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Abstract——High penetration of renewable energies enlarge the
peak-valley difference of the net load of the distribution system,
which puts forward higher requirements for the operation
scheduling of the distribution system. From the perspective of
leveraging demand-side adjustment capabilities, an optimal
scheduling method of the distribution system with edge comput‐
ing and data-driven modeling of price-based demand response
(PBDR) is proposed. By introducing the edge computing para‐
digm, a collaborative interaction framework between the con‐
trol center and the edge nodes is designed for the optimization
of the distribution system. At the edge nodes, a classified XG‐
Boost-based PBDR modeling method is proposed for large-scale
differentiated users. At the control center, a two-stage optimiza‐
tion method integrating pre-scheduling and re-scheduling is pro‐
posed based on demand response results from all edge nodes.
Through the information interaction between the control center
and edge nodes, the optimized scheduling of the distribution sys‐
tem with large-scale users is realized. Finally, a case study is im‐
plemented on the modified IEEE 33-node system, which verifies
that the proposed classified modeling method has lower errors,
and it is beneficial to improve the economics of the system oper‐
ation. Moreover, the simulation results show that the applica‐
tion of edge computing can significantly reduce the calculation
time of the optimal scheduling problem with PBDR modeling of
large-scale users.

Index Terms——Demand response, distribution system, edge
computing, optimal scheduling, XGBoost.

I. INTRODUCTION

VIGOROUSLY developing wind, solar, and other renew‐
able energies is an effective way to deal with current

energy and environmental problems [1]. The United States
and China have proposed power system planning blueprints
by 2050, in which renewable energy accounts for 80% and
60%, respectively [2]. Thus, high penetration of renewable
energies will be an inevitable trend for the development of

the future power system. With the increasing penetration of
renewable energies, however, the net load of the distribution
system will fluctuate dramatically, e.g., the high penetration
of photovoltaic (PV) generation in the California of the Unit‐
ed States causes its net load to show a“duck curve”[3].
Moreover, the peak-to-valley difference of the net load con‐
tinues to increase with the growth of the PV penetration ra‐
tio, which puts forward higher requirements on the flexible
adjustment and rapidly ramping ability of the distribution
system. Therefore, how to enhance the flexible adjustment
capability of the distribution system is a practical problem
with high penetration of renewable energies. In addition to
improving the flexibility adjustment potential of the distribu‐
tion system from the power generation perspective [4], de‐
mand response (DR) is an effective means of invoking the
adjustment capability of the demand side, which can be em‐
ployed to improve the flexibility of the distribution system
[5], [6]. However, there exist many challenges while imple‐
menting DR in distribution systems, e. g., numerous partici‐
pants and large differences in DR behaviors. Thus, how to
build DR models for large-scale differentiated users and
guide users to participate in the optimal scheduling of the
distribution system is a key scientific problem with high pen‐
etration of renewable energies.

In DR modeling, numerous researches have been carried
out in the past few decades. According to the difference in
response mechanism, DR can be generally divided into two
types: the incentive-based and the price-based ones [7]. For
the incentive-based DR, the typical application is direct load
control, in which the distribution system operator can con‐
tract with the curtailable loads to perform load control proce‐
dure by paying a predefined fee [8]. Note that the incentive-
based DR is usually compulsory and unfriendly to users. For
the price-based demand response (PBDR), which is the re‐
search topic of this paper, the reasonable and effective mod‐
eling is the key to ensure its efficient implementation. Exist‐
ing researches on PBDR modeling are mainly model-driven,
which can be summarized into three key categories that are
based on the price elasticity matrix [9]-[11], the detailed con‐
sumption behavior [12] - [14], and the utility function [15] -
[18], respectively. For the first category, a linear model for
the user’s response to the changes in electricity prices is es‐
tablished in [9]. Based on the price elasticity matrix, a two-
stage optimal scheduling method with DR is proposed in
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[10], and a game theory based energy management method
for smart grids is presented in [11]. For the second category,
the charging/discharging behavior model of plug-in electric
vehicles is investigated in [12], and the detailed DR models
of lighting, domestic water heating, and thermostatically con‐
trolled appliance are illustrated in [13]. As a typical industri‐
al user, a cement plant industrial model is demonstrated in
[14]. For the third category, the logarithmic utility functions
are established for users to arrange their electricity consump‐
tion plans in [15], [16], the exponential dissatisfaction cost
function is constructed in [17] for each device, and the qua‐
dratic utility function and the social welfare maximization
problem are formulated in [18].

The above model-driven methods have good interpretabili‐
ty, but the key parameters such as the price elasticity coeffi‐
cient and user utility coefficient in the model are often sub‐
jective and lack verification. Moreover, the implementation
of these methods is difficult when the scale of the electricity
users participating in DR programs is large. Thus, the data-
driven method is an alternative for overcoming the above de‐
ficiencies. The existing data-driven methods with DR are
mainly applied to load forecasting based on the deep learn‐
ing technology, e. g., short-term load forecasting methods
based on the long short-term memory (LSTM) approach are
proposed in [19] - [22], a recurrent neural network-based
household load forecasting method is formulated in [23], the
deep belief network for the short-term load forecasting is
built in [24], but few are concentrated on the PBDR model‐
ing. Note that different from the load forecasting which com‐
monly takes the historical load data as input, the PBDR mod‐
eling generally uses price signal as input to interpret the rela‐
tionship between price incentive and response behaviors.
Thus, it is a promising trend to apply deep learning methods
to the PBDR modeling. As one kind of deep learning meth‐
ods, XGBoost can avoid overfitting problems effectively that
traditional machine learning methods suffer from, and it has
been applied to load prediction of distribution system [25],
stability assessment [26], electricity theft detection [27], and
other fields, which provides a new idea for data-driven PB‐
DR modeling.

For the operation of the distribution system, exact PBDR
modeling is essential to improve the economics of system
operation. However, there are the following difficulties in ap‐
plying XGBoost to PBDR modeling of distribution system
scheduling: ① the data-driven method of PBDR modeling
confronts with the problem of soaring calculation time when
large-scale users participate in DR programs; ② implement‐
ing the differentiated PBDR modeling for various users is a
hard task, because there exist large differences in PBDR be‐
haviors of various electricity users; ③ based on data-driven
PBDR modeling, it is the key point to conduct optimal
scheduling of the distribution system with PBDR.

To this end, the XGBoost method is adopted for PBDR
modeling of large-scale users, and an optimal scheduling
method of the distribution system with edge computing and
data-driven modeling of PBDR is proposed in this paper.
The main contributions of this paper are threefold.

1) An interactive optimization framework between the con‐
trol center and edge nodes is constructed. In this framework,

the edge computing paradigm is introduced to ease the com‐
putational burden of PBDR modeling for large-scale users in
traditional centralized computing paradigm.

2) A classified XGBoost-based PBDR modeling method is
proposed. In the proposed modeling method, the feature eval‐
uation models for PBDR behaviors of users are employed to
generate original training data, which can overcome the defi‐
ciency of XGBoost when the training data are insufficient.

3) A two-stage optimization method of the distribution sys‐
tem combining pre-scheduling and re-scheduling is pro‐
posed. In this two-stage optimization method, the informa‐
tion interaction between the control center and edge nodes is
considered, which realizes the optimal scheduling of the dis‐
tribution system in a distributed manner with PBDR model‐
ing of large-scale users.

The rest of this paper is organized as follows. Section II
introduces the proposed optimization framework based on
edge computing paradigm. The classified XGBoost-based
PBDR modeling and two-stage optimal scheduling are pre‐
sented in Sections III and IV, respectively. Solution algo‐
rithms are carried out in Section V. Section VI analyzes numer‐
ical results, followed by concluding remarks in Section VII.

II. OPTIMIZATION FRAMEWORK

A. Edge Computing Paradigm

In view of the large-scale users participating in the PBDR
program, the realization of data-driven PBDR modeling for
large-scale differentiated users will place higher require‐
ments on the calculation capability and calculation time in
the traditional centralized computing paradigm. Different
from other measures such as improving the calculation per‐
formance of the control center, this paper introduces the
edge computing paradigm based on traditional centralized
computing, in which part of the computing tasks of the con‐
trol center can be offloaded to edge nodes, and the calcula‐
tion pressure of the centralized control center could be re‐
lieved through local computing of calculation tasks
[28], [29].

The computing architecture with the centralized comput‐
ing paradigm and edge computing paradigm is shown in Fig.
1, which is an integration of cyber space and physical space.
In the cyber space, the control center in edge computing par‐
adigm only needs to interact with all edge nodes rather than
establishing communication connections with each load node
directly, which alleviates the communication and calculation
burden brought by the centralized computing paradigm that
all the calculation tasks are processed in the control center.
In the physical space, various users are directly connected to
the distribution network, and the entire process of electric en‐
ergy production, distribution, and consumption is realized
through the coordination between the distribution system and
electricity users.

B. Interactive Optimization Framework

Based on the edge computing paradigm above, an interac‐
tive optimization framework between the control center and
edge nodes is shown in Fig. 2.
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The proposed optimal scheduling method contains two
parts of calculation tasks: one is the response behavior mod‐
eling of large-scale demand-side resources; the other is the
optimal scheduling of the distribution system. In the edge
computing paradigm, parts of the calculation tasks are
offloaded to edge nodes, specifically, the calculation tasks of
demand-side resource modeling are executed at edge nodes
while the control center only performs optimal scheduling of
the distribution system. The detailed implementation is an in‐
teractive process: at each edge node, the classified XGBoost-
based PBDR modeling for large-scale users is performed,
which contains clustering analysis, XGBoost model construc‐
tion, and classified PBDR modeling. Then, a two-stage opti‐
mization method of the distribution system is implemented
in the control center, which integrates the process of pre-
scheduling and re-scheduling. The control center and edge
nodes can exchange information interactively through ad‐
vanced communication technology, which achieves the opti‐
mal scheduling of the distribution system with PBDR. Note
that the communication among edge nodes is not considered.
This assumption is reasonable in this paper, where the opti‐
mum can be obtained in a distributed manner through the in‐
formation interaction between the control center and edge
nodes.

III. CLASSIFIED XGBOOST-BASED PBDR MODELING

In response to the requirement of data-driven PBDR mod‐
eling for large-scale differentiated users, a classified XG‐
Boost-based PBDR modeling method is proposed, and the
calculation task of this section, i.e., the process of classified
XGBoost-based PBDR modeling, is performed at each edge
node as Section II illustrated.

A. Clustering Analysis

For any edge node jÎJ º{ j:j = 12J}, the original
training data set is denoted by Γ j ={pdDL jd

i i = 12mjd =
12D}, where J, mj, and D are the number of edge
nodes, the number of users at edge node j, and the number
of samples in the training data set, respectively; and DL jd

i is
the response vector of user i at edge node j for sample d to
the price incentive vector pd. The element of DL jd

i can be cal‐
culated as:

DLjd
it = Ljd

it - Ljfix
it (1)

where Ljd
it and Ljfix

it are the optimized load and the fixed load
of user i for sample d at time slot t, respectively. Note that
for the case that training data set is insufficient, the genera‐
tion method of original data is shown in Appendix A.

For the training data set Γ j, it contains PBDR data of vari‐
ous users. If the PBDR model is built for each user, there is
a problem of excessive calculation, but if a unified PBDR
model is built for all users, the differences among various us‐
ers cannot be reflected. Thus, the K-means clustering meth‐
od is employed in this section to cluster users based on their
PBDR behavior characteristics. The basic idea of K-means
clustering method is to classify the samples with high simi‐
larity into one cluster by measuring the similarity of differ‐
ent samples. In this paper, the clustering samples are the
time-series PBDR data of different users, i.e., DL jd

i , and the
Euclidean distance is used to measure the similarity of differ‐
ent samples. Detailed information about K-means clustering
method can be found in [30] and [31].

B. XGBoost Model Construction

XGBoost is an optimization of the boosting algorithm,
which is an ensemble algorithm based on trees and linear
classifiers [25]. Without loss of generality, considering the
given data set H={(xh, yh), h=1, 2, , H}, where H is the
number of training samples; xh is the input data of the XG‐
Boost model; and yh is the preference value of the XGBoost
model. The XGBoost model can be expressed as:

ŷh =∑
n = 1

N

fn (xh ) fnÎF (2)

where ŷh is the prediction value of the XGBoost model; F is
the set of regression trees; fn is the nth regression tree in set
F; and N is the number of regression trees in F.

The loss function of the XGBoost model contains two
parts, i. e., the difference term and the regularization term,
which can be calculated as:

Obj =∑
h = 1

H

l(yhŷh )+∑
n = 1

N

Ω( fn ) (3)

Classified XGBoost-based PBDR modeling

Control

center

Edge

node

Two-stage optimal scheduling

Pre-scheduling Re-scheduling

Clustering

analysis
XGBoost

model

Classified PBDR

modeling

Fig. 2. Interactive optimization framework between control center and
edge nodes.
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Fig. 1. Comparison of two different calculation frameworks. (a) Central‐
ized computing paradigm. (b) Edge computing paradigm.
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Ω( fn )= γR +
1
2
λ∑

r = 1

R

ω2
r (4)

where l(yhŷh ) is the difference value between the preference
value yh and prediction value y̑h, which can be measured by
1-norm, 2-norm, etc.; Ω( fn ) is the regularization term to con‐
trol the complexity of the XGBoost model and prevent the
model from overfitting; R is the leaf count; ωr is the leaf
score; and γ and λ are the given parameters. It can be ob‐
served from (4) that when γ and λ are equal to zero, the XG‐
Boost model degenerates into the traditional boosting model.

The cumulative training method is adopted in the XG‐
Boost model, i. e., in each iteration, a new function, i. e., a
new tree, is added to the model based on the previous mod‐
el. The specific iteration process is:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

ŷ(0)
h = 0

ŷ(1)
h = f1 (xh )= ŷ(0)

h + f1 (xh )



ŷ(τ)
h =∑

n = 1

τ

fn (xh ) = ŷ(τ - 1)
h + fτ (xh )

(5)

where ŷ(τ)
h is the predicted value of the τ th iteration, which re‐

tains the prediction result of the (τ - 1)th iteration ŷ(τ - 1)
h and

adds a new function fτ (xh ) into the model.
As a result, (3) can be rewritten as:

Obj =∑
h = 1

H

l(yhŷ(τ - 1)
h + fτ (xh ))+∑

n = 1

N

Ω( fn ) (6)

Then, by Taylors expansion and removing all constant
terms, (6) is changed to the second-order form, which can
obtain the unique optimum. Note that the optimal value of
loss function indicates the maximum gain loss when select‐
ing a tree structure, the smaller the value, the better the mod‐
el. More detailed information about XGBoost can be found
in [25] and [26].

C. Classified PBDR Modeling

Based on the XGBoost model above, a framework of clas‐
sified PBDR modeling is shown in Fig. 3.

For edge node j, the K-means clustering method is em‐
ployed to cluster mj users into S clusters according to their
PBDR behavior characteristics, and the sth cluster contains
ws users, which meets∑ws =mj. Then, the XGBoost model

is constructed separately for each cluster s, which realizes
the classified XGBoost-based PBDR modeling. Note that a
unified XGBoost-based PBDR model can also be construct‐
ed for all mj users at edge node j, but the unified model can

not reflect the difference of various users participating in the
PBDR program. Comparative analysis of the unified model‐
ing and the classified modeling can be found in Section V.

IV. TWO-STAGE OPTIMAL SCHEDULING

The calculation task of this section, i. e., the process of
two-stage optimal scheduling, is carried out in the control
center of the distribution system. Considering that there exist
errors between the results of the proposed classified model‐
ing method and the actual PBDR modeling results of users,
the optimal scheduling process is divided into two stages:
the pre-scheduling stage and the re-scheduling stage. The
pre-scheduling stage refers to formulating pre-scheduling
strategies for the distribution system based on the PBDR
modeling results before the actual PBDR modeling results of
users are observed. The re-scheduling means that when the
PBDR modeling results of users are observed, a power ad‐
justment scheme is formulated based on the actual PBDR
modeling results and the pre-scheduling strategies.

A. Stage 1: Pre-scheduling of Distribution System

1) Objective Function
The pre-scheduling stage aims at minimizing the day-

ahead scheduling cost of the distribution system cpre, which
includes the cost of generating electricity from distribution
generation (DG) cfuel, the cost of purchasing electricity from
transmission network cpurchase, and the cost of carbon emis‐
sions ccarbon. Note that the cost of power generation of wind,
solar, and other renewable energies is ignored (only PV gen‐
eration is considered in this paper). Thus, the objective func‐
tion of the pre-scheduling stage can be described as:

min cpre = cfuel + cpurchase + ccarbon (7)

cfuel =∑
t = 1

T∑
k = 1

K

(ak P 2
kt + bk Pkt + ck ) (8)

cpurchase =∑
t = 1

T

pgridt PgridtDt (9)

ccarbon = pcVreal (10)

Vreal =∑
t = 1

T ( )∑
k = 1

K

αkt PktDt + αgridt PgridtDt (11)

where T is the number of optimization periods; K is the num‐
ber of DGs; Pkt is the output of DG k at time slot t; ak, bk,
and ck are the cost coefficients of DG k; pgrid,t is the electrici‐
ty purchase price at time slot t; Pgridt is the power from trans‐
mission network at time slot t; Dt is the length of time slot t;
pc is the price of carbon emissions; Vreal is the amount of car‐
bon emissions; αkt is the carbon emission factor of DG k;
and αgridt is the carbon emission factor of purchasing electric‐
ity from transmission network.
2) Constraints

To ensure the safety of distribution network operation, the
following constraints must be met.

∑
k = 1

K

Pkt +Pgridt =∑
j = 1

J

L̂j
t (12)

ukt Pkmin £Pkt £ ukt Pkmax (13)

�

� �

Users Clusters
XGBoost

model

w1

w2

wS

Edge

node j

i =1
s =1

s =2

s =S

i =2

i =3

i = mj

Fig. 3. Framework of classified PBDR modeling based on XGBoost model.
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-Rd
kDt £Pkt -Pkt - 1 £Ru

kDt (14)

Pgridmin £Pgridt £Pgridmax (15)

-Plmax £Plt £Plmax (16)

where L̂j
t is the load of edge node j at time slot t; ukt is the

commitment state of DG k at time slot t, which equals 1
when DG k is committed, and 0 otherwise; Pkmax and Pkmin

are the upper and lower limits of DG k, respectively; Ru
k and

Rd
k are the maximum ramp-up and ramp-down rates of DG k,

respectively; Pgridmax and Pgridmin are the upper and lower lim‐
its of Pgridt, respectively; Plt is the power flow of line l at
time slot t; and Plmax is the capacity of line l.

Formula (12) is the power balance constraint. Formulas
(13) and (14) are the power output constraint and ramping
constraint of DG k at time slot t. Formula (15) is the electric‐
ity purchase constraint. Formula (16) is the line capacity con‐
straint.

B. Stage 2: Re-scheduling of Distribution System

1) Objective Function
Based on the optimization results of stage 1 and the ob‐

served PBDR modeling results of users, stage 2 takes 1 hour
as the scheduling cycle and minimizes the re-scheduling cost
cre

t , which includes the power regulation cost of DG cre
k and

the power regulation cost of power from the transmission
network cre

grid.

min cre
t =∑

k = 1

K

cre
k DPkt + cre

gridDPgridt (17)

where DPkt and DPgridt are the power regulations of DG k
and the power from the transmission network at time slot t,
respectively.
2) Constraints

The constraints in stage 2 must be met are given in (18)-
(21), which include the power balance constraint, power out‐
put constraint, and ramping constraint.

∑
k = 1

K

(P *
kt +DPkt )+P *

gridt +DPgridt =∑
j = 1

J

L̂j*
t (18)

ukt Pkmin £P *
kt +DPkt £ ukt Pkmax (19)

-Rd
kDt £P *

kt +DPkt -P *
kt - 1 -DPkt - 1 £Ru

kDt (20)

Pgridmin £P *
gridt +DPgridt £Pgridmax (21)

where P *
kt and P *

gridt are the optimization results of DG k and
power from the transmission network at time slot t in stage
1, respectively; and L̂j*

t is the observed value of the load at
edge node j at time slot t.

C. Optimization Model Transformation

The proposed pre-scheduling problem of the distribution
system, i.e., (7)-(16), is a mixed-integer nonlinear program‐
ming problem (MINLP), and the nonlinear part of this prob‐
lem lies in the fuel cost term of (7). The general idea to
solve the nonlinear problem mainly includes the metaheuris‐
tic algorithm and linearized approximation. For the meta‐
heuristic algorithm, it is intuitive but time-consuming and is
difficult to guarantee the global optimum. To reduce the solu‐
tion complexity of this problem, the piecewise linear method

is adopted in this paper, which replaces the nonlinear part
with piecewise linear segments. Thus, the optimization prob‐
lem can be solved by mixed-integer linear programming
(MILP), which is fast, robust, and can guarantee global opti‐
mum within predefined tolerances [32]. The process of trans‐
formation can be expressed as:

cfuel =∑
t = 1

T∑
k = 1

K∑
l = 1

L

(al
k P l

kt + bl
ku

l
kt ) (22)

where L is the number of segments in the interval
[Pkmin Pkmax ]; P l

kt and ul
kt are the power output and state vari‐

able of the lth segment of DG k at time slot t, respectively;
and al

k and bl
k are the corresponding coefficients. More infor‐

mation about the piecewise linear method can be found
in [32].

After the above transformation, the original MINLP can
be transformed into an MILP problem, which can be solved
easily by commercial solvers such as CPLEX.

V. SOLUTION ALGORITHM

The solution process of the optimal scheduling of the dis‐
tribution system with edge computing and data-driven model‐
ing of PBDR mainly includes two parts: ① the two-stage op‐
timal scheduling of the distribution system, which is execut‐
ed in the control center; ② the classified XGBoost-based
PBDR modeling, which is executed at each edge node.

The solution process of the two-stage optimal scheduling
problem is shown in Algorithm 1.

The process of the classified XGBoost-based PBDR mod‐
eling is shown in Algorithm 2. The interaction process of the
control center and edge nodes is shown in Fig. 4.

VI. CASE STUDY

A. Basic Data

The modified IEEE 33-node distribution system is used as
a case study. Figure 5 presents the topology of the modified
IEEE 33-node distribution system, in which a micro-turbine
(MT) is connected to node 22, and PV panels are connected
to nodes 18, 25, 26, and 33, respectively. PBDR data are de‐
rived from the actual operation data in Henan Province, Chi‐
na.

Algorithm 1

1. Input data: day-ahead PV forecasting output and real-time price (RTP)
signal

2. For each edge node jÎJ do
Send RTP signal to edge node jÎJ
Execute Algorithm 2
Receive the PBDR modeling results from all edge nodes

3. End for
4. Solve pre-scheduling problem

{min cpre

s.t. (9)-(16) (22)
Obtain pre-scheduling results P *

kt and P *
gridt

5. For each time slot t, solve re-scheduling problem
ì
í
î

min cre
t

s.t. (18)-(21)
Obtain re-scheduling results DPkt and DPgridt

6. End for
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To verify the effectiveness of the proposed optimal sched‐
uling method of the distribution system with large-scale us‐
ers, it is assumed that the distribution system is equipped
with 1 control center and 5 edge nodes (i.e., J = 5), which is
utilized for data-driven PBDR modeling for 27 load nodes.
Among them, edge node 1 models PBDR for load nodes 2-5
and 19-21 (i.e., m1 = 7), edge node 2 models PBDR for load
nodes 23 and 24 (i. e., m2 = 2), edge node 3 models PBDR
for load nodes 6-11 (i.e., m3 = 6), edge node 4 models PBDR
for load nodes 27-32 (i.e., m4 = 6), and edge node 5 models

PBDR for load nodes 12-17 (i.e., m5 = 6).
The parameters of MT are given in [33], the carbon emis‐

sion parameters and carbon emission price parameters can
be found in [34], and the electricity price data are derived
from [15], [35]. The electricity prices of the case study and
the parameters of the modified IEEE 33-node distribution
system are presented in Fig. 6 and Table I, respectively.

All numerical tests are carried out on a laptop with an In‐
tel(R) Core(TM) i7-4790 CPU at 3.60 GHz and 8 GB RAM,
and the optimal problems are solved using MATLAB soft‐
ware R2018b by calling CPLEX solver 12.5.

B. Results of Classified XGBoost-based PBDR Modeling

Since the PBDR data from the actual operation data in
Henan Province, China is based on TOU, there exists a prob‐
lem that the training data are insufficient when modeling
RTP-based PBDR. Therefore, the bi-level PBDR parameter
evaluation approach (shown in Appendix A) is adopted to
model the responsive behavior of users and generate the orig‐
inal training data based on TOU data. In this case study, the
number of training samples is set to be 100, and the first 95
samples are used for training, whereas the last 5 samples are
used for testing.
1) Validation of Classified XGBoost-based PBDR Modeling

Taking edge node 3 as an example, the unified XGBoost-
based PBDR modeling method is used to analyze the effec‐
tiveness of the classified XGBoost-based PBDR modeling
method proposed in this paper.

Taking load nodes 8 and 10 as examples, the PBDR data
of continuous 72 hours in the testing set are used to test the
performance of the above two modeling methods, and the re‐
sults are shown in Fig. 7. It can be observed from Fig. 7
that, because of the large difference of PBDR characteristics

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

23 24 25

26 27 28 29 30 31 32 33

19 20 21 22
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Edge node 2 

Edge node 4 

Edge node 3 Edge node 1 Edge node 5

Fig. 5. Topology of modified IEEE 33-node distribution system.

Algorithm 2

1. Input data: historical time of use (TOU) and corresponding PBDR data
2. Solve bi-level optimal problem denoted by (A1)-(A6) in Appendix A
3. Obtain original data set Γj ={pdDLjd

i i = 12mjd = 12D}
4. Standardize the obtained original data
5. K-means method is adopted to cluster mj users into Sj clusters
6. For each cluster sÎ Sj do

Train XGBoost model
End for

7. Obtain Sj XGBoost models
8. Receive RTP signal from the control center
9. For each cluster sÎ Sj do

Predict PBDR based on the trained XGBoost model
End for

10. Obtain PBDR modeling results
11. Send the PBDR modeling results to the control center

Edge nodes

Is iteration

requirement met?
N

Y

Obtain XGBoost model

Control center

Start

End

Input predicted PV

output and RTP data

Send electricity price to

all edge nodes

Receive PBDR results

from all edge nodes

Solve pre-scheduling

problem defined by

(7), (9)-(16), (22)

Obtain pre-scheduling results

Solve re-scheduling problem

defined by (17)-(21)

Obtain re-scheduling results

Input training sample set

Set model parameters

and iterations number

Define the loss function Obj

Calculate the first and second

derivatives of the loss function

Add a tree and update

the loss function

Fig. 4. Interaction process of control center and edge nodes.
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TABLE I
TECHNO-ECONOMIC PARAMETERS OF MODIFIED IEEE 33-NODE

DISTRIBUTION SYSTEM

Techno-economic parameter

αk (¥/MWh2)

bk (¥/MWh)

αk (¥/h)

αkt (kg/MWh)

αgridt (kg/MWh)

pc (¥/kg)

Value

0.183 [33]

14.64 [33]

48.8 [33]

724 [34]

889 [34]

0.023 [34]
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between load nodes 8 and 10, the unified modeling method
has large modeling errors, while the classified modeling
method can achieve good modeling performance, which dem‐
onstrates the effectiveness of the classified modeling method.

2) Comparison with Existing PBDR Modeling Methods
To further analyze the effectiveness of the proposed PB‐

DR modeling method, the following three methods are used
for comparative analysis: ① the price elasticity (PE) method
[10]; ② the utility function (UF) method [15]; ③ LSTM
method [20].

The above PBDR modeling methods are used to model
the PBDR of the load node 10, and the PBDR modeling re‐
sults are shown in Fig. 8. Besides, the mean absolute error
(MAE) and root mean squared error (RMSE) are employed
to evaluate the performance of the above methods, and the
comparative analysis is shown in Table II.

From Fig. 8 and Table II, it can be concluded that the
modeling error based on the proposed PBDR modeling meth‐
od is lower than the PE, UF, and LSTM methods, which veri‐
fies the effectiveness of the proposed PBDR modeling method.

C. Results of Two-stage Optimal Scheduling

With the given RTP signal, the PE, UF, LSTM, and pro‐
posed methods are used to model the PBDR of various us‐
ers, and the net load curve of the distribution system with
different PBDR modeling methods (load minus PV output)
is shown in Fig. 9. The pre-scheduling and re-scheduling re‐
sults are shown in Fig. 10 and Fig. 11, respectively, and the
comparison of scheduling costs with different PBDR model‐
ing methods is shown in Table III.

It can be observed from Figs. 9-11 that due to the differ‐
ence of net load curves obtained by different PBDR model‐
ing methods, the pre-scheduling and re-scheduling results of
the distribution system with different PBDR modeling meth‐
ods differ greatly. According to Table III, it is not difficult to
observe that the proposed modeling method can reduce the
pre-scheduling and re-scheduling costs of the distribution
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0.5

1.0

1.5

2.0

2.5

3.0

0 5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

1.2

P
u
rc

h
as

in
g
 p

o
w

er
 (

M
W

) PE
UF
LSTM
Proposed

Operation time (hour)

PE
UF
LSTM
Proposed

(a)

0 5 10 15 20 25
Operation time (hour)

(b)

M
T

 o
u
tp

u
t 

(M
W

)

Fig. 10. Pre-scheduling results of distribution system with different PBDR
modeling methods. (a) Pre-scheduling results of purchasing power. (b) Pre-
scheduling results of MT output.
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TABLE II
PERFORMANCE COMPARISON OF DIFFERENT PBDR MODELING METHODS

Method

PE

UF

LSTM

Proposed

MAE (kW)

8.6316

4.9856

3.5980

1.5946

RMSE (kW)

14.9816

9.7193

5.5591

2.0727
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Fig. 7. Performance comparison of unified and classified XGBoost-based
PBDR modeling. (a) PBDR modeling results of load node 8. (b) PBDR
modeling results of load node 10.
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system effectively compared with the PE and LSTM meth‐
ods, which decreases the total cost of the distribution sys‐
tem. Additionally, the pre-scheduling cost of the distribution
system with the proposed modeling method increases com‐
pared with the UF method, but the re-scheduling cost is sig‐
nificantly reduced, which makes the total cost of the distribu‐
tion system still lower than the UF method. Therefore, it is
proven that the proposed modeling method is beneficial to
improve the economics of the distribution system operation.

D. Results of Calculation Time with Edge Computing

This paper assumes that the control center and the edge
nodes are connected by the advanced metering infrastructure
(AMI) system. Because the transmission delay of price and
PBDR signals in the communication link is generally in mil‐
lisecond time scale, which is far less than the calculation
time of the optimal scheduling of the distribution system
(usually in second or minute time scale), so this paper does
not take the transmission delay between the control center
and edge nodes into consideration. Therefore, the calculation
time of the optimal scheduling problem with PBDR mainly
includes two parts: the PBDR modeling time and the opti‐
mal scheduling calculation time.

For the aforementioned case study, where the number of

users for PBDR modeling is 27 and the number of edge
nodes is 5, the traditional centralized computing paradigm
and the edge computing paradigm proposed in this paper are
adopted, respectively, and the calculation time comparison
for solving the optimal scheduling problem with PBDR is
shown in Table IV. Note that the testing is carried out on a
laptop with an Intel(R) Core(TM) i7-4790 CPU at 3.60 GHz
and 8 GB RAM.

It is not difficult to find that with the edge computing par‐
adigm, the calculation time of PBDR modeling is significant‐
ly reduced because different edge nodes simultaneously im‐
plement PBDR modeling after receiving the price signal
from the control center, thereby the total calculation time of
optimal scheduling problem with PBDR is decreased.

To verify the effectiveness of the proposed modeling meth‐
od for large-scale users further, we assume that users are
evenly distributed at each edge node. The total calculation
time changing with the number of users for PBDR modeling
is shown in Fig. 12, which supposes the number of edge
nodes is 5. Besides, the total calculation time changing with
the number of edge nodes is shown in Fig. 13, which sup‐
poses the number of PBDR is 60, 80, 100, respectively.
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Fig. 13. Total calculation time changing with number of edge nodes con‐
sidering given number of users.
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Fig. 12. Total calculation time changing with number of users.

TABLE IV
COMPARISON OF CALCULATION TIME WITH CENTRALIZED COMPUTING AND

EDGE COMPUTING PARADIGMS

Paradigm

Centralized computing

Edge computing

Calculation time (s)

PBDR modeling

19.116

4.956

Optimal scheduling

78.856

78.943

Total

97.972

83.899
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Fig. 11. Re-scheduling results of distribution system with different PBDR
modeling methods. (a) Re-scheduling results of purchasing power. (b) Re-
scheduling results of MT output.

TABLE III
COMPARISON OF SCHEDULING COSTS FOR DIFFERENT PBDR MODELING

METHODS

Method

PE

UF

LSTM

Proposed

Pre-scheduling
cost (¥)

19432

19340

19378

19353

Re-scheduling
cost (¥)

5598

5667

5457

5404

Total cost (¥)

25030

25007

24835

24757
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It can be observed from Fig. 12 that for a certain number
of edge nodes (5 in this case), the proposed edge computing
paradigm can effectively reduce the total calculation time
compared with the centralized computing paradigm. More‐
over, this reduction effect is more obvious as the number of
users increases, which verifies that the proposed edge com‐
puting paradigm has a significant effect on reducing the cal‐
culation time with PBDR modeling for large-scale users. Be‐
sides, the increase of the number of edge nodes can also sig‐
nificantly reduce the calculation time, as shown in Fig. 13,
but for a given number of users, the reduction effect is less
obvious as the number of edge nodes increases. Therefore,
for PBDR modeling of a certain number of users, there ex‐
ists a reasonable number of edge nodes.

For simplicity, we assume that each edge node is in
charge of PBDR modeling of 15 users. Thus, the total calcu‐
lation time of the optimal scheduling problem with different
computing paradigms is shown in Fig. 14. It can be ob‐
served that with the traditional centralized computing para‐
digm, the total calculation time increases sharply with the
growth of the number of users, while in the proposed edge
computing paradigm, the number of users has no significant
effect on the total calculation time, which demonstrates that
the proposed optimal scheduling method with edge comput‐
ing has good scalability and robustness. Note that the config‐
uration of edge nodes needs to comprehensively consider
various factors such as technology and economy, which is
not further analyzed in this paper, and how to achieve a rea‐
sonable configuration of edge nodes will be the future re‐
search field.

VII. CONCLUSION

In this paper, an optimal scheduling method of the distri‐
bution system with edge computing and PBDR is proposed,
which supports the participation of large-scale users. The
modified IEEE 33-node system is used as a case study, and
the following conclusions are obtained.

1) The application range of the proposed XGBoost-based
PBDR modeling method is expanded. With the bi-level mod‐
el for generating original training data, this method can over‐
come the drawback that conventional supervised learning
fails when the training data are insufficient.

2) Compared with the existing PBDR modeling methods,
the proposed XGBoost-based PBDR modeling method has
lower errors. Moreover, the proposed optimal scheduling

method has the lowest total cost, which proves that the pro‐
posed optimal scheduling method is beneficial for the opera‐
tion of the distribution system.

3) The edge computing paradigm can effectively reduce
the calculation time of optimal scheduling problems. Be‐
sides, the greater the number of users participating in DR is,
the more significant the solution time reduction can be,
which demonstrates that the edge computing paradigm is a
feasible solution for optimal scheduling of the distribution
system with large-scale users.

Note that the main work of this paper aims to propose a
feasible method for optimal scheduling of the distribution
system with large-scale users. For simplicity, the resource al‐
location of edge computing paradigm is not considered, and
future work will take the collaborative optimization of ener‐
gy and information resources into consideration. Besides,
this paper assumes that the information interaction only ex‐
ists between the control center and edge nodes, and the infor‐
mation exchange among edge nodes is not included, which
is reasonable in the application scenario of this paper. The in‐
formation interaction mechanism among multiple edge nodes
and its typical application in the distribution system, e.g., dis‐
tributed voltage control, should be evaluated further.

APPENDIX A

For the case that the XGBoost training data are sufficient,
the content below can be skipped over. The actual situation is
that, however, the ideal data are always insufficient for the
XGBoost model, which relies heavily on the training data. For
example, the current PBDR programs in China are mostly
based on the TOU signals, and there is a problem of insuffi‐
cient PBDR data in the early stage of the implementation of
the RTP. Thus, it is necessary to extract the PBDR characteris‐
tic parameters of different users, which based on the existing
TOU and corresponding PBDR data.

For user i, a bi-level PBDR parameter evaluation model is
constructed as follows.

1) Upper level: PBDR feature evaluation
Based on TOU price and corresponding PBDR data, the pa‐

rameter set of user i at time slot t is given by θ it =
{α i1 α i2 α i0 ; r u

i  r d
i ; Lfix

it  DLmax
it  DLmin

it }, where tÎ T º {t:t =1
2 }T ; α i1, α i2, and α i0 are the utility coefficients of user i;
r u

i and r d
i are the up and down ramp rates for the load power

regulation, respectively; Lfix
it is the fixed power consumption of

user i at time slot t; DLmax
it and DLmin

it are the upper and lower
limits at time slot t for the load power regulation, respectively.

Let the actual load power of the user i with the TOU price at
time t is Lreal

it and the optimized load power of the parameter
evaluation model is Lit. Obtain a time series of pairwise price-
consumption data (pTOU

t  Lreal
it ) from the existing historical data,

and then the parameter evaluation model is constructed as:

min
θitLit
∑

t

ωt|Lit - Lreal
it | (A1)

where θ it is the characteristic parameter; and ω t is the weight
coefficient.

2) Lower level: PBDR optimization
Based on the TOU price signal and the characteristic param‐
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Fig. 14. Total calculation time of optimal scheduling problem with differ‐
ent computing paradigms.
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eters θ it given by upper level, the PBDR optimization problem
of user i is given in (A2). Note that, the difference between the
the results of optimized PBDR modeling and the actual PBDR
modeling results is controlled by the upper level.

max
Lit

Ui =∑
t

(α i1 L2
it + α i2 Lit + α i0 )-∑

t

pTOU
t Lit (A2)

where Ui is the utility function of user i; the first term on the
right side is the revenue while the second term means the pay‐
off for the corresponding load power.

Let T-1 = {t:t = 23T}, Dt is the time interval, and Lit is
subject to:

Lit - Lit - 1 £ r u
i Dt "tÎ T-1 (A3)

Lit - 1 - Lit £ r d
i Dt "tÎ T-1 (A4)

Lit - Lfix
it £DLmax

it "tÎ T (A5)

Lit - Lfix
it ³DLmin

it "tÎ T (A6)

By solving the above bi-level optimization problem, the pa‐
rameter vector of user i, i. e., θ i, can be obtained. Then, the
RTP signal is utilized as the electricity price signal, which is
used to generate DR data considering RTP incentives.
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