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Abstract——High-quality datasets are of paramount importance
for the operation and planning of wind farms. However, the da‐
tasets collected by the supervisory control and data acquisition
(SCADA) system may contain missing data due to various fac‐
tors such as sensor failure and communication congestion. In
this paper, a data-driven approach is proposed to fill the miss‐
ing data of wind farms based on a context encoder (CE), which
consists of an encoder, a decoder, and a discriminator. Through
deep convolutional neural networks, the proposed method is
able to automatically explore the complex nonlinear characteris‐
tics of the datasets that are difficult to be modeled explicitly.
The proposed method can not only fully use the surrounding
context information by the reconstructed loss, but also make
filling data look real by the adversarial loss. In addition, the
correlation among multiple missing attributes is taken into ac‐
count by adjusting the format of input data. The simulation re‐
sults show that CE performs better than traditional methods
for the attributes of wind farms with hallmark characteristics
such as large peaks, large valleys, and fast ramps. Moreover,
the CE shows stronger generalization ability than traditional
methods such as auto-encoder, K-means, k-nearest neighbor,
back propagation neural network, cubic interpolation, and con‐
ditional generative adversarial network for different missing da‐
ta scales.

Index Terms——Data-driven, missing data imputation, wind
farm, deep learning, context encoder.

NOMENCLATURE

σ i
con (×) Activation function of the ith convolutional layer

σ i
dense (×) Activation function of the ith dense layer

σ i
tran (×) Activation function of the ith transposed convolu‐

tional layer
λ Weights between reconstructed loss and adver‐

sarial loss

B i
con Bias vector of the ith convolutional layer

B i
dense Bias vector of the ith dense layer

B i
tran Bias vector of the ith transposed convolutional lay‐

er

D(×) Output of discriminator

EX Expectation of sample X

F(×) Generated sample

Ladv Adversarial loss

Lrec Reconstructed loss

M A binary mask

MAE1 Mean absolute error

MAE2 The maximum absolute error

n Number of missing sample points in test set

R The maximum pooling area

RMSE Root mean square error

W i
con Weight of the ith convolutional layer

W i
dense Weight of the ith dense layer

W i
tran Weight of the ith transposed convolutional layer

X Complete samples of wind farms

X i
con Input feature of the ith convolutional layer

X i
dense Input feature of the ith dense layer

X i
jk Input feature of the ith maximum pooling layers

X i
tran Input feature of the ith transposed convolutional

layer

Y i
con Output feature of the ith convolutional layer

Y i
dense Output feature of the ith dense layer

yi The ith element of real data

y′i The ith element of filled data through a model

Y i
pool Output feature of the ith maximum pooling layers

Y i
tran Output feature of the ith transposed convolutional

layer

I. INTRODUCTION

THE volatility and intermittence of the output power of
wind farms pose challenges to the operation and plan‐

ning of the power system [1]. In order to ensure the safety
and stability of the power system, it is necessary to accurate‐
ly predict the output power of the wind farm using historical
data collected through the supervisory control and data acqui‐
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sition (SCADA) system. However, those collected data may
be incomplete, since the SCADA system is often interfered
with by various factors, such as sensor failure, cyber-attack,
and communication congestion [2]. Therefore, the missing
data imputation of wind farms is of great significance for
wind power forecasting.

The traditional methods for missing data imputation of
wind farms can be summarized into four categories: interpo‐
lation-based methods, regression-based methods, similarity-
based methods, and parameter-estimation-based methods.
The first category mainly includes the linear interpolation,
spline interpolation, and Cubic interpolation [3]. These kinds
of methods fill the missing data by constructing polynomials
whose parameters are obtained by using the information
around the missing position. High accuracy can be achieved
when the scale of missing data is very small, but they ignore
the correlation among multiple attributes in the filling pro‐
cess, which restricts the application scope of these methods
[4]. The second category mainly includes recurrent neural
networks (RNNs), random forest, and back propagation (BP)
neural networks [5], [6]. For example, the long short-term
memory network is utilized as a predictor to fill the missing
wind power data, which shows better performance than tradi‐
tional RNNs in [7]. To deal with the problem of filling the
large-scale missing wind power data, the improved random
forest is proposed to combine the matrix combination, linear
interpolation, and matrix transposition [8]. The simulation re‐
sults show that the improved random forest is applicable to
fill wind power data in various missing forms. Compared
with interpolation-based methods, regression-based methods
make full use of the correlation among attributes, resulting
in higher accuracy and wider application scope. The third
category mainly includes the mean substitution method, k-
nearest neighbor (KNN), and K-means [9]. Specifically, the
mean substitution method uses the mean value of the exist‐
ing incomplete attributes to fill all the missing data. This
method is simple and widely used, but it limits the diversity
and volatility of attributes, resulting in low accuracy [10].
KNN uses the mean value of the nearest k samples to fill
the missing data, while K-means uses the cluster center to
fill the missing attributes for samples with missing data in
the cluster [11]. Similar to the interpolation-based methods,
the similarity-based methods also ignore the correlation
among multiple attributes, which limit the accuracy of these
algorithms [12]. The fourth category mainly includes point
estimation and interval estimation [13], [14]. This kind of
method uses the existing data to fill in missing attributes
through the maximum likelihood estimation. For example,
the expectation-maximization algorithm uses missing data as
variables to participate in the process of parameter estima‐
tion, alternately updating missing data and parameters to be
estimated in an iterative manner, so as to achieve the goal of
missing data imputation [15]. However, the accuracy is great‐
ly affected by the form of the probability distribution func‐
tion assumed artificially [16].

As a branch of artificial intelligence, deep learning has
shown outstanding performance in many fields such as repre‐
sentation learning, image classification, and natural language
processing [17], [18], which has brought new opportunities

for the development of missing data imputation of wind
farms. The existing methods for missing data imputation of
wind farms mainly include the de-noising automatic encoder
(AE) and the conditional generative adversarial networks
(CGANs). Specifically, AE corrupts the input data and re‐
quires the decoder to minimize the damage, so as to learn a
semantically meaningful representation of samples [19].
However, its corruption process is typically low and local‐
ized, which does not need to undo much semantic informa‐
tion. The disadvantages of CGAN such as exploding gradi‐
ents and vanishing gradients in the training process still exist
in [20]-[22], which leads to low accuracy of filling data.

The context encoder (CE) is a new deep neural network
for missing data imputation developed from AE. Compared
with AE, CE shows a much deeper semantic understanding
of the scenario, and a stronger ability to represent high-di‐
mensional features over large spatial extents [23], leading to
its wide applications in various fields. For example, a long
short-term CE is proposed to fill missing air pollution data
in [24]. While in [25], CE is designed to mine spatial fea‐
tures and capture high-level information for 2-dimensional
image segmentation. The simulation results show that CE
achieves the state-of-art performance with superior accuracy.
To restore missing medium gaps of audio, CE including con‐
volutional and fully connected layers is proposed to capture
the context information of missing samples in [26]. The suc‐
cessful applications of CE in the image and audio fields
prove that it can learn complex objective laws through unsu‐
pervised training. Theoretically, CE can not only use deep
convolutional layers with strong learning ability to effective‐
ly mine the complex nonlinear correlation among the multi‐
ple attributes of wind farms, but also use the reconstructed
loss and adversarial loss to represent the spatial-temporal re‐
lationship between missing parts and complete samples, so
as to greatly improve the accuracy of missing data imputa‐
tion for wind farms. However, the existing network struc‐
tures of CE are designed for computer vision, which is not
suitable for the 1-dimensional data of wind farms [27].
Therefore, it requires to design a structure of CE with strong
feature extraction ability and high filling accuracy according
to the characteristics of data from wind farms.

This paper aims to design a CE to improve the accuracy
of missing data imputation for wind farms. The performance
of the proposed method is tested by a real-world dataset.
The key contributions of this paper are as follows.

1) A new data-driven, model-free, and scalable method is
proposed for missing data imputation of wind farms. By em‐
ploying the encoder-decoder-discriminator pipeline that con‐
sists of deep convolutional networks, it can fully explore the
dynamic nonlinear correlations among the multiple attributes
of wind farms that are difficult to be modeled explicitly,
such as the temporal correlation and dynamic changes of
wind power sequences.

2) This paper innovatively applies CE to missing data im‐
putation of wind farms. To generate a plausible hypothesis
for the missing data of wind farms, both a reconstructed loss
and an adversarial loss are designed as the loss function for
CE. Specifically, the reconstructed loss is responsible for ex‐
ploring the overall information of the missing data and co‐
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herence with regard to its surrounding context. In addition,
the adversarial loss makes filling parts look real, and reduces
the maximum absolute error of the model.

3) Extensive experiments on a real-world dataset of wind
farms are performed to validate the effectiveness of missing
data imputation. The influence of key parameters of CE (e.g.,
the number of iterations, the choices of optimizer and batch
size, the number of middle layers, and the weights of adver‐
sarial loss and reconstructed loss) on the performance is ana‐
lyzed by simulation, and some constructive suggestions for
the selection of key parameters are given.

The remainder of this paper is organized as follows. Sec‐
tion II formulates the missing data imputation problem based
on a CE. Section III presents the process of the missing data
imputation using CE. In Section IV, the effectiveness of the
proposed approach is verified by simulation. Section V dis‐
cusses the limitation and generalization of the proposed ap‐
proach. Section VI summarizes the paper.

II. FORMULATION OF MISSING DATA IMPUTATION

PROBLEM BASED ON CE

A. Encoder-decoder-discriminator Pipeline

As shown in Fig. 1, the overall framework of CE is an en‐
coder-decoder-discriminator pipeline. First of all, the reshap‐
ing function from Python 3.6 is used to reconstruct the in‐
complete sample from wind farms into a feature matrix to fa‐
cilitate connection to the encoder with convolutional (Conv)
layers and maximum pooling (Maxpool) layers. Then, the
feature matrix is passed through the encoder to obtain the
low-dimensional feature representation of the incomplete
sample, which is connected to the decoder with transposed
convolutional (ConvTran) layers. The decoder takes this low-
dimensional feature representation and generates the com‐
plete sample. The discriminator with convolutional layers,
flatten layers, and dense layers is regarded as a detector,
whose purpose is to identify the samples generated by the
encoder and decoder as much as possible.

The convolutional neural network (CNN) is a feed-for‐
ward neural network with a convolutional operation. Its
emergence has greatly promoted the development of artifi‐
cial intelligence. Because of its powerful feature extraction
capabilities, CNN has been widely used in various fields
such as fault diagnosis, object detection, speech recognition,
and semantic segmentation [28]. Therefore, CNN is chosen
to build the encoder, decoder, and discriminator.

The encoder consists of several Conv layers and MaxPool
layers as seen in Fig. 1. Specifically, the key operation of
the Conv layer is to perform a convolutional operation on
the output features of the previous layer, and then add a bias
vector as the input features to the next layer. Its mathemati‐
cal formula is expressed as:

Y i
con = σ i

con( X i
con*W i

con +B i
con ) (1)

where * is the operation of convolution. Note that the output
feature of a Conv layer is used as the input feature to the fol‐
lowing MaxPool layer in the encoder.

As shown in Fig. 2, the MaxPool layer reduces the dimen‐
sionality of the data output of the Conv layers to obtain a
low-dimensional feature representation of the incomplete
sample. Its mathematical formula is expressed as:

Y i
pool = max

jkÎR ( X i
jk ) (2)

Note that the output feature of a MaxPool layer is used as
the input feature to the next Conv layer in the encoder.

The decoder consists of the fully transposed Conv layers
as shown in Fig. 1 to obtain the same dimensionality as the
original input data. Specifically, the key operation of the
transposed Conv layer is to perform a transposed Conv oper‐
ation on the output features of the previous layer and then
add a bias vector as the input features of the next layer.
Note that the first input to the transposed convolutional layer
is the one from the last MaxPool layer. Its mathematical for‐
mula is expressed as:

ConvTran ConvTran ConvTranConvTranConv MaxPool Conv MaxPool

Conv Conv Conv Flatten Dense

True

False

Adversarial 

loss

Complete data

Incomplete data

Reconstructed matrix

Reconstructed 

loss

Encoder Decoder

Discriminator

Feature matrix

Feature matrix

Fig. 1. Framework of CE for missing data imputation.
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Fig. 2. Visualization of MaxPool layer.
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Y i
tran = σ i

tran( X i
tran ×W i

tran +B i
tran ) (3)

where × is the operation of the transposed convolution.
The discriminator consists of several convolutional layers,

a flatten layer, and a dense layer as shown in Fig. 1. Specifi‐
cally, the flatten layer is considered as a bridge between the
last convolutional layer and the dense layer, and it reshapes
the multi-dimensional features into a 1-dimensional vector
without changing the amplitude of the data. In other words,
the function of the flatten layer is to change the shape of the
data. The output of the dense layer is 0 or 1, which is used
to determine whether the input data is a reconstructed sam‐
ple or a real sample. Note that the input feature of the dense
layer is the output data of the flatten layer in the discrimina‐
tor. The mathematical formula of the dense layer is ex‐
pressed as:

Y i
dense = σ i

dense( X i
denseW

i
dense +B i

dense ) (4)

B. Loss Function

To generate a plausible hypothesis for the missing data of
wind farms, both the reconstructed loss and the adversarial
loss are designed as the loss function for CE. Specifically,
the reconstructed loss is responsible for exploring the overall
information of the missing data and coherence with regard
to its surrounding context. The mathematical formula of the
reconstructed loss Lrec is:

Lrec =  M ( )X -F ( )(1 -M)X
2

(5)

where the binary mask M corresponds to the missing posi‐
tion with a value of 1 wherever the data is dropped and 0
for input data; and  is the Hadamard product operation.

In addition, the adversarial loss makes filling parts look re‐
al, and has the effect of choosing a specific mode from the
probability distribution [29]. The mathematical formula of
the adversarial loss Ladv is:

Ladv =max EX( )lg ( D(X)) + lg (1 -D ( F ( (1 -M)X ) ) ) (6)

This equation is improved from the loss function of the
CGAN.

Ultimately, the overall loss function L for missing data im‐
putation of wind farms can be defined as:

L = λLrec + (1 - λ)Ladv (7)

where the weight λ is in the range of 0 to 1.

C. Missing Types

Different missing formats may have different effects on
the validity of research conclusions. According to the factors
leading to missing data, the types of missing forms can be
summarized into the following three categories: complete
random missing forms, non-random missing forms, and ran‐
dom missing forms [30]. Normally, the formats of missing
data caused by human error or sensor failure are considered
as the first category. For example, the operator may inadver‐
tently omit certain values when inputting data. Due to cyber-
attack or communication congestion, the SCADA system
may generate continuous missing data in a period, which is
a special case of non-random missing forms. Random miss‐
ing forms mean that the probability of missing data is only

related to non-missing variables, not related to missing vari‐
ables. For example, men are more willing to announce their
weight than women, so the lack of weight attributes is often
related to gender. In general, the main factors leading to
missing data of wind farms include sensor failures, cyber-at‐
tacks, and communication congestion. Therefore, the missing
data forms of wind farms mainly belong to the two catego‐
ries shown in Fig. 3.

III. PROCESS OF MISSING DATA IMPUTATION USING CE

The process of missing data imputation for wind farms us‐
ing CE is shown in Fig. 4, and the detailed steps are as fol‐
lows.

1) Load and normalize data: in addition to wind power,
the data of wind farms also include environmental attributes
such as wind direction, wind speed, air temperature, and den‐
sity. There is a strong correlation among these attributes, and
using them as input data helps improve the accuracy of miss‐
ing data imputation. Before the data are fed to CE, it is nec‐
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Fig. 4. Process of missing data imputation using CE.
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Fig. 3. Missing data forms of wind farms. (a) Continuous missing forms.
(b) Complete random missing forms.
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essary to normalize the samples of the wind farm; otherwise,
the loss function may not converge. This paper uses the min‐
imum-maximum normalization method to convert the input
data into the range of 0 to 1.

2) Reshape and divide data: to meet the format require‐
ments of convolutional layers and account for the correlation
among multiple attributes, the time series of multiple attri‐
butes from wind farms are transformed into a feature matrix
with the same number of columns and rows by the method
in [31]. Moreover, 80% of the samples are randomly select‐
ed to train the CE, and 10% of the samples are randomly se‐
lected as the validation set. The remaining samples are used
as the test set to evaluate the performance of the trained CE.

3) Initialize parameters and train CE: before starting to
train CE, it is necessary to initialize the network structure
and parameters such as the number of iterations, the number
of middle layers, and the weights of loss functions. Then,
the BP algorithm consisting of the forward incentive propa‐
gation and backward weight update is utilized to train CE.
Specifically, the input matrices are processed by the encoder
and decoder pipeline. The filling data output by the decoder
and real data are used to calculate the reconstructed loss and
adversarial loss. Next, the chain rule is utilized to transfer er‐
rors from the output layer to the middle layer. The weights
of each layer are updated by the gradient descent algorithms.
If the number of iterations is reached, the iteration will be
stopped and the result will be output.

4) Evaluate performance of CE: after training CE, the test
set will be used to evaluate the performance of the model.
To fully measure the variation in the errors in a set of impu‐
tation, the mean absolute error MAE1, root mean square er‐
ror RMSE, and the maximum absolute error MAE2 are select‐
ed to evaluate the performance:

MAE1 =mean | y'i - yi | i = 12n (8)

RMSE =
∑
i = 1

n ( )y'i - yi

2

n

(9)

MAE2 =max | y'i - yi | i = 12n (10)

IV. CASE STUDY

A. Dataset and Model Details

To fully test the performance of various models for miss‐
ing data imputation of wind farms, a real-world dataset col‐
lected from [32] is used for simulation and analysis. In this
dataset, the statistical attributes include wind power, wind di‐
rection at 100 m, wind speed at 100 m, air temperature at 2
m, surface air pressure, and density at hub height. These at‐
tributes are recorded every half an hour from January 1,
2011 to December 31, 2012. 80% of the data is randomly se‐
lected as the training set, 10% as the validation set, and the
rest as the test set.

The programs of CE for missing data imputation of wind
farms are implemented in Spyder 3.2.8 with Keras 2.2.4 and
Tensorflow 1.12.0 library. The programming language is Py‐

thon. The parameters of the computer are: Intel(R) Core(TM) i5-
10210U, the processor is @1.60 GHz and 2.11 GHz with 8
GB of memory.

In order to make CE have high performance for missing
data imputation of wind farms, the control variable method
in [33] is employed to find the suitable structures and param‐
eters of CE, as shown in Fig. 5.

Specifically, each attribute includes 48 sampling points
per day. In addition, the 12 sampling points at the end of the
previous day are also used as input data for each attribute to
capture the surrounding context information of missing
parts. Therefore, the size of each attribute is 1×60. In other
words, the original input data are a vector of 1×360 scales.
A zero element is added to the end of the input data, which
causes it to become a vector of 1×361 scales. In this case,
the input data can be converted into a matrix of 19×19

Reshape function

Output size

Input time series of the wind farm

Reshape function

Output sizeStructure  of discriminator

Flatten  

1

Structure of encoder-decoder

Input time series of the wind farm 6×60
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kernel = 2, strides = 2
10×10×16
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BatchNorm, LeakyReLU, kernel = 3
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Fig. 5. Structure and parameters of CE. (a) Encoder-decoder. (b) Discrimi‐
nator.
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scales by the method proposed in [31], so as to be fed to the
encoder-decoder pipeline and the discriminator. For the en‐
coder, it includes two convolutional layers and two maxi‐
mum pooling layers, and their activation functions are recti‐
fied linear unit (ReLU) functions. For the decoder, it in‐
cludes four transposed convolutional layers whose activation
functions are ReLU functions. For the discriminator, it in‐
cludes three convolutional layers, a flatten layer, and a dense
layer. The activation functions of convolutional layers are
leaky rectified linear unit (LeakyReLU) functions and the ac‐
tivation function of the dense layer is a sigmoid function.
The batch normalizations are applied to the discriminator so
as to alleviate over-fitting. The number of iterations is 1000,
and the optimizer is the Adam algorithm. λ is set to be 0.999.

Previous works show that the types of missing data in
wind farms include complete random missing forms and con‐
tinuous missing forms [8]. In order to verify the effective‐
ness of the proposed method, Section IV-B discusses the im‐
pact of key parameters, and the Section IV-C discusses the
performance of different methods for the data in complete
random missing forms. Furthermore, the correlation between
the filling accuracy and the missing data scale in complete
random missing forms is analyzed in Section IV-D, and the
performance of CE for continuous missing forms is present‐
ed in Section IV-E.

B. Discussions on Impact of Key Parameters

In order to observe the training stability and convergence
of CE, Fig. 6 shows how the loss function decays as the
number of iterations increases.

The loss function of CE decreases rapidly with the in‐
crease of iteration times. When the number of iterations is
more than 1000, its loss function tends to be a constant, indi‐
cating that CE has converged. Compared with existing meth‐
ods such as CGAN, the training process of CE is relatively
stable, and there is no gradient vanishing problem that
makes the loss function difficult to converge.

To explore the number of middle layers in encoder, decod‐
er, and discriminator, the number of middle layers is gradual‐
ly increased, and MAE1 and RMSE of the test set in different
middle layers are counted, as shown in Fig. 7.

Obviously, MAE1 and RMSE first become smaller and
then larger with the increase of the number of middle layers
in the encoder, decoder, and discriminator, which shows that
the number of middle layers cannot be too small or too
large. The appropriate number of middle layers for the en‐

coder and decoder is between 2 and 4, and the appropriate
number of intermediate layers for the discriminator is be‐
tween 1 and 4.

In order to analyze the influence of the weight λ on the
performance of CE, the size of λ is gradually increased, and
the MAE1 and RMSE of the test set are calaulated, as shown
in Fig. 8.

When λ is less than 0.9, the performance of CE improves
with the increase of λ. Furthermore, if λ is larger than 0.9,
MAE1 and RMSE decrease first and then increase with the in‐
crease of λ. The optimal size of λ is 0.999 for this dataset.

In order to find the appropriate batch size of the CE, the
batch size is gradually increased, and MAE1 and RMSE of
the test set in different batch sizes are counted, as shown in
Table I.

As the batch size increases, MAE1 and RMSE of the CE
first decrease and then increase. When the batch size is 16,
the MAE1 and RMSE are the smallest, which indicates that
the performance of missing data imputation is the best. In
general, a too large batch size leads to poor generalization,
and the model with a too small batch size has difficulties in
converging to the global optimal solution. Sixteen is a good
starting point for batch size, and larger or smaller values
may be fine for some datasets.

After initializing the above parameters, a gradient descent
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Fig. 8. MAE1 and RMSE of test set.

TABLE I
MAE1 AND RMSE OF TEST SET WITH DIFFERENT BATCH SIZES

Batch size

8

16

32

MAE1

(p.u.)

0.036

0.035

0.039

RMSE
(p.u.)

0.070

0.068

0.080

Batch size

64

128

257

MAE1

(p.u.)

0.037

0.045

0.047

RMSE
(p.u.)

0.075

0.089

0.093
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method is employed to optimize the loss function of the CE.
Normally, the popular gradient descent methods include Ad‐
amax, Adam, Nadam, RMSprop, Adadelta, SGD, and Adag‐
rad, which are used as black boxes in deep learning libraries
(e.g., Keras and Tensorflow). To show how to choose an ap‐
propriate optimizer for the CE in missing data imputation of
wind farms, the above-mentioned optimizers are set up and
simulated, and then MAE1 and RMSE of the test set are cal‐
culated, as shown in Table II.

Obviously, the CE has good performance when Adamax,
Nadam, RMSprop, and Adam are used as optimizers. Specifi‐
cally, the MAE1 and RMSE of the Adam algorithm are slight‐
ly smaller than those of the first three algorithms, which in‐
dicates that the Adam algorithm is the most suitable optimiz‐
er for the CE in missing data imputation of wind farms. Fur‐
thermore, the RMSE values of the SGD, Adadelta, and Adag‐
rad algorithms are all larger than 0.18, which shows that
they are not suitable for missing data imputation based on
the CE.

C. Comparison of Different Methods for Data in Complete
Random Missing Forms

To illustrate the effectiveness of the CE, the existing meth‐
ods such as the Cubic interpolation, BP, KNN, K-means,
CGAN, and AE are used as benchmarks. The proportion of
missing data in each sample is 5% and the missing data be‐
long to the complete random missing forms. The controlled

variable method in [33] is used to find the best parameters
and structure of these methods as follows.

1) For Cubic interpolation, the function interp1 from
MATLAB 2018a is used to obtain the missing data of the
wind farm.

2) For BP, the middle layers consist of three dense layers,
and the numbers of neurons are 10, 15, and 5, respectively.
The maximum number of epochs is 200. The learning rate is
0.1, and the performance goal is 0.00004. The neural fitting
toolbox from MATLAB 2018a is used to obtain the missing
data of the wind farm.

3) For KNN and K-means, the size of K is adjusted adap‐
tively according to the error of the training set.

4) For AE, its structure is consistent with the encoder-de‐
coder pipeline of the CE, and its loss function is a recon‐
structed loss. The maximum number of epochs is 500. Other
parameters are the same as those of the CE.

5) For CGAN, its framework and loss function can be
found in [34]. Besides, the generator is similar to the encod‐
er-decoder pipeline of the CE, and the discriminator is as
that of the CE.

The above-mentioned various algorithms are repeatedly
tested and the average filling errors of the test set are pre‐
sented in Table III and Fig. 9, which visualizes the median,
interquartile ranges with the box plot, and analyzes the full
probability distribution of filling errors with the violin plot.

The following conclusions can be drawn from Fig. 9 and
Table III.

1) Although the principles of KNN and K-means are sim‐
ple and easy to be applied, their absolute error is very large.
For example, the upper quartile of KNN is greater than 0.18,
and the upper quartile of K-means is larger than 0.5, while
the upper quartile of CE is less than 0.1. In addition, the
maximum absolute errors of KNN and K-means are also far
larger than that of CE.

2) The CE has the similar upper quartile, median, and low‐
er quartile with AE, BP, and CGAN, which are slightly infe‐
rior to those of Cubic interpolation. Moreover, the maximum
absolute error of CE is much smaller than AE, BP, and Cu‐
bic interpolation. Specifically, the maximum absolute errors
of CE, AE, BP, and Cubic interpolation are 0.567, 0.801,
0.879, and 0.995, respectively.

3) Most of the structures of CE and AE are the same, but
CE has one more discriminator and adversarial loss function

TABLE II
MAE1 AND RMSE OF TEST SET IN DIFFERENT OPTIMIZERS

Optimizer

Adadelta

Adagrad

Adam

Adamax

MAE1

(p.u.)

0.191

0.152

0.035

0.037

RMSE
(p.u.)

0.223

0.181

0.068

0.071

Optimizer

Nadam

RMSprop

SGD

MAE1

(p.u.)

0.036

0.039

0.154

RMSE
(p.u.)

0.069

0.072

0.180

TABLE III
ERRORS OF DIFFERENT METHODS

Method

AE

CE

K-means

BP

KNN

Cubic interpolation

CGAN

MAE1 (p.u.)

0.030

0.035

0.204

0.048

0.075

0.018

0.053

RMSE (p.u.)

0.082

0.068

0.275

0.100

0.135

0.077

0.097

MAE2 (p.u.)

0.801

0.567

0.975

0.879

1.011

0.995

0.590
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Fig. 9. Absolute errors of different methods.
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than AE. Comparing the absolute errors of CGAN, AE, and
CE, it is found that the discriminator and adversarial loss are
helpful to reduce the maximum absolute error of the model.
In addition, the MAE1, RMSE, and MAE2 of CE are smaller
than those of CGAN, which shows that the framework and
loss function of CE are more suitable for missing data impu‐
tation of wind farms than CGAN.

The analysis of variance is a popular statistical method,
which is often used to test the significance of mean differ‐
ences between two groups. Moreover, the analysis of vari‐
ance is employed to analyze differences between the results
obtained by CE and other methods. The probability values
(p-values) between CE and other methods are shown in Ta‐
ble IV.

The following conclusions can be drawn from Table IV.
1) The small p-values of KNN, K-means, BP, CGAN, and

Cubic interpolation indicate that the mean differences be‐
tween CE and other methods are significant, which is consis‐
tent with the simulation results in Table III.

2) Although the mean differences between CE and AE are
not significant, the maximum absolute error of CE is much
smaller than that of AE, as can be seen from Fig. 9.

In order to visually compare the differences of various al‐
gorithms, a sample from the test set is randomly selected
and visualized as shown in Fig. 10.

The following conclusions can be drawn from Fig. 10.
1) For the attributes with small changes (e.g., wind speed,

wind direction, air temperature, surface air pressure, and den‐
sity), the performances of KNN and K-means are significant‐
ly inferior to those of other algorithms, since the similarity-
based methods ignore the temporal correlation of attributes,
while the AE, CE, BP, CGAN, and Cubic interpolation make
good use of the surrounding context of the missing data, re‐
sulting in high accuracy.

2) For the attributes with large changes (e.g., wind pow‐
er), Cubic interpolation no longer shows slightly better per‐
formance than CE. For example, there is a large peak in
wind power at 10 p.m. as shown in Fig. 10(f). In this case,
the accuracy of Cubic interpolation that only fills in missing
data based on surrounding context information is very limit‐
ed, since there may be a great difference in the information
between the previous time and later time due to the strong
fluctuation of wind power curves. Relatively, CE not only
takes into account the overall information of the wind power
curve, but also considers the correlation among multiple fac‐
tors, which lead to higher accuracy of missing data imputa‐
tion than those of other algorithms for fast ramps.

In addition to filling accuracy, the cost-effectiveness of
the proposed method should be further discussed. Therefore,
Table V shows the running time of each method.

The following conclusions can be drawn from Table V.
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Fig. 10. Visualization of each attribute in one day. (a) Wind direction. (b)
Wind speed. (c) Air temperature. (d) Surface air pressure. (e) Density at hub
height. (f) Wind power.

TABLE IV
PROBABILITY VALUES BETWEEN CE AND OTHER METHODS

Method

KNN

K-means

AE

p-value

3×10-24

1×10-139

0.162

Method

BP

Cubic interpolation

CGAN

p-value

4×10-5

4×10-7

2×10-9
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1) Different from the interpolation-based methods and sim‐
ilarity-based methods, the deep neural network-based meth‐
ods need to train the model in advance. Hence, the pre-train‐
ing time of the BP, AE, CE, and CGAN is larger than 0,
while the pre-training time of the KNN, K-means, and Cubic
interpolation is equal to 0. Although these deep neural net‐

works need to be pre-trained, the pre-training time is less
than 4 min, which is acceptable.

2) Furthermore, the real-time calculation of the BP is lon‐
ger than those of other methods, since it needs to employ
the model more frequently to predict missing values in the
sample. Except for the BP, the real-time calculations of other
deep neural networks are slightly less than those of KNN, K-
means, and Cubic interpolation.

D. Correlation Between Filling Accuracy and Missing
Data Scale

To explore the correlation between the missing data scale
and the filling accuracy, the proportion of complete random
missing data scale in each sample is set to be 10%, 20%,
30%, 40%, and 50%, respectively. The starting position of
missing data is random. Then, the various algorithms are re‐
peatedly tested and the filling errors of the test set are
shown in Table VI and Fig. 11.

The following conclusions can be drawn from Table VI
and Fig. 11.

1) For different missing rates, MAE1, RMSE, and MAE2 of
the CE are always smaller than those of the K-means, KNN,
CGAN, and BP, which shows that CE has higher filling ac‐
curacy. Specifically, MAE1 of CE is always smaller than
0.045, RMSE of CE is always smaller than 0.085, and MAE2

of CE is always smaller than 0.652.
2) MAE1 evaluates the mean magnitude of the filling er‐

rors without considering their direction. In addition, it is a
linear index where all the individual errors are weighted
equally in the average. Relatively, RMSE makes larger errors
with higher weights, which means that RMSE is more useful
if larger errors are particularly undesirable. Specifically,
MAE1 of AE and Cubic interpolation is slightly smaller than
that of CE, but their RMSE is greater than that of CE, which
indicates that the maximum filling errors of AE and Cubic
interpolation are much larger than that of CE. In other
words, CE controls the maximum filling error better than
AE and Cubic interpolation.

3) As the missing rate increases, MAE2 of the Cubic inter‐
polation increases rapidly, indicating that it is very sensitive
to the scales of missing data and is only suitable for the data‐
set of wind farms with a small amount of missing data. In

contrast, MAE2 of other methods slowly increases with the
enlargement of the missing data scale, which demonstrates
that they are also suitable for datasets with high missing
rates.

E. Performance of CE for Continuous Missing Forms

Due to cyber-attack or communication congestion, the
SCADA system may have continuous missing data in a peri‐
od. To test the performance of the proposed method for con‐
tinuous missing data imputation of the wind farm, the pro‐
portion of missing data scale in each sample is set to be
10%, 20%, 30%, 40%, and 50%, respectively. Then, the vari‐
ous algorithms are repeatedly tested and the filling errors of
the test set are shown in Table VII.

The following conclusions can be drawn from Table VII.
1) When the missing rate is 10%, MAE1 of CE is better

than those of AE, K-means, CGAN, and KNN, but slightly
inferior to those of BP and Cubic interpolation. In addition,
RMSE and MAE2 of CE are smaller than other algorithms.
This phenomenon shows that if one wants to choose an algo‐
rithm with small MAE1, RMSE, and MAE2 to fill the continu‐
ous missing data of wind farms, CE, AE, CGAN, and BP
are very suitable. In particular, CE makes a trade-off be‐
tween MAE1 and MAE2.

TABLE V
RUNNING TIME OF EACH METHOD

Method

BP

AE

CE

CGAN

Offline
time (s)

19.45

190.26

71.53

85.60

Real
time (s)

134.47

0.23

0.15

0.15

Method

KNN

K-means

Cubic
interpolation

Offline
time (s)

0.00

0.00

0.00

Real
time (s)

0.27

0.65

1.96

TABLE VI
FILLING ERRORS OF DIFFERENT METHODS FOR COMPLETE RANDOM MISSING DATA

Method

AE

CE

K-means

BP

KNN

Cubic
interpolation

CGAN

Missing rate is 10%

MAE1

(p.u.)

0.031

0.037

0.191

0.047

0.080

0.018

0.042

RMSE
(p.u.)

0.083

0.071

0.265

0.104

0.130

0.074

0.093

MAE2

(p.u.)

0.904

0.619

0.939

0.954

1.068

0.991

0.692

Missing rate is 20%

MAE1

(p.u.)

0.030

0.038

0.189

0.046

0.085

0.021

0.043

RMSE
(p.u.)

0.078

0.075

0.260

0.098

0.143

0.144

0.089

MAE2

(p.u.)

0.900

0.606

0.956

0.941

1.337

8.053

0.694

Missing rate is 30%

MAE1

(p.u.)

0.033

0.041

0.198

0.046

0.094

0.021

0.047

RMSE
(p.u.)

0.085

0.078

0.269

0.096

0.147

0.126

0.083

MAE2

(p.u.)

1.019

0.590

0.968

0.860

1.257

8.053

0.727

Missing rate is 40%

MAE1

(p.u.)

0.038

0.044

0.198

0.047

0.100

0.029

0.049

RMSE
(p.u.)

0.093

0.083

0.268

0.096

0.153

0.226

0.091

MAE2

(p.u.)

0.980

0.615

0.960

0.851

1.388

9.965

0.713

Missing rate is 50%

MAE1

(p.u.)

0.040

0.045

0.194

0.047

0.107

0.033

0.050

RMSE
(p.u.)

0.098

0.085

0.266

0.097

0.166

0.253

0.092

MAE2

(p.u.)

0.962

0.652

0.963

0.974

1.448

13.031

0.758

972



LIAO et al.: DATA-DRIVEN MISSING DATA IMPUTATION FOR WIND FARMS USING CONTEXT ENCODER

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0.2

0.4

0.6

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

1
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

2
0
%

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

4
0
%

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

5
0
%

0.3

0.2

0.1

0.4

0.5

0 0.3 0.6 0.9 1.2
Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

3
0
%

0.2

0.4

0.6

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0 2 4 6 8
Absolute error (p.u.)

0.2

0.4

0.8

0.6

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

1
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

2
0
%

0.2

0.4

1.0

0.8

0.6

0 2 4 6 8
Absolute error (p.u.)

0.2

0.4

1.0

0.8

0.6

0 2 4 6 108
Absolute error (p.u.)

0.2

0.4

1.0

0.8

0.6

0 4 128

0.2

0.4

1.0

0.8

0.6

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

4
0
%

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

5
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

3
0
%

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0 0.2 0.4 0.6 0.8 1.0 0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0.02

0.04

0.06

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

1
0
%

0.02

0.04

0.06

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

2
0
%

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0.02

0.04

0.06

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

5
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

4
0
%

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

3
0
%

0.02

0.03

0.01

0.04

0.05

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0.02

0.03

0.01

0.04

0.05

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0.2

0.1

0.3

0.4

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0.2

0.1

0.3

0.4

0 0.2 0.4 0.6 0.8 1.0
Absolute error (p.u.)

0.2

0.1

0.3

0.4

0 0.3 0.6 0.9
Absolute error (p.u.)

0.2

0.1

0.3

0.4

0 0.3 0.6 0.9
Absolute error (p.u.)

0.2

0.1

0.3

0.4

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

1
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

2
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

5
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

4
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

3
0
%

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

1
0
%

0 0.2 0.4 0.6

0.05

0.10

0.15

0.20

0.25

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

2
0
%

0 0.2 0.4 0.6

0.05

0.10

0.15

0.20

0.25

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

3
0
%

0 0.2 0.4 0.6

0.05

0.10

0.15

0.20

0.25

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

5
0
%

0 0.2 0.4 0.6

0.05

0.10

0.15

0.20

0.25

0 0.2 0.4 0.6
Absolute error (p.u.)

0.2

0.1

0.3

0.4

0 0.2 0.4 0.6
Absolute error (p.u.)

0.2

0.1

0.3

0 0.2 0.4 0.6 0.8
Absolute error (p.u.)

0 0.2 0.4 0.6 0.8

0.10

0.05

0.15

0.20

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

1
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

2
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

5
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

4
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

3
0
%

0.05

0.10

0.15

0.20

0.25

0 0.2 0.4 0.6 0.8
Absolute error (p.u.)

0.05

0.10

0.15

0.20

0.25

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

4
0
%

0 0.2 0.4 0.6

0.05

0.10

0.15

0.20

Absolute error (p.u.)

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

1
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

2
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

3
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

5
0
%

P
ro

b
ab

il
it

y
 d

en
si

ty

w
it

h
 m

is
si

n
g
 r

at
e 

o
f 

4
0
%

0 0.3 0.6 0.9

0.05

0.10

0.15

0.20

Absolute error (p.u.)
0 0.3 0.6 1.20.9

0.05

0.10

0.15

0.20

Absolute error (p.u.)
0 0.3 0.6 1.20.9

0.05

0.10

0.15

Absolute error (p.u.)
0 0.3 0.6 1.20.9

0.05

0.10

0.15

Absolute error (p.u.)
0 0.3 0.6 1.20.9

0.05

0.10

0.15

(a)

(b)

(c)

(d)

(e)

(f)

(g)

Fig. 11. Visualization of absolute error for each attribute. (a) AE. (b) CE. (c) K-means. (d) BP. (e) KNN. (f) Cubic interpolation. (g) CGAN.
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2) Similar to the simulation results of data in complete
random missing form, the filling accuracy of various algo‐
rithms decreases with the increase of the missing rate. Cubic
interpolation is also very sensitive to the missing rate of con‐
tinuous missing data. MAE2 of Cubic interpolation is far larg‐
er than the existing maximum value of various attributes,
which makes Cubic interpolation not suitable for filling con‐
tinuous missing data for wind farms. For example, when the
missing rate is 50%, MAE2 of Cubic interpolation is 259.131

p.u., which is unacceptable.
3) In most cases, MAE1, RMSE, and MAE2 of CE are

smaller than those of other algorithms for high missing
rates, which indicate that CE is more suitable for filling con‐
tinuous missing data with a high missing rate than other al‐
gorithms. In addition to CE, the AE, CGAN, and BP per‐
form slightly worse than CE, because they can also consider
multiple factors, temporal correlation, and surrounding con‐
text information as well as CE.

In order to visually compare the performance of various
algorithms for continuous missing data of the wind farm,
Fig. 12 visualizes a sample selected from the test set where
the missing rate is 10%.

The following conclusions can be drawn from Fig. 12.
1) Since KNN and K-means do not consider the context

information around the missing data, their filling accuracies
are also very poor for the continuous missing data of wind
farms. When the position of missing data is at the head or
tail of the time series, the filling accuracy of Cubic interpola‐
tion will be unacceptable. In addition, it is also difficult to
capture the hallmark characteristics (e.g., fast ramps) of the
time series, while CE, AE, CGAN, and BP have certain
adaptability to these rapid changes. For example, the air tem‐
perature in Fig. 12(c) has a large valley between 5 a.m. and
10 a.m., which is captured by CE, AE, CGAN, and BP.

2) As shown in Fig. 12(b) and (f), the filling error of Cu‐
bic interpolation will become very large if the missing val‐
ues are at the beginning and end of the sample. In contrast,
CE can adapt to the situation of missing values in different
positions, and always keep a low filling error.

V. DISCUSSION

The objective of this paper is to propose a data-driven
method to fill missing data of wind farms via the CE. More‐
over, the effectiveness of the proposed CE has been tested
on a real-world dataset from the renewable energy lab of the
United States. The simulation results show that the CE
achieves state-of-art performance with superior accuracy for
miss data imputation of attributes with large changes (e. g.,
large peaks, large valleys, and fast ramps). However, the CE
has similar upper quartile, median, and lower quartile with
AE, CGAN, and BP for the attributes with small changes

(e.g., wind speed, wind direction, air temperature, surface air
pressure, and density), which are slightly inferior to those of
Cubic interpolation. Furthermore, the CE and Cubic interpo‐
lation may be integrated to a hybrid model to achieve the
highest filling accuracy for both attributes with large chang‐
es and attributes with small changes in wind farms.

Besides, the application of the CE is not limited to miss‐
ing data imputation of wind farms. For example, GCN may
also be suitable for scenario generations of renewable energy
sources and power loads of distribution networks by fine-tun‐
ing the structures and parameters of the model.

VI. CONCLUSION

Missing data imputation of wind farms is of great signifi‐
cance for wind power forecasting. In order to improve the
accuracy of missing data imputation for wind farms, a new
data-driven, model-free, and scalable method is proposed in
this paper. Through the simulation and analysis on a real-
world dataset, the following conclusions are obtained.

1) The number of iterations, the choices of optimizer and
batch size, the number of middle layers, and the weights of
adversarial loss and reconstructed loss have a great influence
on the performance of missing data imputation. Specifically,
the training process of CE is relatively stable, and there is
no gradient vanishing problem in CE. The appropriate num‐
bers of middle layers for the encoder, decoder, and discrimi‐
nator range from 2 to 4. The Adam algorithm is more suit‐
able to be the optimizer of CE than other algorithms. As the
batch size increases, the filling error of the CE first decreas‐
es and then increases. When the batch size is 16, the accura‐
cy is the largest. The larger λ is, the smaller the filling accu‐
racy will be. When λ is equal to 0.999, CE has an outstand‐
ing performance.

TABLE VII
FILLING ERRORS OF DIFFERENT METHODS FOR CONTINUOUS MISSING DATA

Methods

AE

CE

K-means

BP

KNN

Cubic
interpolation

CGAN

Missing rate is 10%

MAE1

(p.u.)

0.082

0.053

0.187

0.048

0.084

0.038

0.064

RMSE
(p.u.)

0.120

0.099

0.265

0.109

0.136

0.235

0.106

MAE2

(p.u.)

0.766

0.593

0.951

0.911

0.976

8.765

0.646

Missing rate is 20%

MAE1

(p.u.)

0.096

0.063

0.186

0.074

0.083

0.087

0.070

RMSE
(p.u.)

0.141

0.124

0.262

0.142

0.145

0.641

0.130

MAE2

(p.u.)

0.867

0.611

0.962

0.957

1.137

21.247

0.692

Missing rate is 30%

MAE1

(p.u.)

0.097

0.065

0.193

0.097

0.102

0.166

0.071

RMSE
(p.u.)

0.142

0.133

0.264

0.169

0.173

1.329

0.113

MAE2

(p.u.)

0.971

0.633

0.948

0.898

1.313

39.582

0.715

Missing rate is 40%

MAE1

(p.u.)

0.103

0.098

0.220

0.072

0.095

0.180

0.103

RMSE
(p.u.)

0.147

0.164

0.288

0.135

0.162

2.339

0.143

MAE2

(p.u.)

0.847

0.659

0.978

0.921

1.366

112.330

0.738

Missing rate is 50%

MAE1

(p.u.)

0.105

0.075

0.195

0.094

0.103

1.132

0.089

RMSE
(p.u.)

0.149

0.144

0.265

0.161

0.174

9.257

0.148

MAE2

(p.u.)

0.987

0.651

0.968

0.978

1.182

259.131

0.727
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2) The performances of KNN and K-means are significant‐
ly inferior to those of other algorithms, since the similarity-
based methods ignore the temporal correlation of attributes,
while the AE, CE, BP, CGAN, and Cubic interpolation make
good use of the surrounding context of the missing data, re‐
sulting in high accuracy. In addition, Cubic interpolation is
very sensitive to the missing rate, which means that its maxi‐
mum absolute error will be very large for datasets with large-
scale missing values. Relatively, MAE1, RMSE, and MAE2 of
CE are smaller than those of other algorithms for high miss‐
ing rate, which indicates that CE is significantly more suit‐
able for filling continuous data with a high missing rate than
other algorithms.

3) Interpolation-based methods and similarity-based meth‐
ods have difficulties in capturing the hallmark characteristics
(e.g., large peaks, large valleys, and fast ramps) of the time
series, while CE has certain adaptability to these rapid
changes. Most of the structures of CE and AE are the same,
but CE shows a better performance than that of AE, which
indicates that the discriminator and adversarial loss are sig‐
nificantly helpful to reduce the maximum absolute error of
the model.

4) Although the CE needs to be pre-trained, the pre-train‐
ing time is about 71.25 s, which is acceptable. Furthermore,
the real-time calculations of CE are slightly less than those
of KNN, K-means, and Cubic interpolation.
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