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Lp Quasi Norm State Estimator for Power Systems
Zhongliang Lyu, Hua Wei, Xiaoqing Bai, Daiyu Xie, Le Zhang, and Peijie Li

Abstract——This paper proposes an Lp (0<p<1) quasi norm
state estimator for power system static state estimation. Com‐
pared with the existing L1 and L2 norm estimators, the pro‐
posed estimator can suppress the bad data more effectively. The
robustness of the proposed estimator is discussed, and an analy‐
sis shows that its ability to suppress bad data increases as p de‐
creases. Moreover, an algorithm is suggested to solve the non-
convex state estimation problem. By introducing a relaxation
factor in the mathematical model of the proposed estimator, the
algorithm can prevent the solution from converging to a local
optimum as much as possible. Finally, simulations on a 3-bus
DC system, the IEEE 14-bus and IEEE 300-bus systems as well
as a 1204-bus provincial system verify the high computation ef‐
ficiency and robustness of the proposed estimator.

Index Terms——Power system bad data, quasi norm estimator,
robustness, state estimation.

I. INTRODUCTION

AS one of the core applications of energy management
systems (EMSs), state estimation (SE) is the basis of

other advanced applications. This technique involves filter‐
ing random noises and provides an estimation of the most
likely state of a system based on a redundant set of measure‐
ments that contain a certain degree of error.

The weighted least squares (WLS) [1] - [4], as a classic
method implemented for power system SE, is an L2 norm es‐
timator, whose mathematical model is succinct and easy to
solve. Unbiased estimation results can be obtained from mea‐
surements with Gaussian noise. However, the performance
of the WLS may dramatically deteriorate in the presence of
bad data, which have a significant influence on the estima‐
tion. Therefore, post-SE schemes for bad data identification
are usually implemented with the WLS. The largest normal‐
ized residual (LNR) test [5] - [7] is one of those schemes,
which can identify bad data effectively but cannot suitably
handle multiple conforming errors.

In this regard, a series of robust SE algorithms were pro‐
posed [8] - [11]. One of them is the weighted least absolute
value (WLAV) method, which is an L1 norm estimator. How‐
ever, the estimation results of this method are unsatisfactory
when bad leveraged data exist. To solve this problem, the
generalized-M (GM) estimators [12] and high-breakdown
point estimators [13] have been proposed. Moreover, in [14],
a scaling strategy was used in conjunction with the WLAV
method to handle bad leveraged data. Simulation results indi‐
cated the effectiveness of the weighted least absolute value
with scaling (WLAV-S) method in suppressing bad leveraged
points. In [15], a robust iteratively reweighted least squares
(IRLS) method for power system SE was proposed. Through
the introduction of an adaptive weighting in the least squares
(LS) estimation, the proposed method in [15] can mitigate
the impact of bad data effectively.

In [16], based on the theory of uncertainty in measure‐
ment, a robust state estimator, known as the maximum nor‐
mal measurement rate (MNMR) estimator, was proposed.
Simulations showed that the MNMR estimator is highly ro‐
bust to the existence of bad conforming or leveraged data,
but it cannot filter the noise well for normal measurements.
An estimation is deemed nonproblematic within the relevant
interval. Based on the maximum correntropy criterion
(MCC) [17], [18], the maximum exponential square (MES)
estimator was proposed in [19], which can automatically sup‐
press bad data, and its calculation is rapid. The maximum ex‐
ponential absolute value (MEAV) estimator was defined in
[20], [21], which can suppress different types of bad data ro‐
bustly and efficiently. The MEAV and MES share the same
theoretical foundation, and the main difference between
them is that the former uses the Laplace kernel function,
whereas the latter uses the Gaussian kernel function. Howev‐
er, the optimal solutions of the MEAV and MES are both
sensitive to the Parzen window width. High-quality estima‐
tions cannot be obtained when this width is too large or too
small.

In recent years, several signal analysis algorithms and im‐
age processing algorithms based on Lp quasi norm minimiza‐
tion have been widely studied and applied [22] - [26]. Com‐
pared with the L1 and L2 norms, the Lp quasi norm exhibits
a higher rejection capability for invalid information in the
aforementioned algorithms. However, this advantage of the
Lp quasi norm has not been applied in the power system SE.
Therefore, based on the existing literature [22] - [26], the Lp

quasi norm is introduced into power system SE to solve the
problem of low estimation quality caused by bad data in tra‐
ditional norm estimators. Owing to the bad data rejection ca‐
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pability of the Lp (p® 0) metric, the breakdown point of the
proposed method is improved. As a result, the proposed
method can perform better than the existing methods, such
as least absolute value with scaling (LAV-S) method and
IRLS method, in a low-redundancy environment with bad da‐
ta. The main contributions of this paper are as follows.

1) An Lp quasi norm state estimator for power systems is
presented, which can handle bad data more effectively than
traditional norm estimators, and it can solve the problem of
low estimation quality that results from bad data.

2) A relaxation algorithm for solving the non-convex Lp

quasi norm SE problem is suggested. This algorithm can pre‐
vent the solution from converging to a local optimum be‐
cause of measurement noise as much as possible. Hence, an
effective implementation of the proposed estimator can be
achieved.

3) After the analysis of computation efficiency and estima‐
tion quality of the proposed estimator, an approximately opti‐
mal value of p (p = 0.1) for practical implementation is pro‐
vided.

The remainder of this paper is organized as follows. The
Lp quasi norm SE problem is formulated in Section II. The
characteristics of the proposed estimator are discussed and
analyzed in Section III. Section IV presents the algorithm
for solving the proposed SE problem. Simulation results are
presented in Section V. Finally, the conclusions are given in
Section VI.

II. FORMULATION OF LP QUASI NORM SE PROBLEM

In the real vector space Rn, the Lp quasi norm (0 < p < 1)
[27] of the vector x (xÎRn) is defined as:

 x
p

p
=∑

i = 1

n

|xi|
p (1)

where n is the number of elements in x. Equation (1) de‐
scribes a quasi norm as the expression violates the triangle
inequality [28]-[30].

The measurement equation of SE problem can be de‐
scribed as:

z = g(x)+ r (2)

where zÎRm is the measurement vector, and m is the num‐
ber of measurements; rÎRm is the measurement residual
vector; and g(x):Rn®Rm is a vector of nonlinear functions.

According to (1) and (2), the nonlinear Lp quasi norm SE
problem may be formulated as the following nonlinear pro‐
gramming problem:

ì

í

î

ïïïï

ïïïï

min eT|r|p

s.t. h(x)= 0

r = z - g(x)

(3)

where h(x):Rn®Rd is the zero-injection equality constraint;
and e =[111]TÎRm.

III. CHARACTERISTICS OF LP QUASI NORM STATE

ESTIMATOR

In this section, we analyze the characteristics of the Lp

quasi norm state estimator based on the definition of lever‐

aged measurement, and we demonstrate that the proposed es‐
timator is more robust than the least absolute value (LAV)
estimator in the presence of bad leveraged data.

A. Robustness of Lp Quasi Norm State Estimator

When p > 1, the optimal condition of (3) can be expressed
as:

¶(eT|r|p )
¶x

=
¶(eT|r|p )

¶r
¶r
¶x

=
¶(eT|r|p )

¶r
¶(z - g(x))

¶x
=

-p
¶g(x)
¶x

diag(e)sign(r)|r|p - 1 = 0Þ

Ñg(x)diag(e)sign(r)|r|p - 1 = 0 (4)

where sign(r) is a diagonal function with elements sign(ri ),
and sign(ri )= 1 when ri ³ 0 and 0 otherwise.

When p > 1® 1, namely p = 1+, (4) can be rewritten as (5),
which represents the optimal condition of the LAV SE prob‐
lem [31].

Ñg(x)diag(e)sign(r)|r|1
+ - 1 »Ñg(x)sign(r)e = 0 (5)

The ith column of Ñg(x)sign(r) in (5) can be given as:

Ñgi (x)sign(ri ) (6)

According to [19], if the values of elements in Ñgi (x) are
larger than those in other columns, the corresponding measure‐
ment is referred to as the leveraged measurement. As the LAV
estimator cannot suppress the influence of Ñgi (x) (the source
of leveraged points), it cannot handle bad leveraged data.

When p < 1, (3) becomes an Lp quasi norm SE problem,
which can be expressed as an LAV SE problem with self-
adaptive weighting:

ì

í

î

ïïïï

ïïïï

min eT|r|p = eT|r|p - 1|r|

s.t. h(x)= 0

r = z - g(x)

(7)

System (7) is similar in form to IRLS SE [15]. Self-adap‐
tive weighting based on residuals is incorporated into both
of their objective functions, which helps improve the robust‐
ness of the LAV and LS estimators. However, the difference
between (7) and IRLS is clear. In IRLS, the self-adaptive
weighting is implemented with a piecewise function and dif‐
ferent weighting equations are set for measurements based
on the values of residuals; consequently, bad data can be
suppressed. In (7), |r|p - 1 is a continuous weight function,
which automatically changes with the values of residuals
and filters out bad data at each iteration. In addition, (7) in‐
volves Lp quasi norm SE, whereby bad data can be sup‐
pressed. When p® 0, the proposed estimator operates
through an L0 metric. This property enables the classification
of normal and bad data effective through Lp quasi norm state
estimator, thereby enhancing robustness. The purpose of ex‐
tracting |r|p - 1 from |r|p is to analyze the characteristics of the
LAV and Lp quasi norm state estimators, and then demon‐
strate that the proposed estimator is more robust than the
LAV estimator. Moreover, Lp quasi norm SE problem cannot
be solved directly in a noisy environment owing to the exis‐
tence of multiple local optimums. Therefore, a relaxation
model is proposed to handle this problem based on (7).
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When p < 1, (6) can be rewritten as:

Ñgi (x)sign(ri )|ri|
p - 1 (8)

Figure 1 shows that the curves of |ri|
p - 1 varying with |ri|

when p < 1.

For a bad leveraged data, if p = 0.1 and ri = 100, we have
|ri|

0.1 - 1 = 100-0.9 = 0.0158, that is, the value of Ñgi (x)|ri|
p - 1

when p = 0.1 is reduced by 0.0158 times than that when
p = 1. Hence, the influence of Ñgi (x) can be suppressed, and
the estimation results of Lp quasi norm SE are not affected
by the bad leveraged data. For a good leveraged data,
Ñgi (x) is not downweighted by |ri|

p - 1. As a result, the im‐
provement in estimation accuracy brought by the good lever‐
aged data is not weakened but instead enhanced.

Based on the aforementioned discussion, |ri|
p - 1 when p < 1

plays a role of self-adaptive weighting in (7). As p decreas‐
es, the effect of |ri|

p - 1 on Ñgi (x) becomes stronger, and the
estimator becomes more robust.

Since |ri|
p - 1 = 1 when p = 1, the effect of self-adaptive

weighting does not activate in the LAV estimator [32], [33].
Therefore, the proposed estimator is more robust than the
LAV estimator in the presence of bad leveraged data.

To better demonstrate the robustness of the proposed esti‐
mator, a 3-bus DC system is used as an example. The topolo‐
gy of the system and the power flow results are shown in
Fig. 2, where V1, V2, and V3 are the node voltages; I12 and I23

are the line currents; P1, P2, and P3 are the injected active
power; and R12 and R23 are the line resistances.

1 32
R12 = 1/15 p.u.

I12 = 0.075 p.u. I23 = 0.005 p.u.

R23 = 1 p.u.

V3 = 1.045 p.u.V2 = 1.050 p.u.V1 = 1.055 p.u.

P3 = �0.00523 p.u.P2 = �0.0735 p.u.P1 = 0.07913 p.u.

Fig. 2. Topology of 3-bus DC system and power flow results.

It is assumed that z1 = 1.045, z2 =-0.005, z3 = 0.010, and
z4 = 14.175 are the measurement values of V2, I32, I23, and I21,

respectively, where z4 (R12R23 ) is the bad leveraged data.
We aim to estimate the true state of the system.

To illustrate how the bad leveraged data affect the optimal
system value on a two-dimension plane, the aforementioned
SE problem is simplified without loss of generality. It is as‐
sumed that V1 = 1.055 p.u. and V3 = 1.045 p.u. are known.
We estimate V2 = x using the measurements z1, z2, z3, and z4.

Based on the power flow equation, we can obtain r1 =
z1– g1 (x)= z1–V2 = 1.045–x, r2 = z2– g2 (x) = z2– (V3– V2 )/R23 =
x–1.050, r3 = z3– g3 (x)= z3– (V2–V3 )/R23 = –x + 1.055, and r4 =
z4 – g4 (x)= z4– (V2– V1 )/R12 = –15x + 30.000 as the residual
functions of V2, I32, I23, and I21, respectively.

According to (3), the aforementioned SE problem can be
described as:

min

                 
       
ì
í
î
∑
i = 1

3

|zi - gi (x)|p

①

+
ü
ý
þ

     
|z4 - g4 (x)|p

②

③

(9)

The curves of ①, ②, and ③, with an assumption that p =
1, are depicted in Fig. 3. It can be observed that the mini‐
mum point of ③ resulting from the superposition of ① and
② deviates from the true value; hence, it does not appear in
Fig. 3. The minimum point of ③ is determined by ② (bad
leveraged data term). Therefore, the LAV estimator could
not suppress the bad leveraged data.

The curves of ①, ②, and ③, with an assumption that p =
0.1, are depicted in Fig. 4. It can be observed that the mini‐
mum point of curve ③ resulting from the superposition of
① and ② is close to the true value. This verifies that the
breakdown points of Lp quasi norm state estimator are high‐
er than those of the LAV estimator in the presence of bad
leveraged data.

However, Lp quasi norm SE problem is a non-convex
problem that possesses many local minimums when the mea‐
surements are noisy. As shown in Fig. 4, two local mini‐
mums appear at x = 1.045 and x = 1.055, respectively. It is
hard to find the global optimum by solving this non-convex
problem directly. More importantly, the statistical efficiency
of the Lp quasi norm state estimator is relatively lower than
those of the WLS and LAV estimators.
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Fig. 1. Curves of |ri|
p - 1 varying with |ri| when p < 1.

1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070

14.1

0.05

0

14.2

14.3

14.4

14.5

1

2
3

x

~~

V
a
lu
e

Fig. 3. Curves of ①, ②, and ③ when p = 1.
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B. Relaxation Model of Lp Quasi Norm SE Problem

To handle the aforementioned problems, a relaxation mod‐
el of Lp quasi norm SE problem is proposed. By introducing
a relaxation factor τ > 0, (7) can be rewritten as:

ì

í

î

ïïïï

ïïïï

min ψ̂Τ (r)|r|

s.t. h(x)= 0

r = z - g(x)

(10)

where ψ̂(r)=[ψ̂(r1 ) ψ̂(r2 )  ψ̂(ri )  ψ̂(rm )]T, and ψ̂(ri )=
(|ri| + τ)p - 1.

When there are no gross errors, the vector r (ri τ) be‐
comes small and (11) can be obtained.

ì
í
î

ïï
ïï

ψ̂(r1 )» ψ̂(r2 )» » ψ̂(rm )» ψ̂(τ)

ψ̂(r)»[c0c0c0 ]T (11)

Therefore, the modified Lp quasi norm SE problem is simi‐
lar to the LAV SE problem when there are no gross errors.
The statistical efficiency of the relaxation model is im‐
proved. Moreover, local optimums caused by the measure‐
ment noises do not appear in the relaxation model of Lp qua‐
si norm SE problem.

To illustrate the effectiveness of the proposed relaxation
model, we further analyze the simple example of the 3-bus
DC system.

According to (10), the SE problem of the 3-bus DC sys‐
tem can be described as:

min

                       
          
ì
í
î
∑
i = 1

3

ψ̂(ri )|zi - gi (x)|

④

+

         
ü
ý
þ

ψ̂(r4 )|z4 - g4 (x)|

⑤

⑥

(12)

where ψ̂(ri )= (|zi - gi (x)| + τ)p - 1.
The curves of ④ , ⑤ , and ⑥ , with assumptions that

p = 0.1 and τ = 0.1, are depicted in Fig. 5. The minimum
point of curve ⑥ resulting from the superposition of ④ and
⑤ is also close to the true value. More importantly, the lo‐
cal minimum does not appear in Fig. 5. This verifies that the
proposed model can prevent a solution from converging to a
local optimum caused by the measurement noises.

IV. ALGORITHM FOR SOLVING LP QUASI NORM

SE PROBLEM

System (10) can be transformed into an equivalent model
as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

min ψ̂Τ (r)r

s.t. h(x)= 0

r ³ z - g(x)

r ³ g(x)- z

(13)

By introducing two m-dimension vectors of positive slack
variables l+ ÎRm

+ and u+ ÎRm
+ , (13) can be transformed as:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïï
ï

ï

min ψ̂Τ (r)r

s.t. h(x)= 0

(l+u+ )³ 0

r - z + g(x)- l+ = 0

r + z - g(x)- u+ = 0

(14)

From (14), we can obtain: [(r - z + g(x)- l+ )+ (r + z - g(x)-
u+ )]/2 = 0Þ r = l + u, [(r - z + g(x)- l+ )- (r + z - g(x)- u+ )]/2 =
0Þ z - g(x)+ l - u = 0. Hence, (14) can be transformed as:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

min ψ̂Τ (·)(l + u)

s.t. h(x)= 0

(lu)³ 0

z - g(x)+ l - u = 0

(15)

where ψ̂(·)= (l + u + τ)p - 1; l =
1
2

l+; and u =
1
2

u+.

The Lagrangian function associated with (15) can be de‐
fined as:

L(xluλπαβ)= ψ̂Τ (·)(l + u)- λTh(x)-

πT (z - g(x)+ l - u)- αT l - βTu (16)

where (αβπ)ÎRm and λÎRd are the Lagrangian multipli‐
ers; and αT l and βTu are the complementarity terms, which
can drive the complementarity equation of the Karush-Kuhn-
Tucker (KKT) conditions. When (αT l + βTu)® 0, the KKT
conditions are satisfied, and the optimal solution of the pri‐
mal problem is obtained [34].

According to the KKT conditions of (15), the KKT equa‐
tions can be expressed as:

1

2

1.030 1.035 1.040 1.045 1.050 1.055 1.060 1.065 1.070
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V
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Fig. 4. Curves of ①, ②, and ③ when p = 0.1.
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Fig. 5. Curves of ④, ⑤, and ⑥ when p = 0.1.
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ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

Lx = ¶L ¶x =Ñh(x)λ -Ñg(x)π = 0

Ll = ¶L ¶l = pψ̂(·)- τψ̂′ (·)- π - α = 0

Lu = ¶L ¶u = pψ̂(·)- τψ̂′ (·)+ π - β = 0

Lλ = ¶L ¶λ = h(x)= 0

Lπ = ¶L ¶π = z - g ( )x + l - u = 0

(17)

ì
í
î

Lα =ALe = 0

Lβ =BUe = 0
(18)

(luαβ)³ 0 (19)

where ψ′ (·)= (p - 1)(l + u + τ)p - 2; and A, B, L, and U are the
diagonal matrices with elements α i, β i, li, and ui, respectively.

However, (18) cannot be solved directly using the New‐
ton’s method as:

{LDα +ADl =-ALe
UDβ +BDu =-BUe (20)

At the k th iteration, if l (k)
i becomes zero and α(k)

i > 0, we can
obtain that Dl (k)

i = 0 according to (20), indicating that li re‐
mains zero at all subsequent iterations. Such an undesirable
attribute precludes the global convergence of the algorithm
[34]. Hence, it is necessary to introduce a perturbed parame‐
ter μ > 0 to relax (18), which is formulated as:

ì
í
î

ïïLμ
α =ALe - μe = 0

Lμ
β =BUe - μe = 0

(21)

where μ = σ ×Gap/(2m), Gap = αT l + βTu [34], which is the
complementarity gap, and σÎ(01) is the centering parameter.

By applying the Newton’s method to solve the perturbed
KKT equations, we can obtain:

ì

í

î

ï

ï
ïï
ï

ï

ï

ï
ïïï
ï

ï

ï

H(·)Dx +Ñh(x)Dλ -Ñg(x)Dπ =-Lx

C(·)Dl +C(·)Du -Dπ -Dα =-Ll

C(·)Dl +C(·)Du +Dπ -Dβ =-Lu

ÑTh(x)Dx =-Lλ

-ÑT g(x)Dx +Dl -Du =-Lπ

(22)

ì
í
î

ïïLDα +ADl =-Lμ
α

UDβ +BDu =-Lμ
β

(23)

ì

í

î

ïïïï

ïïïï

H(·)=Ñ2h(x)λ -Ñ2 g(x)π

C(·)= diag(pψ′ (·)- τψ̂″(·))
ψ̂″(·)= (p - 1)(p - 2)(l + u + τ)p - 3

(24)

We can obtain [DxDπDλDαDβDlDu]T by solving (25).

é
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β Ll Lu ]T (25)

where E is a diagonal matrix with elements ei.
To ensure (luαβ)> 0, we can calculate the primal and

dual step lengths (denoted by θP and θD, respectively) [8] by:
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θP = 0.995min{ min
i

(-li /Dli:Dli < 0;-ui /Dui:Dui < 0)1}

θD = 0.995min{ min
i

(-α i /Dα i:Dα i < 0;-β i /Dβ i:Dβ i < 0)1}
(26)

The procedure of solving the Lp quasi norm SE problem
can be summarized as Algorithm 1.

There are two remarks to be noticed as follows.
1) The parameter 0.995 is introduced for the primal and

dual step lengths (θPθD ) to ensure the slack variables l and
u satisfying (lu)> 0 and the Lagrange multipliers α and β
satisfying (αβ)> 0. This mechanism can ensure the global
convergence of the algorithm [34]. In theory, this parameter
can be set to be any value between 0 and 1, and it is sug‐
gested between 0.99 and 0.9995 in [34]. For the Lp quasi
norm SE problem, the algorithm performs well and almost
the same when this parameter is in [0.99, 0.9995]. Hence, in
this study, the value of 0.995 is used.

2) The relaxation factor τ is the key parameter in the Lp

quasi norm SE algorithm. To ensure the performance of the
proposed algorithm, a suitable value of τ > 0 is needed.

From Section III-B, the relaxation factor τ can prevent the
solution from converging to a local optimum caused by mea‐
surement noise. As a result, the statistical capabilities of the
proposed algorithm are enhanced, and the convergence is im‐
proved. However, as τ increases, the Lp quasi norm state esti‐
mator reduces to an LAV estimator. Therefore, a suitable val‐
ue of τ is needed to address this problem.

To illustrate how the relaxation factor τ affects the perfor‐
mance of the proposed algorithm, three cases are considered,
namely nonconvergence, k > 20, and k £ 20. Table I lists the
number of the three cases when τ = 0.001, 0.05, 0.1, and 0.2
on an IEEE 300-bus system (redundancy is 1.45) with a ran‐
dom Gaussian noise (standard deviation is 0.001 p. u.). The
parameter p is set to be 0.1.

As shown in Table I, of the 1000 test cases, 978 cases are
nonconvergent when τ = 0.001, while all cases are conver‐
gent when τ = 0.05, 0.1, and 0.2. Moreover, there are 56 and
0 cases of k > 20 when τ = 0.2 and τ = 0.1, respectively. Based
on the result, τ can be set between 0.05 and 0.2. In this pa‐

Algorithm 1: procedure of solving Lp quasi norm SE problem

Initialization: choose the parameter p; set the iteration number k = 0 and
the maximum iteration number kmax; set the tolerance as ε = 10-3 and the
centering parameter as σÎ(01); choose (luαβ)> 0, λ ¹ 0, π = 0, and τ >
0; set x as the flat start voltage of the generator bus.

Step 1: calculate the complementary gap Gap = αT l + βTu. If Gap < ε or k >
kmax, stop, and output the result; else, go to Step 2.

Step 2: calculate the perturbed parameter μ = σ ×Gap/2m.
Step 3: obtain [DxDπDλDαDβDlDu]T by solving (25).
Step 4: calculate θP and θD by (26).
Step 5: set the primal and dual variables as:
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Step 6: set k = k + 1, go to Step 1.
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per, τ is set to be 0.1.

As the relaxation model of Lp quasi norm SE is still con‐
sidered as a non-convex optimal model, the proposed algo‐
rithm typically cannot guarantee a global optimum. Howev‐
er, in most cases, the quality of such a solution is compara‐
ble with that of the global optimal one.

V. SIMULATION RESULTS AND SELECTION OF P

In this section, simulations on a 3-bus DC system, the
IEEE 14-bus and IEEE 300-bus systems as well as a 1204-
bus provincial system are carried out to evaluate the perfor‐
mance of the proposed estimator. In addition, the procedure
for choosing the exponent p is discussed. For comparison,
WLS + LNR, quadratic tangent (QT) estimator (a GM estima‐
tor) [15], LAV-S [14], and the LAV are also implemented.

The algorithms are coded in MATLAB. The PC used for
the simulations includes an Intel CoreTM i5-4590S, 2.60 GHz
processor, 4 GB RAM, and Win10 Ultimate.

A. 3-bus DC System with Bad Leveraged Data

The 3-bus DC system, which contains bad leveraged data,
is simulated to evaluate the performance of the proposed es‐
timator in suppressing bad leveraged data. The measurement
configuration of the 3-bus DC system is shown in Fig. 6,
where P1-2 and Q1-2 are the measurements of active and reac‐
tive power from bus 1 to bus 2, respectively, and set as bad
data, which are the leveraged measurements; V̇1, V̇2, and V̇3

are the node voltages; and X12, X13, and X23 are the line reac‐
tances.

The simulation results of 3-bus DC system are listed in
Table II. As listed in Table II, since the WLS + LNR estima‐
tor fails to detect the bad leveraged data in this simulation,
their adverse effect could not be mitigated in the estimation.
The results obtained by the WLS + LNR estimator deviate
from the true values. The estimation error of Q1-2 obtained
by this estimator is as high as 3189.29% of the true value
and is similar to those of the measurement value. The LAV

estimator also fails to obtain the correct result. The estima‐
tion error of Q1-2 obtained by the LAV estimator is as high
as 3273.28% of the true value. Instead, QT and LAV-S esti‐
mators successfully suppress the bad leveraged data.

For Lp quasi norm state estimator, owing to the self-adap‐
tive weighting in (10), the bad leveraged data are down‐
weighed sufficiently when p = 0.1 (the robust mechanism is
discussed in detail in Section III-A). Hence, the L0.1 estima‐
tor obtains unbiased results, and the maximum estimation er‐
rors of P1-2 and Q1-2 do not exceed 0.318% of the true value.

B. IEEE 14-bus System with Conforming Bad Data

The IEEE 14-bus system, which contains conforming bad
data, is simulated to evaluate the performance of the pro‐
posed estimator in suppresses conforming bad data. The mea‐
surement configuration of the IEEE 14-bus system is listed
in Table III.

P1, Q1, P1-2, and Q1-2 in the IEEE 14-bus system are the
conforming measurements, which are all set to be half of
their true values in this case. The simulation results of P1,
Q1 and P1-2, Q1-2 are listed in Tables IV and V, respectively.

It can be observed that WLS + LNR estimator could not
obtain the correct estimation results. In contrast, the other es‐
timators successfully suppress the bad conforming data in
the IEEE 14-bus system.

C. IEEE 14-bus System with Bad Critical Measurements

The IEEE 14-bus system, which contains bad critical mea‐
surements, is simulated to evaluate the performance of the
proposed estimator in suppressing bad critical data.

To form critical measurements, only P11-10 and Q9-10 associ‐
ated with state variables V10 and θ10 are used in the test sys‐
tem. Hence, P11-10 and Q9-10 become critical measurements,
and P11-10 is set as the bad data. The simulation results of
P11-10 and Q9-10 are listed in Table VI.

TABLE II
SIMULATION RESULTS OF P1-2 AND Q1-2 IN 3-BUS DC SYSTEM

Estimator

WLS + LNR

QT

LAV-S

LAV

L0.9

L0.5

L0.1

True value

Measurement value

P1-2

Value (p.u.)

-4.1172

-0.9581

-0.9573

-4.1425

-4.1369

-4.1586

-0.9567

-0.9563

-4.1563

Error (%)

330.530

0.188

0.105

333.180

332.600

334.860

0.042

0

334.620

Q1-2

Value (p.u.)

-2.9132

0.0950

0.0944

-2.9924

-2.9853

-2.9937

0.0946

0.0943

-2.9943

Error (%)

3189.290

0.742

0.106

3273.280

3265.750

3274.660

0.318

0

3275.290

TABLE I
NUMBER OF DIFFERENT CASES WITH DIFFERENT τ

τ

0.001

0.050

0.100

0.200

Number of different cases

Nonconvergence

978

0

0

0

k > 20

22

56

0

0

k £ 20

0

944

1000

1000

1

2

3
P1-2

V3 = 1.0 p.u.

Q1-2

.

V1 = 1.045��30ep.u.

X13 = 1.0 p.u.

X12 = 0.1 p.u. X23 = 1.0 p.u.

Measurements of active and

reactive power

.

V2 = 1.050��35ep.u.

.

Fig. 6. Measurement configuration of 3-bus DC system.

TABLE III
MEASUREMENT CONFIGURATION OF IEEE 14-BUS SYSTEM

Number
of bus

14

Number of
node voltage

Vi

14

Number of
lines

20

Number of
line flow
Pi-j and Qi-j

68

Number of
injected power

Pi and Qi

28
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As critical measurements are essential to the SE process,
all the estimators in Table VI fail to provide correct estima‐
tion results in this case.

To further evaluate the performance of the proposed esti‐
mator in a low-redundancy environment, different numbers
of measurements associated with state variables V10 and θ10

are used in the test system. Table VII shows the maximum
amount of bad data associated with V10 and θ10 that the L0.1

estimator can handle, which is denoted as NBad. In this simu‐
lation, NBad is close to round((ms - ns )/2), where ms is the
number of measurements associated with the state variables

V10 and θ10; and ns = 2 is the number of state variables V10

and θ10.

When p = 0.1, the cost function of the proposed estimator
becomes an L0.1 (L0.1®L0) metric. This property is helpful in
SE with bad data. Thus, the L0.1 estimator can also perform
well in a low-redundancy environment.

D. IEEE 300-bus System with Gaussian Noise

The statistical efficiency is an important criterion to evalu‐
ate the performance of an estimator. Thus, two groups (G1
and G2) of IEEE 300-bus system with Gaussian noise and
different measurement redundancies are simulated. The stan‐
dard deviation of noise is set as [0.0002,0.0010]p.u.. The mea‐
surement configurations of G1 and G2 are listed in Table VIII.

Formula (27) is used to evaluate the estimation results.
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S̄ =
1
m∑i = 1

m

(ẑ i - z̆i )
2

Smax =max || ẑ i - z̆i

Q̄=
1
n∑i = 1

n

(x̂i - x̆i )
2

Qmax =max || x̂i - x̆i

(27)

where z̆i and ẑi are the true and estimation values of zi, re‐
spectively, and they do not contain phase angles; x̆i and x̂i

are the true and estimation values of the state variables, re‐
spectively; S̄ and Q̄ are the average squared estimation er‐
rors of measurements and state variables, respectively; and
Smax and Qmax are the maximum estimation errors of measure‐
ments and state variables, respectively.

The average values of S̄ and Smax from 1000 simulations
on G1 and G2 with Gaussian noise are shown in Figs. 7 and
8, respectively.

The average values of Q̄ and Qmax from 1000 simulations
on G1 and G2 with Gaussian noise are shown in Figs. 9 and
10, respectively.

TABLE VII
THE MAXIMUM AMOUNT OF BAD DATA

ms

2

3

4

5

6

7

8

ns

2

2

2

2

2

2

2

NBad

0

1

1

2

2

2

3

TABLE VIII
MEASUREMENT CONFIGURATIONS OF G1 AND G2

Group

G1

G2

Number of
node voltage Vi

300

149

Number of line
flow Pi-j and Qi-j

1208

406

Number of injected
power Pi and Qi

600

314

Redun‐
dancy

3.51

1.45

TABLE IV
SIMULATION RESULTS OF P1 AND Q1 IN IEEE 14-BUS SYSTEM

Estimator

WLS + LNR

QT

LAV-S

LAV

L0.9

L0.5

L0.1

True value

Measurement value

P1

Value (p.u.)

1.5409

2.3185

2.3230

2.3229

2.3245

2.3242

2.3250

2.3240

1.1620

Error (%)

33.700

0.237

0.043

0.047

0.022

0.009

0.043

0

50.000

Q1

Value (p.u.)

-0.1542

-0.1674

-0.1692

-0.1694

-0.1699

-0.1695

-0.1687

-0.1689

-0.0844

Error (%)

8.700

0.888

0.178

0.296

0.592

0.355

0.118

0

50.030

TABLE V
SIMULATION RESULTS OF P1-2 AND Q1-2 IN IEEE 14-BUS SYSTEM

Estimator

WLS + LNR

QT

LAV-S

LAV

L0.9

L0.5

L0.1

True value

Measurement value

P1-2

Value (p.u.)

0.9717

1.5661

1.5677

1.5677

1.5687

1.5692

1.5694

1.5683

0.7841

Error (%)

38.040

0.140

0.038

0.038

0.026

0.057

0.070

0

50.000

Q1-2

Value (p.u.)

-0.1943

-0.2016

-0.2034

-0.2026

-0.2035

-0.2037

-0.2038

-0.2039

-0.1020

Error (%)

4.710

1.128

0.245

0.638

0.196

0.098

0.049

0

49.980

TABLE VI
SIMULATION RESULTS OF P11-10 AND Q9-10 IN IEEE 14-BUS SYSTEM

Estimator

WLS + LNR

QT

LAV-S

LAV

L0.9

L0.5

L0.1

True value

Measurement value

P11-10

Value (p.u.)

3.70700

3.70800

3.70800

3.70800

3.70900

3.70800

3.70800

0.03709

3.70900

Error (%)

9894.61

9897.30

9897.30

9897.30

9900.00

9897.30

9897.30

0

9900.00

Q9-10

Value (p.u.)

2.21100

1.56400

2.12400

3.75200

2.54400

3.00000

1.54500

0.04269

0.04249

Error (%)

5079.200

3563.620

4875.400

8688.940

5859.240

6927.400

3519.110

0

0.468
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Fig. 9. Average value of Q̄ from 1000 simulations on G1 and G2. (a) G1. (b) G2.
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Fig. 7. Average value of S̄ from 1000 simulations on G1 and G2. (a) G1. (b) G2.
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Fig. 8. Average value of Smax from 1000 simulations on G1 and G2. (a) G1. (b) G2.
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When the test systems contain Gaussian noise only, WLS +
LNR and QT estimators perform better than the other estima‐
tors. When 0.1 < p < 0.9, the result indices obtained by the
proposed estimator are similar to those of the LAV estima‐
tor. Moreover, the estimators perform better in G1 with high‐
er redundancy.

E. IEEE 300-bus System with Different Ratios of Bad Data

To further analyze the performance of the proposed esti‐

mator, G2 with 1%, 2%, 3%, 4%, and 5% bad data are simu‐
lated. Bad data are formed by increasing or decreasing the
absolute value by more than 30% of measurements. The stan‐
dard deviation of noise is set as 0.0010 p.u..

The average values of S̄, Q̄ and Smax, Qmax from 1000 simu‐
lations on G2 with different ratios of bad data are shown in
Figs. 11 and 12, respectively.

The performance of the estimators can be summarized as
follows.

1) Since some conforming measurements become bad data
as the ratio of bad data increases in G2, the performance of
the WLS + LNR estimator is degraded. Some of the bad data
cannot be detected, and their estimation values deviate from
true values. Thus, the WLS + LNR estimator has the worst
performance. The result indices are significantly higher than

those of the other estimators.
2) Compared with WLS + LNR, the LAV estimator could

suppress conforming bad data more effectively and provide
a more reliable estimation. However, as the ratio of bad data
increases, some leveraged measurements become bad data.
As the LAV estimator cannot handle them, the values of the
result indices obtained by the LAV estimator also detectably
increase.
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Fig. 10. Average value of Qmax from 1000 simulations on G1 and G2. (a) G1. (b) G2.
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Fig. 11. Average values of S̄ and Q̄ from 1000 simulations on G2. (a) S̄. (b) Q̄.
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3) The QT and LAV-S estimators can suppress both bad
conforming and leveraged data effectively. These estimators
perform better than WLS + LNR and LAV estimators.

4) For Lp quasi norm state estimator, the values of the in‐
dices show a downward trend when p varies from 0.9 to 0.1.
Moreover, L0.1 estimator can also suppress the bad data of
some measurement subsets with low redundancy. Hence, by
comparison, the L0.1 estimator provides more accurate estima‐

tions.

F. Computation Efficiency

The computation efficiency of an estimator plays an im‐
portant role in evaluating its application. In this section, we
present the average values of k and computation time of the
aforementioned estimators from the simulations on G2 with
5% bad data, as shown in Figs. 13 and 14, respectively.

As shown in Figs. 13 and 14, the WLS + LNR estimator
shows the highest computation efficiency with the smallest
values of k and computation time.

As p varies from 0.9 to 0.1, the computation efficiency of
Lp quasi norm state estimator is close to that of the LAV esti‐
mator, and the average values of k and the computation time

(a) (b)

0

0.005

0.010

0.015

0.020

WLS+LNR
L0.9

L0.8
L0.7

L0.6
L0.5

L0.4
L0.3

L0.2

L0.1

LAV
QT
LAV-S

Estimator

WLS+LNR
L0.9

L0.8
L0.7

L0.6
L0.5

L0.4
L0.3

L0.2

L0.1

LAV
QT
LAV-S

Estimator 5
4

3
2

1

Ratio of bad data (%
)

5
4

3
2

1

Ratio of bad data (%
)

A
v

er
ag

e 
v

al
u

e 
o

f 
S

m
ax

 (
p

.u
.)

0

0.005

0.010

0.015

0.020

A
v

er
ag

e 
v

al
u

e 
o

f 
Q

m
ax

 (
p

.u
.)

Fig. 12. Average values of Smax and Qmax from 1000 simulations on G2. (a) Smax. (b) Qmax.
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of Lp quasi norm state estimator increase slightly.
As p varies from 0.07 to 0.05, the average value of k us‐

ing Lp quasi norm state estimator increases rapidly.
Notably, the upper limit of iteration is set to be 100, so

the nonconvergence occurs when 0.01 £ p £ 0.06. Thus, the
average computation time increases dramatically.

G. Choosing Value of p

In Sections V-A to V-F, the performance of the proposed
estimator is discussed in detail. The robustness and conver‐
gence of Lp quasi norm estimator can be summarized as fol‐
lows.

1) As p varies from 0.9 to 0.1, the robustness of Lp quasi
norm state estimator is enhanced and the value of k increas‐
es slowly. Moreover, the computation efficiency of L0.1 esti‐
mator is close to that of the LAV estimator. In a test system
with low redundancy, this characteristic is well validated.

2) As p varies from 0.09 to 0.01, the value of k increases
rapidly.

Therefore, considering the robustness of Lp quasi norm
state estimator, for 0.1 £ p £ 0.9, p = 0.1 is an appropriate
choice. Considering the computation efficiency of Lp quasi
norm state estimator, for 0.01 £ p £ 0.1, p = 0.1 is also an ap‐
propriate choice. Thus, p = 0.1 is the approximately optimal
value for the practical implementation of the proposed esti‐
mator.

H. Application in 1204-bus Provincial System

The L0.1 estimator is applied to the 1204-bus provincial
system in China. The measurement configuration of this sys‐
tem is shown in Table IX.

Following the standards of the China Southern Power
Grid Company Limited, the quality of the estimation results
is evaluated based on measurement acceptance rate η [16],
[21], which is defined as:

η =
nr

m
´ 100% (29)

where nr is the number of measurements whose estimation
residuals are smaller than the threshold ri. The voltage mag‐
nitude, measurements of active and reactive power, and ri

are set to be 0.5%, 2%, and 3% of the assessment standard
values (depending on the measurement types and voltage lev‐
els), respectively.

Table X lists the average estimation results obtained for
1000 time sections using the WLS + LNR, QT, LAV-S, LAV,
and L0.1 estimators.

Generally, the WLS + LNR estimator could provide unbi‐
ased estimation results when the measurements only contain
Gaussian noise and general bad data. Unfortunately, the

1204-bus provincial system has some conforming bad data
in its measurements, and the WLS + LNR estimator fails to
detect these bad data. This estimator could not provide unbi‐
ased estimation results for those measurements affected by
these bad conforming data, and the estimation results deviate
from their true values. Therefore, WLS + LNR estimator ob‐
tains the lowest η and exhibits the worst quality of estima‐
tion results.

The LAV estimator can suppress the conforming bad data
more effectively, with an η value higher than that of the
WLS + LNR estimator. However, it could not handle the bad
leveraged data. Instead, QT and LAV-S estimators obtain
higher η values and perform better than the LAV estimator.

As L0.1 estimator can suppress the bad data of some mea‐
surement subsets with low redundancy more effectively, it
obtains the highest η value and generates the best estimation
results.

The computation time of the L0.1 estimator is 14% higher
than that of the LAV estimator, which indicates that the L0.1

estimator is slightly less computationally efficient, although
it can still accommodate the real-time requirement of the
power grid.

VI. CONCLUSION

In this study, an Lp quasi norm state estimator is proposed
for power systems. By introducing a relaxation model, the
problem of low statistical efficiency caused by the presence
of many local minimums of Lp quasi norm SE in a noisy en‐
vironment is addressed. Therefore, this non-convex problem
can be solved by using the modern interior point method ef‐
fectively. Theoretical analysis indicates that the robustness of
the Lp quasi norm state estimator increases as p decreases
when 0.1 £ p < 1. The Lp quasi norm state estimator, with a
small value of p, shows a higher capacity of suppressing the
bad data compared with the WLS + LNR and LAV estima‐
tors. High-quality estimation results can also be obtained on
a system with low redundancy. After considering the efficien‐
cy and estimation quality of the proposed estimator, an opti‐
mal value of p = 0.1 is suggested for practical implementa‐
tion, which is verified in the 1204-bus provincial system in
China.
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