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Using Interim Recommitment to Reduce the
Operational-cost Impacts of Wind Uncertainty

Mahan A. Mansouri, Student Member, IEEE and Ramteen Sioshansi, Fellow, IEEE

Abstract—Using wind-availability forecasts in day-ahead unit
commitment can require expensive real-time operational adjust-
ments. We examine the benefit of conducting interim recommit-
ment between day-ahead unit commitment and real-time dis-
patch. Using a simple stylized example and a case study that is
based on ISO New England, we compare system-operation costs
with and without interim recommitment. We find an important
tradeoff—later recommitment provides better wind-availability
forecasts, but the system has less flexibility due to operating
constraints. Of the time windows that we examine, hour-20 re-
commitment provides the greatest operational-cost reduction.

Index Terms—Power-system operation, power-system econom-
ics, unit commitment, economic dispatch, wind generation.

I. INTRODUCTION

WIND generation increases supply variability and un-
certainty, which requires changing power-system op-

erations to ensure real-time balance between energy supply
and demand [1]. These adjustments give rise to what we
term ‘operational wind-integration costs’. The literature as-
sesses and surveys the impacts of integrating wind genera-
tion into power systems [2]-[5]. Western Wind and Solar In-
tegration Study (WWSIS) [6]-[8] examines integrating up to
35% (on an energy basis) wind and solar generation into
Western Interconnection. WWSIS also examines high renew-
able-energy penetrations, their impacts on the fossil-fueled
generating fleet, and dynamic power-system performance.
The literature studies means of mitigating operational
wind-integration costs. One approach uses synergistic tech-
nologies, e.g., demand response [9]-[12], energy storage [13]-
[17], or flexible electric-vehicle charging [18]-[22]. These
technologies increase demand-side flexibility, reducing the
need for supply-side adjustments to maintain energy balance.
Financial instruments [23], [24] provide another option to re-
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duce operational wind-integration costs.

Alternatively, operational wind-integration costs can be re-
duced by modifying power-system operations. Such adjust-
ment can be done using a stochastic, robust, or distributional-
ly robust approach to modeling unit commitment [25]-[30].
Such approaches account explicitly for uncertain real-time
wind availability in deciding unit commitment and dispatch.
Another approach is to conduct rolling-horizon optimization,
which allows updated wind-availability information to be in-
corporated into operational planning [31]. In [32], these two
concepts are combined, by incorporating rolling-horizon deci-
sion-making into a stochastic-optimization framework.

Operational planning with explicit uncertainty characteriza-
tion presents challenges. For one, market operators have a
short time window following gate closure to provide day-
ahead operating schedules and prices to market participants.
The capabilities of optimization software and computational
hardware are considerably greater than those available at the
advent of stochastic unit commitment [26], [28], [29], [33].
Nevertheless, the complexities of market models may make
market operators wary for the foreseeable future of adopting
such models. Another important challenge relates to price
formation. Stochastic unit-commitment models produce sce-
nario-dependent dispatch schedules and prices, which compli-
cate market settlement [34]. Of importance to a market oper-
ator, stochastic prices are revenue-adequate in expectation
only. Thus, depending upon realized real-time wind availabil-
ity, the market operator may suffer a revenue deficit. Sto-
chastic prices also may raise incentive-compatibility issues.

As such, operational models with explicit uncertainty char-
acterization see limited use today by any market operator. In-
stead, most market operators rely on deterministic models
[35], [36]. Given these realities, the aim of our work is to
explore the benefits of introducing recommitment between
day-ahead and real-time market operations. As such, our
work expands upon the concept in [31]. However, we extend
the work of [31] in a number of key ways. First, we model
and explore the tradeoff between generator flexibility and
forecast quality. Conducting recommitment closer to the trad-
ing day (e.g., during hour 23 as opposed to hour 18) pro-
vides better wind-availability forecasts. However, operating
constraints may limit the ability of some generators to adjust
their operation if the recommitment is conducted closer to re-
al time. We capture such intertemporal dynamics by develop-
ing a detailed operational model that is solved in a manner
that mimics the time sequence of real-world market opera-
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tions. A second distinction of our work is that we apply it to
a comprehensive case study that is based on ISO New Eng-
land, over a one-year study horizon. System operations are
examined in [31] over a three-week period. Thus, our work
examines the benefits of recommitment, considering diurnal
and seasonal load and wind-availability patterns.

Our case study shows reduced operational wind-integra-
tion costs with recommitment compared to having only day-
ahead and real-time market operations. Among the time win-
dows that we examine, hour-20 recommitment minimizes op-
erational wind-integration costs, suggesting that hour 20 bal-
ances wind-forecast quality with operational flexibility of the
system. However, this result is specific to our case study.

Our work makes two contributions to the extant literature.
First, we propose a comprehensive approach to modeling
market operations that can be applied to studying the bene-
fits of introducing recommitment to reduce operational wind-
integration costs. The models that we use are not novel. The
novelty of our work is in implementing these models in a re-
alistic manner that mimics real-world power-system opera-
tions. As such, our approach can be applied to other systems
with different resource mixes and load, and weather patterns.
Second, our case study demonstrates the tradeoff between
forecast quality and generator flexibility. If market operators
intend to introduce recommitment, our modeling approach
and metrics could be employed to optimize the timing of the
processes.

The remainder of this paper is organized as follows. Sec-
tion II provides our model formulation. Section III details
the simulation approach. Section IV provides the data that
underlie and results of an illustrative example. Section V
summarizes data for our comprehensive case study. Sections
VI and VII provide case-study results and conclude, respec-
tively.

II. UNIT-COMMITMENT MODEL

A. Model Nomenclature

1) Sets and indices: we model system operations at hourly
time steps over the ordered set, T={f,t,+1,....%,}, of
hours in the optimization horizon and define ¢ as the time in-
dex. b is the index for buses, which are in the set, B. We de-
fine sets, / and Q, of non-wind and wind generators, respec-
tively, and let i be the generator index. We define /(D) as the
set of generators that are located at bus b. We define a set,
L, of transmission lines and let / be the transmission-line in-
dex. Non-wind generators are modeled as having an ordered
set, K, of start-up types, which correspond to how long the
unit has been offline when it is started, and we let & denote
the start-up type index.

2) Parameters and functions: non-wind generators are as-
sumed to have a three-part cost structure. ¢ is the fixed no-
load cost ($/h) of having non-wind generator i online. ¢ (")
gives the output-dependent cost function ($) of non-wind
generator i. C;, is the cost ($/start-up) of non-wind generator
i incurring a type-k start-up. For all k € K, k#|K], non-wind
generator i incurs a type-k start-up if it has been offline be-
tween ¢, and ¢;,,,—1 hours when it is started up. If non-
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wind generator i has been offline ¢;,, or more hours when it
is started up, then it incurs a type-| K | start-up. Wind genera-
tors are costless to operate.

Non-wind generator i must produce between K; MW and
K" MW while it is online and must produce 0 MW while it
is offline. In addition, generator i’ s output can decrease by
R; MW at most and increase by R; MW at most between
one hour and the next. Non-wind generator can provide up
to p¥ MW and 5 MW of non-spinning and spinning re-
serves, respectively. In addition, non-wind generator must be
offline a minimum of ¢; hours after it is shutdown and must
be online a minimum of z;” hours after it is started-up. Wind
generator i has a Z, MW nameplate capacity and (; is its p.u.
hour-7 availability factor.

There is D,, MW of load at bus b during hour . # is the
p.u. load-based reserve requirement and #° is the p.u. spin-
ning-reserve requirement. Transmission line / has an F-MW
flow limit and I, is the p.u. bus-b/transmission-line-/ shift
factor. M is an arbitrarily large constant.

3) Variables: we represent the status of non-wind genera-
tors using four sets of binary variables. u,,; equals 1 if non-
wind generator i is online during hour ¢ and equals 0 other-
wise. s,; equals 1 if non-wind generator i is started-up dur-
ing hour ¢ and equals 0 otherwise. In addition, r,;, equals 1
if non-wind generator i incurs a type-k start-up during hour ¢
and equals O otherwise. /,; equals 1 if non-wind generator i
is shutdown at time ¢ and equals 0 otherwise. Two additional
sets of binary variables capture the operation of non-wind
generators vis-d-vis the provision of operating reserves. y,,
equals 1 if non-wind generator i is the largest hour-¢ contin-
gency (which prevents it contributing towards the hour-7 re-
serve requirement) and equals O otherwise. y,; equals 0 if
non-wind generator i cannot provide hour-f non-spinning re-
serves due to a minimum-down-time constraint and equals 1
otherwise.

q,,; gives generator i’ s hour-f power output (MW) and p?,
and p;, represent hour-f non-spinning and spinning reserves
(MW), respectively, that are provided by non-wind generator
i. Wind generators are disallowed from providing operating
reserves. ¢,; gives the number of hours that non-wind gener-
ator i is offline as of the beginning of hour ¢ and m,; mea-
sures the number of hours beyond ¢/, that non-wind genera-
tor i is offline as of the beginning of hour r. ¢}, represents
the actual start-up cost ($) that is incurred by non-wind gen-
erator i during hour ¢.

Each hour’s total reserve requirement is the sum of a p.u.
proportion of the hourly system-wide load and the largest
contingency of the system during the hour. These reserve re-
quirements are based on current practice of California Inde-
pendent System Operator, which manages a system with rela-
tively high renewable-energy penetrations. #; represents the
hour-¢ contingency-based reserve requirement (MW). 7 and
p? represent hour-f non-spinning and spinning reserves
(MW) that are curtailed, respectively. Jt’b measures curtailed
hour-t load at bus b (MW). w,, measures hour-f net power
(MW) that is withdrawn from the transmission network into
bus b.
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B. Model Formulation

We model system operations using the mixed-integer lin-

ear optimization problem:
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Objective function (1) minimizes system-operation costs.
We model non-wind generators as having three-part operat-
ing costs—start-up, no-load, and output-dependent variable
costs. The variable costs, ¢) (), are convex piecewise-linear
functions of the g,,’s, meaning that (1) is linear in the ¢q,;’s.
The final term in (1) penalizes load and reserve curtailments.

Constraints (2) and (3) ensure bus-level and system-wide
load balance, respectively. Constraint (4) enforces flow lim-
its on transmission lines.

Constraints (5)-(9) impose spinning- and non-spinning-re-
serve requirements. Constraint (5) defines the values of the
n,’s. Constraints (6) and (7) determine the generator that is
the largest contingency during each hour, which is ensured
by (19) and (20) not to supply reserves. Constraint (8) en-
sure that the total hourly reserve requirements are met. Con-
straint (9) ensures that a p.u. portion of the total reserve re-
quirement is met by spinning reserves.

Constraint (10) ensures that each wind generator produces
between zero and its maximum operating point, which de-
pends on its hourly capacity factor (i.e., wind conditions).
Constraints (11)-(13) impose the minimum and maximum
production limits on non-wind generators. Constraints (12)
and (13) account for additional power that is provided if re-
serves are called. Constraints (14) and (15) enforce ramping
limits on each non-wind generator, accounting for reserves
in determining upward ramping.

Constraints (16) - (20) restrict the provision of reserves.
Constraints (16) and (17) ensure that no generator provides
more reserves than it is capable of providing. u,,; and u,; are
included on the right-hand sides of (16) and (17), respective-
ly, to ensure that generators provide spinning reserves only
while they are online and that a generator does not provide
non-spinning reserves if it is unable to start-up due to a mini-
mum-down-time constraint. Constraint (18) determines the
values of x, ; based on the number of hours that generators are
scheduled to be offline and their minimum down time.

Constraints (21)-(23) define the number of hours that each
non-wind generator is offline. If u,;=1, (23) forces ¢,, to
equal zero. Otherwise, if u,,=0, (22) forces ¢,; to equal
¢,_,;+ 1. Constraints (24)-(27) compute start-up costs. Con-
straints (24) and (25) determine the type of start-up that oc-
curs during a given hour, based on the duration of time that
a given unit has been offline. Constraint (26) ensures that ex-
actly one start-up type is incurred each time that a unit is
started and (27) computes the corresponding cost.
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Constraints (28) and (29) enforce the minimum-up-time
and minimum-down-time restrictions, respectively. Con-
straint (30) defines the values of s,; and 4,; based on inter-
temporal changes in u,,. Constraints (31) and (32) impose in-
tegrality restrictions and (33) and (34) impose non-negativity.

III. MODEL IMPLEMENTATION

A. Overview

We use a rolling-horizon approach to model system opera-
tions one hour at a time. In doing so, we distinguish two pro-
cesses. The first, to which we refer as unit commitment, de-
termines the commitment schedule of non-wind generators
for the following day as well as system operations for the
current hour. The second, to which we refer as economic dis-
patch, determines current-hour system operations.

Figure 1 illustrates the sequence of these processes, for a
case with unit commitment taking place during hours 12 and
18 in each day. The top of the figure labels the sequence of
hours between hour 12 of day d and hour 19 of day d+2.
The sets of lines below the horizontal time axis illustrate the
optimization that takes place during each hour. Each thin
line represents the model horizon of the optimization that is
conducted during a given hour, whereas the thick lines repre-
sent the binding decisions.

Day d d ... d d .. d+tl .. d+l.. d+2 .. d+2d+2 ... d+2 d+2
Hour 1213 ... 1819 ... 0 12 .00 012 13 018 19
B R S
Fig. 1. Illustration of rolling-horizon modeling approach, assuming hour-

12 and -18 unit commitment.

The first set of horizontal lines shows that unit commitment
takes place during hour 12 of day d. This process determines
the real-time operation of the system during hour 12 of day d,
as well as day-(d+ 1) unit commitments. These decisions are
illustrated by hours that are covered by the thick lines. The
thin line indicates that these decisions are made using a 48-
hour optimization horizon through hour 12 of day d+2. These
additional hours beyond day d+1 are included to ensure that
sufficient generating capacity is kept online at the end of day
d+1 to serve the day-(d+2) load [37]. Including additional
hours is especially important in operational planning of genera-
tors with high start-up costs and long minimum-up, minimum-
down, and advanced-notification times.

Following the unit commitment that is conducted during
hour 12 of day d, the decision-making process rolls forward
sequentially through hours 13-17 of day d, conducting eco-
nomic dispatch. These economic-dispatch processes deter-
mine system operation during each of these hours, using a
rolling 48-hour optimization horizon. These economic-dis-
patch processes are followed by unit commitment during
hour 18 of day d, which determines system operation during
hour 18 of day d and can adjust day-(d+ 1) unit-commitment
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decisions. These hourly optimization processes continue se-
quentially to simulate system operations over the full year.

B. Model Constraints

When modeling unit commitment, we impose the con-
straints:

u,2u,; VteTielt<max{ft,+0,} (35)

(36)
where 7 is the final hour of the current day; 0, is non-wind
generator i’s minimum notification time (h); and §,, and u,,
are the values of hour-¢ start-up and commitment decisions,
respectively, of non-wind generator i that have been fixed
during previous decision-making processes. Constraint (35)
restricts the system operator’s ability to shutdown the units
that are committed to be online by a previous unit commit-
ment. Specifically, a unit that is scheduled to shutdown dur-
ing the current day or before its minimum-notification time
can be instructed instead to remain online as opposed to
shutting down. Constraint (36) allows a unit to be started-up
during the current or next day, so long as its minimum-notifi-
cation time is respected.
We impose (36) and (37) on economic-dispatch processes.

u,2u,, VieTiel 37)

Li=—
Constraint (37) is stricter variant of (35)—the only adjust-
ment to unit-commitment instructions that (37) allows is the
starting-up unit without the option of shutting-down units.

C. Algorithm

Algorithm 1 provides pseudocode that summarizes the
steps of our rolling-horizon methodology. Line 1 takes as in-
put values of 4", ¢°, u’, ¢, y,,Vi e I, which give the starting
state of each non-wind generator, and 4, the number of days
that are being simulated. y; is the number of hours that gen-
erator i has been online or offline (depending on whether it
is positive or negative, respectively) as of the beginning of
hour 7. Line 2 initializes the algorithm by setting x, which
we use to compute total system-operation costs that equal to
zero and fixing 7. Lines 3-32 are the main iterative loop,
which cycle through the days of the year and hours of each
day, which are indexed by y and £, respectively. Line 5 up-
dates the starting and ending hours of the optimization hori-
zon of the next decision-making process. Line 6 updates the
starting state of each non-wind generator, based on the most
recent model solution. Lines 7-13 impose minimum-up-time
and minimum-down-time restrictions, which are carried from
the most recent model solution, on non-wind generators.
Line 14 updates actual and forecasted wind-availability.

The decision-making process that is conducted in Lines
15-21 depends on whether 4 is an hour during which unit
commitment or economic dispatch is conducted. T, (cf. Line
15) represents the set of hours during which unit commit-
ment is conducted. In the former case, the optimization is
conducted including (35) and (36) in the model and the com-
mitment decisions are fixed (cf. Lines 17 and 18). In the lat-
ter case, the optimization is conducted including (36) and
(37) in the model and no commitment decisions are fixed.

A

s,;=8,; VteTielt<t +0,
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Line 22 adds the operational cost that is incurred during
hour %4 of day y to k. Lines 23-30 update the ending state of
each non-wind generator after the current decision-making
process. This information is used in Lines 6-13 of the follow-
ing iteration.

Algorithm 1: rolling-horizon algorithm

1: input: /%, ¢°, u?, ¢°, y.Viel, 4

2: initialize: k<0, 1< 23

3: for y<—1 to A do

4:  for h<0to 23 do

S5t oty h, t,<—h+47

6: hr\(—l,i<_h?7 qr\,71#i<_q?v U i€ uy, b1 ¢ Viel
7

8

for ie/ do
: if ;<0 then
9: fix u,;=0, Vte T: t<t; +y;
10: else if y,>0 then
11: fix u,;=1, Vee T t<t/ -y,
12: end if
13:  end for

14:  update {,;, Ve T,ieQ

15: if heT, then

16: & «argmin (1), s.t. (2)-(36)
17: d,,«u, . VteTielt>t

*

18 §,¢s,,Vielielt>t

19:  else
20: & «argmin (1), s.t. (2)-(34), (36), (37)
21:  end if

. s, N * v o*
22 k<« k+ E(Cm-i"'ci u, i+ (q,w,))
i<l

23: h?(—h:w,., q?(—qzﬂi, u?(—u;‘l_,., ¢?<—¢:l, Viel
24: forieldo
25: ifu, ;=1 then

26: xiemax{y,+1,1}
27: else

28: y;<min{y,—1, -1}
29: end if

30: end for

31:  end for

32: end for

¢" in Lines 16 and 20 represents an optimal decision-vari-
able vector. Optimal decision-variable values are used in fix-
ing unit-commitment decisions in Lines 17 and 18, comput-
ing operational cost in Line 22, and updating the state of
non-wind generators in Lines 23-30.

IV. EXAMPLE

This section presents a stylized two-day example, which
demonstrates the tradeoffs in the timing of conducting re-
commitment. Table I summarizes data for the eight dispatch-
able generators that are modeled in the example. There is an
additional 1000 MW wind plant. Generators 1-4 are relative-
ly flexible, in that they require no advanced notification to
start-up, can ramp over their full operating range within a
single hour, and have no minimum-up-time requirements.
These units are relatively costly to operate. Generators 5-8
are relatively inflexible, requiring seven hours of advanced
notification time to start-up, have minimum up-times of two
or four hours, and are able to ramp over one quarter of their
operating range within a single hour. These units are relative-
ly inexpensive to operate. Constraint parameters that are not
listed in Table I are neglected in the example, as are reserve
and transmission-network constraints.
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TABLE I
DISPATCHABLE-GENERATOR DATA FOR EXAMPLE FROM SECTION IV

i 0, K T R; e/ e el

1 0 100 1 100 1000 1000 10000
2 0 100 1 100 1000 1000 10000
3 0 100 1 100 1000 1000 10000
4 0 100 1 100 1000 1000 10000
5 7 100 4 25 100 100 1000
6 7 100 4 25 100 100 1000
7 7 100 4 25 100 100 1000
8 7 100 2 25 100 100 1000

Figure 2 summarizes the assumed load and actual wind
availability during the second day of the example, as well as
wind-availability forecasts that are produced during hours 12,
18, 20, and 23 of the first day. The forecasts overestimate wind
availability, with the hour-23 forecast being the most accurate.

1000 11000
900 1900
800
= 1800
; 700
E: 600 1700 2
< 500 g 1600 =
= . O ]
: 400 g
F —
5 1500
= 300+ ----Load .
Actual wind 1400
200 | = Day-ahead hour-12 wind-availability forecast
-e- Day-ahead hour-18 wind-availability forecast | 300
100 |- 4- Day-ahead hour-20 wind-availability forecast \
0 Day-ahead hour-23 wind-availability forecast 200
00:00  04:00  08:00  12:00  16:00  20:00  24:00
Time

Fig. 2. Modeled load and actual wind availability during the second day
of the example from Section IV and day-ahead wind-availability forecasts
produced during hours 12, 18, 20, and 23 of the first day.

Table II summarizes optimized generator commitments, as
of hour 12 of the first day, for the first 14 hours of the second
day. Because they are relatively costly, units 1-4 are not com-
mitted and the system relies upon units 5-8 to supplement fore-
casted wind production. The day-ahead hour-12 wind-avail-
ability forecast, which is used to determine the commitments
that are summarized in Table II, overestimates wind availabili-
ty. As such, additional units must be committed, either day-
ahead (if recommitment is conducted) or in real time.

Table III summarizes the impact of recommitment. The
first row of Table III reports the total number of the first 14
hours of the second day during which each unit is commit-
ted without recommitment, i.e., the sums of the values that
are reported in Table II. The remaining rows of Table III
show that if the system is recommitted, more generators, es-
pecially relatively low-cost units 5-8, are scheduled to oper-
ate during the second day. These changed commitments arise
from the improved forecasts that are available later during
the day (cf. Fig. 2). Although the hour-23 wind-availability
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forecast is the most accurate, hour-23 recommitment results
in units 1-4 being committed day-ahead. These units must be
committed because units 5-8 cannot be committed during the
early hours of the second day without violating their notifica-
tion-time constraints.

TABLE 1T
GENERATOR COMMITMENTS, AS OF HOUR 12 OF THE FIRST DAY, DURING
FIRST 14 HOURS OF SECOND DAY OF EXAMPLE FROM SECTION IV

Hour-12 generator commitment

o 1 2 3 4 5 6 7 8 9 10 11 12 13
$1 o 0 0 0 0 0 O O O O o o0 o0 O
20 0 0O o0 o0 o0 o0 o0 o0 o o0 o0 o0 o0
30 0 0 o0 O o0 o O O O O o0 o0 O
4 0 0o o0 o0 O O O O O O O o0 o0 o0
5 1 1 $1 0o 0o 0 0 O O O O o0 o0 O
6 0 0 O O 0 0 1 1 1 1 1 1 1 1
7 0 0 0 O O O O O O O O o0 o0 O
8§ 0 1 1 0 0 1 1 1 1 1 1 1 1 1
9 1 1 1 1 1 1 1 1 1 1 1 1 1 1

TABLE III

NUMBER OF THE FIRST 14 HOURS OF THE SECOND DAY OF EXAMPLE FROM
SECTION IV THAT EACH GENERATOR IS COMMITTED DAY-AHEAD WITH
UNIT COMMITMENT CONDUCTED AT DIFFERENT TIME

Unit-commitment hour

1 2 3 4 5 6 7 8

12 0 0 0 0 3 8 0 11

12 and 18 0 0 0 0 5 10 0 14
12 and 20 0 0 0 0 8 10 10 14
12 and 23 1 0 2 4 8 8 8§ 14

Table IV summarizes the total number of the first 14
hours of the second day that each unit actually is committed,
with different recommitment time. Differences between the
values that are reported in Tables III and IV reflect some
units having to be committed in real time to correct for er-
rors in wind-availability forecasts. Not conducting a day-
ahead recommitment results in the greatest use of the rela-
tively high-cost units 1-4 for a total of 19 hours. Conversely,
an hour-20 recommitment requires the use of these costly units
for only a total of eight hours. Conducting an hour-23 recom-
mitment requires the use of the relatively costly units for a to-
tal of 12 hours, because some less-costly units cannot be com-
mitted without violating their notification-time constraints.

TABLE IV
ACTUAL NUMBER OF THE FIRST 14 HOURS OF THE SECOND DAY OF
EXAMPLE FROM SECTION IV THAT EACH GENERATOR IF COMMITTED WITH
UNIT COMMITMENT CONDUCTED AT DIFFERENT TIME

Unit-commitment hour

1 2 4 5 6 8

12 4 3 5 14 8 14

12 and 18 0 4 10 1 14 10 0 14
12 and 20 4 0 3 12 10 10 14
12 and 23 3 1 4 4 12 8 8§ 14
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Table V summarizes the impacts of these different commit-
ments on the dispatch of the generating fleet. The first two
rows show that when the day-ahead hour-12 unit commit-
ment is conducted, 9411 MWh of wind is forecasted to be
available during the first 14 hours of the second day. The re-
maining 899 MWh of load is scheduled to be served using
units 5-8. However, only 6095 MWh of the wind actually is
available, meaning that the 3316 MWh deficit must be cov-
ered by the balance of the generating fleet. Units 5-8 are
able to increase their production 2116 MWh relative to their
day-ahead schedules. However, 1200 MWh of load must be
covered by units 1-4.

TABLE V
SCHEDULED AND ACTUAL DISPATCH OF GENERATORS (MWH) DURING THE
FIRST 14 HOURS OF SECOND DAY OF EXAMPLE FROM SECTION IV WITH
UNIT COMMITMENT CONDUCTED AT DIFFERENT TIME

Unit-commit- Dispatch Dispatch Dispatch Wind genera-
ment hour 1SPAICN it units 1-4 with units 5-8  tor (MWh)
1 Scheduled 0 899 9411

Actual 1200 3015 6095
Scheduled 0 1356 8954

12 and 18
Actual 968 3247 6095
Scheduled 0 2746 7564

12 and 20
Actual 372 3843 6095
Scheduled 486 3090 6734

12 and 23
Actual 722 3493 6095

The remaining rows of Table V show that conducting recom-
mitment later during the day allows more generating capacity
from units 5-8 to be scheduled, because of the improved wind-
availability forecasts. However, in all cases, some energy is
produced in real time by units 1-4, because there are errors in
the wind-availability forecasts that must be balanced. More-
over, more production from units 1-4 must be scheduled when
conducting an hour-23 recommitment, because notification-
time constraints do not allow changing the commitments of
units 5-8 during the early hours of the second day.

Table VI summarizes the actual cost of operating the system
during the second day of the example, with different unit-com-
mitment time. The cost trends follow the results that are sum-
marized in Tables II-V. Recommitting the system later in the
day is beneficial. Without recommitment, a substantial portion
of wind-supply deficits must be served using units 1-4. Recom-
mitment allows lower-cost inflexible units to be committed,
once an updated forecast indicates less wind being available.
Although the hour-23 wind-availability forecast is the most ac-
curate, notification-time constraints limit adjustments to the
commitments of units 5-8. This result shows a tradeoff be-
tween forecast accuracy and generator flexibility in determin-
ing when to conduct recommitment.

V. CASE-STUDY DATA AND BENCHMARKING

A. Case-study Data

Our case study is based on ISO New England, from
which conventional-generator and transmission-network data
are obtained directly. Previous research works [38]-[41] de-
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tail these datasets. We model a total of 276 non-wind genera-
tors, which represent 31.44 GW of nameplate capacity. Gen-
erators are modeled as having three start-up types—hot, in-
termediate, and cold. We assume that #=0.07 and #°=0.5.

TABLE VI
ACTUAL OPERATION COST DURING THE SECOND DAY OF EXAMPLE FROM
SECTION IV WITH UNIT COMMITMENT CONDUCTED AT DIFFERENT TIME

Unit-commitment hour Operation cost ($)

12 249490
12 and 18 204140
12 and 20 146650
12 and 23 193860

Hourly historical year-2009 load data for the eight load
zones in ISO New England are obtained from a public repos-
itory (cf. https://www.iso-ne.com/isoexpress/web/reports/load-
and-demand/). The system-wide load ranges between 8.90
GW and 24.73 GW and averages 14.26 GW across the year.

We model the cases with two wind penetrations—4.32
GW and 6.48 GW of nameplate capacity, which are 17.0%
and 25.5%, respectively, of peak load. These cases corre-
spond to wind serving 13.0% and 19.5%, respectively, of an-
nual load (absent wind curtailment). Wind capacities (i.e.,
the value of Z,,Vie Q) for the two wind-penetration levels
are apportioned to the eight load zones in proportion to their
co-incident peak loads.

Actual hourly wind availability and forecasts (i.e., the val-
ues of (,,,VteT,ieQ) are modeled using the data from
Wind Integration National Dataset (WIND) Toolkit [42] -
[44]. WIND Toolkit includes modeled actual wind availabili-
ty and forecasts of such for wind turbines with 100-m hub
heights at 126000 sites across the continental U.S. for the
years 2007-2013. We use these data for the year 2009 to cap-
ture correlations between load and weather conditions.

We employ a two-step process to model (,;,Vie T,ie Q.
First, each set of modeled actual and forecasted wind-availabil-
ity data are averaged across each of the eight load zones to de-
termine a zonal-average capacity factor. We do this by comput-
ing the simple average of the capacity factors reported in
WIND Toolkit for the sites that are in each of the eight zones.
Next, the modeled actual and forecasted wind-availability data
are used to determine the values of {,;, Vt e T,i € Q. For a giv-
en instance of (1)-(34), the values of {, ,, Vi e Q are set equal

to the corresponding zonal-average modeled actual capacity
factor for the hour. For the remaining hours, ¢> ¢, we use zon-
al-average forecasted capacity factors. WIND Toolkit provides
1-, 4-, 6-, and 24-hour-ahead forecasts of wind availability. We
use weighted averages of these forecasted capacity factors to
set values of (,,,Vt>t,ie Q. For instance, the value of
. ra Vi€ Q is set equal to the 4-hour-ahead forecasted wind

availability for the corresponding hour, whereas the value of
7.0 Vi€ Qis set equal to the weighted average of the 6- and

24-hour-ahead forecasted wind availabilities for the corre-
sponding hour, with weights of 17/18 and 1/18, respectively.
Values of (,,,Vt>t,+24,ie Q are set equal to the 24-hour-
ahead forecast.
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One peculiarity of WIND Toolkit, which is summarized in
Table VII, is that the forecasts do not become more accurate
as they are produced closer to real time. The first two col-
umns of Table VII show that 1-hour-ahead forecasts have
higher forecast errors than 4-hour-ahead forecasts do. Follow-
ing consultation with members of the WIND Toolkit team at
National Renewable Energy Laboratory, we follow their sug-
gestion and correct the error by time-shifting each set of
wind-availability forecasts to minimize its sum of squared er-
rors with the modeled actual wind availabilities. The final
two columns of Table VII summarize the optimal time shifts
of the forecasts and the resulting sum of the squared errors.

TABLE VII
SUM OF SQUARED ERRORS BETWEEN MODELED ACTUAL AND UNSHIFTED
AND SHIFTED FORECASTED WIND AVAILABILITIES AND TIME SHIFT USED
FOR CASE STUDY FROM SECTION VI

Forecast horizon Sum of squared errors

Time shift (hour)

(hour ahead) Unshifted Shifted
1 330 25 2
321 282 2
381 379 1
24 405 405 0

B. Benchmarking and Cases Examined

We focus on the impacts of recommitment on operational
wind-integration costs. Thus, we model wind availability as
the sole source of uncertainty. This uncertainty is reflected
by the values of {,;, V¢t e T,i € Q being updated iteratively as
operational decisions are made (cf. Line 14 of Algorithm 1).
We contrast system-operation costs with uncertain (,,,
Vte T,i € Q to a perfect-foresight benchmark, in which Algo-
rithm 1 is used but {,; is equal to its modeled actual value
ViteT,ie in each unit-commitment and economic-dis-
patch model. Comparing the costs with and without wind un-
certainty is a standard approach to measuring operational
wind-integration costs [9].

In addition to considering the cases with two wind-pene-
tration levels (4.32 GW and 6.48 GW), we consider the cas-
es with base and low levels of generator flexibility. Base
flexibility uses the values of 6,Vie [ that are reported in
the ISO New England dataset. Low flexibility uses doubled
values of 0,,Vie L

We contrast a case in which unit commitment is conducted
during noon of each day to the cases in which unit commit-
ment is conducted during noon and during some combinations
of hours 18, 20, and 23, giving seven combinations total.

VI. CASE-STUDY RESULTS

Figure 3 summarizes modeled actual system-wide wind
availability during the first 12 hours of January 10, 2009 and
three different day-ahead wind-availability forecasts. The fig-
ure assumes the base case of 4.32 GW of wind capacity. Fig-
ure 3 shows that the forecasts overestimate wind availability
for the most part. The forecast that is produced at noon has
the greatest overall errors—overestimating wind availability
during the first hour of January 10, 2009 by over 400%. The
forecast that is produced during hour 23 is the most accurate.
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Fig. 3. Modeled actual system-wide wind availability during the first 12
hours of January 10, 2009 and corresponding day-ahead forecasts produced
during hours 12, 20, and 23 of January 9, 2009 assuming 4.32 GW of wind
for case study from Section VI.

System operations differ, depending on whether only a
noon day-ahead unit commitment is conducted or recommit-
ments is conducted. With only noon day-ahead unit commit-
ment, assuming base generator flexibility, the energy-supply
shortfall that arises in real time from actual wind production
being lower than the noon forecast is addressed by commit-
ting 32 fast-start generators in real time (beginning during
hour 0 of January 10, 2009), which operate for a total of 80
hours between them. These fast-start units have high operat-
ing costs, which increases operating cost for the day. Table
VII summarizes the total and per MWh cost of operating
the system during January 10, 2009, using only noon day-
ahead unit commitment or noon day-ahead unit commitment
that is followed by either hour-20 or hour-23 recommitment.

TABLE VIII
TOTAL ($ MILLION) AND P.U. ($/MWH) SYSTEM-OPERATION COSTS DURING
JANUARY 10, 2009 WITH UNIT COMMITMENT CONDUCTED AT DIFFERENT
TIME ASSUMING 4.32 GW OF WIND AND BASE GENERATOR FLEXIBILITY
FOR CASE STUDY FROM SECTION VI

Unit-commitment hour Total cost System-operation cost
12 7.06 190
12 and 20 6.81 183
12 and 23 6.88 185

Conducting hour-20 or hour -23 recommitment reduces
the total number of hours that the 32 fast-start units are oper-
ated to 70 and 68 hours, respectively. These fast-start units
are replaced by lower-cost units that require advanced notifi-
cation to start-up. Table VIII shows that reduced use of fast-
start units results in up to 4% cost decreases in these cases
relative to conducting only noon day-ahead unit commitment.

We illustrate the high cost of fast-start units by computing
(38), which is the average output-dependent cost of each
unit, if it operates at its nameplate capacity.

Vip+
E:/: ¢ (Kl )
K’

i

Viel (38)

Table IX summarizes the capacity-weighted averages of
the values of &/ corresponding to the generators that are
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grouped based on 6, Relatively flexible generators with ad-
vanced-notification times of four hours or less are, on aver-
age, up to 13 times as costly to operate, relative to the gener-
ators with higher advanced-notification times.

TABLE IX
CAPACITY-WEIGHTED AVERAGE OF ¢! FOR 6,-BASED GROUPINGS OF
GENERATORS ASSUMING BASE GENERATOR FLEXIBILITY FOR
CASE STUDY FROM SECTION VI

0, Capacity-weighted average of ¢/’
<4 324
5-8 91
9-12 64
>13 25

If conducting only a noon day-ahead unit commitment,
the system relies heavily on the units with advanced-notifica-
tion times of four hours or less to meet the wind-availability
deficit. This reliance stems from the inability to commit low-
er-cost units with longer advanced-notification times. Con-
versely, with hour-20 recommitment, these most expensive
units can be substituted to some extent by lower-cost units
that have higher advanced-notification times.

Figure 3 shows that the wind-availability forecast pro-
duced during hour 23 is more accurate than that one pro-
duced during hour 20. However, hour-20 recommitment re-
duces operating cost relative to hour-23 recommitment. This
cost saving stems from the hour-23 recommitment being
‘too late’ in the sense that although the hour-23 forecast is
more accurate, low-cost units cannot be committed to oper-
ate during the early hours of January 10, 2009, due to the ad-
vanced-notification times. This finding demonstrates a funda-
mental tradeoff in determining when to conduct recommit-
ment—Ilater unit commitment has access to more accurate
wind-availability forecasts, but a more limited set of genera-
tors that can be committed, given their flexibility constraints.

To illustrate this tradeoff, we focus on the operation dur-
ing the first 12 hours of January 10, 2009 of three units, the
cost and flexibility characteristics of which are summarized
in Table X. The three units present the tradeoff between flex-
ibility and cost that is summarized in Table IX. With hour-
20 recommitment, generator 46, which is the lowest-cost of
the three, is operated during hours 6-12, and generator 256
is operated during hours 8-12. With hour-23 recommitment,
generator 46 cannot be started-up until hour 8 (due to its no-
tification-time requirement). Thus, generator 256 must be op-
erated during hours 6-12 and generator 191 must be operat-
ed during hours 6-7.

TABLE X
COST AND FLEXIBILITY DATA FOR THREE UNITS FROM CASE STUDY FROM

SECTION VI THAT ARE OPERATED DIFFERENTLY BETWEEN HOUR-20 AND
HOUR-23 RECOMMITMENT ASSUMING BASE GENERATOR FLEXIBILITY

i 0, el
46 8 52
191 0 263
256 2 186
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Tables XI and XII summarize operational wind-uncertain-
ty costs for the four different cases that we examine with dif-
ferent wind-penetration and generator-flexibility levels and
day-ahead unit commitment conducted during different hours.
Table XI reports wind-uncertainty costs that are normalized by
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total wind production when using wind-availability forecasts.
Table XII reports the percentage decrease in operational wind-
uncertainty costs relative to conducting a noon day-ahead unit
commitment only. The two tables show two results, which our
detailed analysis of January 10, 2009 suggests.

TABLE XI
OPERATIONAL WIND-INTEGRATION COSTS FOR CASE STUDY FROM SECTION VI ($/MWH OF WIND PRODUCED)

Operational wind-integration costs for each unit commitment hour

Wind penetration  Flexibility

12 12and 18 12 and 20 12 and 23 12, 18, and 20 12, 18, and 23 12, 20, and 23 12, 18, 20, and 23
Low Base 1.49 1.41 1.33 1.34 1.24 1.31 1.27 1.22
High Base 3.18 3.05 2.83 3.02 2.69 2.76 2.72 2.62
Low High 1.49 1.47 1.34 1.39 1.31 1.36 1.33 1.30
High High 3.18 3.13 2.89 3.07 2.79 2.93 2.86 2.75
TABLE XII

PERCENTAGE REDUCTION IN OPERATIONAL WIND-INTEGRATION COSTS RELATIVE TO NOON DAY-AHEAD UNIT
COMMITMENT ONLY FOR CASE STUDY FROM SECTION VI

Percentage reduction for each unit commitment hour (%)

Wind penetration Flexibility
12and 18 12 and 20 12 and 23 12, 18, and 20 12, 18, and 23 12, 20, and 23 12, 18, 20, and 23
Low Base 5 10 10 16 12 15 18
High Base 4 11 5 16 13 14 18
Low Low 1 10 6 12 8 11 13
High Low 3 9 3 12 8 11 14

First, if conducting a single recommitment, an hour-20 re-
commitment yields the greatest cost reductions. This result
keeps with our finding a tradeoff between forecast accuracy
and generator flexibility. Conducting three recommitments
yields further cost reduction and two recommitments yields
cost reductions in most cases. With low generator flexibility,
hour-20 recommitment yields slightly lower costs compared
to hour-18 or hour-23 recommitments. This result stems
from the combined impact of relatively (to hour-20) inaccu-
rate hour-18 wind-availability forecasts and the system hav-
ing limited operational flexibility during hour 23.

Tables XI and XII show that increasing wind penetration
or decreasing generator flexibility increases operational wind-
integration costs. Higher wind penetrations mean that fore-
cast errors yield larger absolute supply/demand imbalances.
Increasing the wind penetration by 50% more than doubles
operational wind-integration costs. Increasing the penetration
of wind further should lead to further cost escalations. Less
flexible dispatchable generators require that the system oper-
ator provides additional notification to commit inflexible
low-cost units. Recommitment gives reduced cost savings
with less flexible generators, because there are fewer options
to commit low-cost generators. With doubled advanced-noti-
fication times, hour-20 recommitment gives the greatest cost
savings. Should the generation fleet become sufficiently in-
flexible, hour-18 recommitment may provide a better trad-
eoff between forecast accuracy and generator flexibility than
hour-20 recommitment does. Algorithm 1 is computationally
costly, because system operations are re-optimized hourly
across the full year. Each model in Lines 16 and 20 of Algo-
rithm 1 has over 720097 variables and 600691 constraints,
respectively, and a median solution time of 25.7 s of wall-

clock time. Thus, we do not examine the cases with higher
advanced-notification times than the low-flexibility case in
which Vie 6, is doubled relative to the ISO New England
data.

VII. CONCLUSION

This paper examines the benefits of recommitment in re-
ducing operational wind-uncertainty costs. To do so, we de-
velop a detailed operational model that mimics many of the
costs and constraints for which system operators account in
their operational models. Nonetheless, our model is not an
exact replica of that used by any market operator. We devel-
op a rolling-horizon algorithm to simulate hourly system op-
erations that consist of unit commitment and economic dis-
patch. The key distinction between these processes is the ex-
tent to which the system operator can adjust commitment de-
cisions relative to previous decisions and which decisions
are binding.

We demonstrate our model and draw important conclu-
sions regarding the use of recommitment with a comprehen-
sive case study, which is based on ISO New England, and a
stylized example. Both the example and case study demon-
strate the cost impacts of wind uncertainty, which are in-
creasing in wind penetration and generator inflexibility. We
also demonstrate the benefits of introducing recommitment,
which raises a fundamental tradeoff between forecast accura-
cy and operational flexibility. For our example and case
study, hour-20 recommitment offers the most cost reduc-
tions. Other systems may benefit from the recommitment be-
ing conducted at different time and the methodology that we
develop could be used to examine the tradeoffs therein.



848 JOURNAL OF MODERN POWER SYSTEMS AND CLEAN ENERGY, VOL. 10, NO. 4, July 2022

We adopt an hourly timescale for all of our modeling.
Hourly timescales are used in nearly all wholesale electricity
markets for day-ahead and reliability unit commitment. With
few exceptions, sub-hourly timescales are used for economic-
dispatch modeling. We use an hourly timescale for our eco-
nomic-dispatch modeling, due to the computational cost that
sub-hourly timescales would entail. Modeling economic dis-
patch at sub-hourly timescales could reveal more load and
wind-availability variability (compared to hourly timescales).
However, our fundamental results regarding the tradeoffs in
introducing and the timing of recommitment likely would
continue to hold.

Our model does not allow wind generators to provide re-
serves, e.g., if their output is curtailed. An area of future
study could examine the benefits of using curtailed wind in
this manner. Another area of future work would be to com-
pare the benefits of recommitment to a modeling paradigm
that represents uncertainty explicitly, e.g., stochastic, robust,
chance-constrained, or distributionally robust optimization.
We do not consider explicit uncertainty representation, be-
cause no wholesale market employs such a model today
[35], [36]. Thus, this assumption is keeping with our goal of
understanding how current deterministic market models
could be improved to accommodate wind uncertainty.
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