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Detection and Estimation of False Data Injection
Attacks for Load Frequency Control Systems

Jun Ye and Xiang Yu

Abstract——False data injection attacks (FDIAs) against the
load frequency control (LFC) system can lead to unstable opera‐
tion of power systems. In this paper, the problems of detecting
and estimating the FDIAs for the LFC system in the presence
of external disturbances are investigated. First, the LFC system
model with FDIAs against frequency and tie-line power mea‐
surements is established. Then, a design procedure for the un‐
known input observer (UIO) is presented and the residual sig‐
nal is generated to detect the FDIAs. The UIO is designed to de‐
couple the effect of the unknown external disturbance on the re‐
sidual signal. After that, an attack estimation method based on
a robust adaptive observer (RAO) is proposed to estimate the
state and the FDIAs simultaneously. In order to improve the
performance of attack estimation, the H¥ technique is employed
to minimize the effect of external disturbance on estimation er‐
rors, and the uniform boundedness of the state and attack esti‐
mation errors is proven using Lyapunov stability theory. Final‐
ly, a two-area interconnected power system is simulated to dem‐
onstrate the effectiveness of the proposed attack detection and
estimation algorithms.

Index Terms——External disturbance, false data injection at‐
tacks, load frequency control, robust adaptive observer, un‐
known input observer.

I. INTRODUCTION

MAINTAINING the balance between the electricity sup‐
ply and demand is one of the most important issues

in power systems. The power imbalance will lead to the de‐
viation of the grid frequency from its nominal value, which
might affect the power system stability and security [1].
Load frequency control (LFC) system is a networked control
system which keeps the frequency and power interchanges
with neighborhood areas at desired values by adjusting the
power outputs of generators [2], [3]. In the LFC system, the
input control signal called area control error (ACE) is com‐
posed of local-area frequency and tie-line power measure‐

ments. By tracking the ACE signal, the power outputs of
generators are modified to balance random load fluctuation
and then the frequency is maintained within an acceptable
range around the nominal value [4], [5].

However, due to the heavy reliance on communication net‐
works, the power system is vulnerable to cyber attacks [6],
[7]. Cyber attacks on the LFC system will affect the frequen‐
cy stability of the system, and even trigger remedial actions
such as disconnecting generators or customer loads. Such un‐
expected actions may cause equipment damage and cascad‐
ing failures leading to massive blackouts [8]. For instance,
in December 2015, Ukrainian power grid suffered a cyber at‐
tack, causing a blackout and affecting approximately 225000
customers for several hours [9].

False data injection attack (FDIA) is one of most severe
types of cyber attacks on smart grids. A malicious attacker
can compromise the communication networks and inject
false data into the LFC system, which may cause huge dam‐
age to the power system [10]. Therefore, it is of great signifi‐
cance to detect and estimate the FDIAs that may occur in
the LFC system.

There have been several detection techniques for FDIAs
on LFC systems. For instance, in [11], a new full-order state
observer is designed for attack detection. In [12], a distribut‐
ed interval observer is proposed to detect bias injection at‐
tacks. Furthermore, a robust adaptive observer-based algo‐
rithm is proposed in [13] to detect the bias load injection at‐
tacks. In [14], the FDIAs are detected by checking the con‐
sistency between the observed and predicted frequency devia‐
tions. In [15], a multi-layer perception classifier based meth‐
od is introduced to extract the features of ACE signals, thus
distinguishing compromised signals from normal ones. In
[16], a support vector domain description based method is
proposed to extract the features of normal LFC signals and
then detect the FDIAs. In [17], the forecasted ACE data are
utilized for the detection of FDIAs. In [18], global position‐
ing system (GPS) spoofing attacks on the LFC system are
studied. An attack detection technique consisting of a Luen‐
berger observer and an artificial neural network observer is
proposed to detect this type of FDIA.

After the attack is detected, the next step is attack estima‐
tion. The estimation of the attack vector is very worthwhile
to discover the attackers’ strategies and helps the decision
maker take further actions. In recent years, various types of
estimation methods have been proposed. In [19], a dynamic
state estimator is proposed to estimate the state and un‐

Manuscript received: December 30, 2020; revised: February 22, 2021; accept‐
ed: April 22, 2021. Date of CrossCheck: April 22, 2021. Date of online publica‐
tion: July 14, 2021.

This work was supported by the National Natural Science Foundation of Chi‐
na (No. 61833013) and Key Research and Development Project of Zhejiang
Province (No. 2021C03158).

This article is distributed under the terms of the Creative Commons Attribu‐
tion 4.0 International License (http://creativecommons.org/licenses/by/4.0/).

J. Ye is with the Hangzhou Innovation Institute, Beihang University, Hang‐
zhou, China (e-mail: yejunz@126.com).

X. Yu (corresponding author) is with the School of Automation Science and
Electrical Engineering, Beihang University, Beijing, China (e-mail:
xiangyu_buaa@buaa.edu.cn).

DOI: 10.35833/MPCE.2020.000928

861



JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 4, July 2022

known inputs considering the attacks on phasor measure‐
ment units of the power grid. In [20], an adaptive sliding
mode observer with online parameter estimators is designed
to estimate the state and attack of power systems. An un‐
known input functional observer is proposed to estimate the
dynamic states of the LFC system in [21]. In [22], the attack
signal is dealt with an unknown input and estimated using a
three-step recursive filter. In [23], a co-estimation of the
power system states and attack vector based on unknown in‐
put observer and Kalman filter is investigated. In [24], mod‐
el-free defense strategies are proposed to handle the load al‐
tering attack with the aid of reinforcement learning and deep
neural network techniques. In addition, the attack estimation
is somewhat similar to fault reconstructions. Certain relevant
techniques such as adaptive observer [25], [26], disturbance
observer [27] - [29], and learning observer [30], [31] can be
used.

Although some achievements have been made on the de‐
tection and estimation of FDIAs in power systems, some is‐
sues still remain to be addressed. ① To detect and estimate
the attacks, the system model under FDIAs must be ob‐
tained. Thus, how to establish the model of the LFC system
with the attacks of frequency and tie-line power measure‐
ment needs an explicit investigation. ② Both the abrupt load
fluctuation and FDIAs will lead to the abnormal operation of
power systems. The above-mentioned methods cannot distin‐
guish the FDIAs from the load variation. The wrong distinc‐
tion may lead to wrong decisions. ③ The accurate estima‐
tion of the FDIAs when the attacks and the load disturbance
are mixed together is challenging and has rarely been ad‐
dressed.

To resolve these shortcomings, this paper focuses on the
problems of the detection and estimation of FDIAs for the
LFC system. An unknown input observer (UIO) is then de‐
veloped to detect the FDIAs for the LFC system. Further‐
more, inspired by the composite hierarchical anti-disturbance
control theory [27], a robust adaptive observer (RAO) is de‐
veloped to investigate the problem of simultaneously estimat‐
ing the state and attacks in the presence of the load distur‐
bance.

The main contributions of this paper are listed and dis‐
cussed as follows.

1) A new model for describing the attacked LFC system is
proposed. This model can be used for analyzing the system
during the attacks of frequency and tie-line power measure‐
ments. Different from the existing research works [15], [22],
the attacks of frequency and tie-line power measurements
are modeled as a lumped attack in order to attain better de‐
tection and estimation performance due to the existence of
both disturbances and multiple attacks. Furthermore, three
types of FDIAs are modeled and analyzed considering the
impact of the attacks on the LFC system.

2) A UIO-based attack detection method against FDIAs is
designed for the LFC system. The load fluctuation is mod‐
eled as an unknown input and can be completely decoupled
from the residual signal. Thus, the residual signal is sensi‐
tive to the attacks and robust to the disturbance. FDIAs are

then detected by comparing the residual signal and the pre‐
scribed threshold.

3) An RAO is developed to estimate the state and the at‐
tack signal simultaneously for the LFC system. In order to
improve the accuracy of attack estimation, the H¥ technique
is applied and the disturbance attenuation level is minimized
by employing the linear matrix inequality (LMI) based opti‐
mization approach. The stability of the proposed RAO is
proven by using Lyapunov stability theory. Compared with
the traditional adaptive observer [32], the proposed RAO can
attenuate the influence of the external disturbance on the at‐
tack estimation error.

Throughout the paper, the vector norm is defined as  x =

xT x and the matrix norm is defined as  A = σmax (A)=

λmax (AT A) σmax (A), where λmax (A) is the maximum singular

value;  x
2

is the L2-norm defined as  x
2
= ∫

0

¥

 x
2
dt ;

and I is an identity matrix of appropriate dimension. For a
matrix Y, sym(Y )= Y + Y T.

The rest of this paper is organized as follows. Section II
presents the modeling and analysis of LFC system subject to
FDIAs. Section III presents the UIO-based attack detection.
Section IV presents the RAO-based attack estimation. In Sec‐
tion V, simulation results of a two-area power system are
presented to illustrate the effectiveness of the proposed UIO-
based attack detection and RAO-based attack estimation
method. Finally, Section VI concludes this paper.

II. MODELING AND ANALYSIS OF LFC SYSTEM SUBJECT TO

FDIAS

A. LFC System Model

Large power systems usually consist of several power ar‐
eas connected together by tie-lines. The LFC system is a
large-scale networked control system which regulates the
power flow between different power areas while keeping the
desired frequency and power interchanges at the desired lev‐
el. The mathematical model of the ith LFC system under FDI‐
As can be represented by an equivalent linear model [33]
shown in Fig. 1.
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Fig. 1. Mathematical model of ith LFC system under FDIAs.

According the transfer function given in Fig. 1, it can be
obtained that:
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DṖGi =
1

Ttui

(DPvi -DPGi )
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n
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(1)

where i is the area number; DPGi, Dfi, DPvi, DPdi, and DP tiei

are the generator power deviation, frequency deviation, tur‐
bine valve position, load deviation, and tie-line power devia‐
tion, respectively; Mi, Di, Ri ,Tgi, and Ttui are the moment of
inertia of generator, speed-drop coefficient, damping coeffi‐
cient, time constant of the governor, and time constant of the
turbine for the ith power area, respectively; u i is the control
input; and Tij is the stiffness constant between the ith and j th

power areas.
Furthermore, the LFC center receives the ACE signal,

which is a linear combination of the frequency deviation and
tie-line power deviation. Then, the LFC center sends the
LFC command to the plants, which can mitigate the power
imbalance in power areas, thus achieving the stability of fre‐
quency and tie-line power. The ACE signal under attack-free
conditions can be defined as:

ACE i = βiDf i +DP tiei (2)

where βi is the frequency bias factor. Using the ACE signal
as a corresponding control input of load frequency control‐
ler, a proportional-integral (PI) controller is designed as:

u i =-KPi ×ACE i -KIi∫ACE i dt (3)

where KPi and KIi are the proportional and integral gains, re‐
spectively.

Combining the above analyses, the state-space equation of
the ith LFC power area under attack-free conditions can be
described as:

ì
í
î

ẋ(t)=Ax(t)+Bu(t)+Ed(t)

y(t)=Cx(t)
(4)

where x(t)ÎRn, u(t)ÎRm, d(t)ÎRd, and y(t)ÎRp are the state
variable vector, input vector, disturbance vector, and output

vector, respectively; x(t)= é
ë
êêêê ù

û
úúúúDfiDPGiDPviDP tiei∫ACEidt

T

and y(t)= é
ë
êêêê ù

û
úúúúACE i ∫ACE idt

T

are the state variable matrix

and output matrix, respectively; and A, B, C, and E are the
state, input, output, and disturbance matrices, respectively.
These matrices can be determined as:

A =

é

ë

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê

ê

ê

ê

ê
ù

û

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

ú

ú

ú

ú

ú-
Di

Mi

1
Mi

0 -
1

Mi

0

0 -
1

Ttui

1
Ttui

0 0

-
1

RiTgi

0 -
1

Tgi

0 0

2π ∑
j = 1j ¹ i

N

Tij 0 0 0 0

βi 0 0 1 0

(5)

B = é
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ù
û
úúúú0 0

1
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0 0
T

(6)

C = é
ë
êêêê

ù
û
úúúú

0 0 0 0 1
βi 0 0 1 0 (7)

E = é
ë
êêêê

ù
û
úúúú-

1
Mi

0 0 0 0
T

(8)

The power areas are connected to the centralized LFC sys‐
tem. The LFC system sends control signals to the plants and
receives signals through sensor measurements. As depicted
in Fig. 1, two main measurements of the LFC system are
considered as potential attack targets. The false data can be
injected to the tie-line and frequency measurements by in‐
truding the susceptible communication channels. When the
measurements of the ith area are attacked by the FDIAs, the
ACE signal is modified to:

ACEFDIAi (t)=DP tiei (t)+ fFDIAtie (t)+ βi (Df i (t)+ fFDIAfr (t))=
ACE truei (t)+ fFDIAtie (t)+ βi fFDIAfr (t) (9)

where ACEFDIAi (t) and ACE truei (t) are the compromised and
true ACE signals, respectively; and fFDIAtie (t) and fFDIAfr (t) are
the false signals added to the frequency and tie-line power
measurements, respectively.

According to the above analyses, the state-space equation
of the ith power area during attacks can be modified as:

ì
í
î

ẋ(t)=Ax(t)+Bu(t)+Ed(t)+FfFDIA (t)

y(t)=Cx(t)
(10)

where F is the attack matrix; and fFDIA (t)ÎRr denotes the
FDIAs, which can be expressed as:

F = [ 0 0 0 0 1 ] T
(11)

fFDIA (t)= fFDIAtie (t) + βi fFDIAfr (t) (12)

Remark 1: since the ACE signal is the control input of the
LFC system and it is a linear combination of the frequency
deviation and tie-line power deviation. Either the attack on
the frequency measurement or on the tie-line power measure‐
ment will be reflected in the ACE signal. Therefore, a
lumped attack term is adopted to represent the combined ef‐
fect of the attacks of frequency and tie-line power measure‐
ments.

B. Modeling and Analysis of FDIAs

In this paper, three types of attack modes are considered
and listed as follows.

1) Attack mode 1: bias attack on the tie-line power mea‐
surement.

In this mode, attackers add certain bias vector on tie-line
power measurement. Then, the compromised ACE signal
ACEFDIAi (t), which is used to generate frequency control
commands in LFC center of area i, can be expressed as a lin‐
ear combination of the true measurement ACE truei (t) and an
attack term fbias (t):

ACEFDIAi (t)=DP tiei (t)+ fbias (t)+ βiDf i (t)=ACE truei (t)+ fbias (t)

(13)
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The attack model can be described as:

fFDIA (t)= fFDIAtie (t)= fbias (t) (14)

2) Attack mode 2: harmonic attack on the frequency mea‐
surement.

In this mode, attackers add harmonic vector on the fre‐
quency measurement. The harmonic attack can be expressed
as:

fFDIAfr (t)=Ah sin(wht + φ) (15)

where Ah, wh, and φ are the amplitude, frequency, and phase
of the harmonic attack, respectively.

The attack model can be expressed as:

fFDIA (t)= βi fFDIAfr (t)= βi Ah sin(wht + φ) (16)

Since the system frequency of the power system usually
fluctuates periodically due to load fluctuation, the harmonic
attack on the frequency measurement is difficult to detect by
the system operator.

3) Attack mode 3: simultaneous attacks on the frequency
measurement and tie-line power measurement.

In this mode, attackers inject the bias attack on tie-line
power measurement and the harmonic attack on frequency
measurement simultaneously. The attack model can be ex‐
pressed as:

fFDIA (t)= fFDIAtie (t)+ βi fFDIAfr (t)= fbias (t)+ βi Ah sin(wht + φ) (17)

The impacts of FDIAs on power systems are shown in Ta‐
ble I. From this table, it can be observed that the FDIAs will
have direct impacts on the power system and may lead to
load shedding or generator tripping, which would cause se‐
vere damages to the power system. Therefore, detection and
estimation of the FDIAs are urgent, which can be achieved
by the proposed methods.

Remark 2: there exist other types of FDIAs such as scal‐
ing attack and ramp attack. In this paper, we only focus on
the bias attack and harmonic attack. The modeling and analy‐
sis of the FDIAs can lay a good foundation for the attack de‐
tection and estimation.

III. UIO-BASED ATTACK DETECTION

A. Design Procedure of UIO

A UIO-based attack detection method is proposed to de‐
couple the external disturbance and detect the FDIAs. The

dynamic model of the UIO for the system in (10) can be rep‐
resented as:

ì
í
î

ż(t)=Fz(t)+TBu(t)+Ky(t)

x̂(t)= z(t)+Hy(t)
(18)

where z(t) is the state vector of the UIO system; x̂(t) is the
estimated state vector of x(t); and F, T, H, and K are the
gain matrices, which should be designed to achieve un‐
known input decoupling. Figure 2 depicts the block diagram
of UIO in (18), which has the capability of decoupling the
estimation error of the dynamic states from the disturbance
in the original system.

In order to select proper gain matrices for designing the
UIO, the state estimation error dynamics can be expanded as:

ė(t)= ẋ(t)- ẋ̂(t)=
(A -HCA -K1C)e(t)+[F - (A -HCA -K1C)]z(t)-
[K2 - (A -HCA -K1C)H]y(t)-[T - (I -HC)]Bu(t)+
(I -HC)Ed(t)+ (I -HC)FfFDIA (t) (19)

where K =K1 +K2. The parametric matrices of the UIO can
be obtained by solving:

ì

í

î

ï
ïï
ï

ï
ïï
ï
ï
ï

F =A -HCA -K1C

K2 = (A -HCA -K1C)H

T = I -HC
(I -HC)E = 0

(20)

If the above conditions are satisfied, then the state estima‐
tion error dynamics will be:

ė(t)=Fe(t)+ (I -HC)FfFDIA (t) (21)

It is clear from (21) that the estimation error is decoupled
from the unknown input d(t). If the matrix F is Hurwitz and
the system is attack-free, the estimation error of the designed
UIO will approach zero asymptotically.

It is proven in [34] that the necessary and sufficient condi‐
tions for the existence of the UIO are: ① rank(CE)=
rank(E); ② the pair (C, A1 ) is a detectable pair as:

A1 =A -E[(CE)TCE]-1 (CE)TCA (22)

A flow chart that describes the design procedure of the
UIO is depicted in Fig. 3. The first step is to check the exis‐
tence of the UIO by checking whether rank(CE)= rank(E).
If this condition is not met, the UIO does not exist. To solve
this problem, the matrix C can be changed by defining new

TABLE I
IMPACTS OF FDIAS ON POWER SYSTEMS

Attack mode

Bias attack
(fbias (t)> 0)

Bias attack
(fbias (t)< 0)

Harmonic
attack

Composite
attack

Direct impact

Frequency drops
below nominal value

Frequency exceeds
nominal value

Frequency
fluctuation

Frequency
fluctuation

Indirect impact

Generation deficit and
load shedding

Generation redundancy
and generator tripping

Load shedding or
generator tripping

Load shedding or
generator tripping

Severe
impact

Massive
blackout

Cascading
failures

Massive
blackout

Massive
blackout

�
�

�
�

�

UIO

∫

f
FDIA

(t)

u(t)

z(t) x(t)z(t)

y(t)

d(t)

TB

F

H

K

x(t) = Ax(t)+Bu(t)+Ed(t)+Ff
FDIA

(t)
y(t) = Cx(t)

·

·
+ +

A

Fig. 2. Block diagram of UIO for LFC system under FDIAs.
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virtual outputs to satisfy the rank condition. If the rank con‐
dition is met, the matrices H, T, and A1 can be calculated.
The next step is to check the observability of the pair (C,
A1). If this condition is satisfied, the matrix K1 can be easily
computed by using the pole placement method. Otherwise, a
transformation matrix P1 should be constructed by perform‐
ing the observable canonical decomposition method on the
pair (C, A1), as demonstrated in (23) and (24).

P1 A1 P -1
1 =

é

ë

ê
êê
ê ù

û

ú
úú
úA11 0

A12 A22

A11ÎRn1 ´ n1 (23)

CP -1
1 = [ C * 0] C *ÎRm ´ n1 (24)

where n1 is the rank of the observability matrix for the pair
(C, A1 ) in which the pair (C *, A11 ) is observable. The unob‐
servable modes are combined in the eigenvalues of A22.
More details about the observable canonical decomposition
method can be found in [35].

B. Residual Generation

In order to use the UIO for attack detection purposes, a re‐
sidual signal is needed. In this paper, the difference between
the measured output and estimated output is considered as a
residual signal.

r(t)= y(t)- ŷ(t)=C(x(t)- x̂(t))=Cex (t) (25)

where r(t) and ŷ(t) are the residual and estimated output vec‐
tors, respectively. It can be seen from (21) and (25) that the
residual signal will converge to zero with the state estima‐
tion error ex (t) approaching zero in the absence of FDIAs.
When FDIAs occur, the residual signal will deviate from ze‐
ro if the gain matrix H is designed such that (I -HC)F ¹ 0.
Then, the detection logic under FDIAs can be expressed as:

Alarm =
ì
í
î

ïï

ïï

1 || r(t) > α

0 || r(t) £ α
(26)

where Alarm = 1 means the FDIAs have been injected into the
LFC system and Alarm = 0 otherwise; and α is the detection
threshold, which set to be zero under ideal conditions. How‐
ever, due to the existence of estimation errors and measure‐
ment noises, the threshold should be set to a small value to
avoid false positive alarms.

Remark 3: the threshold selection is very important since
a high threshold would result in high false negative rates
and a low threshold would result in high false positive rates
(FPR). The detection threshold can be set either by minimiz‐
ing false attack detection rate under attack-free conditions,
or by using hypothesis testing methods such as χ2-test [36].
In this paper, an empirical method [37] is applied to obtain
the threshold value of the proposed attack detection algo‐
rithm as follows.

Step 1: define a maximum acceptable FPR.
Step 2: generate measurement noises based on the noise

distribution.
Step 3: increase the detection threshold from zero until the

FPR meets the desired FPR, e.g., 1%. This step is done to
fine tune the detection thresholds for a low FPR.

Step 4: perform the above process (Steps 2 and 3) for a
large number of trials due to the random nature of measure‐
ments noises.

Step 5: obtain the mean values of the detection thresholds
for the trials.

Step 6: select the mean value of the detection thresholds
as the final detection threshold.

Note that the system model could contain uncertainties,
e.g., the parameter uncertainty. The uncertainties would influ‐
ence the detection accuracy of the UIO. One method to deal
with the uncertainties is to obtain a priori knowledge of the
upper and lower bounds of the uncertainties. Then, the detec‐
tion threshold can be adaptively adjusted according to the up‐
per and lower bounds. For example, the adaptive threshold
can be obtained by using the L2-norm method [11]. FDIAs
can be detected by comparing the residual signal with the
adaptive threshold.

IV. RAO-BASED ATTACK ESTIMATION

A. Observer Design

For system (10), a robust adaptive attack observer can be
designed as:

ì

í

î

ïïïï

ï
ïï
ï

ẋ̂(t)=Ax̂(t)+Bu(t)+Ff̂FDIA (t)+L(y(t)- ŷ(t))

ŷ(t)=Cx̂(t)

f̂FDIA (t)=ΓQ(ėy (t)+ σey (t))

(27)

where f̂FDIA (t) is the attack estimate vector; ey (t)= y(t)- ŷ(t) is
the output error vector; Γ > 0 is a positive learning ratio;
LÎRn ´ p is the observer gain matrix; QÎRr ´ p is the matrix
to be determined; and σ is the positive scalar.

The state estimate error ex (t), output estimate error ey (t),
and attack estimate error e f (t) can be defined as:

Import power system data

N

N

Y

Y

Start

End

Obtain matrices A, B, C, E, and F 

for dynamic model of system
Define virtual

outputs

rank(CE) = rank(E)?

Calculate matrices H, T, and A1

Is pair (C, A1)

observable?

Construct transformation matrix P1

Compute K1 and F by

selecting n1 eigenvalues

Compute K2 and K

Compute K1

Fig. 3. Flow chart of design procedure of UIO.
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ì

í

î

ïïïï

ïïïï

ex (t)= x(t)- x̂(t)

ey (t)= y(t)- ŷ(t)

e f (t)= fFDIA (t)- f̂FDIA (t)
(28)

Then, the error dynamics is described by:

ì
í
î

ėx (t)= (A -LC)ex (t)+Ed(t)+Fe f (t)

ėy (t)=Cex (t)
(29)

B. Stability Analysis

Before the main results are presented, three assumptions
and a lemma are given.

Assumption 1: pair (A, C) is observable and rank(CF)=
rank(F)= r.

Assumption 2: the load disturbance d(t)ÎL2 [0¥) is
bounded, i.e.,  d(t)

2
£ d1, where d1 is an unknown constant.

Assumption 3: the derivative of fFDIA (t) with respect to
time is norm bounded, i.e.,





ḟ

FDIA
(t) £ f1 (30)

where f1 > 0 is an unknown constant. It is evident that the
aforementioned three types of FDIAs satisfy this assumption.

Lemma 1 [32]: given a scalar μ > 0 and a symmetric posi‐
tive definite matrix G, the inequality (31) holds.

2xT y £
1
μ

xTGx + μyTG-1 y xyÎRn (31)

Theorem 1: consider system (10). Under Assumptions 1-3
and given scalars σμγ > 0, if there exist positive definite
symmetric matrices PÎRn ´ n, GÎRr ´ r, and other matrices
YÎRn ´ p and QÎRr ´ p, such that the following conditions
hold:

é
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ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û

ú

ú

ú

ú

ú
úú
ú

ú

ú

ú

úsym(PA -YC)+C TC -
1
σ

(AT PF -C TY T F) PE

* -
2
σ

F T PF +
1
σμ

G
1
σ

F T PE

* * -γ2 I

< 0

(32)

F T P =QC (33)

where * represents the symmetric elements in a symmetric
matrix, then the proposed robust adaptive observer (27) with
Y =PL can ensure that the state estimate error ex (t) and the
attack estimate error e f (t) are uniformly bounded and output
estimate error for the external disturbance satisfies the H¥

performance  ey (t)
2
£ γ d(t)

2
.

Proof: consider the following Lyapunov function as:

V (t)= eT
x (t)Pex (t)+

1
σ

eT
f (t)Γ -1e f (t) (34)

The derivative of the Lyapunov candidate with respect to
time can be derived as:

V̇ (t)= ėT
x (t)Pex (t)+ eT

x (t)Pėx (t)+
2
σ

eT
f (t)Γ -1 ė f (t)=

ex [(A -LC)T P +P(A -LC)]ex (t)+ 2eT
x PFe f (t)+

2eT
x PEd(t)-

2
σ

eT
f Q(ėy (t)+ σey (t))+

2
σ

eT
f (t)Γ -1 ḟFDIA (t)

(35)

According to (33), we can obtain:

-
2
σ

eT
f (t)Q(ėy (t)+ σey (t))=-

2
σ

eT
f F T P(ėx (t)+ σex (t)) (36)

Substituting (36) into (35) yields:

V̇ (t)= ėT
x (t)Pex (t)+ eT

x (t)Pėx (t)+
2
σ

eT
f (t)Γ -1 ė f (t)=

ex (t)[(A -LC)T P +P(A -LC)]ex (t)+ 2eT
x PEd(t) -

2
σ

eT
f (t)(A -LC)T PFex (t) -

2
σ

eT
f (t)F T PFeT

f (t)-

2
σ

eT
f (t)F T PEd(t)+

2
σ

eT
f (t)Γ -1 ḟFDIA (t) (37)

From Lemma 1 and Assumption 3, we can obtain:

2
σ

eT
f (t)Γ -1 ḟFDIA (t)£

1
σμ

eT
f (t)Ge f (t)+

μ
σ

ḟ T
FDIA (t)Γ -1GΓ -1 ḟFDIA (t)£

1
σμ

eT
f (t)Ge f (t)+

μ
σ

f 2
1 λmax (Γ -1GΓ -1 ) (38)

Substituting (38) into (37), we can further obtain:

V̇ (t)£ ex (t)[(A -LC)T P +P(A -LC)]ex (t)+ 2eT
x PEd(t)-

2
σ

eT
f (t)(A -LC)T PFex (t)-

2
σ

eT
f (t)F T PFeT

f (t) -

2
σ

eT
f (t)F T PEd(t)+

1
σμ

eT
f (t)Ge f (t) +

μ
σ

f 2
1 λmax (Γ -1GΓ -1 )

(39)

To guarantee that the proposed adaptive observer is robust
to the external unknown disturbance d(t), an H¥ performance
index function is introduced as:

J = ∫
0

¥

[eT
y (t)ey (t)- γ2d T (t)d(t)]dt (40)

Under the zero initial conditions, we have V (0)= 0 and
V (¥)³ 0, which leads to:

J = ∫
0

¥

[eT
y (t)ey (t)- γ2d T (t)d(t)+ V̇ (t)]dt -V (¥)+

V (0)£ ∫
0

¥

[eT
y (t)ey (t)- γ2d T (t)d(t)+ V̇ (t)]dt (41)

It follows from (41) that:

ì

í

î

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï

ï
ïï
ï

ï

ï

ï

ï

ï

ï

ï

eT
y (t)ey (t)- γ2d T (t)d(t)+ V̇ (t)£

ex (t)[(A-LC)T P+P(A-LC)+C TC]ex (t)+

2eT
x PEd(t) - γ2d T (t)d(t) -

2
σ

eT
f (t)(A-LC)T PFex (t)-

2
σ

eT
f (t)F T PFeT

f (t) -
2
σ

eT
f (t)F T PEd(t)+

1
σμ

eT
f (t)Ge f (t)+

μ
σ

f 2
1 λmax (Γ -1GΓ -1 )=

ξ TΞξ+
μ
σ

f 2
1 λmax (Γ -1GΓ -1 )

Ξ=

é
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ê

ê

ê

ê

ê
êê
ê

ê

ê

ê

ê ù

û
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ú
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úsym(P(A-LC))+C TC -
1
σ

(A-LC)T PF PE

* -
2
σ

F T PF+
1
σμ

G -
1
σ

F T PE

* * -γ2 I

ξ=[ex (t) e f (t) d(t)]T

(42)
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If conditions (32) and (33) hold, we can obtain:

J = ∫
0

¥

[eT
y (t)ey (t)- γ2d T (t)d(t)]dt <

∫
0

¥ é
ë
êêêê ù

û
úúúú-ε ξ 2

+
μ
σ

f 2
1 λmax (Γ -1GΓ -1 ) dt (43)

where ε = λmin (-Ξ). Then J < 0, which indicates  ey (t)
2
£

γ d(t)
2

for :

ε ξ 2
>
μ
σ

f 2
1 λmax (Γ -1GΓ -1 ) (44)

Note that Theorem 1 is deduced from the three assump‐
tions and Lemma 1. Specially, Assumption 1 provides a suf‐
ficient condition for the existence of the robust adaptive ob‐
server. Assumption 2 is used to illustrate the existence of the
H∞ performance index in Theorem 1. Assumption 3 and
Lemma 1 are used to deduce (38).

Therefore, both the state estimate error ex (t) and the at‐
tack estimate error e f (t) converge to a small set while the
output estimate error ey (t) for the external disturbance d(t)

satisfies the H¥ performance  ey (t)
2
£ γ d(t)

2
. This com‐

pletes the proof.
Remark 4: as illustrated in Theorem 1, compared with the

traditional adaptive observer [32], the RAO can suppress the
impact of the external disturbance on the attack estimation
error. In addition, different from the disturbance observer-
based methods [29], the attacks of frequency and tie-line
power measurements are modeled as a lumped attack and
can be estimated under the condition that the derivative of
the attack is bounded.

Remark 5: the effect of the disturbance d(t) on the output
estimate error ey (t) is bounded by the value of γ. The accura‐
cy of state and attack estimations increases with a decrease
in the value of γ. Therefore, the robustness of the proposed
adaptive observer can be enhanced by minimizing γ. The
minimum γ can be obtained by solving the following optimi‐
zation problem:

ì
í
î

min γ2

s.t. (32) and (33)
(45)

Remark 6: in Theorem 1, the condition (32) can be solved
by using standard LMI toolbox. However, it is difficult to
solve (32) and (33) simultaneously. To solve this problem,
we can transform (33) into the following LMI-based convex
optimization problem:

ì

í

î

ïïïï

ï
ïï
ï

min η

s.t.
é

ë
ê
êê
ê ù

û
ú
úú
úηI F T P -QC

* ηI
> 0

(46)

With this method, a sufficiently small positive scalar η
can be selected such that matrices P and Q can be computed
to make F T P approximately equal to QC with satisfactory
accuracy.

Using (46), we can transform (45) into the following opti‐
mization problem:

ì

í

î

ï
ïï
ï
ï
ï

ï
ïï
ï
ï
ï

min (γ2 + ρη)
s.t. (32)

é

ë
ê
êê
ê ù

û
ú
úú
úηI F T P -QC

* ηI
> 0

(47)

where ρ is a constant that is large enough to guarantee that
the optimal value of η is a sufficiently small positive scalar.
This optimization problem seeks two objectives. The first
one is to find proper matrices P, G, Y, and Q such that the
proposed adaptive observer can ensure that the state estimate
error ex (t) and the attack estimate error e f (t) are uniformly
bounded. The other objective is to boost the robustness of
the observer against the external disturbance d(t) by minimiz‐
ing the disturbance attenuation level γ while satisfying the
relevant constraints.

V. SIMULATION RESULTS

In this section, the effectiveness of the proposed detection
and estimation methods is illustrated with a two-area inter‐
connected power system. The classical LFC model in Fig. 1
is used. The stiffness constant between the two areas is T12 =
0.2. The parameters of two-area interconnected power sys‐
tem are listed in Table II. Attackers compromise the measure‐
ments in area 1, while the measurements in area 2 are intact.
The load fluctuation is considered as:

d ( t ) =
ì

í

î

ïïïï

ï
ïï
ï

0 0 £ t £ 5
0.02 5 < t £ 20
0.03 20 < t £ 40
0 40 < t £ 60

(48)

Several simulation scenarios have been carried out for the
three aforementioned attack modes. The bias attack on the
tie-line power measurement is considered as:

fbias (t)=
ì
í
î

ïï

ïïïï

0 0 £ t £ 10
0.05 10 < t £ 30
0 30 < t £ 60

(49)

The harmonic attack on the frequency measurement is con‐
sidered as:

fhar (t)=
ì
í
î

ïïïï

ïïïï

0 0 £ t £ 20
0.002 sin(3t - 10) 20 < t £ 40

0 40 < t £ 60

(50)

A. Simulation Results of Attack Detection

In this subsection, the performance of the proposed UIO-
based attack detection scheme is investigated. Firstly, the ex‐
istence of the UIO has been checked by validating the rank
condition, rank(CE)= rank(E)= 1. Then, the residual used
for designing the attack detector in the LFC system is cho‐

TABLE II
PARAMETERS OF TWO-AREA INTERCONNECTED POWER SYSTEM

Area i

1

2

Mi

10

12

Di

1.0

1.5

Ri

0.05

0.05

Tgi

0.10

0.17

Ttui

0.3

0.4

βi

21.0

21.5
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sen as the error between the measured ACE signal and the
estimated ones. The simulation results for the three attack
modes are shown in Fig. 4.

The threshold is chosen to be higher than the maximum
value of these residuals in case of no attacks. As shown in
Fig. 4, the attack signals can be immediately detected by
comparing the norm of the residuals with the predefined
threshold. To demonstrate the superiority of the proposed at‐
tack detection method, a comparison between the proposed
UIO-based detection method and the detection method de‐
signed in [11] is conducted. The comparison results shown
in Fig. 4 reveal that the accuracy of attack detection of the
UIO is much higher than the observer designed in [11]. The
reason lies in that the observer designed in [11] cannot de‐
couple the residual signal from the disturbance and the resid‐
ual exceeds the threshold at certain times under attack-free
conditions.

In order to assess the robustness of the proposed approach
against the measurement noises, a Gaussian white noise with
zero mean and covariance matrix Q = 0.002I is added to the
measurement vector. The maximum acceptable FPR is set to
be 0.5%. By using the proposed threshold selection method,
the threshold is set to be 0.19×10-2 p. u.. The detection re‐
sults for the three types of FDIAs are shown in Fig. 5. As
can be seen, before the attacks occur, the residuals are al‐
ways below the threshold and thus, no detection alarm is is‐

sued. However, when the attacks are launched, the residual
signals exceed the threshold. Therefore, it can be concluded
that the designed attack detection scheme can effectively de‐
tect the occurrence of FDIAs in the presence of measure‐
ment noises.

B. Simulation Results of Attack Estimation

In this subsection, the accuracy of the proposed RAO-
based attack estimation scheme is studied. For the RAO
(27), the parameters are chosen such that σ = 1, μ = 1,
Γ = 0.01. Using Theorem 1 and solving (47), we can obtain:
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η = 6.0320 ´ 10-11

γ = 1.0448 ´ 10-3
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ú0.0320 0.0000 0.0000 0.0000 0.0000
0.0000 3.4244 -0.0050 0.0000 0.0000
0.0000 -0.0050 3.4393 0.0000 -0.0012
0.0000 0.0000 0.0000 3.4217 0.0059
0.0000 0.0000 -0.0012 0.0059 3.6604

L =
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ú75.4214 0.0859 -13.8640 70.8911 0.0146
0.0003 -2.8280 1.6609 -0.0000 -0.0000

-0.1149 1.6634 -9.5052 0.0002 0.0001
0.5920 0.0000 -0.0002 0.5000 -0.0007

41.0013 0.0005 0.0005 0.9988 0.3722
(51)

The simulation results shown in Figs. 6-8 indicate that the
proposed RAO leads to an accurate estimation for the bias,
harmonic and composite attacks with the load disturbance.
However, as shown in Figs. 6-8, the estimation accuracy of
the traditional adaptive observer (AO) [32] or the adaptive
sliding mode observer (ASMO) [38] is much lower than that
of the RAO with the same disturbance. By combining the
above simulation results, we can see that the proposed RAO
is not disturbance-sensitive. The reason lies in that the pro‐
posed RAO can attenuate the influence of the external distur‐
bance on the attack estimation error, and therefore it can be
concluded that the proposed observer is robust to the exter‐
nal disturbance.

Furthermore, to demonstrate the effectiveness of the pro‐
posed method more quantitatively, the root mean squared er‐
ror (RMSE) is utilized as a measure to evaluate the accuracy
of the observers. The RMSE for the attack signals is calculat‐
ed using the following formula:
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Fig. 4. Simulation results for three attack modes. (a) Bias attack. (b) Har‐
monic attack. (c) Composite attack.
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Fig. 5. Detection results for three types of FDIA.
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RMSE =
∑
t = 1

m ( )fFDIA (t)- f ̂FDIA (t)
2

m

(52)

where m is the total number of sample points. A Gaussian
white noise with zero mean and covariance matrix Q =

0.002I is also added to the measurement vector. The RM‐
SEs for the three types of estimated attack signals using the
RAO and traditional adaptive observer are shown in Table
III. It is observed that the proposed method is superior for
its higher accuracy in the estimation of the attack signals in
the presence of measurement noises.

VI. CONCLUSION

In this paper, the problem of cyber attacks on the LFC
system is studied. Firstly, the dynamic model of the LFC sys‐
tem subject to external disturbance and FDIAs is established
and three attack modes are modeled and analyzed consider‐
ing the FDIAs on frequency measurements and tie-line pow‐
er measurements. Then, an attack detection and an attack es‐
timation algorithm are proposed for the LFC system in the
presence of FDIAs. Based on the UIO, a design procedure
for the residual generation to detect the attack is presented.
By designing the parameters in the observer, the unknown
external disturbance is decoupled from the residual signal.
An RAO-based attack estimation method is proposed to esti‐
mate the state and the attack signal simultaneously. In order
to improve the robustness against the external disturbance,
the H¥ technique is introduced by minimizing the distur‐
bance attenuation level. Finally, three attack modes are simu‐
lated with a two-area power system. The simulation results
show that the proposed detection method is able to effective‐
ly detect the attacks and the estimation method can accurate‐
ly estimate the attacks for the LFC system in the presence of
the external unknown disturbance. How to mitigate the im‐
pact of FDIAs on the LFC system will become our next con‐
sideration.
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