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Abstract——The primary goal in the analysis of hierarchical dis‐
tributed monitoring and control architectures is to study the
spatiotemporal patterns of the interactions between areas or
subsystems. In this paper, a novel conceptual framework for dis‐
tributed monitoring of power system oscillations using multi‐
block principal component analysis (MB-PCA) and higher-or‐
der singular value decomposition (HOSVD) is proposed to un‐
derstand, characterize, and visualize the global behavior of the
power system. The proposed framework can be used to evalu‐
ate the influence of a given area or utility on the oscillatory be‐
havior, uncover low-dimensional structures from high-dimen‐
sional data, and analyze the effects of heterogeneous data on
the modal characteristics and interpretation of power system.
The metrics are then investigated to examine the relationships
between the dynamic patterns and participation of individual
data blocks in the global behavior of the system. Practical appli‐
cation of these techniques is demonstrated by case studies of
two systems: a 14-machine test system and a 5449-bus 635-gen‐
erator equivalent model of a large power system.

Index Terms——Distributed monitoring, multiblock principal
component analysis (MB-PCA), higher-order singular value de‐
composition (HOSVD), Tucker decomposition.

I. INTRODUCTION

WIDE-AREA monitoring networks consisting of sen‐
sors strategically deployed throughout power system

provide a powerful means to observe the system dynamics
[1] - [4]. However, the nonuniformity in the locations of the
sensors, the growing incorporation of distributed generation,
and the use of complementary measurement types, where
various key variables are simultaneously monitored at each
sensor, pose considerable challenges [5]. Even with simplifi‐
cations, the resulting models are typically huge, reflecting
the global scale and complexity of modern power systems
[6]-[8].

The simultaneous distributed analysis of multiple sets of
measurements from various geographic regions is essential
for various reasons [9]-[11]. Firstly, blocks of variables may
provide complementary information of the spatiotemporal be‐
havior of power system. Secondly, a joint analysis of multi‐
ple data blocks from interregional systems is needed to find
and understand the major patterns and data similarities.
Thirdly, the experience with the analysis of large datasets
shows that the compression of large multi-dimensional datas‐
ets may reveal low-dimensional structures or patterns in the
data, primarily because they share one or more oscillation
modes.

In this high-order setting, the critical issues include identi‐
fying the areas to be monitored, analyzing the associations
or relationships between the sets of observed data at various
local and global levels, and studying the associated commu‐
nication and control infrastructures [1], [9]-[12]. Further, lo‐
cal information must be correlated with other regional data
concentrators to extract global (inter-utility) information [8].
Additionally, it may be necessary to assess the impacts of
heterogeneous generation sources or data types on the dy‐
namic behavior of power system.

In distributed architectures, a power system is divided into
blocks of variables associated with various geographic or
control areas [3], [9], [13]. As the size and complexity of
modern power systems grow and the geographic distribution
inherent to renewable generation becomes more prominent
across the system, the analysis of spatiotemporal patterns
can be more difficult to interpret [9], [13]-[15].

Recently, several approaches for the combined analysis of
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massive multivariate datasets have been proposed [3]. Some
of these approaches require performing simple concatenation
or aggregation of variables, which may overlook the nature
of the interactions between subsystems. Another common ap‐
proach is to use parallel and distributed processing for dis‐
tributed monitoring and control [1], [14]. Other approaches
include multivariate analysis techniques such as multiblock
principal component analysis (MB-PCA) [16]-[18], multivari‐
ate independent component analysis (ICA) [19], multiway ca‐
nonical correlation analysis (CCA) [20], [21], and multi‐
block partial least squares (MB-PLS) [22], [23].

These approaches allow the assessment of impact of a sub‐
set of measurements on the global behavior of the power sys‐
tem within the context of distributed oscillation monitoring
[9], [10]. As discussed in [1], [14], traditional wide-area
monitoring architectures are highly centralized, and it is not
easily scalable to incorporate the effect of a massive amount
of distributed renewable generation. Distributed monitoring
and control architectures using the notion of grid computing
are especially promising in providing scalable and flexible
solutions to the problem of wide-area oscillation monitoring
[14], including data exchange and parallel and distributed
processing. Although these approaches address the problem
of developing more efficient monitoring schemes, there re‐
mains a need to develop techniques that use these data for
oscillation monitoring.

In this paper, a novel framework based on MB-PCA and
sequentially truncated higher-order singular value decomposi‐
tion (ST-HOSVD) is proposed to understand, characterize,
and visualize the spatiotemporal patterns of oscillatory activi‐
ty. The proposed framework can be used to evaluate the in‐
fluence of a given area or utility on the oscillatory behavior,
uncover low-dimensional structures from high-dimensional
data, and analyze the effects of heterogeneous data on the
modal characteristics and interpretation of the power system.

This paper is organized as follows. Section II presents the
background and motivation. In Section III, a framework
based on MB-PCA is introduced to jointly analyze multiple
sets of data. Section IV discusses the use of tensor-based
multiblock representations for the monitoring and analysis of
large-scale complex systems. Results are presented in Sec‐
tion V for two systems: a 14-machine test system and a
5449-bus 635-generator equivalent model of a large power
system. Finally, conclusions are drawn in Section VI.

II. BACKGROUND AND MOTIVATION

A. Hierachical Distributed Monitoring System Architecture

To obtain a conceptual understanding of the adopted mod‐
el, a hierarchical distributed monitoring system architecture
consisting of M areas or zones indexed with j = 1, 2, , M is
considered. Particular cases may include large clusters of
wind or solar photovoltaic farms or microgrids.

A phasor data concentrator (PDC) collects time-stamped
measurements stored as blocks of variables evolving with
time. A schematic of the hierarchical distributed architecture
of the adopted wide-area monitoring system (WAMS) is giv‐
en in Fig. 1. The solid thick lines correspond to the contribu‐

tion of each control area to the super PDC. Xj

(j = 1, 2, , M) is the matrix of local measurements, and Yj

is a subset of measurements or aggregated system behavior
used for regression.

Throughout this paper, it is assumed that each PDC com‐
municates with neighboring PDCs and the super PDC. Con‐
ceptually, the model gives the relationships between the data
blocks at the upper (global) level. At the lower level, the
model shows the details of each data block [3]. Purely dis‐
tributed or semidistributed monitoring architectures can also
be obtained by the proper interpretation of this model.

To formally introduce the proposed model, consider that
area k has a sparse network of mk sensors deployed to moni‐
tor the dynamic behavior of power system. Further, assume
that the time evolution of the measured data at sensor j is de‐
noted by xj(tl) (j = 1, 2, , mk, l = 1, 2, , N), where N is the
number of samples or observations and t is the time. Once a
fault is detected, the measured data are transmitted to a local
PDC for storage and analysis, as suggested in Fig. 1.

From the above description of the WAMS architecture, the
set of local data blocks can be organized into M two-way ar‐
rays.
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Note that each dataset in (1) associated with the M re‐
gions may have different numbers of sensors mj but the
same number of observations N.

Following the notation in [3], a multiblock representation
can be formed by horizontally concatenating the individual
PDC measurements as:

X =[X1 X2  XM]ÎÂN ´mt M ³ 2 (2)

where mt = m1 + m2 + + mM; and the data blocks Xj (j =
1, 2, , M) may be of different sizes in general. Moreover, a
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Fig. 1. Schematic of hierarchical distributed architecture of adopted
WAMS.
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response data matrix Yj, usually used for regression, can be
obtained and expressed as:

Y =[Y1 Y2  YM]ÎÂN ´my M ³ 2 (3)

where my is the number of output variables selected for re‐
gression. my ≠mt in general, as suggested in Fig. 1.

By their very nature, the models in the form of (2) and
(3) are large, complex, and heterogeneous in structure, as the
data blocks Xj and Yj may contain different spatiotemporal
structures and include heterogeneous data types.

B. Single-block PCA (SB-PCA)

PCA has been extensively used for the wide-area monitor‐
ing and data clustering of power systems. Given a set of
measurements in the form of (2), SB-PCA finds a new set of
variables such that [22]:

X =TPT +E (4)

where TÎÂN ´ r is the matrix of principal component (PC)
scores, and r is the number of relevant PCs; PÎÂmt ´ r

is the
matrix of PC loadings; and E is a residual matrix that is min‐
imized in the least-squares sense.

Equation (4) is equivalent to [24]:

X =TPT +E =

∑
i = 1

r

ti pT
i

Physically relevant

coordinates

+
 
∑
j = r + 1

s

tj pT
j

Non - physical

coordinates

=
   
∑
i = 1

r

ti⊗ p i

TPT

+E
(5)

where ti is the score vector; pi is the loading vector; and the
symbol ⊗ denotes the outer product. A similar interpretation
is obtained using proper orthogonal decomposition (POD)
[24], [25]. In practice, r is chosen such that a few PCs accu‐
rately approximate the observational data, and E is chosen to
be as small as possible.

Formally, the PCs can be obtained from an eigenvalue
analysis of the covariance matrix C:

1
N - 1

Cp i =
1

N - 1
X T Xp i = λi p i (6)

where λi is the eigenvalue; and C = X T X is the correlation
matrix. Alternatively, the PCs can be extracted from singular
value decomposition (SVD) of the measurement matrix in
(2) [25].

Various practical interpretations of this model can be giv‐
en as follows [26].

1) Each term ti pT
i in (5) represents a modal matrix Ei.

2) The score and loading vectors are orthogonal and ortho‐
normal, i.e., t T

i t j = 0 and p i pT
i = 1.

3) The product ti pT
i in (5) can be interpreted in terms of

the primary matrix products (two-dimensional tensors).
Figure 2 gives a representation of the system model in (5)

in terms of the tensor products. The block weights wi (i =
1, 2, , M) give the contributions of the block scores T i to
the super-score matrix T in MB-PCA.

Two practical problems arise in the application of SB-
PCA approaches. First, these techniques cannot describe the
relationships between data blocks, and may be inappropriate
for analyzing data interactions. The second limitation con‐
cerns the interpretation of results when some data blocks
have more variables than others and only provide a partial
and somewhat limited view of the global behavior of power

system.

Several refinements to this technique are discussed next,
and a unifying framework to study and characterize inter-sys‐
tem oscillations is provided.

III. FRAMEWORK BASED ON MB-PCA

MB-PCA has recently emerged as a powerful analysis tool
for the joint analysis of high-dimensional data [26]-[28]. The
adopted MB-PCA framework is introduced in the following
subsections, and the critical properties are summarized.

A. Background

As presented in [3], MB-PCA allows a multiblock compo‐
nent model of the following form to be recursively obtained:

ì
í
î

X =TPT +E
Y =UQT +F

(7)

where T and U are the matrices of block scores; Y is the re‐
sponse matrix; and P and Q are the loading matrices. The su‐
perblock matrix T can then be defined as:

T =∑
i = 1

M

wi X i (8)

Further, Xi =T i P
T
i , and PT is the loading matrix defined as:

PT =[P T
1 P T

2  P T
M] (9)

A similar interpretation can be made for U and QT.
The MB-PCA approach seeks correlated consensus direc‐

tions from the measurement blocks that maximally capture
block variations. Mathematically, this is given by the follow‐
ing optimization problem [28]:

ì

í

î

ïïïï

ïïïï

max
p1p2...pM

∑
i ¹ j

M

pT
i (X i X

T
j )p i

s.t. ||p i|| = 1
(10)

where Xi X
T
j is the cross-covariance matrix.

Various interpretations of this model are summarized as
below.

1) The score and loading vectors satisfy the conditions
t T

i t j = 0, t T
i t i = 1, pT

i p j = 0, pT
i p i = 1, "ij.

2) As shown in Fig. 2, the block weights wi give the con‐
tribution of each data block to the superblock scores.

3) The residuals provide the information of outlier detec‐
tion, and can be computed as:
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Fig. 2. Representation of system model in (5) in terms of tensor products.
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E =X -TPT (11)

F =Y -UQT (12)

With these assumptions, two types of metrics are consid‐
ered: measures of the contribution of a variable to the local
area dynamics, and measures of interaction between vari‐
ables in two or more areas or geographic regions.

In the first case, a practical local interpretation of the con‐
tributions of a set of variables to the dynamics of the area
can be obtained from the loadings of the data matrices. Let
p i =[p1i p2i  pmTi ]

T be the loading vector associated with

the ith PC.
Intuitively, the normalized contribution Cij from the jth vari‐

able to the ith oscillatory mode or PC (a dominance measure)
is given by the metric Cij:

Cij =
p2

ij

∑
l = 1

mk

p2
lj

i = 12mTj = 12r
(13)

where pij is the jth element in pi. One could also calculate the
contribution of a set of variables to the dynamics of the area
or the contribution of each block to the global behavior of
the system, as explained below.

Alternatively, the relationships between the blocks of vari‐
ables can be obtained using specialized approaches such as
MB-PLS [29] and multiblock CCA (MB-CCA) [30]. The nu‐
merical implementation of MB-PCA is firstly discussed.

B. Numerical Implementation of MB-PCA

The MB-PCA algorithm developed in this paper is based
on [15], [16] and summarized as follows.

A data matrix of concatenated data blocks, X =[X1
X2  XM ]ÎÂN ´mt, M ³ 2, is firstly given.

Step 1: normalize, center, and scale the data blocks Xi, i =
1, 2, , M.

Step 2: select a column of one of the blocks Xi as a start‐
ing consensus tT and iterate until the convergence of tT.

1) Compute the block variable loadings using regression
as p i =X T

i tT /(t T
T tT ), s.t. |p i| = 1, i = 1, 2, , M.

2) Compute the block scores as ti = Xi p i, i = 1, 2, , M.
3) Combine all block scores into a score superblock T =

[t1 t2  tM ].
4) Compute the super-weights w =T TtT /(t T

T tT ), |w | = 1,
with w =[w1, w2, , wM ]T.

5) Determine the super-scores as ti = Tw. Select a new tT

and return to 1).
Step 3: upon convergence, deflate the residuals as

p i =X T
i tT /(t T

T tT ), Xi =Xi - tT pT
i .

The variations of this basic procedure are given in [16]
and discussed in the application of simulation data.

IV. TENSOR-BASED MULTIBLOCK REPRESENTATIONS

WAMSs produce data in the form of multi-dimensional ar‐
rays that can be represented using tensors.

Two cases are of particular interest in this paper: ① joint
analysis of multivariate PMU data such as the bus frequen‐
cy, the magnitude of the bus voltage and the phase angle, or

the active and reactive powers; and ② the data of the same
type associated with different contingencies or historical data
collected using the same set of sensors. A more general dis‐
cussion of this issue can be found in [12].

A tensor-based multiblock representation of multivariate
PMU data is illustrated in Fig. 3. It is essential to note in
this case that the n-way arrays in Fig. 3 are unfolded across
the sensor dimension as:

X̂ =
é

ë

ê

ê
êê
ê

ê
           X 1

1 X 2
1  X

m1

1

PDC1

            X 1
M X 2

M  X
mM

M

PDCM

ù

û

ú

ú
úú
ú

ú
(14)

where X k
j (k = 1, 2, , mj) is the kth measurement matrix asso‐

ciated with area j. Further, it is observed that each matrix X k
j

can be related to a given measurement type or represent his‐
torical data, e. g., a single data type coming from multiple
fault scenarios or recorded events.

A. Tucker Decomposition

A more useful representation of multivariate PMU data in
(14) can be obtained from tensor decomposition of the set of
local data blocks associated with each PDC in Fig. 3. Note
that in this case, each slice X k

j (j = 1, 2 , M,
k = 1, 2 , mj) represents a measurement matrix associated
with a single data type.

Let χ denote an Nth-order tensor of dimension ℜ
I1 × I2 × × IN.

Tucker decomposition is a technique that decomposes a
third-order tensor χ into a set of three factor matrices, U(1),
U(2), and U(3), and a core tensor S ∈ℜr1 × r2 × r3 with ri £ Ii [31]-
[33]. Mathematically, χ can be numerically estimated by
solving the following optimization problem:

min
χ̂

f ( χ̂)= ||χ - χ̂||2
F (15)

where χ̂ is the tensor approximation to χ. The enhancements
to this basic formulation are discussed below.

B. HOSVD

HOSVD is a constrained form of Tucker decomposition
that ensures the orthogonality of the factor matrices and core
tensor [34], [35]. For simplicity and clarity of exposition, a

+ + + 

+

+ + +
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X
M
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X
M
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Fig. 3. Tensor-based multiblock representation of multivariate PMU data.
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third-order tensor (two slices in the data blocks in Fig. 3) is
considered. Using HOSVD, the third-order tensor
χ ∈ℜI1 × I2 × I3 is decomposed into three factor matrices and a
core tensor as:

χ̂ = S ´ 1U
(1)´ 2U

(2)´ 3U
(3) (16)

where U (i)=[u(i)
1  u(i)

2   u(i)
Ii

]ÎÂIi ´ Ii, i = 1, 2, 3 is the orthogo‐

nal (factor) matrix, i. e., (U (i) )TU (i)= I i, that form the Tucker

factors; SÎÂI1 ´ I2 ´ I3 is the core tensor; and ´n (n = 1, 2, 3) de‐
notes the n-mode multiplication of tensors. In this sense, S
contains the ith-mode singular values of χ and gives the de‐
gree of interaction among the U(i) components.

In physical terms, U(i) can be interpreted as the PCs of
each tensor mode, and U(1) gives the spatial shapes or pat‐
terns, which allows the derivation of similar measures to
those introduced in (13). As a byproduct, an HOSVD analy‐
sis of the measurement matrix X and response matrix Y can
be used for regression, but this is not discussed in this paper.

As discussed below, the datasets in (2) are usually low-
rank and sparse in a reduced subspace in typical system ap‐
plications. Drawing on this observation, an HOSVD analysis
of the array of measurements associated with area k given
by the tensor χÎÂmj ´N ´mk yields a low-dimensional represen‐
tation, i.e., a full-rank decomposition, which is expressed as:

χ̂ = Ŝ ´ 1Û
(1)´ 2Û

(2)´ 3Û
(3) (17)

where Ŝ ∈ℜr1 × r2 × r3 is the core tensor for r1 £mj, r2 £N, and
r3 £mk; and Û (1)ÎÂmj ´ r1, Û (2)ÎÂN ´ r2, and Û (3)ÎÂmk ´ r3 are
the orthonormal factors.

It can also be demonstrated that (17) admits a spatiotem‐
poral representation of the form (18) or (19):

χ̂ =          (Ŝ ´ 2Û
(2)´ 3Û

(3) )
G

´ 1Û
(1)

(18)

χ̂ =G ´ 1Û
(1) (19)

where Û (1)=[û(i)
1  û(i)

2   û(i)
Ii

] is a matrix that contains the

spatial patterns (mode shapes or loading matrix PT in (7))
and provides a common basis for the subspace of measure‐
ments associated with (14). The tensor G =
Ŝ ´ 2Û

(2)´ 3Û
(3)ÎÂr1 ´N ´mk contains the temporal patterns or

modes of each subspace of measurements, and provides a
compressed representation of the block scores in (7) and (8).

However, HOSVD is computationally demanding since
the tensor representations are sparse and high-dimensional.
As a result, a low-rank approximation is sought such that
||χ - χ̂|| £ ε||χ||, where ε is the desired or specified accuracy.

In the following subsection, ST-HOSVD is explored to as‐
sess the dynamic behavior of power system.

C. ST-HOSVD

As noted above, tensors in the applications of dynamics
of power systems are usually low-rank. A more efficient al‐
gorithm for computing the HOSVD of (15) is the ST-HOS‐
VD approach introduced in [36], [37].

This algorithm enables a low-rank accurate (and faster)
HOSVD approximation to be efficiently obtained, in which
the tensor ranks are sequentially computed in a greedy way.

For each mode, the ith-rank approximation ri £ Ii is deter‐
mined by performing an SVD of X(i), where ri is the rank.

In this procedure, the rank rN is selected in such a way
that the singular values σi of Xi satisfy [31]:

∑
j = ri + 1

Ii

(σ j
i ) 2

£
ε2

N
 χ 2

(20)

This approach has several advantages over conventional
truncated HOSVD approaches, such as faster computation
speed, a compressed representation, reduced computational
efforts, and the possibility of providing an approximate error
analysis.

The ST-HOSVD approach implemented in this paper can
be summarized as follows [36], [37].

1) Given a set of measurement data in (2), center and
scale the individual data blocks. Construct a multiway array
using the tensor slice representations as: χ(::i)= X̂i i =
12M where X̂i is the scaled data.

2) Set the desired accuracy ε in (20) and compute the ST-
HOSVD using the approach in [36].

3) Obtain the core tensor S and factor matrices U(i), i =
1, 2, 3.

4) Rank the tensor modes using energy criteria.
5) Compute the ST-HOSVD mode shapes from Û (1), the

ST-HOSVD damping, and the frequency estimates from G.
6) If necessary, reconstruct the selected dynamics using

(17) or (19), extract the spatiotemporal features of interest,
and visualize the higher-order PCs. Extract the modal proper‐
ties.

Other potential applications that are actively investigated
include sensor placement, anomaly detection, and distributed
monitoring.

D. Case Studies

Three case studies representing various degrees of system
complexity and modeling are simulated and summarized be‐
low to highlight the importance of joint analysis of multivari‐
ate datasets.

1) Case 1: the three-way arrays in Fig. 3 are unfolded,
and the resulting model is analyzed using MB-PCA or ST-
HOSVD.

2) Case 2: the three-way array in (17) is treated as a sin‐
gle three-way tensor, and the spatiotemporal representation
is obtained using (16) through (18).

3) Case 3: the three-way data associated with each PDC
are individually analyzed, and the local results are combined
to obtain a global model of the system.

V. APPLICATION OF SIMULATED DATA

In this section, the abilities of MB-PCA and HOSVD to
extract and characterize spatiotemporal patterns are tested
with two systems: a 14-machine test system and a 5449-bus
635-generator equivalent model of a large power system.

A. Application to 14-machine Test System

Figure 4 shows a single-line diagram of the 14-machine
test system in Australia [38]. The test system consists of 68
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buses, 14 generators, and five static var compensators
(SVCs), and encompasses the interconnected operation of
five coherent regions.

The time series extracted from transient stability simula‐
tions are used to investigate the application of multiblock
analysis to extract and characterize system oscillations. As
an example, Fig. 5 shows the machine speed deviations of
the system generators following a 1% load shedding at
bus 217.

In the studies described below, 1503 samples correspond‐
ing to an observational window of 30 s are used to generate
a 1503×14 measurement space.

On the basis of a coherency analysis, the 14 machine
speed signals are divided into five blocks of variables associ‐

ated with coherent areas 1-5 in Fig. 4. Table I lists the char‐
acteristics of the signals selected for analysis. Since the re‐
gression is of no interest here, the output measurement ma‐
trix Y is assumed to equal the input measurement matrix X,
i.e., Y = X.

As summarized in Table II, a dynamic mode decomposi‐
tion (DMD) analysis of the speed deviation signals in Fig. 5
shows a dominant interarea mode at about 0.328 Hz and a
high-frequency local mode at about 0.463 Hz. The first
swing mode (0.328 Hz) describes an oscillation in which ar‐
eas 1-3 and 5 swing in opposition to area 4. The second
swing mode (0.463 Hz) describes an oscillation in which ar‐
eas 1-4 swing in opposition to area 5.

Two procedures for modal extraction are investigated and
tested: ① MB-PCA of the unfolded measurement matrix X =
[X1 X2 X3 X4 X5 ]; and ② a DMD analysis of X treated
as a single block.

Figure 6 compares the multiblock data analysis of the cor‐
responding speed-based mode shape for the dominant mode
at about 0.328 Hz. The results are found to be very similar,
although some discrepancies are noted.

As a first step, the accuracy of the model is assessed for
various contingency scenarios. Numerical results for compar‐
ing the performance of the technique are described below.
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Fig. 5. Machine speed deviations of system generators following a 1%
load shedding at bus 217.

TABLE I
CHARACTERISTICS OF SIGNALS SELECTED FOR ANALYSIS

Area (data block)

1 (X1)

2 (X2)

3 (X3)

4 (X4)

5 (X5)

Characteristic

1 signal (speed deviation, Generator 101, area 1)

4 signals (speed deviations, area 2)

2 signals (speed deviations, area 3)

4 signals (speed deviations, area 4)

3 signals (speed deviations, area 5)

TABLE II
DMD ANALYSIS RESULTS OF SPEED DEVIATION SIGNALS IN FIG. 5

Mode

1

2

Frequency (Hz)

0.328

0.463

Damping (%)

24.86

11.52

Shape

Areas 1-3, 5 v.s. area 4

Areas 1-4 v.s. area 5
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Fig. 4. Single-line diagram of 14-machine test system in Australia.
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Figure 7 compares the first two dominant PCs extracted
using the SB-PCA and MB-PCA approaches in Table I. The
simulation results indicate that both approaches can appropri‐
ately characterize the behavior of the system.

Further insight into the contribution of each regional sys‐
tem to the global system dynamics is obtained from the su‐
per-score (block) weights wi in Fig. 8, where areas 3-5 sig‐
nificantly contribute to the 0.328 Hz interarea mode, while
areas 1 and 2 have the least participation in the mode.

Next, MB-PCA and higher-order PCA are used to assess
the impact of wind penetration on the inter-system oscilla‐
tions. Moreover, the analyses examine the effects of the two
data types on the dynamic behavior of power system.

B. Application to 5449-bus 635-generator Equivalent Model
of a Large Power System

The developed procedures are further tested on a realistic
5449-bus 635-generator equivalent model of a large power
system. Figure 9 depicts the schematic of the system show‐
ing the locations of the regional PDCs and the major genera‐
tors and wind farms (WFs). The equivalent model consists
of 5449 buses, 26 WFs, and eight photovoltaic farms repre‐
senting the operation of seven interconnected areas.

As shown in Fig. 9, each geographic area is assumed to
have one PDC, and the information is sent to a super PDC
located at the national energy control center. For the clarity
of visualization, the data from 40 major generators out of
the original 635 generators and 26 WFs are used for the
joint analysis of the system behavior. These machines repre‐
sent the generators and WFs with the most significant partici‐
pation in the slowest interarea mode.

Detailed simulations of the transient stability have been
conducted to generate the observational data in (1). Solu‐
tions are obtained using a time step of 5 ms and a time win‐
dow of 30 s for 1604 samples. Before applying the proposed
procedures, data are decimated from the initial rate of 200 Hz
to 20 Hz to emulate the actual sampling rate of the PMU
used in the system.

A 10 s overlapping window is utilized for screening pur‐
poses following the approach in [39], [40].

Five blocks of variables are considered for analysis, in‐
cluding the deviations in both the generator speed and WF
speed. Table III summarizes the main characteristics of the
signals used in the analyses below.

The contingency considered is a three-phase stub fault at
the interface between areas 3 and 5. This contingency is
found to excite the slowest system mode at about 0.395 Hz.
Two main datasets are used for analysis: ① active output
power; and ② speed deviations.

The first dataset consists of the measured active output
power of the selected generators and WFs in Table III. The
second dataset corresponds to speed deviations.

Figure 10 shows the signals selected for multiblock analy‐
sis of system behavior, including the WF and generator
speeds and active output power, which are simultaneously
measured at 66 locations. Nonlinear detrending techniques
have been applied to the WF speed deviations before apply‐

TABLE III
MAIN CHARACTERISTICS OF SIGNALS USED IN ANALYSES

Area (data block)

1 (Xg1 - 3
)

2 (Xg6
)

3 (Xg7
)

4 (Xwf6
)

5 (Xwf1 - 3
)

Selected signal

20 generator speed signals in areas 1-3

5 generator speed signals in area 6

15 generator speed signals in area 7

19 WF speed signals in area 6

7 WF speed signals in areas 1-3

Regional

 PDCs 1-3
X1, X2, X3

X5

Generators 1-20

Generators

 21-25

Generators
 26-40

Areas 1-3

Area 5

Area 6

Area 7Area 4
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WFs 
21-26

WFs 1-10

Super PDC

Regional

 PDC 5

X4

Regional

 PDC 4

X6

Regional

 PDC 6

X7

Regional

 PDC 7

Fig. 9. Schematic of system showing locations of regional PDCs and ma‐
jor generators and WFs.
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ing MB-PCA [41].

For reference, Tables IV and V list the damping and fre‐
quency for the signals in Fig. 10 extracted by using DMD
[42], where ξ is the damping ratio. The simulation results re‐
veal a poorly damped mode at about 0.395 Hz associated
with the oscillation of machines in areas 1-3. The presence
of a strong trend at 0.055 Hz is also noted.

On the basis of this discussion, the dataset X in (2) is de‐
fined as:

X =[Xg1 - 3
Xg6

Xg7
Xwf6

Xwf1 - 3
]Îℜ

N ´mt (21)

where mt = 66; and N = 1604.
1) Mode Shapes for MB-PCA

Figure 11 compares the loading (shape or spatial patterns)
extracted from MB-PCA in (7) with those obtained using the
DMD approach. In these studies, the signals are detrended
and centered using the approach in [42]. Numerical experi‐
ence shows that this approach is more effective for scaling
and centering data than standard techniques.

As can be observed, the synchronous generators and WFs
in areas 6 and 7 swing in opposition to those in areas 1-3.
The inconsistent results in Fig. 11 emphasize the importance
of properly (nonlinearly) detrending the observation data, es‐
pecially in the case of large frequency deviations in distribut‐
ed WFs. A comparison of the numerical results in Fig. 11
shows that MB-PCA adequately represents the inter-system
behavior.

The second problem of interest is to determine the ma‐
chines or states that make the most significant contributions
to the slowest interarea mode. After computing the matrix of
scores T, the measures of contribution are determined us‐
ing (13).

The variables (generators/WFs) with the most significant
contribution Cr in (13) for each regional system determined
using this procedure for each area are Generator 1 (area 1),
Generator 2 (area 2), Generator 9 (area 3), WF 3 (data block
4), and WF 6 (data block 5). This information can be used
to determine the centers of areas for MB-PLS or to derive
the control strategies.
2) Integrated ST-HOSVD Analysis of Multiple Data Types

The data modality poses a particular challenge to the con‐
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MB-PCA in (7) with those obtained using DMD approach. (a) MB-PCA
scores for the slowest PCA mode in (9). (b) Speed-based mode shape ob‐
tained from a DMD analysis.

TABLE IV
DMD ANALYSIS RESULTS: ACTIVE OUTPUT POWER DEVIATIONS

Mode

1

2

3

4

Modal energy (%)

42.810

4.530

0.822

0.221

Frequency (Hz)

0.397

0.022

0.792

0.671

ξ (%)

0.490

44.960

1.189

11.480
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TABLE V
DMD ANALYSIS RESULTS: SPEED DEVIATIONS

Mode

1

2

3

4

Modal energy (%)

24.530

9.440

0.193

0.064

Frequency (Hz)

0.395

0.055

0.670

0.791

ξ (%)

0.49

36.03

9.97

5.79
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ventional MB-PCA approaches in Section III, as the model
dimensionality directly increases with the number of data
features. Motivated by this problem, ST-HOSVD is em‐
ployed to assess the impact of multichannel data on the dy‐
namic behavior of power system.

For illustration, this paper focuses on the joint analysis of
the datasets in Fig. 10 (Case 1 in Section IV) in the subse‐
quent discussion. In the ST-HOSVD framework, this repre‐
sentation results in a three-way tensor of dimensions N × p ×
nt with p = 2 data types.

In this case, the data are further subdivided into four
blocks. The modified measurement matrix is defined as:

X =
   [ Xsg

Xswf

X1

   
Xpg

]Xpwf

X2

(22)

For clarity of illustration, the measurement subsets in (22)
for Tucker tensor analysis are defined in Table VI.

From Table VI, the three-way data are arranged into a ten‐
sor χ̂ ∈ℜnt × N × p with nt = 66, N = 1604, and p = 2 (two data
types). As discussed above, the application of HOSVD al‐
lows the three-way observational data to be expressed in
terms of a core matrix G and reduced matrix U(1) as shown
in (17), where G ∈ℜ61 × 1604 × 2, U (1)∈ℜ66 × 61, U (2)∈ℜ1604 × 121,
and U (3)∈ℜ2 × 2. Two different problems are of interest here:
① extracting the global oscillation modes from (17); and ②
identifying the dominant modes and interaction features by
using a Tucker PCA model.

Owing to its analytical nature, HOSVD acts as a filter to
single out the dominant (slowest) oscillation mode at about
0.395 Hz. This is illustrated in Fig. 12, which shows the two
dominant temporal modes extracted using G in (17) and (19)
from the dataset in (22). They correspond to the time evolu‐
tion of the PCA mode at 0.395 Hz, and the global trend.

Further, Fig. 13 depicts the speed-based mode shape of
the speed deviation signals in Fig. 10 obtained using ST-
HOSVD. In this analysis, the accuracy criterion ε in (20) is
set to be 1 × 10-5.

The results correlate well with those computed using MB-
PCA and the DMD analysis in Fig. 11. For Case 1, the CPU
time for the ST-HOSVD approach and MB-PCA is 0.53 s
and 1.92 s, respectively.
3) Mode Shapes for MB-PCA

Additional insight into the use of data types is obtained us‐
ing MB-PCA for the speed deviations and active power devi‐
ations in (22). Figure 14 shows the extracted score or shapes
for the dominant PC using MB-PCA.

From this analysis (Case 2 in Section IV), the participa‐
tion of blocks from the score weights is found to be 0.5862
(block 1), 0.2542 (block 2), 0.6729 (block 3), and 0.4013
(block 4), indicating that the generator speed deviation and
active output power signals (block 3) have the most signifi‐
cant participation in the 0.395 Hz mode.

Moreover, the analysis shows the phase of the modal con‐
tribution from various data types in a single plot.
4) Feature-level Modal Analysis

The system monitoring at the modal (feature) level in‐
volves combining or integrating temporal scales. Each area
is treated as a single data block, and the dominant scales are
extracted using any linear or nonlinear modal analysis tech‐
nique (Case 3 in Section IV). For example, let the measured
data in area k be approximated by the DMD model as [39]:
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Fig. 12. Time evolution of modal components extracted using ST-HOSVD
submatrices. (a) X1. (b) X2.
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TABLE VI
MEASUREMENT SUBSETS IN (22) FOR TUCKER TENSOR ANALYSIS

Data block

Xsg

Xswf

Xpg

Xpwf

Features

40 generator speed signals

26 WF speed signals

40 generator active output power signals

26 WF active output power signals
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X͂k »∑
j = 1

rk

φj λja
T
j (23)

where a j (t)=[aj (t0 ), aj (t1 ), , aj (tN - 1 )] is the jth vector of the
temporal amplitudes; φj is the dynamic or spatial mode; and
λj is the associated frequency. The index rk is the number of
significant modes within a frequency band of interest, i. e.,
ωmin £ωj £ωmax for area k.

The temporal components in (23) are then used to build
the feature-based matrix as:

X̂j (t)=
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(24)

The dimension of matrix is N × rT, where rT = r1 + r2 + +
rM, r1 ≠ r2 ≠ ≠ rM in general, i. e., the number of selected
modes is allowed to differ.

Similar representations can be obtained using wavelets or
other system identification and control modeling techniques
[43], [44].

In the first step, the DMD modes associated with a given
region or block of variables are obtained using (23); in the
second step, the temporal components aj(t) are combined to
yield the overall superblock-level model. Then, regular SB-
PCA is applied to the single-block representation, and the
measures of association can be estimated using CCA or PCA.

Figure 15 shows the time evolution of the dominant PC
modes in Case 3, which are extracted using the above proce‐
dure. Here, PC modes 1 and 2 capture the 0.395 Hz sus‐
tained oscillation, while PC mode 3 captures the global
trend. Again, the results compare well with the HOSVD
model in Fig. 12. However, the feature-level modal approach
is rather elaborate, and the energy criteria need to be speci‐
fied to retain the number of significant modes within the fre‐
quency band of interest.

VI. CONCLUSION

In this paper, the MB-PCA and ST-HOSVD approaches
based on Tucker decomposition are used in a complementary
manner to evaluate and characterize the interregional oscilla‐
tions in hierarchical distributed WAMSs.

The techniques for relating blocks of variables associated
with local systems or areas are examined, and the approach‐

es for analyzing the effect of multiple data types on the sys‐
tem behavior are proposed.

The results demonstrate that multiblock analysis tech‐
niques are scalable and efficient for analyzing local and glob‐
al oscillations in hierarchical distributed WAMSs. This analy‐
sis can provide guidelines for selecting variables of interest
during the design of WAMSs and control/monitoring strate‐
gies and studying the impact of distributed generation on the
dynamic behavior of power system.

Efforts to generalize the proposed framework to a tensor
representation of multiple heterogeneous datasets are active‐
ly investigated. Further, two novel avenues for research are
envisaged: ① ST-HOSVD-based PCA; and ② partial least-
squares (PLS) analysis and tensor-based sensor placement.
In addition, an investigation is necessary to assess the appli‐
cability of multiblock analysis techniques to combine or fuse
data in near-real-time applications.
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