, and the total income at the
HQR level increases by 52.2%. In addition, with the in‐
crease of the allocation capacity of NSES, the discharging in‐
come of NSES (NSES sold) and the economic compensation
for improving the response level (NSES increased) increase
by 9.8% and 23.5%, respectively (NSES sold: $1.73×105 to
$1.9×105; NSES increased: $1.7×105 to $2.1×105). At the
same time, the penalty cost of LA has gradually decreased
from $2.21×106 to $1.66×106 and then to $7.4×105. Among
them, the penalty cost at the QR level decreases by 24.9%,
and the penalty cost at the HQR level decreases by 66.5%.
In other words, the penalty cost of LA evasion gradually in‐
creases. To sum up, the model proposed in this paper can
meet the optimal capacity allocation of NSES under differ‐
ent HMAIs. The capacity allocation of NSES not only helps
LA avoid huge penalty, but also plays a significant role in
improving the economic benefits of LA.

D. Analysis on Influence of Compensation Rules

Limited by the technology, the investment and construc‐
tion costs of lithium battery energy storage and other battery
energy storage are still high. Therefore, LA should be guided
to actively improve its own response quality level by formu‐
lating reasonable compensation rules. Three different scenari‐
os of compensation rules are set to analyze the net income
of LA and the SIPP of NSES in each scenario.

Scenario 1: the compensation price of QR and that of
HQR are both equal to spot market prices.

Scenario 2: the compensation price of QR is equal to the
spot market price, and the compensation price of HQR is
0.5% higher than the spot market price.

Scenario 3: the compensation price of QR is 0.5% higher
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TABLE II
HMAI OF LA AT DIFFERENT LEVELS

Period

1

2

3

4

5

6

7

8

HMAI without
NSES (%)

22.5

22.9

23.0

23.2

23.0

23.5

23.7

23.7

HMAI of QR
(%)

17.80

14.60

14.70

16.30

14.67

17.90

19.20

19.20

HMAI of HQR
(%)

7.30

4.20

4.20

5.70

4.21

7.40

9.90

9.90

1028



SUN et al.: GENERALIZED ENERGY STORAGE ALLOCATION STRATEGIES FOR LOAD AGGREGATOR IN HIERARCHICAL...

than the spot market price, and the compensation price of
HQR is 1.0% higher than the spot market price.

The comparison of net revenue and SIPP of LA in differ‐
ent market scenarios is shown in Fig. 8. In scenario 1, the
net revenue of LA is $1.04×106 and the SIPP of NSES is 7.9
years at QR level, while the net revenue of LA decreases by
7.7% ($9.6×105) and the SIPP of NSES is 8 years at the
HQR level. Obviously, as the compensation price among dif‐
ferent response levels is the same, it is not economical for
LA to upgrade its response level to the highest level. In this
case, LA will choose to upgrade to the QR level as the tar‐
get. However, a large number of LAs make this upgrade
choice, which will lead to the lack of HQR resources in the
market.

For the sake of reliable and stable operation of electricity
market, ISO will encourage LA to improve its response qual‐
ity. Therefore, it is necessary to provide additional economic
compensation for LA at the HQR level. Under the incentive
effect of additional compensation, i.e., scenario 2 and scenar‐
io 3, the net revenue of LA at the HQR level increases by
35.4% and 82.3% compared with scenario 1, i. e., $1.3×106

and $1.75×106, respectively. Those are higher than the LA
net revenue of QR level ($1.04×106 and $1.48×106). Driven
by the profit, the response quality of LA will be closer to
the expected goal of ISO, which is more conductive to the
stable operation of the market. In order to sign a contract
with ISO, each LA will improve its response quality level as
much as possible to reflect its own competitive advantage,
so as to realize a virtuous circle of the market.

The SIPPs of NSES in the three scenarios are shown by
the red line in Fig. 8. SIPP is equal to the ratio of LCC of
NSES to annual net revenue. Obviously, the increase of com‐
pensation price can significantly shorten the SIPP of NSES.
Since the compensation price at the QR level in scenario 1
and scenario 2 remains unchanged, the SIPPs of NSES are
both 7.9 years. At the HQR level, the SIPP of NSES decreas‐
es from 8 years to 5.5 years. In scenario 3, the compensa‐
tion price at the QR level and HQR level increases, thus the
SIPP of NSES reaches the minimum value of 6.5 years and
4 years respectively. To sum up, reasonable compensation
rules can make the investment return of NSES at the QR
and HQR levels faster, thus LA will more actively allocate
the NSES.

E. Analysis on Influence of Market Rules

Sections VI-C and VI-D discuss the impact of HMAI clas‐
sification standard and compensation rules on the investment
of LA in NSES, respectively. Since different types of mar‐
kets have different requirements for the response quality of
LA, there are also differences in the design of the above two
in the market rules.

Through the adjustment of HMAI classification standard
and compensation rules, this paper analyzes the change of
SIPP when LA reaches HQR level. The HQR thresholds ωg

are set to be 10%, 5%, and 1%, respectively. Compensation
coefficients, i. e., the ratios of compensation price to spot
market price, are set to be 1.00, 1.01, 1.05, and 1.10, respec‐
tively. The SIPP values of NSES in different permutations
are observed, as shown in Table III.

The numerical results show that the stricter the HQR
threshold is set, the more NSES the LA needs to allocate. As
a result, the SIPP of NSES becomes larger. When the HQR
threshold is set to be 1%, even if the compensation coeffi‐
cient is as high as 1.1, i. e., the compensation price is 10%
higher than the spot market price, the SIPP of NSES still
has 10.6 years. At present, the life of lithium battery is most‐
ly 10 years, so it can be roughly judged that the threshold
setting is not economical. In addition, a reasonable compen‐
sation price is also crucial. According to the results in Table
III, with the increase of compensation price, the SIPP of NS‐
ES decreases. However, it should be noted that the trend of
SIPP reduction of NSES is gradually weakening. Taking the
HQR threshold of 10% as an example, when the compensa‐
tion coefficient increases by 1%, i.e., the compensation coef‐
ficient increases from 1.00 to 1.01, SIPP is shortened by 2.5
years. When the compensation coefficient increases from
1.01 to 1.05, SIPP is shortened by only 1.5 years. Therefore,
it is uneconomic for ISO to set too high compensation price.
To sum up, ISO needs to formulate reasonable classification
standards and the corresponding compensation rules accord‐
ing to the actual situation.

F. Analysis on Influence of NSES Allocation Capacity

Finally, it analyzes the influence of the NSES allocation
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TABLE III
SIPP VALUES OF NSES IN DIFFERENT PERMUTATIONS

ωg (%)

10

5

1

Compensation coefficient

1.00

1.01

1.05

1.10

1.00

1.01

1.05

1.10

1.00

1.01

1.05

1.10

SIPP (year)

8.0

5.5

4.0

3.8

17.0

12.7

9.3

7.1

26.0

19.1

14.3

10.6
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capacity on the economic benefits of LA. The threshold val‐
ue of QR and HQR levels adopts the parameters of Section
VI-C, and the compensation price adopts the parameters in
scenario 3 of Section VI-D. Table IV shows the economic
parameters of different NSES allocation strategies.

The market profit of LA can be significantly improved by
scheduling NSES to suppress the response uncertainty of
VES. However, as the installed capacity of NSES increases,
there will be a redundancy in capacity. And the redundant ca‐
pacity cannot further improve the economic benefits of LA.
In addition, the high cost of NSES makes the net income of
unit energy storage increase first and then decrease. The re‐
sults show that the net income per NSES increases to a max‐
imum of 242315.1 $/MWh when the installed capacity is
3.611 MW/7.222 MWh. At this time, the SIPP of NSES is 4
years. To sum up, LA can obtain better investment return
and shorter SIPP by reasonably allocating the capacity of
NSES.

VII. CONCLUSION

When LA participates in electricity market transactions to
obtain profits, it will face the problem of default due to the
influence of VES response uncertainty. In order to ensure
the stability of LA participating in the market, this paper
takes the NSES as a means to reduce default risk. Based on
this, a capacity allocation model of NSES with HMAI is es‐
tablished. Finally, in order to verify the effectiveness of the
model, four examples are analyzed from HMAI classifica‐
tion standard, compensation rules, market rules (combining
the above two), and NSES allocation capacity. The main con‐
clusions are as follows.

1) By limiting different HMAI, LA will allocate NSES to
improve its response level, so as to improve its own econom‐
ic benefits. In the given case study, when the response level
reaches HQR, the total revenue of LA increases from $9×105

to $1.37×106, which is an increase of 52.2%. The avoidable
penalty cost is $1.47×105.

2) By setting reasonable compensation rules, LA can allo‐
cate NSES more actively and improve its response quality

level. In the given case study, the net income of LA at the
HQR level will increase from $9.6×105 to $1.75×106, which
is an increase of 82.3%. The SIPP of allocated NSES will al‐
so be shortened from 8 years to 4 years.

3) By establishing reasonable market rules, it can not only
promote the upgrading of LA to HQR level, but also ensure
the reliability of electricity market operation. In the case
study, the SIPP of NSES can be reduced to 3.8 years at most.

4) By allocating appropriate NSES allocation capacity on
the user side, the redundancy of energy storage capacity and
waste of resources can be avoided. And LA can obtain better
return to investment and shorten the SIPP. In the case study,
the optimal installed capacity of NSES is 3.611 MW/7.222
MWh, and the SIPP of NSES is 4 years.

This paper aims to provide a model for emerging electrici‐
ty sellers to avoid default response, without consideration of
the benefits of other electricity sellers. Therefore, it is worth
further study on the profit of other market players and their
competitive game with other players in the market.
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